酯化蒸汽余热制冷技术

酯化蒸汽余热制冷技术
酯化蒸汽余热制冷技术

船用柴油机余热制冷方式比较研究[论文+开题+综述]

开题报告 轮机工程 船用柴油机余热制冷方式比较研究 一、选题的背景与意义: 当今世界,随着生产技术的发展,人类对能源的需求剧增,有限的能源正在日益枯竭,各个国家都面临着能源危机,节能与环保已经成为当今国际社会共同关注的一个热点问题。再加上氟利昂系列制冷剂的使用量在一些国家已开始受到控制,并将逐渐被禁止使用在世界制冷行业中,已开始把注意力转向蒸汽压缩式以外的其它制冷方式上去。 船舶主机作为船舶的动力和能源中心,仅有50%左右的热量转换成有用功,其余的热量则以各种方式被带走,如果能对这些余热加以充分利用,就能提高船舶能源的利用率。目前热管式余热蒸汽锅炉和热水器在船舶上已得到成功应用。船用柴油机余热回收的吸收式和吸附式制冷具有很大的开发潜力。吸收式或吸附式制冷机都是是以热能为动力驱动的,并且利用的是低位热能,符合当今环保与节能要求。相较吸收式制冷,吸附式制冷适合应用于震动,倾斜或旋转等场合上。在理论上固体吸附式制冷是一种更适合于应用于船舶的柴油机余热制冷方式。吸附制冷技术由于能够利用低品位的太阳能和废热,且无环境污染问题,因此受到了国内外研究者的重视,该研究工作正在不断深入和发展。 由于目前吸附制冷技术理论与实际应用还有一定的距离,所以吸附制冷的主要研究方向是缩短循环的周期,提高系统单位时间内的制冷量,以及改进循环方式和利用数值模拟技术对吸附制冷技术的实用化进行更好的指导。 二、研究的基本内容与拟解决的主要问题: 基本内容: 1、吸收式与吸附式制冷方式基本工作原理分析。 2、吸收式与吸附式制冷方式优缺点比较。 3、固体吸附式制冷在船舶上应用的可行性。 4、固体吸附式制冷用于远洋船舶空调的具体方案。 拟解决的主要问题:

低温余热资源的利用方式和技术

低温余热资源的利用方式和技术 随着节能工作的不断深入,低温余热资源的利用日益成为节能工作的一个热点和难点,本文分析了低品味余热资源的特点,总结了目前的利用方式和技术进展。 1、余热资源等级划分 工业余热主要指工业企业热能转换设备及用能设备在生产过程中排放的废热、废水、废气等低品位能源。利用余热回收技术将这些低品位能源加以回收利用,是节能的重要手段之一。按照余热资源载体的温度高低,可把余热资源按品味进行划分,温度高则代表余热资源的可做功能力高,即是所谓“高品位余热资源”。温度低,则代表该余热资源品味较低。 2、低品位余热资源的来源及利用难点 余热资源的主要来源为:①烟气的余热;②高温产品和炉渣的余热;③冷却介质的余热;④可燃废气、废液和废料的余热;⑤废汽、废水余热;⑥化学反应余热。 比较典型的低品位余热资源有:①锅炉(加热炉)等排放的烟气,一般在140~180℃;②高炉渣、炼钢渣的冲渣水,温度在60~9 0℃;③循环冷却水,大部分在30~50℃;油田采出水,在30~60℃。 低品位余热资源的利用难点在于:①大部分低品位余热资源含有腐蚀性的物质,对设备长期安全运行构成不小的影响;②有的低品位余热资源具有间歇性的特点,难于连续运行;③由于品味较低,难以在现场附近寻找到合适的供热(冷)负荷;④用于发电,效率较低,技术还有待成熟,经济效益偏低。 3、低品位余热资源的利用方式探讨 低品位余热资源的利用可以分为直接热利用、制冷制热和热功转换三种方式。 3.1直接热利用 热交换技术设备对低温余热的利用是通过换热设备将余热能量直接传给自身工艺的耗能过程,是余热回收直接高效的方法之一。由于低温余热资源温度较低,需要找到合适的利用场合,还要考虑输送过程中的损耗因素。

冷凝温度蒸发温度对蒸汽压缩式制冷机组性能的影响

冷凝温度蒸发温度对蒸汽压缩式制冷机组性能的影 响 This model paper was revised by the Standardization Office on December 10, 2020

冷凝温度、蒸发温度对蒸汽压缩式制冷机组性能的影响通常空调系统使用的制冷机组,使用最为广泛的是蒸汽压缩式制冷剂循环系统。在该系统循环过程中,由制冷压缩机抽吸从蒸发器流过来的低压、低温制冷剂蒸气,经压缩机压缩成高压、高温蒸气而排出,这样就把制冷剂蒸气分成了高压区和低压区。从压缩机的排出口至节流元件的入口端为高压区,该区压力称高压压力或冷凝压力,温度称为冷凝温度。从节流元件的出口至压缩机的吸入口为低压区,该区压力称为低压压力或蒸发压力,温度称为蒸发温度。正是由于压缩机造成的高压和低压之间的压力差,才使制冷剂在系统内不断地流动。一旦高、低压之间的压力差消失,即高低压平衡之一,制冷剂就停止了流动。高压区和低压区压力差的产生及压力差的大小,完全是压缩机压缩蒸气的结果,压缩机一旦推动压缩蒸气的能力,即形成的压力差很小,制冷循环也就不存在了。压缩机不停地运转是靠消耗电能或机械能来实现的。 在蒸汽压缩式循环系统运行过程中,冷凝温度、蒸发温度对制冷量、制冷系数有影响,而且蒸发温度的影响较大。具体表现为: 1、蒸发温度降低,制冷循环性能变差,制冷量迅速减小,制冷系数降低。而随着制冷循 环的蒸发温度的降低,制冷压缩机所消耗的功率的变化则是不确定的。 2、冷凝温度升高后,制冷循环性能变差,制冷量减少,制冷系数降低,压缩机功耗升 高。 3、蒸发温度在一定限度内升高,能提高制冷系数、增加制冷量,但蒸发温度过高,自节 流装置过来的制冷剂液体容易闪发,堵塞制冷剂通道,影响系统的正常运行,故蒸发温度不宜过高。

