航模基础知识要点培训课件

航模基础知识要点培训课件
航模基础知识要点培训课件

航模基础知识

1、什么叫航空模型

在国际航联制定的竞赛规则里明确规定“航空模型是一种重于空气的,有尺寸限制的带有或不带有发动机的,不能载人的航空器,就叫航空模型。

2、什么叫飞机模型

一般认为不能飞行的,以某种飞机的实际尺寸按一定比例制作的模型叫飞机模型。

3、什么叫模型飞机

一般称能在空中飞行的模型为模型飞机,叫航空模型。

4、模型飞机一般与载人的飞机一样,主要由机翼、尾翼、机身、起落架和发动机五部分组

成。

5、机翼——是模型飞机在飞行时产生升力的装置,并能保持模型飞机飞行时的横侧安定。

6、尾翼——包括水平尾翼和垂直尾翼两部分。水平尾翼可保持模型飞机飞行时的俯仰安定,垂直尾翼保持模型飞机飞行时的方向安定。水平尾翼上的升降舵能控制模型飞机的升降,垂直尾翼上的方向舵可控制模型飞机的飞行方向。

7、机身——将模型的各部分联结成一个整体的主干部分叫机身。同时机身内可以装载必要

的控制机件,设备和燃料等。

8、起落架——供模型飞机起飞、着陆和停放的装置。前部一个起落架,后面两个起落架叫

前三点式;前部两个起落架,后面一个起落架叫后三点式。

9、发动机——它是模型飞机产生飞行动力的装置。模型飞机常用的动力装置有:橡筋束、

活塞式发动机、喷气式发动机、电动机。

10、翼展——机翼(尾翼)左右翼尖间的直线距离。(穿过机身部分也计算在内)。

11、机身全长——模型飞机最前端到最末端的直线距离。

12、重心——模型飞机各部分重力的合力作用点称为重心。

13、翼型——机翼或尾翼的横剖面形状。

14、前缘——翼型的最前端。

15、后缘——翼型的最后端。

16、翼弦——前后缘之间的连线。

17、展弦比——翼展与翼弦长度的比值。展衔比大说明机翼狭长。

18、削尖比——指梯形机翼翼尖翼弦长与翼根翼弦长的比值。

19、上反角——机翼前缘与模型飞机横轴之间的夹角。

20、后掠角——机翼前缘与垂直于机身中心线的直线之间的夹角。

21、机翼安装角——机翼翼弦与机身度量用的基准线的夹角。

22、机翼迎角——翼弦与机翼迎面流来的气流之间的夹角。

23、翼载荷——单位升力面积所承受的飞行重量。

24、总升力面积——是模型飞机处于水平飞行状态时,机翼的总升力面积以及水平和倾斜安

放的尾翼面积,在水平面上的正投影面积之和。

25、模型飞机用的翼型有:薄板型、对称型、平凸型、双凸型、凹凸型、弓型、S型。

26、机翼产生升力是气流通过翼面时,上表面部分流速加快,压强减小;下表面部分流速减

慢,压强加大,机翼上下压力差形成升力。

27、造成翼面上下面速度变化的原因有两个:一是机翼或平尾有迎角;二是翼型的不对称。

28、失速是迎角增加到了一定程度,机翼上表面气流形成了悬涡,涡流不再紧贴机翼表面,而是滚转离去,这种情况叫气流分离。气流分离后上表面速度降低,压强增大,导致升力迅速降低,压强增大,导致升力迅速下降,模型失速下降,所以临界迎角也叫“失速迎角”。

29、模型飞机的阻力有:摩擦阻力、压差阻力、诱导阻力,干扰阻力。

30、升阻比是升力和阻力的比值,也就是升力系数和阻力系数的比值,是评价机翼或模型飞

机空气动力性能的参数。

31、空气动力的作用点叫压力中心。

32、重心运动指以重心为代表的模型整体运动。

33、绕重心运动指是绕重心的转动。

34、迎角和滑翔状态的关系:

零升力迎角——垂直俯冲;

小迎角——俯冲;

有利迎角——滑翔最远(滑翔角最小);

经济迎角——留空时间最长;

接近临界迎角——滑翔速度最小;

超过临界迎角——波状飞行;90度附近迎角——垂直迫降。

35、平飞是水平、直线、匀速的飞行状态。

36、平飞的条件是:力矩平衡;升力等于重力(保证高度不变);拉力等于阻力(保证速度

不变)。

37、我国制作模型常用的木材有:桐木、松木、椴木、桦木、水松、轻木及层板。

38、桐木成材的特点:是比重轻、相对强度大、变形小、容易加工。

39、松木成材的特点:纹理均匀、木质细密、不易变形、易于加工并富有一定的弹性。

40、桦木成材的特点:木质坚硬、纹理均匀紧密、比重较大。

41、椴木成材的特点:它的坚硬度比桦木差,纹理非常均匀细腻平直、具有较大的韧性、容

易加工。

42、水松成材的特点:材质松软、纹理较乱、容易变形、比重很轻、易于加工。

43、轻木成材的特点:材质很松软、纹理均匀、不易变形,比重很轻、易于加工。

44、层板的特点:比重较小、强度适当、易于加工。

45、模型飞机在正常飞行时所受的力有:升力、阻力、重力和拉力。

46、轻航空器是指它的重量比同体积空气轻的航空器。它是依靠空气的浮力而升空的。

47、重航空器是指它的重量比同体积空气重的航空器。

48、相对性原理:假如你乘火车离开北京,由于你坐在火车上,你可以这样说,北京站离开

你了;而站在站台上的人也可以这样说,你离开北京站了。从运动学的角度来看,这两种说法都对,因为你和北京站发生了相对运动,在运动学中,把运动的相对性叫做相对性原理或者叫做可逆性原理。相对性原理对于研究飞机的飞行是很有意义的。飞机和空气做相对运动,无论是飞机在静止的空气中运动,还是飞机静止而空气向飞机运动,只要相对运动的速度一样,那么作用在飞机上的空气动力就是一样的。

49、伯努利定理:是能量守恒定律在流体中的应用。当气体水平运动的时候,它包括两种能量:一种是垂直作用在物体表面的静压强的能量,另一种是由于气体运动而具有的动压强的

能量,这两种能量的和是一个常数。

50、模型飞机的安定性:俯仰安定性就是模型飞机在飞行中,因外界干扰而改变了原来的迎

角和速度后,自动恢复到原来迎角和速度的能力。主要靠水平尾翼的空气动力来获得。

横侧安定性就是模型飞机在飞行中,受到外界的影响而倾斜时,能够自动恢复过来的能力,主要靠机翼的上反角来获得。

方向安定性就是模型飞机在飞行中,受到外界的影响而改变方向时,使其恢复原来飞行方向的能力。主要靠垂直尾翼来保证。

51、航天模型,顾名思义是仿航天器外形制作的一种可回收模型,隶属于航空模型,是供运

动用的一种不载人的飞行器。

52、模型火jian是指不利用气动升力去克服重力,而是靠模型火jian发动机推进升空的一种航空模型;它装有使之安全返回地面的以便再次飞行的回收装置;为确保安全,它的结构

部件必须由非金属材料制成。

53、太空又称宇宙空间或外层空间。

54、人类已探明的太阳系有9大行星,依据离太阳的远近排列,依次为水星、金星、地球、

火星、木星、土星、天王星、海王星和冥王星。

55、航空是指载人或不载人的飞行器在地球大气层中的航行活动。航空活动的范围主要限于

离地面30公里的大气层内。

56、航天是指载人或不载人的飞行器在太空的航行活动,也叫做空间飞行或宇宙航行。航天包括:环绕地球运行、飞往月球或其它星球的航行、行星际空间的航行及飞出太阳系的航行。

57、火jian是依靠火jian发动机喷射工质产生反作用力向前推进的飞行器,火jian自身

携带全部推进剂(燃料和氧化剂,它既是能源,又是工质源)。

58、火jian的应用非常广泛,一般可分为民用和军用两个方面。民用方面,从节日用的小火jian、防雹火jian、探空火jian,乃至将人类送入太空的巨型运载火jian;军用方面,

包括野战火jian弹和各类战略、战术导弹。

59、运载火jian是由多级火jian组成的航天运载工具,其用途是把人造卫星、载人飞船、

空间站或空间探测器等有效载荷送入预定轨道。

60、导弹是依靠制导系统来控制飞行轨迹的火jian或无人驾驶飞机式武器。导弹由战斗部、

动力装置、制导和控制系统,以及弹体结构组成。

61、世界上第一个航天器是前苏联于1957年10月4日发射的人造地球卫星——斯普特尼克

1号。

62、第一个载人航天器是前苏联宇航员加加林乘坐的东方号宇宙飞船。

63、第一个兼有运载火jian和飞机特征的航天器是美国的哥伦比亚号航天飞机。

64、航天器分为三类:人造地球卫星、载人航天飞行器和空间探测器。

65、人造地球卫星简称卫星,是环绕地球运行的不载人航天器。

66、空间探测器对月球和月球以远的天体和空间进行探测的不载人航天器,包括月球探测器、

行星和行星际探测器。

67、载人航天器供人类驾驶和乘坐的太空作各种探测、实验和研究的航天器。

68、我国1960年2月19日,第1枚探空火jian发射成功,同年11月5日第1枚运载火

jian发射成功。

69、我国于1970年4月24日发射了东方红1号人造卫星,使中国成为继苏、美、法、日后

第五个用自制运载火jian发射卫星的国家。

70、空气是一种无色、无味的透明气体。它是由氧气和氮气等混合而成。

71、气动阻力是物体在空气中运动时所引起的阻碍物体向前运动的力。

72、模型火jian的阻力:头锥阻力、箭体筒段的阻力、尾段底部阻力、尾翼阻力。

73、模型火jian的组成:头锥、箭体筒段和尾段、尾翼、回收装置。

74、模型火jian的常用材料:纸和纸板、轻木、塑料和复合材料。

75、模型火jian发动机是推动模型火jian升空的动力装置。

76、推力是推动飞行器运动的力,是火jian发动机工作时作用在发动机内、外表面上的各

力的合力。

77、总冲是对发动机的推力在整个工作时间内的积分,或者说,是发动机的平均推力与工作

时间的乘积。(单位:牛顿·秒)

78、工作时间是指发动机的推进剂从点火引燃到燃烧完毕的全部时间。(单位:秒)

79、比冲是单位质量推进剂所产生的冲量。(单位:牛顿·秒/千克,米/秒)

80、模型火jian发动机由纸质壳体、陶土喷管、推进剂、延时剂、弹射剂、堵盖和点火装

置组成。

81、发动机工作过程及其对应的火jian飞行阶段

(一)点火和推进剂燃烧过程(发动机工作过程)/火jian主动飞行阶段

(二)延时剂燃烧过程/火jian惯性飞行阶段

(三)弹射剂燃烧过程/火jian自由飞行阶段

82、发动机壳体上表明“A6-3”,表示该发动机属于A类,总冲为2.5牛·秒;平均推力为

6牛;延时(开伞)时间为3秒。

83、普及级航空航天模型的分类

(一)自由飞模型模型飞机类(P1类)