第十章 蒸汽动力循环及汽轮机基础知识

- 113 - 第十章 蒸汽动力循环及汽轮机基础知识 10.1 蒸汽动力循环 核电站二回路系统的功能是将一回路系统产生的热能(高温、高压饱和蒸汽)通过汽轮机安全、经济地转换为汽轮机转子的动能(机械能),并带动发电机将动能转换为电能,最终经电网输送给用户。 热能转换为机械能是通过蒸汽动力循环完成的。蒸汽动力循环是指以蒸汽作为工质的动力循环,它由若干个热力过程组成。而热力过程是指热力系统状态连续发生变化的过程。工质则是指实现热能和机械能相互转换的媒介物质,其在某一瞬间所表现出来的宏观物理状态称为该工质的热力状态。工质从一个热力状态开始,经历若干个热力过程(吸热过程、膨胀过程、放热过程、压缩过程)后又恢复到其初始状态就构成了一个动力循环,如此周而复始实现连续的能量转换。核电厂二回路基本的工作原理如图10.1所示。 节约能源、实现持续发展是当今世界的主流。如何提高能源的转换率也是当今工程热力学所研究的重要课题。电厂蒸汽动力循环也发展出如卡诺循环、朗肯循环、再热循环、回热循环等几种循环形式。 10.1.1 蒸汽动力循环形式简介 1.卡诺循环 卡诺循环是由二个等温过程和二个绝热过程组成的可逆循环,表示在温熵(T -S )图中,如图10.2所示。图中, A-B 代表工质绝热压缩过程,过程中工质的温度由T 2升到T 1,以便于从热源实现等温传热; B-C 代表工质等温吸热过程,工质在温度 凝 结 水 水 蒸 汽 蒸汽推动汽轮机做功,将蒸汽热能转换成汽轮机动能;继而汽轮机带动发电机发电 。 凝结水从蒸汽发生器内吸收一回路冷却剂的热量变成蒸汽 热力循环 图10.1核电厂二回路基本的工作原理 T 1 S T 2

蒸汽压缩式制冷概述

蒸汽压缩式制冷概述 蒸气制冷是利用某些低沸点的液态制冷剂在不同 压力下汽化时吸热的性质来实现人工制冷的。在制冷技术中,蒸发是指液态制冷剂达到沸腾时变成气态的过程。液态变成气态必须从外界吸收热能才能实现,因此是吸热过程,液态制冷剂蒸发汽化时的温度叫做蒸发温度,凝结是指蒸汽冷却到等于或低于饱和温度,使蒸汽转化为液态。 在日常生活中,我们能够观察到许多蒸发吸热的现象。比如,我们在手上擦一些酒精,酒精很快蒸发,这时我们感到擦酒精部分反应很凉。又如常用的制冷剂氟利昂F—12液体喷洒在物体上时,我们会看到物体表面很快结上一层白霜,这是因为F—12的液体喷到物体表面立即吸热,使物体表面温度迅速下降(当然这是不实用的制冷方法,制冷剂F—12不能回收和循环使用)。目前一些医疗机构采用的冷冻疗法即是利用了这一原理。蒸气压缩式制冷是利用液态制冷剂汽化时吸热,蒸汽凝结时放热的原理进行制冷的。一、制冷循环压缩机是保证制冷的动力,利用压缩机增加系统内制冷剂的压力,使制冷剂在制冷系统内循环,达到制冷目的。开始压缩机吸入蒸发制冷后的低温低压制冷剂气体,然后压缩成高温高压气体送冷凝器;高压高温气体经冷凝器冷却后使气体冷凝变为常温高压液体;当常温高压液体流入热力膨

胀阀,经节流成低温低压的湿蒸气,流入蒸发器,从周围物体吸热,经过风道系统使空调房间温度冷却下来,蒸发后的制冷剂回到压缩机中,又重复下一个制冷循环,从而实现制冷目的。二、制冷剂在制冷系统中状态从压缩机出口经冷凝器到膨胀阀前这一段称为制冷系统高压侧;这一段的压力等于冷凝温度下制冷剂的饱和压力。高压侧的特点是:制冷剂向周围环境放热被冷凝为液体,制冷剂流出冷凝器时,温度降低变为过冷液体。从膨胀阀出口到进入压缩机的回气这一段称为制冷系统的低压侧,其压力等蒸发器内蒸发温度的饱和压力。制冷剂的低压侧段先呈湿蒸气状态,在蒸发器内吸热后制冷剂由湿蒸气逐渐变为汽态制冷剂。到了蒸发器的出口,制冷剂的温度回升为过热气体状态。过冷液态制冷剂通过膨胀阀时,由于节流作用,由高压降低到低压(但不消耗功、外界没有热交换);同时有少部分液态制冷剂汽化,温度随之降低,这种低压低温制冷剂进入蒸发器后蒸发(汽化)吸热。低温低压的气态制冷剂被吸入压缩机,并通过压缩机进入下一个制冷循环。三、制冷量在制冷循环中,循环流动的每千克制冷剂从被冷却物体吸收的热量叫做单位重量制冷量,用符号q表示,单位是kcal/kg,单位重量制冷量是表示制冷循环效果的一个特殊参数,这由制冷剂的性质,循环温度等条件决定,蒸发温度越低,冷凝温度越高,其值越小,反之越大。制冷装置的产冷量是单

第十章蒸汽动力循环

第十章 蒸汽动力循环 蒸汽动力装置:是实现热能→机械能的动力装置之一。 工质 :水蒸汽。 用途 :电力生产、化工厂原材料、船舶、机车等动力上的应用。 本章重点: 1、蒸汽动力装置的基本循环 朗肯循环 匀速 回热循环 2、蒸汽动力装置循环热效率分析 y T 的计算公式 y T 的影响因素分析 y T 的提高途径 10-1 水蒸气作为工质的卡诺循环 热力学第二定律通过卡诺定理证明了在相同的温度界限间,卡诺循环的热效率最高,但实际上存在种种困难和不利因素,使得实际循环(蒸汽动力循环)至今不能采用卡诺循环但卡诺循环在理论上具有很大的意义。 二、为什么不能采用卡诺循环 若超过饱和区的范围而进入过热区则不易保证定温加热和定温放热,即不能按卡诺循环进行。 1-2 绝热膨胀(汽轮机) 2-C 定温放热(冷凝汽) 可以实现 5-1 定温加热(锅炉) C-5 绝热压缩(压缩机) 难以实现 原因:2-C 过程压缩的工质处于低干度的湿汽状态 1、水与汽的混合物压缩有困难,压缩机工作不稳定,而且3点的湿蒸汽比容比 水大的多'23νν>' 2 32000νν≈需比水泵大得多的压缩机使得输出的净功大大 p v

减少,同时对压缩机不利。 2、循环仅限于饱和区,上限T1受临界温度的限制,即使是实现卡诺循环,其理论效率也不高。 3、膨胀末期,湿蒸汽所含的水分太多不利于动机 为了改进上述的压缩过程人们将汽凝结成水,同时为了提高上 限温这就需要对卡诺循环进行改进,温度采用过热蒸汽使T1高于临界温度,改进的结果就是下面要讨论的另一种循环—朗肯循环。 10-2 朗肯循环 过程: 从锅炉过热器与出来的过热蒸汽通过管道进入汽轮机T,蒸汽部分热能在T 中转换为机械带动发电机发电,作了功的低压乏汽排入C,对冷却水放出γ,凝结成水,凝结成的水由给水泵P送进省煤器D′进行预热,然后在锅炉内吸热汽化,饱和蒸汽进入S继续吸热成过热蒸汽,过程可理想化为两个定压过程,两个绝热过程—朗诺循环。 1-2 绝热膨胀过程,对外作功 2-3 定温(定压)冷凝过程(放热过程) 3-4 绝热压缩过程,消耗外界功 4-1 定压吸热过程,(三个状态) 4-1过程:水在锅炉和过热器中吸热由未饱和水变为过热蒸汽过程中工质与外界无技术功交换。 1-2过程:过热蒸汽在汽抡机中绝热膨胀,对外作功,在汽轮机出口工质达到低压低温蒸汽状态称乏汽。 2-3过程:在冷凝器中乏汽对冷却水放热凝结为饱和水。 3-4过程:水泵将凝结水压力提高,再次送入锅炉,过程中消耗外功。

蒸汽压缩式制冷的原理

第二节蒸汽压缩式制冷的原理 自然界中的物质是以三种不同的聚集态存在的,即:固态、液态和气态。 一、蒸气压缩式制冷的热力学原理 物质集态的改变称之为相变。相变过程中,由于物质分子的重新排列和分子热运动速度的改变,会吸收或放出热量。这种热量称作潜热物质发生从质密态到质稀态的相变是将吸收潜;反之,当它发生有质稀态向质密态的相变时则放出潜热。 液体气化形成蒸汽,利用该过程的吸热效应制冷的方法称液体蒸发制冷。当液体处在密闭的容器内时,若容器内除了液体和液体本身的蒸汽外不含任何其它气体,那么液体和蒸气在某一压力下将达到平衡。这种状态称饱和状态。如果将一部分饱和蒸汽从容器中抽出,液体就必然要再气化出一部分蒸汽来维持平衡。我们以该液体为制冷剂,制冷剂液体气化时要吸收气化潜热,该热量来自被冷却对象,只要液体的蒸发温度比环境温度低,便可使被冷却对象变冷或者使它维持在环境温度下的某一低温。 为了使上述过程得以连续进行,必须不断地从容器中抽走制冷剂蒸汽,再不断地将其液体补充进去。通过一定的方法将蒸汽抽出,再令其凝结为液体后返回到容器中,就能满足这一要求。为使制冷剂蒸气的冷凝过程可以在常温下实现,需要将制冷剂蒸气的压力提高到常温下的饱和压力,这样,制冷剂将在低温低压下蒸发,产生制冷效应;又在常温和高压下凝结向环境温度的介质排放热量。凝结后的制冷剂液体由于压力较高,返回容器之前需要先降低压力。由此可见,液体蒸发制冷循环必须具备以下四个基本过程:制冷剂液体在低压下气化产生低压蒸汽,将低压蒸汽抽出并提高压力变成高压气。将高压气冷凝为高压液体,高压液体再降低压力回到初始的低压状态。其中将低压蒸汽提高压力需要能量补偿。 利用沸点很低的制冷剂相态变化过程所发生的吸放热现象,借助于压缩机的抽吸压缩、冷凝器的放热冷凝、节流阀的节流降压、蒸发器的吸热汽化的不停循环过程,达到使被冷对象温度下降目的的制冷方法。 二、蒸气压缩式制冷的系统组成 单级蒸气压缩式制冷系统由压缩机,冷凝器,膨胀阀和蒸发器组成。其工作过程如下:制冷剂在压力温度下沸腾,低于被冷却物体或流体的温度。压缩机不断地抽吸蒸发器中产生的蒸气,并将它压缩到冷凝压力,然后送往冷凝器,在压力下等压冷却和冷凝成液体,制冷剂冷却和冷凝时放出的热量传给冷却介质(通常是水或空气),与冷凝压力相对应的冷凝温度一定要高于冷却介质的温度,冷凝后的液体通过膨胀阀或其他节流元件进入蒸发器。单级蒸气压缩式制冷系统如下图1-2所示。