(二)线操纵模型飞机类(P2类)

(三)无线电遥控模型飞机(P3类)

(四)像真模型飞机类(P4类)

(五)无线电遥控电动模型飞机类(P5类)

(六)外观像真航空航天模型类(P6类)

(七)指定模型飞机类(P7类)

(八)非常规模型飞机类(P8类)

(九)航天模型类(S类)

84、橡筋模型飞机(P1B)指以橡筋材料提供动力,由空气动力作用在保持不变的翼面上而

产生升力的航空模型。

P1B-0:最小飞行重量16克;动力橡筋最大重量2克。

P1B-1:最小飞行重量40克;动力橡筋最大重量4克。

P1B-2:最大飞行重量80克;动力橡筋最大重量8克。

85、电动模型飞机(P1E)指以电动机提供动力,由空气动力作用在保持不变的翼面上而产

生升力的航空模型。

P1E-1:动力电源最大标称电压3伏充电电池。充电时间90秒。

P1E-2:动力电源最大标称电压4.5伏充电电池。充电时间120秒。

86、橡筋模型直升机(P1F)指以橡筋材料提供动力,驱动旋翼获得升力,在无动力状态下

及手掷不能滑翔的航空模型。

P1F-1:机身长不大于150毫米。

P1F-2:机身长不大于300毫米。

87、手掷模型滑翔机(P1S)指以手掷使模型升空,由空气动力作用在保持不变的翼面上而

产生升力的航空模型。

P1S-0:最大飞行重量20克,最大翼展300毫米。

P1S-1:最大飞行重量40克,最大翼展500毫米。

P1S-2:最大飞行重量80克,最大翼展700毫米。

88、弹射模型滑翔机(P1T)指以拉伸的橡筋材料提供动力,由空气动力作用在翼面上而产

生升力的航空模型。

PIT-1:最大翼展200毫米。

PIT-2:最大翼展300毫米。

89、橡筋伞翼模型飞机(P1Y)指以橡筋材料提供动力,由空气动力作用在柔性翼面上而产

生升力的航空模型。

P1Y:机身长不大于310毫米,只允许采用柔性机翼,不允许使用刚性翼肋和后缘。90、牵引模型滑翔机(P1A)指运动员通过牵引线牵引使模型升空,由空气动力作用在保持

不变的翼面上而产生升力的航空模型。

P1A-1:最大翼展650毫米;最小飞行重量80克。

P1A-2:最大升力面积14平方分米;最小飞行重量80克。

91、航天模型的分类:

S1 高度模型火jian

S2 载荷模型火jian

S3 伞降模型火jian

S4 火jian推进模型滑翔机

S5 像真高度模型火jian

S6 带降模型火jian

S7 像真模型火jian

S8 遥控火jian模型滑翔机

S9 自旋翼模型火jian

S10 柔性翼模型火jian

91、高度比赛:在任何高度比赛项目中,由跟踪和换算得最高高度的模型应被宣布为冠军。

92、载荷比赛是指携带1个或多个标准FAI模型火jian载荷,能被跟踪并达到最高高度的

模型。

93、伞降模型火jian留空比赛是指模型是单级的,由单个模型火jian发动机推动,含有1

顶或多顶供回收的降落伞。

94、带降模型火jian留空比赛是指模型是单级的,由单个模型火jian发动机推动,含有1

条用于回收的飘带,飘带必须是单一的,均质的、无穿孔的。矩形柔软材料制成。95、火jian推进模型滑翔机是指模型火jian发动机推力来支持并加速的;模型回收时,其

滑翔机部分由升力克服重力,而平稳着陆。

96、像真比赛是一单项比赛,并且限于飞行的模型是现有的或历史上有过的导弹、运载火

jian或宇宙飞船等航天器的真实缩比模型。

97、像真高度比赛以像真模型火jian进行的高度比赛,它是高度比赛与像真比赛的结合。

比赛目的是以像真模型火jian获得最高的高度。

98、遥控火jian推进模型滑翔机:任一单级模型火jian升空后,靠气动升力面克服重力,

通过无线电遥控进行稳定滑翔飞行,然后返回地面。

99、自旋翼模型火jian:任何采取自旋作为唯一回收的单级模型火jian均可参加自旋翼模

型火jian留空时间比赛。利用自旋翼回收系统,使模型火jian取得最大留空时间。100、空气动力原理是航空科学技术的基础,古代中国人民制作的一些在生产、生活和战争中使用的器具,如风帆、风车、风扇、相风鸟和箭羽等,都是利用空气动力原理工作的。

101、中国古代的玩具竹蜻蜓是现在直升机飞行器的原型。

102、直升机模型具有垂直起落优点是其它模型飞机比拟不了的。

103、模型滑翔机能滑翔很长时间,它可以利用上升热流(热气团)延长滑翔时间。

104、大部分模型飞机的机翼要向上翘,可以提高模型飞机的稳定性。

105、模型飞机留空时间的世界纪录是,33小时29分15秒。

106、模型飞机飞行高度的世界纪录是,8208米。

107、模型飞机直线速度的世界纪录是,343.92公里/小时。

108、翼载荷是单位机翼面负担的重量。

109、1903年12月17日,美国莱特兄弟实现了人类历史上第一次驾驶飞机进行动力飞行,这

架飞机叫"飞行者"号。

110、中国历史上第一架飞机1909年9月21日中国的第一位飞机设计师冯如完成了中国人自己设计、自己制造的第一架飞机,并命名为"冯如一号"。

111、中国古代的登天勇士-万户。世界上第一个试图利用火jian的力量飞行的人,世界公认的"真正的航天始祖"。万户山--为纪念万户,月球表面东方海附近的一个环形山被命名为

"万户山"。

112、火jian是中国人发明的,火jian的故乡在中国。古代"火jian"=带火的箭

神火飞鸦:飞行距离300米。火龙出水:水上作战武器,最早的两级火jian第一级火jian 射程1-1.5千米,随后龙口飞出多枚火jian,杀伤敌人。

113、模型火jian活动起源于上个世纪四十年代的美国和捷克斯洛伐克,1957年国际航空

联合会把箭模作为正式比赛项目。

114、先进的中国航天技术

1)低温推进剂技术,液氢的沸点为-253℃,低温操作极端困难,中国是世界上第三个使用液氢/液氧发动机的国家;2)测控技术,采用有限弧段,快速而准确地预报轨道;3)同步卫星发射技术;4)卫星回收技术;5)一箭多星技术,是世界上第四个以一枚火jian发射多颗卫

星的国家;6)载人航天技术。

115、中国第一位进入太空的宇航员--杨利伟

116、第一宇宙速度是物体摆脱地球引力的速度,即物体环绕地球自由旋转而不会落回地面

的速度。7.91km/s

117、第二宇宙速度是地球上物体脱离地球引力成为环绕太阳运行的人造行星所需要的最小

速度。11.19km/s

118、第三宇宙速度是地球上物体飞出太阳系的最小速度。16.63km/s

119、导弹与火jian的区别

(1)部分导弹就是有效载荷为战斗部的火jian,它们都是依靠火jian发动机产生的推力

前进的。

(2)无人驾驶飞机式的导弹,不一定全部采用火jian发动机推进,这类导弹常采用固体火jian助推,而以涡轮喷气或涡轮风扇发动机续航,也有采用冲压发动机的。

(3)火jian的动力装置只能是火jian发动机。因此,火jian可以用作导弹,但导弹不都

是火jian。

120、2003年10月15日我国"神舟5号"载人飞船首次载人飞行成功,成为世界上继美、俄

后第3个具有载人航天技术的国家

121、20世纪初,俄-齐奥尔可夫斯基、德-奥伯特(Oberth)、美-戈达德(Goddard)创立利用

火jian航天的基本理论。

122、1926年戈达德首先研制成功世界上第一枚液体火jian。

123、第二次世界大战中,纳粹德国研制出V-2导弹。

124、1957年8月12日,前苏联和美国分别发射了洲际导弹

125、1969年7月美国的"阿波罗-11"飞船登上月球,创造了人类涉足地球以外天体的记录126、1994年我国代表队首次参加第10届世界航天模型锦标赛,取得高度项目亚军的好成绩。1998年7月11日至18日在罗马尼亚举行的第12届世界锦标赛上,我国选手获得降落

伞留空项目的团体冠军(首枚金牌)

127、1995年国家体委正式将航天模型运动列入全国青少年航空模型锦标赛比赛项目;1997

年又将其作为全国航空模型锦标赛比赛项目。

128、航空是指载人或不载人的飞行器在地球大气层中的航行活动。航空活动的范围主要限于离地面30公里的大气层内。在大气层中航行的飞行器(航空器),只要克服自身的重力就能升空。航空离不开地球的大气圈,也摆脱不了地球的引力作用。

129、航天是指载人或不载人的飞行器在太空的航行活动,也叫做空间飞行或宇宙航行。航天活动的范围要比航空活动的范围大得多,包括环绕地球的运行、飞往月球或其它星球的航行、行星际空间的航行及飞出太阳系的航行。航天不同于航空,航天首先必须有不依赖空气,

且具有巨大推力的运载工具--火jian

130、航天与科学技术现代化

航天工业的发达程度已成为衡量一个国家科学和技术、国民经济和国防建设现代化水平的重要标志;航天活动大大开阔了人类的视野;航天技术的发展与其它技术互动发展,航天技术与其它科学技术相结合,产生了许多新的技术途径,也为其他科学的发展提供了更多的可能性。航天技术的发展改变了武器装备和军事技术。

一、什么叫航空模型

在国际航联制定的竞赛规则里明确规定“航空模型是一种重于空气的,有尺寸限制的,带有或不带有发动机的,不能载人的航空器,就叫航空模型。其技术要求是:

最大飞行重量同燃料在内为五千克;

最大升力面积一百五十平方分米;

最大的翼载荷100克/平方分米;

活塞式发动机最大工作容积10亳升。

1、什么叫飞机模型

一般认为不能飞行的,以某种飞机的实际尺寸按一定比例制作的模型叫飞机模型。

2、什么叫模型飞机

一般称能在空中飞行的模型为模型飞机,叫航空模型。

二、模型飞机的组成

模型飞机一般与载人的飞机一样,主要由机翼、尾翼、机身、起落架和发动机五部分组成。

1、机翼——是模型飞机在飞行时产生升力的装置,并能保持模型飞机飞机飞行时的横侧安

定。

2、尾翼——包括水平尾翼和垂直尾翼两部分。水平尾翼可保持模型飞机飞行时的俯仰安定,垂直尾翼保持模型飞机飞行时的方向安定。水平尾翼上的升降舵能控制模型飞机的升降,垂直尾翼上的方向舵可控制模型飞机的飞行方向。