-35度蒸发50万大卡机组余热制冷方案

50万大卡(-35度蒸发)余热制冷方案评价 1、项目的提出 随着国家经济的发展以及对能源梯级利用的日益重视,冷热电联产提到重要日程,现结合集团公司热、电产品和吸收式制冷产品的优势,模拟50万大卡制冷机组(-35度蒸发)采用不同制冷方式的运营成本,并进行技术经济性分析。一种方式为电制冷,采用螺杆压缩机,一种采用余热制冷,利用单位或电厂的余热(120度以上)来驱动氨水吸收制冷机组来制冷。 2、方案技术经济评价 50万大卡制冷设备可选的技术方案有2种: 1)采用消耗电力的以氨或氟利昂为制冷剂的压缩式制冷系统。 2)利用低压蒸气为热源的单级氨水吸收制冷系统。 现对上述2种备选方案进行初步的技术经济评价。其中,取折算的制冷设备满功率运行时间系数为0.65,即制冷设备每天按满功率运行15.6小时,每年满功率运行运行时间为5694小时。电价=0.7元/kWh,蒸汽为余热,并且系电厂自用,不计费。(计费余热可以根据消耗的蒸汽量把费用自行加上) (1)压缩制冷方案 a.压缩制冷机组购置费 目前低温压缩制冷机组单位制冷量售价约为0.12万元/kW,50万大卡/小时制冷量的压缩制冷机组购置费用69.6万元,加上辅机、安装等在100万左右。

b.运行费用 压缩制冷机组(蒸发温度为-35度,压缩机COP接近1.0)实际满 功率运行功率为580kW,满功率运行时每小时耗电580kWh,电价按 0.70元/度计算,则每小时电费406元/h。年运行5694小时计,则 年运行电费为231.1764万元/年。(50万大卡的机组,每小时消耗蒸 汽2吨,蒸汽价格只要不超过203元每吨,氨水吸收制冷机组的费用 就不会超过用电的压缩机)。 c.设备维修、维护费用 由于制冷压缩机内运动机械的摩擦作用,部分零部件需要定期更 换,机组需要定期保养和维修。因此,设备的年保养和维修费用较高。 压缩制冷系统年维护费约为总购置费的10%,为10万元/年。 (2)蒸汽驱动的单级氨水吸收式制冷方案 冷工作原理单级循 环是吸收式制冷循环 的基础, 其工作流程 如图1所示。该循环主 要由发生/精馏、冷 凝、节流、蒸发、吸 收过程组成。氨含量 从吸收器中流出, 送入泵中获得高压后进入精馏塔和发生器。对发生

废热驱动制冷技术的开发

废热驱动制冷技术的开发 在“废热驱动制冷及节能技术和相关产品的研发”方向上,重点深入研究新型扩散吸收式制冷系统的工作特性,系统匹配、高效运行等问题,研制、开发高效节能的制冷、空调产品,并研究这些产品的规模生产技术和装置的设计理论和软件,形成小批量生产能力,把产品推向市场。进一步开发相关产品规模生产技术,以满足市场需要。 废热驱动制冷技术的开发 必要性 《国家中长期科学和技术发展规划纲要》“1.能源(1)工业节能”中明确指出要“重点研究开发…机电产品节能技术…能源梯级综合利用技术”,所以,我们选择“废热驱动制冷及节能技术和相关产品的研发”作为研发方向之一,废热即是在人们的生产(工业)、生活中利用各种能源从事生产、生活活动后,产生的排入大气、河流等外部环境中不再使用的高温气体或液体中含有的可供再次利用的热能。现代社会存在大量工业及生活废热,充分利用这些废热,使之成为可用能源,对于缓解能源压力,具有重大意义。原有的压缩式制冷技术,由于使用的含氟工质会导致臭氧层破坏,温室效应增加,造成全球气候变暖。因此,开发替代工质和新的制冷技术成为当务之急。本项目来源于国家的宏观节能环保政策和市场需求,随着现代工业的迅速发展,能源的消耗量也大幅度增加,工业和生活废热大幅增多,而对制冷的需求几乎涵盖了所有的领域,因此,如何利用工业和生活废热来制冷成为制冷领域的发展潮流。该技术可以采用不同的低品位(90℃以上)热源(如尾气、烟气、蒸汽、热水)作为动力,而且制冷量可大可小,大到可以运用于上百万千卡的工程,小到可以运用在几千卡的手提式冰箱上,具有广阔的市场空间。 应用场合 ? 1)电力行业的余热利用;2)海洋捕鱼业—渔船柴油机尾气制冰机;3)石油行业—新型还可以应用于以下系列产品的开发: ? 轻烃回收制冷装置;4)汽车行业—汽车尾气冰箱、冷藏车、空调; 5)农村沼气冰箱、冰柜等;6)其他行业。 技术特点及余热品质 ? 技术特点: 废热驱动高效智能化制冷技术主要是充分利用各种生产工艺系统中的废热源,通过能量的转换,就可获得生活或生产工艺需求的冷媒。可以100%的节省为获得较高品位冷媒而消耗的能源。 可以利用的废(余)热源品质: 废(余)热水:温度为90℃~140℃

几种新型制冷技术

浅谈几种新型制冷技术 专业:过程装备与控制工程 姓名:叶祥东 学号:10012322

浅谈几种新型制冷技术 引言: 20世纪初,人们谈论的话题只是能源,而21世纪初,人们谈论的话题则是能源危机。这说明在当今这个高速发展的社会,能源已经成为支撑国家经济发展的基础和核心问题。2010年,我国一次能源消费总量超过32亿吨标准煤,能源消费总量已经占世界总量的20%,能源消费总量已经超过美国,但经济总量仅为美国的三分之一左右。其中,我国的石油对外依存度已经超过55%,天然气也已经超过16%是进口,昨日的煤炭大国在2010年也已经是变成了净进口国。近年来,由于传统的制冷空调设备对氟利昂类制冷剂的大量使用,以及对电能的大量消耗成为导致当前环境与能源问题的重要因素。随着我国能源结构的调整,太阳能、地热能、生物质能等可再生能源的应用比例不断提高。因此,研制和发展对臭氧层无损耗、无温室效应而且可以利用低品位能源作为动力的节能环保型的制冷技术是制冷领域研究的重要课题。 一、太阳能制冷 1、背景: 人类进入21世纪以来,电力、煤炭、石油等不可再生能源频频告急,据美国石油业协会估计,地球上尚未开采的原油储藏量已不足两万亿桶,可供人类开采时间不超过95年。在2050年到来之前,世界经济的发展将越来越多地依赖煤炭。其后在2250到2500年之间,煤炭也将消耗殆尽,矿物燃料供应枯竭。 同时化石燃料燃烧后造成的排放污染问题日益凸显,能源问题日益成为制约国际社会发展的瓶颈。太阳能既是一次能源,有是可再生能源,可免费使用,又无需运输,对环境也没有污染,具有无可避免的自然优势。同时,我国幅员辽阔,有着十分丰富的太阳能资源,有2/3以上的地区日照大于2000小时,太阳能资源的理论储量大每年7000亿吨标准煤[1]。 2、原理: 主要有吸收式、吸附式、冷管式、除湿式、喷射式和光伏等制冷类型[2-3] (1) 太阳能吸收式制冷:用太阳能集热器收集太阳能来驱动吸收式制冷系统,利用储存液态冷剂的相变潜热来储存能量,利用其在低压低温下气化而制冷,目前为止示范应用最多的太阳能空调方式。多为溴化锂—水系统,也有的采用氨—水系统。 (2) 太阳能吸附式制冷:将收式制冷相结合的一种蒸发制冷,以太阳能为热源,采用的工质对通常为活性碳—甲醇、分子筛—水、硅胶—水及氯化钙一氨等,可利用太阳能集热器将吸附床加热后用于脱附制冷剂,通过加热脱附——冷凝——吸附——蒸发等几个环节实现制冷。 (3) 太阳能除湿空调系统:是一种开放循环的吸附式制冷系统。基本特征是干燥剂除湿和蒸发冷却,也是一种适合于利用太阳能的空调系统。 (4) 太阳能喷射式制冷:通过太阳能集热器加热使低沸点工质变为高压蒸汽,通过喷管时因流出速度高、压力低,在吸入室周围吸引蒸发器内生成的低压蒸汽进入混合室,同时制冷剂任蒸发器中汽化而达到制冷效果。 (5)太阳能冷管制冷:这是一种间歇式制冷,主要结构是由太阳能冷管、集热箱、制冷箱、蓄冷器和冷却水回路等组成,是一种特殊的吸附式制冷系统 (6)太阳能半导体制冷:该系统由太阳能光电转换器(太阳能电池)、数控匹配器、储能设备(蓄电池)和半导体制冷装置四部分组成。太阳能光电转换器输出直流电,一部分直接供给半导体制冷装置进行制冷运行,另一部分则进入储能设备储存,以供阴天或晚上使用,保证系统可以全天候正常运行。[2-3] 3、优点:

单蒸气压缩式制冷的理论循环

3.1 单级蒸气压缩式制冷的理论循环 3.1.1 制冷系统与循环过程 单级蒸气压缩式制冷系统主要由压缩机、冷凝器、膨胀阀和蒸发器四大部件组成,如图3-1所示。对制冷剂蒸气只进行一次压缩,称为蒸气单级压缩。整个循环过程主要由压缩过程、冷凝过程、节流过程以及蒸发过程四个过程组成,每个过程在不同的部件中完成,制冷剂在每个过程中的状态又各不相同,具体情况如下。 图3-1 单级蒸气压缩式制冷系统 1 压缩机 2 冷凝器 3 膨胀阀 4 蒸发器 压缩过程:整个循环过程中,压缩机起着压缩和输送制冷剂蒸气并造成蒸发器中低压和冷凝器中高压的作用,是整个系统的心脏。制冷循环的压缩过程是在压缩机中完成的:压缩机不断抽吸从蒸发器中产生的压力为p o、温度为t o的制冷剂蒸气,将它压缩成压力为p k、温度为t k的过热蒸气,并输送到冷凝器中。在这个过程中,压缩机需要做功。 冷凝过程:冷凝器是制冷系统中输出热量的设备,冷凝过程是在该部件中完成的。在压力p k下,来自于压缩机的制冷剂过热蒸气在冷凝器中首先被冷却成饱和蒸气,然后再逐渐被冷凝成液体,制冷剂冷却和冷凝时放出的热量传给冷却介质(通常是水或空气)。在冷凝过程中,与冷凝压力p k相对应的冷凝温度t k一定要高于冷却介质的温度,冷凝后的液体通过膨胀阀或其它节流元件进入蒸发器。 节流过程:节流过程是在膨胀阀中完成的。当制冷剂液体经过膨胀阀时,压力由p k降至p o,温度由t k降至t o,部分液体气化。所以离开膨胀阀的制冷剂为温度为t o的两相混合物,该两相混合物进入蒸发器。 蒸发过程:蒸发器是制冷系统中冷量输出设备,蒸发过程是在蒸发器中完成的。在蒸发器中,来自膨胀阀的两相混合物在压力p0和温度t0下蒸发,从被冷却介质中吸取它所需要的气化潜热,从而达到制取冷量的目的。在蒸发过程中,与蒸发压力p0相对应的蒸发温度