3、机身——将模型的各部分联结成一个整体的主干部分叫机身。同时机身内可以装载必要

的控制机件,设备和燃料等。

4、起落架——供模型飞机起飞、着陆和停放的装置。前部一个起落架,后面两面三个起落

架叫前三点式;前部两面三个起落架,后面一个起落架叫后三点式。

5、发动机——它是模型飞机产生飞行动力的装置。模型飞机常用的动力装置有:橡筋束、

活塞式发动机、喷气式发动机、电动机。

三、航空模型技术常用术语

1、翼展——机翼(尾翼)左右翼尖间的直线距离。(穿过机身部分也计算在内)。

2、机身全长——模型飞机最前端到最末端的直线距离。

3、重心——模型飞机各部分重力的合力作用点称为重心。

4、尾心臂——由重心到水平尾翼前缘四分之一弦长处的距离。

5、翼型——机翼或尾翼的横剖面形状。

6、前缘——翼型的最前端。

7、后缘——翼型的最后端。

8、翼弦——前后缘之间的连线。

9、展弦比——翼展与平均翼弦长度的比值。展弦比大说明机翼狭长。

第一节活动方式和辅导要点

航空模型活动一般包括制作、放飞和比赛三种方式,也可据此划分为三个阶段。

制作活动的任务是完成模型制作和装配。通过制作活动对学生进行劳动观点、劳动习惯和劳动技能的教育。使他们学会使用工具,识别材料、掌握加工过程和得到动手能力的训

练。

放飞是学生更加喜爱的活动,成功的放飞,可以大大提高他们的兴趣。放飞活动要精心辅导,要遵循放飞的程序,要介绍飞行调整的知识,要有示范和实际飞行情况的讲评。通过放飞对学生进行应用知识和身体素质的训练。

比赛可以把活动推向高潮,优胜者受到鼓舞,信心十足:失利者或得到教训,或不服输也会憋足劲头。是引导学生总结经验,激发创造性和不断进取精神的好形式。参加大型比

赛将使他们得到极大的锻炼而终生不忘。

第二节飞行调整的基础知识

飞行调整是飞行原理的应用。没有起码的飞行原理知识,就很难调好飞好模型。辅导员要引导学生学习航空知识,并根据其接受能力、结合制作和放飞的需要介绍有关基础知识。

同时也要防止把航模活动变成专门的理论课。

一、升力和阻力

飞机和模型飞机之所以能飞起来,是因为机翼的升力克服了重力。机翼的升力是机翼上下空气压力差形成的。当模型在空中飞行时,机翼上表面的空气流速加快,压强减小;机翼下表面的空气流速减慢压强加大(伯努利定律)。这是造成机翼上下压力差的原因。

造成机翼上下流速变化的原因有两个:a、不对称的翼型;b、机翼和相对气流有迎角。翼型是机翼剖面的形状。机翼剖面多为不对称形,如下弧平直上弧向上弯曲(平凸型)和上下弧都向上弯曲(凹凸型)。对称翼型则必须有一定的迎角才产生升力。

升力的大小主要取决于四个因素:a、升力与机翼面积成正比;b、升力和飞机速度的平方成正比。同样条件下,飞行速度越快升力越大;c、升力与翼型有关,通常不对称翼型机翼的升力较大;d、升力与迎角有关,小迎角时升力(系数)随迎角直线增长,到一定界限后迎角增大升力反而急速减小,这个分界叫临界迎角。

机翼和水平尾翼除产生升力外也产生阻力,其他部件一般只产生阻力。

二、平飞

水平匀速直线飞行叫平飞。平飞是最基本的飞行姿态。维持平飞的条件是:升力等于

重力,拉力等于阻力。

由于升力、阻力都和飞行速度有关,一架原来平飞中的模型如果增大了马力,拉力就会大于阻力使飞行速度加快。飞行速度加快后,升力随之增大,升力大于重力模型将逐渐爬升。为了使模型在较大马力和飞行速度下仍保持平飞,就必须相应减小迎角。反之,为了使模型在较小马力和速度条件下维持平飞,就必须相应的加大迎角。所以操纵(调整)模型到平飞状态,实质上是发动机马力和飞行迎角的正确匹配。

三、爬升

前面提到模型平飞时如加大马力就转为爬升的情况。爬升轨迹与水平面形成的夹角叫爬升角。一定马力在一定爬升角条件下可能达到新的力平衡,模型进入稳定爬升状态(速度和爬角都保持不变)。稳定爬升的具体条件是:拉力等于阻力加重力向后的分力(F=X十Gsinθ);升力等于重力的另一分力(Y=GCosθ)。爬升时一部分重力由拉力负担,所以需要

较大的拉力,升力的负担反而减少了。

和平飞相似,为了保持一定爬升角条件下的稳定爬升,也需要马力和迎角的恰当匹配。打破了这种匹配将不能保持稳定爬升。例如马力增大将引起速度增大,升力增大,使爬升角增大。

如马力太大,将使爬升角不断增大,模型沿弧形轨迹爬升,这就是常见的拉翻现象。

四、滑翔

滑翔是没有动力的飞行。滑翔时,模型的阻力由重力的分力平衡,所以滑翔只能沿斜

线向下飞行。滑翔轨迹与水平面的夹角叫滑翔角。

稳定滑翔(滑翔角、滑翔速度均保持不变)的条件是:阻力等于重力的向前分力

(X=GSinθ);升力等于重力的另一分力(Y=GCosθ)。

滑翔角是滑翔性能的重要方面。滑翔角越小,在同一高度的滑翔距离越远。滑翔距离(L)与下降高度(h)的比值叫滑翔比(k),滑翔比等于滑翔角的余切滑翔比,等于模型升力与

阻力之比(升阻比)。Ctgθ=1/h=k。

滑翔速度是滑翔性能的另一个重要方面。模型升力系数越大,滑翔速度越小;模型翼

载荷越大,滑翔速度越大。

调整某一架模型飞机时,主要用升降调整片和重心前后移动来改变机翼迎角以达到改

变滑翔状态的目的。

五、力矩平衡和调整手段

调整模型不但要注意力的平衡,同时还要注意力矩的平衡。力矩是力的转动作用。模型飞机在空中的转动中心是自身的重心,所以重力对模型不产生转动力矩。其它的力只要不通重心,就对重心产生力矩。为了便于对模型转动进行分析,把绕重心的转动分解为绕三根假想轴的转动,这三根轴互相垂直并交于重心。贯穿模型前后的叫纵轴,绕纵轴的转动就是模型的滚转;贯穿模型上下的叫立轴,绕立轴的转动是模型的方向偏转;贯穿模型左右的叫横轴,绕

横轴的转动是模型的俯仰。

对于调整模型来说,主要涉及四种力矩;这就是机翼的升力力矩,水平尾翼的升力力矩;发动机的拉力力矩;动力系统的反作用力矩。

机翼升力力矩与俯仰平衡有关。决定机翼升力矩的主要因素有重心纵向位置、机翼安

装角、机翼面积。

水平尾翼升力力矩也是俯仰力矩,它的大小取决于尾力臂、水平尾翼安装角和面积。

拉力线如果不通过重心就会形成俯仰力矩或方向力矩,拉力力矩的大小决定于拉力和拉力线偏离重心距离的大小。发动机反作用力矩是横侧(滚转)力矩,它的方向和螺旋桨旋转方向相反,它的大小与动力和螺旋桨质量有关。

俯仰力矩平衡决定机翼的迎角:增大抬头力矩或减小低头力矩将增大迎角;反之将减小迎角。所以俯仰力矩平衡的调整最为重要。一般用升降调整片、调整机翼或水平尾翼安装角、改变拉力上下倾角、前后移动重心未实现。

方向力矩平衡主要用方向调整片和拉力左右倾角来调整。横侧力矩平衡主要用副翼来

调整。

第三节检查校正和手掷试飞

一、检查校正

一架模型飞机制作装配完毕后都应进行检查和必要的校正。检查的内容是模型的几何尺寸和重心位置。检查的方法一般为目测,为更精确起见,有些项目也可以进行一些简单的

测量。

目测法是从三视图的三个方向观察模型的几何尺寸是否准确。正视方向主要看机翼两边上反角是否相等;机翼有无扭曲;尾翼是否偏斜或扭曲。侧视方向主要看机翼和水平尾翼的安装角和它们的安装角差;拉力线上下倾角。俯视方向主要看垂直尾翼有无偏斜;拉力线

左右倾角情况;机翼、水平尾翼是否偏斜。

小模型一般用支点法检查重心,选一点支撑模型,当模型平稳时,该支点就是重心的

位置。

检查中如发现重大误差,应在试飞前纠正。如误差较小,可以暂不纠正,但应心中有

数,在试飞中进一步观察。

二、手掷试飞

手掷试飞的目的是观察和调整滑翔性能。方法是右手执机身(模型重心部位),高举过头,模型保持平正,机头向前正对风向下倾10度左右,沿机身方向以适当的速度将模型直线掷出,模型进入独立滑翔飞行状态。手掷方法要多次练习,要注意纠正各种不正确的方法,比较普遍的毛病有:模型左右倾斜或机头上仰;出手不是从后向前的直线,而是绕臂根划弧线;出手方向不是沿机身向前,而是向上抛掷;出手速度太大或太小。

出手后如模型直线小角度平稳滑翔属正常飞行,稍有转弯也属正常状态。遇有下列不正常的飞行姿态,就应进行调整,使模型达到正常的滑翔状态

1、波状飞行:滑翔轨迹起伏如波浪。一般称之为“头轻”即重心太靠后。这种说法虽正确但不够全面。实际上一切抬头力矩过大或低头力矩过小造成的迎角过大都会造成波状飞行。调整的方法有:a、推杆(升降调整片下扳);b、重心前移(机头配重);c、减小机翼安装角;

d、加大水平尾翼安装角(作用同推杆)。

2、俯冲:模型大角度下冲。一般叫“头重”,这种说法也不够全面。一切抬头力矩过小,低头力矩过大造成的迎角过小都会造成模型俯冲。调整的方法有:a、拉杆(升降调整片上翘);b、重心后移(减少机头配重);c、加大机翼安装角;d、减小水平尾翼安装角(作

用同拉杆)。

3、急转下冲:模型向左(或向右)急转弯下冲。原因是方向力矩不平衡或横侧力矩不平衡。具体原因多为机翼扭曲造成的左右升力不等或垂直尾翼纵向偏转形成的方向偏转力矩。机身左右弯曲的后果与垂直尾偏转相同,也可能造成急转下冲。调整的方法有:a、向转弯反向扳方向调整片(蹬舵);b、修正机翼扭曲(相当于压杆操纵副翼)。

飞机或高级模型飞机的操纵其原理和调整模型相同,都是改变力矩平衡状态。初级模型一般没有这些舵面,只好用改变这些空气动力面形态的方法来达到调整的目的,方法有三

种:

a、加温定形:把需要调整的部位用手扳到一定角度同时加温(哈气、吹热风、烘烤等),停留一定时间使之变形。这种方法适用于纸、吹塑纸、木片部件。一般扳动角度越犬,温度

越高,保持时间越长调整变形越多。

b、收缩变形:在需要调整的翼面的一面刷适当浓度的透布油,这一面将随透布油固

化而收缩使翼面交形。

c、型架定形。将翼面按调整要求在型架上固定达到改变形态的目的。一般配合使用

加温或刷涂料。这种方法适用于构架式的翼面的调整。

第四节手掷直线距离科目

一、三种飞行方式

本科目是在限定宽度条件下比赛往返手掷飞行距离。决定成绩的因素有三个:a、投掷技术;

b、模型的滑翔性能;

c、模型的直线飞行性能。飞行方式有以下三种:

1、自然滑翔直线飞行:出手速度和模型的滑翔速度相同,出手后模型沿滑翔轨迹直线滑翔,飞行距离取决于出手高度和滑翔比,一般在6一10米之间。

2、水平前冲直线飞行:出手速度稍大于模型的滑翔速度,出手后模型先水平直线前冲一段距离后过渡到自然滑翔。这种方式比自然滑翔距离可能提高2一5米。

3、爬升前冲直线飞行:以更大的速度出手并且可以有小的出手角。出手后模型沿小角度直线爬升,然后转入滑翔。这种方式可能比自然滑翔距离提高5一10米以上。

第一种方式成绩较低,但容易掌握,成功率高。后两种方式飞行距离远,但放飞、调整技术难度大、成功率较低。因为(a)方向偏差和飞行距离成正比,增大飞行距离后模型飞出边线机率增加(飞出边线后成绩无效);(b)前冲特别是爬升前冲容易使模型失速下冲或改变航向飞出边线。因此,为了取得好的成绩,就需要了解更多的飞行调整知识,提高体能,熟练地应用投掷技巧。

二、模型的调整

1、滑翔性能。滑翔性能是飞出较大直线距离的基础。调整时应注意两个问题。一个是最大限度的减小阻力,模型表面要保持光滑,零部件采用流线形(也括配重),前后缘打磨为圆形,翼面平整不要扭曲等,减小阻力可以增大升阻比,即可以增大滑翔比。

第二点是调整到有利迎角。迎角由升降调整片来控制。不同迎角模型的升阻比不同,有利迎角升阻比最大,同一高度的滑翔距离最远。正常滑翔后,还需微调升降调整片,找到一个最佳舵位。

2、模型的配重。许多人有一种印象,似乎模型越重越飞不远。其实不然。模型的滑翔比和重量无关。另一方面,重量小模型的动能就小,克服阻力的能力就小,手掷距离反而小。轻飘飘的稻草扔不远也是这个道理。所以,手掷直线距离项目的模型,在规则允许的范围内,应适当增大重量,以加大模型的动能。

3、机翼的刚性。手掷模型的初速较大,机翼承受弯曲力矩大,容易变形甚至颤振而影响飞行性能。为此,制作时要小心操作,不让翼面出现折痕。如刚性仍不足,就要适当加强。方法是在翼根和机身接合处抹胶水,也可在翼根部单面域双面贴加强务(如胶带纸)。

4、直线飞行的调整

a、理想的直线飞行是模型既没有方向不平衡力矩又没有横侧不平衡力矩,即垂直尾翼没有偏角(方向调整片中立位置),左右机翼完全对称(没有副翼作用)。这种情况不但阻力最小,而且能适应速度的变化。

b、实际上模型一般总是转弯的,原因不外乎机翼不对称(多数情况是机翼扭曲),产生了滚传力矩,或是垂直尾翼有偏角产生了方向力矩。遇到这种情况最好查明原因“对症下药”,以达到接近理想的直线飞行。我们把这种调整方法叫做“直接调整法”。

c、还有一种调整方法,例如由于机翼扭曲产生向左滚转的力矩,模型向左倾斜,升力向左的分力使模型左转弯。这种情况不直接纠正机翼的扭曲,而是给一点右舵,也可以使模型直飞。这种调整方法叫“间接调整法”。间接调整虽然也能实现直线飞行,但这种直线飞行是

有缺陷的:一是增大了阻力,降低了滑翔性能;二是难于适应速度的变化,不少模型前一段基本上能保持直线,后一段转弯偏航,其原因多半是间接调整造成的。

因此,应尽量采用“直接调整法”,避免“间接调整法”。

5、克服前冲失速的方法

前面提到前冲和前冲爬升可以大幅度提高飞行成绩,但同时又存在失速下冲和失速转向的危险。因此克服前冲失速是提高成绩的关键。

克服前冲失速的措施是提高俯仰安定性。具体做法是适当配重前移重心,同时相应加大机翼,水平尾翼的安装角差,以保持俯仰平衡。这样当模型前冲抬头机翼逐渐接近失速时,水平尾翼因按装角小尚未失速,水平尾翼仍有足够的低头力矩使模型转入滑翔。

克服前冲失速的另一个办法是用较小的迎角飞行。事实证明,迎角越大越容易失速下冲,迎角越小越不容易进入失速下冲。

失速转弯是机翼扭曲造成的,机翼扭曲时,必有一侧安装角交大(另一侧变小),接近失速时这一半机翼先失速,并使模型倾斜转弯。前面提到的间接调整的缺陷尤其表现在这种情况,所以机翼的扭曲必须彻底纠正。

三、投掷技巧

模型调好之后,决定飞行成绩完全取决于投掷技巧了。好的技巧能充分发挥模型的飞行性能,甚至可以弥补模型的某些缺陷。所以,并不是一投了事,要反复练习掌握要领:

1、助跑、投掷的动作要协调,使模型保持平稳,忌抖动和划圆弧。

2、恰当的出手速度。出手速度不是固定不变的,不同的调整状况,不同的飞行方式,不同的风速风向要求有不同的出手速度。争取做到随心所欲,准确无误。

3、恰当的出手角度。一般自然滑翔方式出手应有一个很小的负角;水平前冲方式的出手角一般为零度(水平);爬升前冲方应有一个适当的正角(仰角)。

4、出手点和出手方向:如果模型是完全直线飞行的,在无风情况下,运动员应在起飞线的中点向正前方出手,这样成功率最高。但事实上转弯的模型占绝大多数,侧风放飞的情况也占大多数。聪明的运动员善于利用出手点和出手方向的变化来修正由于侧风和模型转变引起的偏差。例如右转弯模型如果在起飞线正中放飞就可能从右方飞出边线,如果又碰上左侧风,情况就更严重。假如换一个方法——出手点选在起飞线左侧,出手方向有意识左偏。这样前半段模型可能在空中飞出左边线,而后半段可能绕回来在场内着陆,使成绩有效。

5、风与投掷时机:风对飞行的影响有不利的一面,另外也有有利的方面。例如顺风能增大飞行距离;逆风则减小飞行距离,侧风有时加剧偏航,有时又减小偏航。风一般是阵性的,风速和风向在不断变化。要善于捕捉最佳出手时机。例如顺风时最好大风瞬间出手,逆风时在弱风瞬间出手。

航模知识题参考答案

航模基础知识题参考答案 一、选择题 1. 航模包括 ( A ) A)航空模型航天模型B)航空模型航天模型及车模船模 C)航空模型航天模型和船模 D)航空模型 2. 相同上反角以下布局稳定性最大的是(A ) A)上单翼 B) 中单翼 C)下单翼D) A和C 3. 电动航模最常采用哪种电池提供动力( B ) A) 镍氢电池 B) 锂电池C) 铅蓄电池 D) 干电池 4.垂尾的作用是什么( A ) A)控制航向 B) 减小阻力 C) 增加阻力 D) 控制飞机俯仰5.下列那种形式的飞机最省电( D ) A) 涵道飞机 B) 3D飞机 C)腰推飞机 D)滑翔机 6.常见的飞机的可靠转向方式是什么?( C ) A. 副翼 B.方向舵 C.副翼+升降舵 D.差速 7.锂电池1S在充满电的情况下正常电压是多少( C ) A)1.2V B)3.8V C)4.2V D)12V 8.常规飞机的升力中心大概在哪个位置( A ) A) 机翼前三分之一平均弦长处 B) 机翼后缘处 C) 机身二分之一处D) 机翼前缘处 9 .电子调速器需要与哪些设备连接( D ) A)电池 B)电机 C) 接收机 D) ABC

10. 在航模飞行之前,正确的操作是( A ) A) 先打开遥控再接通动力电源 B) 先接通动力电源再打开遥控 C) 同时打开遥控接通动力电源 D) 都不对 11.当航模出现意外炸机时对于设备的操作正确的是( A ) A) 先拔掉电源B) 先关掉遥控 C) 先检查飞机 D) 先收完油门 12.常用锂电池飞行电压一般不得低于( B ) A)2.8V B)3.7V C) 4.0V D)4.2V 13.下列那种设计适用于高速飞机( D )。 A) 直翼飞机B)下单翼飞机 C) 双凸翼形的飞机 D) 后掠角大的飞机 14.翼尖涡流产生的原因是什么( B ) A)飞机飞行速度过快 B)机翼上下表面的压力差 C)螺旋桨气流影响 D)机翼上下表面的粗糙度差距 15.襟翼的基本效用是什么?( B ) A) 减速 B) 增加升力 C)增加稳定性 D) 增加机动性 16.下了说法正确的是( A ) A)无刷电机配备无刷电子调速器 B)有刷电机配备无刷电子调速器 C)无刷电机配备有刷电子调速器 D)都可以混合使用 17.现在你在用KT板作为材料制作一架飞机,在综合考虑强度和重量

低压电工基础知识(最新整理)

电工基础知识 一,通用部分 1,什么叫电路? 电流所经过的路径叫电路。电路的组成一般由电源,负载和连接部分(导线,开关,熔断器)等组成。 2,什么叫电源? 电源是一种将非电能转换成电能的装置。 3,什么叫负载? 负载是取用电能的装置,也就是用电设备。 连接部分是用来连接电源与负载,构成电流通路的中间环节,是用来输送,分配和控制电能的。 4,电流的基本概念是什么? 电荷有规则的定向流动,就形成电流,习惯上规定正电荷移动的方向为电流的实际方向。 电流方向不变的电路称为直流电路。 单位时间内通过导体任一横截面的电量叫电流(强度),用符号 I 表示。 电流(强度)的单位是安培(A),大电流单位常用千安(KA)表示,小电流单位常用毫安(mA),微安(μA)表示。 1KA=1000A 1A=1000 mA 1 mA=1000μA 5,电压的基本性质? 1)两点间的电压具有惟一确定的数值。 2)两点间的电压只与这两点的位置有关,与电荷移动的路径无关。 3)电压有正,负之分,它与标志的参考电压方向有关。 4)沿电路中任一闭合回路行走一圈,各段电压的和恒为零。 电压的单位是伏特(V),根据不同的需要,也用千伏(KV),毫伏(mV)和微伏(μV)为单位。 1KV=1000V 1V=1000 mV 1mV=1000μV 6,电阻的概念是什么? 导体对电流起阻碍作用的能力称为电阻,用符号 R 表示,当电压为 1 伏,电流为 1 安时,导体的电阻即为 1 欧姆(Ω),常用的单位千欧(KΩ),兆欧(MΩ)。 1 MΩ=1000 KΩ 1 KΩ=1000Ω 7,什么是部分电路的欧姆定律? 流过电路的电流与电路两端的电压成正比,而与该电路的电阻成反比,这个关系叫做欧姆定律。用公式表示为I=U/R 式中:I——电流(A);U——电压(V);R——电阻(Ω)。 部分电路的欧姆定律反映了部分电路中电压,电流和电阻的相互关系,它是分析和计算部分电路的主要依据。 8,什么是全电路的欧姆定律?