电厂余热制冷冷库经济效益分析

电厂发电余热氨水吸收制冷5万吨冷库经济可行性分析1、项目的提出 随着国家经济的发展以及对能源梯级利用的日益重视,冷热电联产提到重要日程,现结合泰安华能制冷有限公司热、电产品和吸收式制冷产品的优势,模拟一5万吨规模冷库采用不同制冷方式的运营成本,并进行技术经济性分析。其中冷间温度为0~2℃的高温库和冷间温度为-15~-18℃的低温库各占一半。计划采用电厂的抽汽余热资源,利用氨水吸收制冷技术进行制冷作为冷库冷源,以提高热能的利用效率,节约能源。 2、冷量估算 1)冷库高温库贮存水果、蔬菜、饮品;低温库贮存肉类、冰淇淋、水饺。库容50000吨(高低温库各储存25000吨)。 2)制冷负荷概算 由于目前冷库土建结构尚未设计,日进出货量未知,精确的冷库负荷计算需要在土建和保温结构、日进出货量给定后才能进行。故只能根据冷库冷负荷概算指标进行估算。 冷库冷负荷概算指标 肉、禽、水产品 水果、蔬菜 表中,冷却设备负荷是指冷库内制冷剂蒸发负荷(冷负荷);机械负荷是指考虑

了管道冷损失后的制冷机制冷功率。 按给定的冷藏容量各为25000吨计,取适当的蒸发器换热温差,则低温库需要蒸发温度为-22℃的冷负荷1750kW。压缩制冷机功率为875kW;高温库需要蒸发温度为-5℃的冷负荷5250kW。在采用压缩制冷情况下,压缩制冷机功率1750kW。 两库总计需要冷负荷7000kW。在采用压缩制冷情况下,制冷压缩机总功率2625kW。 3、方案技术经济评价 50000吨级冷库制冷设备可选的技术方案有2种: 1)采用消耗电力的以氨或氟利昂为制冷剂的压缩式制冷系统。 2)利用低压蒸气为热源的单级氨水吸收制冷系统。 现对上述2种备选方案进行初步的技术经济评价。其中,取折算的制冷设备满功率运行时间系数为0.65,即制冷设备每天按满功率运行15.6小时,每年满功率运行运行时间为5694小时。电价=0.7元/kWh,蒸汽为余热,并且系电厂自用,不计费。 (1)压缩制冷方案 a.压缩制冷机组购置费 目前冷库用压缩制冷机组单位制冷量售价约为0.1万元/kW,7000kW制冷量的压缩制冷机组购置费用700万元。 b.运行费用 压缩制冷机组实际满功率运行功率为2625kW,满功率运行时每小时耗电2625 kWh,电价按0.70元/度计算,则每小时电费1837.5

吸收式制冷和蒸汽压缩制冷相比的特点和区别

吸收式制冷和蒸汽压缩制冷相比的特点和区别 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

1.吸收式制冷和蒸汽压缩制冷相比有何特点 答:吸收式制冷和蒸汽压缩式制冷一样同属于液体气化法制冷,既都是利用低沸点的液体或者让液体在低温下气化,吸取气化潜热而产生冷效应 然而两者之间又有很大的区别,主要的不同之处有以下几方面: ⒈吸收式制冷循环是依靠消耗热能作为补偿,从而实现“逆向传热”。而且对热能的要求不高,它们可以是低品位的工厂余热和废热,也可以是地热水,或者燃气以至经过转化成热能的太阳能。可见它对能源的利用范围很宽广,不像蒸汽压缩式制冷循环需要消耗高品位的电能,因此对于那些有余热和废热可利用的用户,吸收式制冷机在首选之列。 ⒉吸收式制冷机是由发生器、冷凝器、蒸发器、吸收器、溶液泵和节流阀等部件组成,除溶液泵之外没有其他运转机器设备。因此结构较为简单;另外由于运转平静,振动和噪声很小,所以尤为大会堂、医院、宾馆等用户欢迎。 ⒊吸收式制冷系统内虽然也分高压部分和低压部分,但溴化锂吸收式系统内的高压仅左右,故绝热无爆炸的危险。加上它所使用的工质对人体无害,因此从安全的角度看它又是十分可靠的。 ⒋吸收式制冷机使用的工质不像蒸汽压缩式制冷机那样使用单一的制冷剂,而是使用又吸收剂和制冷剂配对的工质对。它们呈溶液状态。其中吸收剂是对制冷剂具有极大吸收能力的物质,制冷剂则是由汽化潜热较大的物质充当。例如氨——水吸收式制冷机中的工质对,是由吸收剂——水和制冷剂——氨组成;溴化锂吸收式制冷机中的工质对,是由吸收剂——溴化锂和制冷剂——水组成。

⒌吸收式制冷机基本上是属于机组型式,外接管材的消耗量较少;而且对基础和建筑物的要求都一般,所以设备以外的投资(材料、土建、施工费等)比较省。如此看来,吸收式制冷机的优点是如此之多,似乎可以取代蒸汽压缩式制冷机,当然也不是这样吸收式制冷机的缺点也客观存在。首先是它的热效率低。在有废热和余热可利用的场所使用这种制冷设备是合算的,但如果特地为它建立热源则不一定经济;其次是由于换热器中大量使用铜材,所以设备投资较高;再则其冷却负荷约为蒸汽压缩式制冷机的一倍,冷却水量大,用于冷却水系统的动力耗费和水冷却设备投资比较大,因此在选择制冷机的型式时,应该做全面的技术经济分析,理应使它的优点得到充分发挥。