航模DIY-群基础知识(翼型)

机翼 机翼是模型飞机产生升力的主要部件。模型飞机性能的好坏往往决定于机翼的好坏,良好的机翼应该能产生很大的升力和很小的阻力,并有足够的强度和刚性,不容易变形而且容易制作。决定机翼产生升力大小的因素很多,与机翼面积、速度等直接有关,不过这些因素往往不能够或不便于改变,譬如空气密度,我们不能改变;机翼两积、通常受到比赛规则的限制;飞行速度不容易控制,而且对竞时的模型飞机来说,速度愈小愈好。这样一来,要想增大升力只能从增大升力系数着想了。在减小机翼阻力方面也是这样,主要是设法减小机翼产生的阻力系数。决定机翼升力系数及阻力系数的是机翼截面形状(即翼型)、机翼平面形状和当时的迎角。好的翼型能够在同样的迎角下有较大的升力系数和较小的阻力系数,这两种系数的比值(称升阻比)可达到18以上。 一、翼型 翼型就是机翼的截面形 状。现代模型飞机所用的翼型 一般可分为六类:平凸型、对 称型、凹凸型、双凸型、S型和 特种型,如图3-1所示。这六种 翼型各有各的特点,每种翼型 一般能符合某几种模型飞机的 要求。 翼型各部分的名称如图3-2所示。其中影响翼型性能最大的是中弧线(或中线)的形状、翼型的厚度和翼型厚度的分布。中弧 线是翼型上弧线与下 弧线之间的距离中点 的连线。如果中弧线是 一根直线与翼弦重合, 那就表示这个翼型上 表面和下表面的弯曲 情况完全一样,这种翼 型称为对称翼型。普通 翼型中弧线总是向上 弯的,S翼型的中弧线 成横放的S形。 要表示翼型的厚度、中弧线的弯曲度和翼型最高点在什么地方等通常不用长度计算,因为各种大小不同的飞机都可以用同样的翼型。翼型形状如用具体长度表示,在设计计算时很不方便,现在的翼型资料对这些长度都用百分数表示,不用厘米或米来计算,基准长度是翼弦,例如翼型厚度是1.2厘米,弦长10厘米,那么翼型厚度用(1.2/10)来表示,即翼型厚度是翼弦的12%。这样的表示方法很方便,不管用在大飞机或小飞机上,这种翼型的厚度始终是12%。大家只要牢记基准长度是弦长便可以很容易算出实际的翼型厚度来,此外计算前后距离也用百分数,也以弦长为基准,而且都是从前缘做出发点。例如,翼型最高点在30%弦长处,那就表示翼型最高的地方离前缘的距离等于全翼弦的30%。 下面我们分别把翼型的画法、性能的表示法和性能的计算等问题加以讨论。 (一)翼型的画法 适合于模型飞机上使用的翼型现在巳有一百多种,每种翼型的形状都不相同。幸而每种翼型的形状都用同一办法(外形坐标表)表示,所以我们只要把翼型外形坐标表找到,这种翼型的形状便完全决定了。某翼型坐标见表3-1。

航模飞机设计基础知识

第一步,整体设计 1、确定翼型 我们要根据模型飞机的不同用途去选择不同的翼型。翼型很多,好几千种。但归纳起来,飞机的翼型大致分为三种。一是平凸翼型,这种翼型的特点是升力大,尤其是低速飞行时。不过,阻力中庸,且不太适合倒飞。这种翼型主要应用在练习机和像真机上。二是双凸翼型。其中双凸对称翼型的特点是在有一定迎角下产生升力,零度迎角时不产生升力。飞机在正飞和到飞时的机头俯仰变化不大。这种翼型主要应用在特技机上。三是凹凸翼型。这种翼型升力较大,尤其是在慢速时升力表现较其它翼型优异,但阻力也较大。这种翼型主要应用在滑翔机上和特种飞机上。另外,机翼的厚度也是有讲究的。同一个翼型,厚度大的低速升力大,不过阻力也较大。厚度小的低速升力小,不过阻力也较小。实际上就选用翼型而言,它是一个比较复杂、技术含量较高的问题。其基本确定思路是:根据飞行高度、翼弦、飞行速度等参数来确定该飞机所需的雷诺数,再根据相应的雷诺数和您的机型找出合适的翼型。还有,很多真飞机的翼型并不能直接用于模型飞机,等等。这个问题在这就不详述了。机翼常见的形状又分为:矩形翼、后掠翼、三角翼和纺锤翼(椭圆翼)。矩形翼结构简单,制作容易,但是重量较大,适合于低速飞行。后掠翼从翼根到翼梢有渐变,结构复杂,制作也有一定难度。后掠的另一个作用是能在机翼安装角为0度时,产生上反1-2度的上反效果。三角翼制作复杂,翼尖的攻角不好做准确,翼根受力大,根部要做特别加强。这种机翼主要用在高速飞机上。纺锤翼的受力比较均匀,制作难度也不小,这种机翼主要用在像真机上。翼梢的处理。由于机翼下面的压力大于机翼上面的压力,在翼梢处,从下到上就形成了涡流,这种涡流在翼梢处产生诱导阻力,使升力和发动机功率都会受到损失。为了减少翼梢涡流的影响,人们采取改变翼梢形状的办法来解决它。 2、确定机翼的面积 模型飞机能不能飞起来,好不好飞,起飞降落速度快不快,翼载荷非常重要。一般讲,滑翔机的翼载荷在35克/平方分米以下,普通固定翼飞机的翼载荷为35-100克/平方分米,像真机的翼载荷在100克/平方分米,甚至更多。还有,普通固定翼飞机的展弦比应在5-6之间。确定副翼的面积机翼的尺寸确定后,就

航模基础知识介绍

航模基础知识介绍一一航模培训理论课 航模概念:在国际航联制定的竞赛规则里明确规定“航空模型是一种重于空气的,有尺寸限制的,带有或不带有发动机的,不能载人的航空器”。1什么叫飞机模型 一般认为不能飞行的,以某种飞机的实际尺寸按一定比例制作的模型叫飞机模型。2、什么叫模型飞机 般称能在空中飞行的模型为模型飞机,叫航空模型。 航模飞机一般与载人的飞机一样,主要由机翼、尾翼、机身、起落架、发动机和控制系统六部分组成。 1机翼------- 是模型飞机在飞行时产生升力的装置,并能保持模型飞机飞行时的横侧稳定。 2、尾翼----- 包括水平尾翼和垂直尾翼两部分。水平尾翼可保持模型飞机飞行时的俯仰稳 定,垂直尾翼保持模型飞机飞行时的方向稳定。水平尾翼上的升降舵能控制模型飞机的升降,垂直尾翼上的方向舵可控制模型飞机的飞行方向。也有模型飞机使用V型尾翼,需要 混合控制,一般航模遥控器都有此功能。两片向外倾斜的尾翼联合控制方向舵与升降舵。最特殊的情况是机翼采用S翼型的无动力滑翔机,这类机只有垂直尾翼而没有水平尾翼。 3、机身----- 将模型的各部分联结成一个整体的主干部分叫机身。同时机身内可以装载必要的控制机件,设备和燃料等。 4、起落架------ 供模型飞机起飞、着陆和停放的装置。前部一个起落架,后面两面各一个起落架叫前三点式,前部两面各一个起落架,后面一个起落架叫后三点式。 5、发动机------ 它是模型飞机产生飞行动力的装置。模型飞机常用的动力装置有:橡筋束、 活塞式发动机、涡轮喷气式发动机、电动机。较少使用的有:脉冲喷气发动机(重量大,油耗大)、转子发动机(只有OS的一款)空气发动机(上世纪70年代用于室内模型与活塞 发动机类似。 6、太阳能板及各类电池也可作为模型飞机的动力来源。

航模的基本原理和基本知识

一、航空模型的基本原理与基本知识 1)航空模型空气动力学原理 1、力的平衡 飞行中的飞机要求手里平衡,才能平稳的飞行。如果手里不平衡,依牛顿第二定律就会产生加速度轴力不平衡则会在合力的方向产生加速度。飞行中的飞机受的力可分为升力、重力、阻力、推力﹝如图1-1﹞。升力由机翼提供,推力由引擎提供,重力由地心引力产生,阻力由空气产生,我们可以把力分解为两个方向的力,称x及y方向﹝当然还有一个z方向,但对飞机不是很重要,除非是在转弯中﹞,飞机等速直线飞行时x方向阻力与推力大小相同方向相反,故x方向合力为零,飞机速度不变,y方向升力与重力大小相同方向相反,故y方向合力亦为零,飞机不升降,所以会保持等速直线飞行。 图1-1 飞机会偏航、Z 图 2 在这里当然是指空气,设法使机翼上部空气流速较快,静压 1-3﹞,于是机翼就被往上 一个流经机翼的上缘,另一个流经机翼的下缘,两个质点应在机翼的后端相会合﹝如图1-4﹞,经过仔细的计算后发觉如依上述理论,上缘的流速不够大,机翼应该无法产生那么大的升力,现在经风洞实验已证实,两个相邻空气的质点流经机翼上缘的质点会比流经机翼的下缘质点先到达后缘﹝如图1-5﹞。? 图1-3 图1-4 图1-5 3、翼型的种类

1全对称翼:上下弧线均凸且对称。 2半对称翼:上下弧线均凸但不对称。 3克拉克Y翼:下弧线为一直线,其实应叫平凸翼,有很多其它平凸翼型,只是克拉克Y翼最有名,故把这类翼型都叫克拉克Y翼,但要注意克拉克Y翼也有好几种。 4S型翼:中弧线是一个平躺的S型,这类翼型因攻角改变时,压力中心较不变动,常用于无尾翼机。 5内凹翼:下弧线在翼弦在线,升力系数大,常见于早期飞机及牵引滑翔机,所有的鸟类除蜂鸟外都是这种翼型。 基本航模的翼型选测规律: 2厚的翼型阻力大,但不易失速。 6 4、飞行中的阻力 一架飞行中飞机阻力可分成四大类: 1磨擦阻力:空气分子与飞机磨擦产生的阻力,这是最容易理解的阻力但不很重要,只占总阻力的一小部分,当然为减少磨擦阻力还是尽量把飞机磨光。 2形状阻力:物体前后压力差引起的阻力,平常汽车广告所说的风阻系数就是指形状阻力系数﹝如图3-3﹞,飞机做得越流线形,形状阻力就越小,尖锥状的物体形状阻力不见得最小,反而是有一点钝头的物体阻力小,读者如果有机会看到油轮船头水底下那部分,你会看到一个大

航模的基本原理和基本知识

航模的基本原理和基本 知识 标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

一、航空模型的基本原理与基本知识 1)航空模型空气动力学原理 1、力的平衡 飞行中的飞机要求手里平衡,才能平稳的飞行。如果手里不平衡,依牛顿第二定律就会产生加速度轴力不平衡则会在合力的方向产生加速度。飞行中的飞机受的力可分为升力、重力、阻力、推力﹝如图1-1﹞。升力由机翼提供,推力由引擎提供,重力由地心引力产生,阻力由空气产生,我们可以把力分解为两个方向的力,称 x 及 y 方向﹝当然还有一个z方向,但对飞机不是很重要,除非是在转弯中﹞,飞机等速直线飞行时x方向阻力与推力大小相同方向相反,故x方向合力为零,飞机速度不变,y方向升力与重力大小相同方向相反,故y方向合力亦为零,飞机不升降,所以会保持等速直线飞行。 图1-1 弯矩不平衡则会产生旋转加速度,在飞机来说,X轴弯矩不平衡飞机会滚转,Y轴弯矩不平衡飞机会偏航、Z轴弯矩不平衡飞机会俯仰﹝如图1-2﹞。 图1-2 2、伯努利定律 伯努利定律是空气动力最重要的公式,简单的说流体的速度越大,静压力越小,速度越小,静压力越大,流体一般是指空气或水,在这里当然是指空气,设法使机翼上部空气流速较快,静压力则较小,机翼下部空气流速较慢,静压力较大,两边互相较力﹝如图1-3﹞,于是机翼就被往上推去,然后飞机就飞起来,以前的理论认为两个相邻的空气质点同时由机翼的前端往后走,一个流经机翼的上缘,另一个流经机翼的下缘,两个质点应

在机翼的后端相会合﹝如图1-4﹞,经过仔细的计算后发觉如依上述理论,上缘的流速不够大,机翼应该无法产生那么大的升力,现在经风洞实验已证实,两个相邻空气的质点流经机翼上缘的质点会比流经机翼的下缘质点先到达后缘﹝如图1-5﹞。 图1-3 图1-4 图1-5 3、翼型的种类 1全对称翼:上下弧线均凸且对称。 2半对称翼:上下弧线均凸但不对称。 3克拉克Y翼:下弧线为一直线,其实应叫平凸翼,有很多其它平凸翼型,只是克拉克Y 翼最有名,故把这类翼型都叫克拉克Y翼,但要注意克拉克Y翼也有好几种。 4S型翼:中弧线是一个平躺的S型,这类翼型因攻角改变时,压力中心较不变动,常用于无尾翼机。 5内凹翼:下弧线在翼弦在线,升力系数大,常见于早期飞机及牵引滑翔机,所有的鸟类除蜂鸟外都是这种翼型。 基本航模的翼型选测规律: 1薄的翼型阻力小,但不适合高攻角飞行,适合高速机。 2厚的翼型阻力大,但不易失速。

电工基础知识讲座

电工基础知识讲座第一章电力生产概况 概况

我们大家都知道,自然界中存在的能量是有许多种,例如常见的机械能、热能、光能、水能、化学能等等,根据能量守恒与转换定律得知,各种能量之间在一定的条件下是可以互相转换的。并且能量既不能创造,也不能消灭,只能从一种形式转换为另一种形式。能量的总和保持不变。 例如,发电厂和电网就是一个多种能量相互转换的系统。在火电厂的锅炉中燃烧着的煤炭通过化学反应,使水获得热能变成高压蒸汽(高温高压),高压蒸汽推动汽轮机转动,将它所具有的能量转换为机械能,汽轮机带动发电机转动又将机械能转换成了电能。 而水力发电站则是将具有一定势能的水冲动水轮机转动,水轮机再带动发电机转动,最后将机械能转换成了电能。 电能再经过升压站、降压站和输电线等设备送到用户,又转换成各种形式的能量为人们的生活和各种生产活动服务。例如电动机可以将电能转换成机械能;电灯可以将电能转换成光能;电炉可以将电能转换成热能等等。 下面我们就围绕“电”的概念,从几个方面的课件展开,一起学习关于电的相关知识及其应用。 第二章电工常用名词、定义及符号 §2―1电路的概念 一、电路 电路就是电流所流经的路径,它是由电源、负载(负荷)、连接导线和开关等几个基本部分组成。 二、三相交流电路 在磁场中放置三个匝数相同彼此在空间相距120°的线圈。当转子由原动机带

动,并以匀速按顺时针方向转动时,则每相绕组依次被磁力线切割,就会在三个线圈中分别产生频率相同、幅值相等的正弦交流电动势eА、eв、eс,三者在相位上彼此相差120°,再用导线和负载连接起来就构成了三相交流电路。 §2―2 常用名词、定义及符号 一、电压 在电场中两点间的电位差就叫做电压。电压的符号用“U”表示,电压的单位为伏特(简称伏)、用符号“V”表示。 在需要测量很低的电压时,是用毫伏(mV)或者微伏(uV)做单位;在需要测量

航模基础知识及模型教练飞机结构详细讲解

一、什么叫航空模型 在国际航联制定的竞赛规则里明确规定“航空模型是一种重于空气的,有尺寸限制的,带有或不带有发动机的,不能载人的航空器,就叫航空模型。 其技术要求是: 最大飞行重量同燃料在内为五千克; 最大升力面积一百五十平方分米; 最大的翼载荷100克/平方分米; 活塞式发动机最大工作容积10亳升。 1、什么叫飞机模型 一般认为不能飞行的,以某种飞机的实际尺寸按一定比例制作的模型叫飞机模型。 2、什么叫模型飞机 一般称能在空中飞行的模型为模型飞机,叫航空模型。 二、模型飞机的组成 模型飞机一般与载人的飞机一样,主要由机翼、尾翼、机身、起落架和发动机五部分组成。 1、机翼———是模型飞机在飞行时产生升力的装置,并能保持模型飞机飞行时的横侧安定。 2、尾翼———包括水平尾翼和垂直尾翼两部分。水平尾翼可保持模型飞机飞行时的俯仰安定,垂直尾翼保持模型飞机飞行时的方向安定。水平尾翼上的升降舵能控制模型飞机的升降,垂直尾翼上的方向舵可控制模型飞机的飞行方向。 3、机身———将模型的各部分联结成一个整体的主干部分叫机身。同时机身内可以装载必要的控制机件,设备和燃料等。 4、起落架———供模型飞机起飞、着陆和停放的装置。前部一个起落架,后面两面三个起落架叫前三点式;前部两面三个起落架,后面一个起落架叫后三点式。 5、发动机———它是模型飞机产生飞行动力的装置。模型飞机常用的动装置有:橡筋束、活塞式发动机、喷气式发动机、电动机。 三、航空模型技术常用术语 1、翼展——机翼(尾翼)左右翼尖间的直线距离。(穿过机身部分也计算在内)。

2、机身全长——模型飞机最前端到最末端的直线距离。 3、重心——模型飞机各部分重力的合力作用点称为重心。 4、尾心臂——由重心到水平尾翼前缘四分之一弦长处的距离。 5、翼型——机翼或尾翼的横剖面形状。 6、前缘——翼型的最前端。 7、后缘——翼型的最后端。 8、翼弦——前后缘之间的连线。 9、展弦比——翼展与平均翼弦长度的比值。展弦比大说明机翼狭长。 练习飞行的要素与原则分析 玩模型飞机和玩模型大脚车完全是两种不同的运动,模友们千万别想当然,买来了就上天,否则就只能看着飞机的残骸落泪了。在开展模型飞机运动前,最需要有一套合理、简单的教程来指导你学会为什么这么飞和怎么样飞,让你更快更安全的把爱机送上蓝天。 开篇还是先把基础飞行练习的要素与原则强调一下,这与你能否成功的掌握飞行技能有直接的关系。 第一:飞行练习的要素 掌握飞行技巧,需要以掌握最基本的要素为基础,不断的练习,最终实现自己对飞机启动、助跑、起飞、航线和降落等环节的控制,达到这种境界,模型界称之为“单飞”。 单飞的要素有以下几点: 1、一架精心调整的遥控上单翼教练机(飞机的调整我们在专门的板块里详细说明) 2、理解各种操纵对飞机控制的作用 3、飞机起飞 4、学会直线飞行与航线控制 5、学会转弯飞行与转弯控制 6、地面参照物对航线的辅助

电工基础知识教材

Material for Training Only 电工培训教材 1.2.2.2 电压的方向: 一是高电位指向低电位; 二是电位随参考点不同而改.电工基础知识一变. 1.2.2.3 电压的单位是“伏特”,用字母“U”表示.常用单位有: 千伏(KV) 、 1. 直流电路伏(V)、毫伏(mV) 、微伏(uV) 333 uV 1mV = 10 mV 电路1KV = 10 V 1V = 10 1.2.3 电阻就是电流通过的途径电路的定义: 1.2.4.1 电阻的定义: 自由电子在物体中移动受到其它电子的阻碍,对于这种电路的组成: 电路由电源、负载、导线、开关组成 . 导电所表现的能力就叫电阻内电路: 负载、导线、开关. “R”表示欧姆外电路: 电源内部的一段电路”,用字母 1.2.4.2 电阻的单位是“ l所有电器负载: ??R 1.2.4.3 电阻的计算方式为: 电源能将其它形式的能量转换成电能的设备: s为材料电阻率,s为截面积,ρ其中l为导体长度 =0.028 ρρ=0.017铝铜基本物理量 1.2.1 欧姆定律电流 . 欧姆定律是表示电压、电流、电阻三者关系的基本定律导体中的自由电子在电场力的作用下作有规则的定 1.3.1 电流的形成1.2.1.1 : 向运动就形成电流. 电路中通过电阻的电流,与电阻两端所加的电压部分电路欧姆定律: 1.3.2 U. 一是有电位差电流具备的条件1.2.1.2 : ,二是电路一定要闭合?I计算公式为成正比,与电阻成反比,称为部分欧姆定律.电流的大小用电流强度来表示电流强度1.2.1.3 : ,基数值等于 单位时间内RQU?R?I U = IR 通过导体截面的电荷量, 计算公式为It电路中的电流与电源的),在闭合电路中( /s); I(为时间); t(Q其中为电荷量库仑秒为电流强度包括电源1.3.3 全电 路欧姆定律: 称全电路,,千安常用单位有.表示”,“电流强度的单位是1.2.1.4 安用字母“A”: 与电路中负载电阻及电源内阻之和成反比电动势成正比(uA) 、微安(mA) 、毫安、安(KA)(A)E?I欧姆定律 .计算公式为333uA 1mA = 10 mA A 1KA = 10 1A = 10r?R0用大直流电流1.2.1.5 (的大小和方向不随时间的变化而变化)恒定电流, 写字母“I”,E为电动势为内电阻简称直流电,表示. 其中R为外电阻,r0 1.2.2 电压 在电路中任意两点之间的,物体带电后具有一定的电位: 电压的形成1.2.2.1