工程热力学第十章蒸汽动力装置循环教案.docx

第十章蒸汽动力循环 蒸汽动力装置:是实现热能→机械能的动力装置之一。 工质:水蒸汽。 用途:电力生产、化工厂原材料、船舶、机车等动力上的应用。 本章重点: 1、蒸汽动力装置的基本循环 匀速 朗肯循环回热循环 2、蒸汽动力装置循环热效率分析 y T 的计算公式 y T 的影响因素分析 y T 的提高途径 10-1水蒸气作为工质的卡诺循环 热力学第二定律通过卡诺定理证明了在相同的温度界限间,卡诺循环的热效率最高,但实际上存在种种困难和不利因素,使得实际循环(蒸汽动力循环)至今 不能采用卡诺循环但卡诺循环在理论上具有很大的意义。 二、为什么不能采用卡诺循环 若超过饱和区的范围而进入过热区则不易保证定温加热和定温放热,即不能 按卡诺循环进行。 p 51 C2 v 1-2绝热膨胀(汽轮机) 2-C定温放热(冷凝汽)可以实现 5-1定温加热(锅炉) C-5绝热压缩(压缩机)难以实现 原因: 2-C 过程压缩的工质处于低干度的湿汽状态 1 、水与汽的混合物压缩有困难,压缩机工作不稳定,而且 3 点的湿蒸汽比容比 水大的多 '2000'需比水泵大得多的压缩机使得输出的净功大大3232

减少,同时对压缩机不利。 2、循环仅限于饱和区,上限T1受临界温度的限制,即使是实现卡诺循环,其理 论效率也不高。 3、膨胀末期,湿蒸汽所含的水分太多不利于动机 为了改进上述的压缩过程人们将汽凝结成水,同时为了提高上 限温这就需要对卡诺循环进行改进,温度采用过热蒸汽使 T1高于临界温度,改进的结果 就是下面要讨论的另一种循环—朗肯循环。 10-2朗肯循环 过程: 从锅炉过热器与出来的过热蒸汽通过管道进入汽轮机T,蒸汽部分热能在T 中转换为机械带动发电机发电,作了功的低压乏汽排入C,对冷却水放出γ,凝结成水,凝结成的水由给水泵 P 送进省煤器 D′进行预热,然后在锅炉内吸热汽化,饱 和蒸汽进入 S 继续吸热成过热蒸汽,过程可理想化为两个定压过程,两个绝热 过程—朗诺循环。 1-2绝热膨胀过程,对外作功 2-3定温(定压)冷凝过程(放热过程) 3-4绝热压缩过程,消耗外界功 4-1定压吸热过程,(三个状态) 4-1 过程:水在锅炉和过热器中吸热由未饱和水变为过热蒸汽过程中工质与外界无技术功交换。 1-2 过程:过热蒸汽在汽抡机中绝热膨胀,对外作功,在汽轮机出口工质达到低压低温蒸汽状态称乏汽。 2-3 过程:在冷凝器中乏汽对冷却水放热凝结为饱和水。 3-4 过程:水泵将凝结水压力提高,再次送入锅炉,过程中消耗外功。

循环氨水余热回收制冷技术在工程中的应用

燃料与化工 Fuel &Chemical Processes Mar.2019Vol.50No.2 循环氨水余热回收制冷技术在工程中的应用 左复习 (山东铁雄冶金科技有限公司,邹平256200) 摘 要:利用循环氨水的余热驱动溴化锂装置制取16 18?的冷水,提供初冷器、脱硫预冷器及终冷器等设备需 要的冷水,降低燃气或者水蒸汽等能源消耗,达到节能降耗的目的。关键词:余热回收;制冷技术;节能降耗中图分类号:TQ025.2 文献标识码:B 文章编号:1001-3709(2019)02-0048-02 Application of flushing liquor waste heat recovery for refrigeration technology Zuo Fuxi (Shandong Tiexiong Metallurgical Technology Co.,Ltd.,Zouping 256200,China ) Abstract :The waste heat of flushing liquor is recycled to power Li-Br chiller for producing 16 18? chilled water which will be used by primary cooler , desulfurization pre-cooler and final cooler etc.,so that energy consumption such as fuel gas ,steam ,and the like can be saved. Key words :Waste heat recovery ;Refrigeration technology ;Energy consumption saving 收稿日期:2018-10-18 作者简介:左复习(1991-),男,助理工程师基金项目: 制冷机一般采用燃气或者水蒸汽等作为动力,能耗高、运行不经济,产生的废气和废水还会造成环境污染。 为了降低燃气或者水蒸汽等能源的消耗,减少 废气和废水的排放, 我们利用循环氨水的余热驱动溴化锂装置制取16 18?的冷水, 以满足初冷器、脱硫预冷器及终冷器使用低温水的需要,实现节能 降耗和污染物源头控制, 推动清洁生产深入开展,提升企业可持续发展的能力。 1 工艺概况 1.1 工艺原理 通常炼焦过程产生的荒煤气在桥管和集气管处 用75 78?的循环氨水喷洒冷却, 其中荒煤气中的热量有10% 15%使氨水升温, 离开集气管时氨水的温度为77 80?[1] 。当入炉煤水分为8% 11%时,进入集气管的煤气露点温度为65 70?,进口氨水的温度不低于70?时即能保证氨水蒸发的推 动力[2] 。因此, 在不影响荒煤气冷却效果的前提下, 可以利用5?温差的余热量驱动溴化锂装置来制取16 18?的冷水。 溴化锂余热回收装置由以下几部分组成:蒸发 器、吸收器、发生器、冷凝器、溶液热交换器。该装置 以循环氨水作为驱动热源, 加热溴化锂溶液产生水蒸汽, 水蒸汽被冷凝后变为冷剂水,再利用水在真空状态下沸点降低的特性, 在蒸发器里吸热蒸发,制取冷水。 1.2工艺流程 循环氨水余热制冷工艺流程见图1。利用循环 氨水泵将循环氨水引入溴化锂余热回收装置, 经过余热回收后再输送至焦炉, 并保证焦炉使用的氨水温度高于72?。利用回收的余热作为溴化锂装置的驱动能源进行制冷 。 图1循环氨水余热制冷工艺流程 1.3工艺特点 8 4DOI:10.16044/https://www.360docs.net/doc/9d18089707.html,ki.rlyhg.2019.02.016