航模螺旋桨基础知识

一、工作原理 可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。V—轴向速度;n—螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。显而易见β=α+φ。 空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,见图1—1—19,合成后总空气动力为ΔR。ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。 从以上两图还可以看到。必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。螺旋桨工作时。轴向速度不随半径变化,而切线速度随半径变化。因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。所以说螺旋桨是一个扭转了的机翼更为确切。 从图中还可以看到,气流角实际上反映前进速度和切线速度的比值。对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。迎角变化,拉力和阻力矩也随之变化。用进矩比“J”反映桨尖处气流角,J=V/nD。式中D—螺旋桨直径。理论和试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P)和效率(η)可用下列公式计算: T=Ctρn2D4 P=Cpρn3D5 η=J·Ct/Cp 式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D—螺旋桨直径。其中Ct和Cp取决于螺旋桨的几何参数,对每个螺旋桨其值随J变化。图1—1—21称为螺旋桨的特性曲线,它可通过理论计算或试验获得。特性曲线给出该螺旋桨拉力系数、功率系数和效率随前进比变化关系。是设计选择螺旋桨和计算飞机性能的主要依据之一。 从图形和计算公式都可以看到,当前进比较小时,螺旋桨效率很低。对飞行速度较低而发动机转速较高的轻型飞机极为不利。例如:飞行速度为72千米/小时,发动转速为6500转/分时,η≈32%。因此超轻型飞机必须使用减速器,降低螺旋桨的转速,提高进距比,提高螺旋桨的效率。 二、几何参数 直径(D):影响螺旋桨性能重要参数之一。一般情况下,直径增大拉力随之增大,效率随之提高。所以在结构允许的情况下尽量选直径较大的螺旋桨。 此外还要考虑螺旋桨桨尖气流速度不应过大(<音速),否则可能出现激波,导致效率降低。 二、桨叶数目(B):可以认为螺旋桨的拉力系数和功率系数与桨叶数目成正 比。超轻型飞机一般采用结构简单的双叶桨。只是在螺旋桨直径受到限制时,采用增加桨叶数目的方法使螺旋桨与发动机获得良好的配合。 实度(σ):桨叶面积与螺旋桨旋转面积(πR2)的比值。它的影响与桨叶数目的影响相似。随实度增加拉力系数和功率系数增大。

航模入门基本知识

航模入门基本知识 航模入门基本知识 一、遥控飞机的种类 遥控飞机一般以动力来分有以下几种: 1.无动力:一般多用于滑翔机,虽说无动力其实它是利用地球的重力来生成速度有速度自然有升力可敖翔天际。 2.电动:利用电池或者是其它方式如太阳能板来产生电力带动电动马达来生成推力。 3.木精引擎:目前多数的遥控飞机都用此种动力方式,它用的燃料是木精(甲醇)。 4.汽油引擎:汽油引擎体积较大,用于比较大型的飞机,而且省油。 5.涡轮喷射引擎:动力强大,一般用于大型飞机和像真机,工作原理与真涡轮喷射引擎一样。 6.祡油引擎:比较少见的应用。 二、遥控飞机一般以外型功能来分有以下几种: 滑翔机、练习机、像真机、运动机、花式特技机、F3A竞赛机、 F4D竞速机、空战机和RPV。 三、玩遥控飞机的配备 1.遥控器:遥控器通常会听到有玩家说“几动”、“几个通道”,指的是可操做几个动作,通常一个动作就是由一个伺服机(舵机)所 控制的。市面上所售的遥控器,从两动到十动甚至更多的都有,一 般飞机须要四动以上,少数滑翔机或动力滑翔机、小型机用三动,

少了副翼或方向舵的功能,因此有些空中的动作做不出来!而至于要 买哪一型,就看您的最预算而定,如果你有极大的兴趣,且可确定 你一直玩下去,就是有闲有钱有热度,那可考虑买高级些的遥控器,要不然四动就很够用了! 2.引擎:目前引擎有许多的发展,在此先不详述,目前引擎应用在一般遥控飞机上,多是木精(甲醇)引擎(热塞式引擎GLOWPLUGENGINE),分四冲程和两冲程,初学建议使用二冲程日本 OS的引擎,并非其它牌子不好,而是OS的对初学者较好操做。 3.燃油:木精引擎的燃油主要成份——木精(甲醇)+润滑油+硝基甲皖+其它(如防绣剂等等)。 润滑油大体上分三种——篦麻油、半合成、合成,各有优劣;硝 基甲皖是一种炸 药的材料,无色液状,可提升马力,但相当贵,因此其占的百分比越高越贵。一般玩家说的”几趴几趴”就是指这个,一般飞机用5~15%就够了。 4.激活器:一般飞机其实用不到电动起动器,但如果你怕被打到的话。模型店通常也有卖一种激活棒,一端是橡皮,一端是木质握把,但有个更好用的东西——优利胶棒,买一只20元左右,又合手 又够粗又有弹性。 5.火星塞:当然就是点燃引擎汽缸内的混合气用的啦! 火星塞也分冷型及热型,一般来说,目前市面上使用在飞机上较普遍的有OSNo.8、EnyaNo.3.4这几种在初学使用上都不会有太大问题。 6.电夹:用于激活时使火星塞保持红热状态,电池的容量大一些会比较好,才不会发一发没电了。 7.燃油帮浦(泵):用来把油加到油箱中,有手动和电动两种,又有进口和国产之分,基本上差不了多少。用久之后,如果有漏油的 现象多是衬垫老化,自己剪一块再装上多半就好了。

航模基础知识

一、什么叫航空模型 二、在国际航联制定的竞赛规则里明确规定“航空模型是一种重于空气的,有尺寸限制的,带有或不带有发 动机的,不能载人的航空器,就叫航空模型。其技术要求是: 三、最大飞行重量同燃料在内为五千克; 四、最大升力面积一百五十平方分米; 五、最大的翼载荷100克/平方分米; 六、活塞式发动机最大工作容积10亳升。 七、1、什么叫飞机模型 八、一般认为不能飞行的,以某种飞机的实际尺寸按一定比例制作的模型叫飞机模型。 九、2、什么叫模型飞机 十、一般称能在空中飞行的模型为模型飞机,叫航空模型。 十一、二、模型飞机的组成 十二、模型飞机一般与载人的飞机一样,主要由机翼、尾翼、机身、起落架和发动机五部分组成。 十三、1、机翼——是模型飞机在飞行时产生升力的装置,并能保持模型飞机飞机飞行时的横侧安定。十四、2、尾翼——包括水平尾翼和垂直尾翼两部分。水平尾翼可保持模型飞机飞行时的俯仰安定,垂直尾翼保持模型飞机飞行时的方向安定。水平尾翼上的升降舵能控制模型飞机的升降,垂直尾翼上的方向舵可控制模型飞机的飞行方向。 十五、3、机身——将模型的各部分联结成一个整体的主干部分叫机身。同时机身内可以装载必要的控制机件,设备和燃料等。

十六、4、起落架——供模型飞机起飞、着陆和停放的装置。前部一个起落架,后面两面三个起落架叫前三点式;前部两面三个起落架,后面一个起落架叫后三点式。 十七、5、发动机——它是模型飞机产生飞行动力的装置。模型飞机常用的动力装置有:橡筋束、活塞式发动机、喷气式发动机、电动机。 十八、三、航空模型技术常用术语 十九、1、翼展——机翼(尾翼)左右翼尖间的直线距离。(穿过机身部分也计算在内)。 二十、2、机身全长——模型飞机最前端到最末端的直线距离。 二十一、3、重心——模型飞机各部分重力的合力作用点称为重心。 二十二、4、尾心臂——由重心到水平尾翼前缘四分之一弦长处的距离。 二十三、5、翼型——机翼或尾翼的横剖面形状。 二十四、6、前缘——翼型的最前端。 二十五、7、后缘——翼型的最后端。 二十六、8、翼弦——前后缘之间的连线。 二十七、9、展弦比——翼展与平均翼弦长度的比值。展弦比大说明机翼狭长。 航空模型基础知识教程(二)应大家的要求顶起来求精 第一节活动方式和辅导要点 航空模型活动一般包括制作、放飞和比赛三种方式,也可据此划分为三个阶段。 制作活动的任务是完成模型制作和装配。通过制作活动对学生进行劳动观点、劳动习惯和劳动技能的教育。使他们学会使用工具,识别材料、掌握加工过程和得到动手能力的训练。 放飞是学生更加喜爱的活动,成功的放飞,可以大大提高他们的兴趣。放飞活动要精心辅导,要遵循放飞的程序,要介绍飞行调整的知识,要有示范和实际飞行情况的讲评。通过放飞对学生进行应用知识和身体素质的训练。

航模基础知识.

设备篇 飞机要上天,肯定需要不少的设备。需要什么设备?必备的设备包括: 发射机、接收(含晶体)、发动机(电动或者油动)、舵机、电调、电池,以上设备是缺一不可。除了电子设备,还需要螺旋桨、舵角什么的,这里首先重点谈谈电子设备。 1、摇控设备 航模用的遥控设备包括发射机,接收机和一对晶体。发射的作用是发射信号,让我们在地面通过它可以遥控飞机飞行;接收机的作用则不言而喻,它是接收我们通过发射机发出的各种控制信号;晶体的作用是让发射和接收在同样的频率下工作,不至于与其它发射接收冲突。当你准备买遥控设备的时候,这三样设备一般是配套的,当然你也一定要向商家问清楚,因为有不少的商家卖的只是发射机。 遥控设备怎么选购,有什么要注意的方面?根据我的潜水,发现摇控设备不过就那么几样,国内的就更少了。对于新手入门而言,从性价比考虑,我建议选择天地飞06A (即TDF 06A),这个是六通的,目前来说还没有发现假货。06A性能不错,能满足入门甚至是高级飞行的需要,很多人都是用它,特别是新手。TAOBAOt天地飞06A价格在250元左右,最便宜低至2 0 5元,我是两个月前

买的,215元。包含一个6通的发射机,6通的接收机,一对频率为72MHZ勺晶体。 发射机和接收机都有通道这个最为重要的参数,通道即表示几个信号模式,一个通道相对应一个信号,这样说来比较抽象。举个例子讲:例如我们常常说的飘飘一般是三通的。那么是用一通道用一个舵机控制副翼(或者一通道控制方向),二通道控制升升降,三通道通过油门控制电机电机转速。所以新手入门做飞机,至少也是三通的。上面讲到的TDF06A 和论坛中一般谈的遥控是比例遥控,还有一种控是开关遥控。这两种控有非常大的区别,价格也有相当大的差距,而且有本质的区别:以前者为基础的飞机可以称之为遥控模型;而以后者为基础的飞机只能叫遥控玩具。那么什么是比例遥控,形象的说,比例遥控控制某个通道,可以模拟真实的机械操作,比如以控制油门为例,就是大点,再大点,再大一点最大; 小点,再小点,再小一点最小。控制其它通道也类似。而开关遥控则不行。开关遥控的一个通道只能是开—关。类似电灯的开关,无法以比例控制通道。在TAOBA上有很多200以下的遥控飞机(滑翔机)就是这种开关控。 再来谈谈遥控设备用的晶体。晶体是一对进行工作,发射机和接收机晶体的频率必须一样,才能在同频率下工作。例如发射上面的晶体是 72.310MHZ那么接收上面也必须插有72.310MHZ的晶体才行。如果接 收上面是72.180,那么显然发射不能控制这个接收。在买遥控设备时,发射接收上面的晶体都是配好了,这个就不用担心了。有的遥控设备没有晶体,比如

航模基础知识手册(精品资料).doc

【最新整理,下载后即可编辑】 航模基础知识手册

资料针对无线电遥控类固定翼飞机 2014.06.18 注: 航模入门知识虽然在贴吧、论坛都有,但比较散乱,在此将相关知识和经验整合,以方便爱好者学习使用。文档由成都市各高校航模协会共同编写修订,部分专业知识源自网络。由于知识和经验有限,难免有误或不足,若发现问题欢迎指出。成都市高校航模交流群:157769127 目录 第一部分航模运动的基本介绍 (2) 一、航模及航模运动 (2) 二、国内航模运动发展 (2) 三、航空模型竞赛 (3) 第二部分航空模型(固定翼)类别 (3) 一、练习机 (3) 二、滑翔机 (3) 三、特技机 (4) 四、像真机 (4) 第三部分航模的常用设备(电动) (4)

一、电机 (4) 二、电调 (5) 三、舵机 (5) 四、遥控器 (5) 五、电池 (6) 六、螺旋桨 (6) 七、电子设备的选择和搭配 (7) 第四部分航空模型结构与原理 (7) 一、航模的组成及术语 (7) 二、航模的飞行原理 (8) 第五部分航模的调试与飞行 (9) 一、航模的调试 (9) 二、航模的飞行 (10) 三、飞行操作注意事项 (11) 第六部分航模飞行注意事项 (12) 第一部分航模运动的基本介绍 一、航模及航模运动 航空模型是各种模型航空器的总称,多为遥控器控制的模型飞机,也有线操纵、自由飞等非遥控类,操作航模飞行也称为航空模型运动。航模飞行和操作原理与真飞机相同,因此操控比较困难。超市里售卖的遥控飞机操作较为简单,属于玩具类别。较专业的遥控模型,在各方面都是相对复杂的,可控制升降舵、方向舵、副翼和引擎等。初学者通常需要一段时间才能熟悉如何组

航模DIY群基础知识(翼型)

实用标准文档 机翼 机翼是模型飞机产生升力的主要部件。模型飞机性能的好坏往往决定于机翼的好坏,良好的机翼应该能产生很大的升力和很小的阻力,并有足够的强度和刚性,不容易变形而且容易制作。决定机翼产生升力大小的因素很多,与机翼面积、速度等直接有关,不过这些因素往往不能够或不便于改变,譬如空气密度,我们不能改变;机翼两积、通常受到比赛规则的限制;飞行速度不容易控制,而且对竞时的模型飞机来说,速度愈小愈好。这样一来,要想增大升力只能从增大升力系数着想了。在减小机翼阻力方面也是这样,主要是设法减小机翼产生的阻力系数。决定机翼升力系数及阻力系数的是机翼截面形状(即翼型)、机翼平面形状和当时的迎角。好的翼型能够在同样的迎角下有较大的升力系数和较小的阻力系数,这两种系数的比值(称升阻比)可达到18以上。 一、翼型 翼型就是机翼的截面形 状。现代模型飞机所用的翼型 一般可分为六类:平凸型、对 称型、凹凸型、双凸型、S型和 特种型,如图3-1所示。这六种翼型各有各的特点,每种翼型一般能符合某几种模型飞机的要求。 翼型各部分的名 称如图3-2所示。其 中影响翼型性能最大 的是中弧线(或中线) 的形状、翼型的厚度和 翼型厚度的分布。中弧 线是翼型上弧线与下弧线之间的距离中点的连线。如果中弧线是一根直线与翼弦重合,那就表示这个翼型

上表面和下表面的弯曲情况完全一样,这种翼型称为对称翼型。普通翼型中弧线总是向上弯的,S翼型的中弧线成横放的S形。 要表示翼型的厚度、中弧线的弯曲度和翼型最高点在什么地方等通常不用长度计算,因为各种大小不同的飞机都可以用同样的翼型。翼型形状如用具体长度表示,在设计计算时很不方便,现在的翼型资料对这些长度都用百分数表示,不用厘米或米来计算,基准长度是翼弦,例如翼型厚度是1.2厘米,弦长10厘米,那么翼型厚度用(1.2/10)来表示,即翼型厚度是翼弦的12%。这样的表示方法很方便,不管用在大飞机或小飞机上,这种翼型的厚度始终是12%。大家只要牢记基准长度是弦长便可以很容易算出实际的翼型厚度来,此外计算前后距离也用百分数,也以弦长为基准,而且都是从前缘做出发点。例如,翼型最高点在30%弦长处,那就表示翼型最高的地方离前缘的距离等于全翼弦的30%。 下面我们分别把翼型的画法、性能的表示法和性能的计算等问题加以讨论。 (一)翼型的画法 适合于模型飞机上使用的翼型现在巳有一百多种,每种翼型的形状都不相同。幸而每种翼型的形状都用同一办法(外形坐标表)表示,所以我们只要把翼型外形坐标表找到,这种翼型的形状便完全决定了。某翼型坐标见表3-1。 所谓翼型坐标表是从翼型上下弧线选出一定的点,把这些点的坐标用弦长百分数表示所列成的表。坐标的原点是前缘,计算百分数的基准长度是弦长,横坐标是翼弦;表3-1就是这样的表格,表格第一行(X)表示到前缘的距离,第二行(Y u)对应于第一行距离的翼型上弧线上的一点到翼弦的距离;第三行(Y d)是下弧线上一点到翼弦的距离,把所有这些点都在图上标出以后,用圆滑的线将各点连接起来便可以得到正确的翼型形状。 画翼型前,要首先决定翼弦的长度。将弦长乘上表中的数字再除100就可以得出所需要的实际长度。

劲鹰无人机航模基础知识简介

劲鹰无人机航模基础知识简介 1、飞机各部分的名称和作用 模型飞机通常与载人的飞机一样,主要是由机翼、尾翼、机身、起落架和发动机这五个部分组成。 (1)机翼:是模型飞机在飞行时产生升力、克服飞机的重力,保证飞机离地、上升和在空中飞行时的横侧安定。 (2)尾翼:包含水平尾翼和垂直尾翼两部分。水平尾翼是保持模型飞机飞行时的俯仰安定,垂直尾翼是保持模型飞机飞行时的方向安定。水平尾翼上的升降舵可用来控制模型飞机的升降,垂直尾翼上的方向舵可用来控制模型飞机的飞行方向。 (3)机身:将模型的各部分联结成一个整体的主干部分叫机身。同时机身内可以装载必要的控制机件,设备和燃料等。 (4)起落架:提供模型飞机起飞、着陆和停放的装置。前部一个起落架,后面两面三个起落架叫做前三点式;前部两面三个起落架,后面一个起落架叫后做三点式。 (5)动力装置:它是模型飞机产生飞行动力的装置。模型飞机一般常用的动力装置有:橡筋束、活塞式发动机、喷气式发动机、电动机。 典型的常规飞机一般都具有以上五个部分,但在特殊形式的飞机上也有例外,例如在滑翔机上就没有动力装置;在“飞翼”式飞机上没有水平尾翼和机身等。 2、一般飞机的操纵面和它们的作用 (1)副翼:一般在机翼两端的后部,驾驶员通过操纵杆操纵副翼,可以使飞机左、右倾斜。 (2)升降舵:一般在水平尾翼的后部,驾驶员通过操纵杆,使升降舵上翘和下弯,可以使飞机抬头和低头。 (3)方向舵:一般在垂直尾翼的后部,驾驶员通过脚踏板,使方向舵左右偏转,可以使飞机向左转或右转。 3、空气和空气动力 由于目前的模型飞机都是在大气中靠空气动力飞行的,因此在进行航模活动时要对空气和空气的流动规律做些初步了解。 (1)空气 空气是无色透明的气体,在标准大气压气温为15℃的情况下,每立方米干燥空气的重量为1293克。当物体和空气发生相对运动时,如我们迎风站在广场上被风吹,或是我们在无风时骑自行车前进,都会感到有风从前面吹来。在这两种情况下,我们与空气发生了相对运动,空气向后推我们的力就叫“空气动力”。 (2)风 一般把空气的流动现象特别是空气的水平流动称为风。一般用风速和风向(或风级)来表示风的特性。 风对飞机的飞行产生影响,特别是对飞行速度较低的模型飞机影响很大。当然,风对靠风力飞行的风筝有更大的影响。因此在飞行模型飞机时,对风的影响不能不加以考虑。如飞行速度较慢的初级橡筋动力模型飞机就不适宜在3级以上的风速下飞行。自由飞模型飞机也不适宜在较大的风速下飞行,因为它在飞行中会被风吹到很远的地方,不容易收回。 飞机的起飞最好选在逆风的方向,同时也要考虑如何操纵才能使飞机能够落在预定的场地。自由飞模型飞机要考虑风向对回收的影响。 (3)气流。 其实,气流也是风。在航模中“气流”往往是指局部的空气流动,包括垂直方向的流动。而风往往是指空气在较大范围的总体流动。

电工基础知识培训内容

电工基础知识培训内容 1. 电工基础知识 (1)直流电路 (2)电磁和电磁感应 (3)单相交流电路 (4)三相交流电路 2. 低压电器及成套装置 (1)刀开关 (2)转换开关 (3)自动开关(框架断路器及塑壳断路器以及微型断路器) (4)熔断器 (5)接触器 (6)热继电器 (7)电容器 (8)测量仪表(电流电压电度功率等表计) (9)配电设备产品 3. 电气线路 (1)电缆(型号规格载流量) (2)母线(型号规格载流量) 4. 电气安全技术 (1)触电防护 (2)电气作业的安全措施 (3)漏电保护器 (4)电气安全用具 2018-12-11

一.电工基础知识 (一) 1. 电路的组成,合闸,分闸的定义 2. 电流的定义,电流强度匸Q/T,电流的单位,电位及电压的定义及单位,电动势,电阻等 3欧姆定律匸U/R, 4电路的连接;有串联,并联,混联的定义及公式 5电功及电功率A=UIt,P=A/t=UI,单位是焦耳及瓦特J及,功率同马力的关系,1马力=736W 1KW=1.36马力 6.电流的热效应,电与热的转换关系,什么叫短路,短路的危害;(二) 1. 磁的基本知识,定义,磁性材料等 2. 电流的磁效应,磁场方向的判定 3. 电磁感应,感应出的电动势大小的计算公式 4. 自感,互感和涡流的定义及计算公式 (三) 1. 交流电的定义及表达式 2. 交流电的基本物理量,瞬时值,最大值,周期频率,相位,有效值 3. 交流电的解析式,波形图,旋转相量法 4. 纯电阻电路的简介及功率与电压电流等的关系以及表示符号 5. 纯电感电路,电感量的计算公式,符号,它的特性 6. 纯电容电路,电容量的计算公式及其特性及表示符号 (四) 1. 三相交流电的定义,产生,表达式,波形图,相量图及相序 2. 三相电源及负载的连接-星形连接三角形连接它们的接法及其特点 3. 三相功率的计算(无功及有功) 4. 半导体材料及其特性(N,P型半导体),PN结的单相导电性,晶体二极管的结构伏安特性及其使用,晶体三极管的基本知识,电流放大作用,特性曲线和主要参数 二.低压电器及成套装置 (一)简单介绍 1. 低压电器的慨述 2. 低压电器的定义与分类,低压配电电器及低压控制电器 3. 低压电器型号含义及表示方法 4. 低压电器的正确选用,1:安全原则2:经济原则 5. 低压电器的安装类别,共分四类 6. 低压电器产品的污染等级,分为四级,每个的具体含义

相关文档
最新文档