蒸汽动力循环与制冷循环

第6章蒸汽动力循环与制冷循环 一、选择题 1. 蒸汽压缩制冷循环过程中,制冷剂蒸发吸收的热量一定制冷剂冷却和冷凝放出的热量 A 大于 B等于 C小于 (C) 2. 从制冷原理和生产应用方面说明制冷剂的选择原则。 答(1)潜热要大。因为潜热大,冷冻剂的循环量可以减小。氨在这方面具有显著的优点,它的潜热比氟里昂约大10倍,常用于大型制冷设备。 (2)操作压力要合适。即冷凝压力(高压)不要过高,蒸发压力(低压)不要过低。因为冷凝压力高将增加压缩机和冷凝器的设备费用,功率消耗也会增加;而蒸发压力低于大气压力,容易造成空气漏入真空操作的蒸发系统,不利于操作稳定。在这方面氨和氟里昂也是比较理想的。 (3)冷冻剂应该具有化学稳定性。冷冻剂对于设备不应该有显著的腐蚀作用。氨对铜有强烈的腐蚀作用,对碳钢则腐蚀不强;氟里昂则无腐蚀。 (4)冷冻剂不应有易燃和易爆性。 (5)冷冻剂对环境应该无公害。氟里昂F11、F12对大气臭氧的破坏已被公认,将逐渐被禁用,无公害的氟里昂替代品已大量应用。 综合以上各点,氨作为冷冻剂常用于大型冷库和工业装置。而无公害氟里昂常用于小型冷冻机和家用电器 3. 某蒸汽压缩制冷过程,制冷剂在250K吸收热量Q L,在300K放出热量-Q H,压缩和膨胀过程是绝热的,向制冷机输入的功为Ws,判断下列问题的性质。A可逆的 B 不可逆的C 不可能的 (1). Q L =2000kJ Ws=400kJ (A ) 250 5 300250 η== - 可逆 2000 5 400 L s Q W η=== ηη = 可逆 该制冷过程是可逆的(2). Q L=1000kJ Q H=-1500kJ ( B ) 250 5 300250 η== - 可逆 1000 2 15001000 L L s H L Q Q W Q Q η==== --- ηη < 可逆 该制冷过程是不可逆的(3). Ws=100kJ Q H=-700kJ ( C ) 250 5 300250 η== - 可逆 700100 6 100 H s L s s Q W Q W W η --- ==== ηη > 可逆 该制冷过程是不可能的 4. 卡诺制冷循环的制冷系数与有关。 A制冷剂的性质B制冷剂的工作温度C制冷剂的循环速率D压缩机的功率( B )

第五章 习题(蒸汽动力循环和制冷循环)

第五章 蒸汽动力循环和制冷循环 5-3 设有一台锅炉,每小时产生压力为2.5MPa ,温度为350℃的水蒸汽4.5吨,锅炉的给 水温度为30℃,给水压力2.5MPa 。已知锅炉效率为70%,锅炉效率:染料可提供的热量 蒸汽吸收的热量= B η。 如果该锅炉耗用的燃料为煤,每公斤煤的发热量为29260kJ ·kg -1,求该锅炉每小时的耗煤量。 解:查水蒸汽表 2.5MPa 20℃H 2O 13.86-?=kg kJ H 2.5MPa 40℃H 2O 177.169-?=kg kJ H 内插得到 2.5MPa 30℃H 2O 1 04.1282 3 .8677.169-?=+= kg kJ H 查水蒸汽表 2.0MPa 320℃H 2O 15.3069-?=kg kJ H 2.0MPa 360℃H 2O 13.3159-?=kg kJ H 内插得到 2.0MPa 350℃H 2O 1 85.31365.30693040 5 .30693.3159-?=+?-= kg kJ H 查水蒸汽表 3.0MPa 320℃H 2O 14.3043-?=kg kJ H 3.0MPa 360℃H 2O 17.3138-?=kg kJ H 内插得到 3.0MPa 350℃H 2O 1 88.31144.30433040 4 .30437.3138-?=+?-=kg kJ H 内插得到 2.5MPa 350℃H 2O 1 87.31252 85 .313688.3114-?=+= kg kJ H 锅炉在等压情况下每小时从锅炉吸收的热量: 1 3 1231490235)04.12887.3125(105.4)(2-?=-??=-?=h kJ H H H m Q O H 锅炉每小时耗煤量: 1 6.65829260 7.013490235-?=?= h kg mcoal 5-4 某朗肯循环的蒸汽参数为:进汽轮机的压力MPa p 61=,温度C t ?=5401,汽轮机出口压力MPa p 008.01=。如果忽略所有过程的不可逆损失,试求:(1)汽轮机出口乏气的干度与汽轮机的作功量;(2)水泵消耗的功量;(3)循环所作出的净功;(4)循环热效率。 解:朗肯循环在T -S 图上表示如下: 1点(过热蒸汽)性质: MPa p 61=,C t ?=5401, 1 10.3517-?=kg kJ H 1 19999.6-?=kg kJ S 2点(湿蒸汽)性质:

第6章 蒸汽动力循环和制冷循环

第6章 蒸汽动力循环和制冷循环 6.1 蒸汽动力循环 蒸汽动力循环是以水蒸汽为工质,将热能连续不断地转换成机械能的热力循环。现代化的大型化工厂,蒸汽动力循环为全厂供给动力、供热及供应工艺用蒸汽。分析动力循环的目的是研究循环中热、功转换的效果及其影响因素,提高能量转换效果。 朗肯循环是最简单的蒸汽动力循环,由锅炉、汽轮机、冷凝器和水泵组成。 图6-1 朗肯循环的示意图和T-S 图 1→2 的过程表示过热蒸汽在汽轮机中的可逆绝热膨胀过程,对外所做轴功 kg kJ H H H W s /12 -=?= 2→3 的过程表示乏汽在冷凝器中的等温等压冷凝过程,工质放出的热量 kg kJ H H H Q /232-=?= 3→4 的过程表示冷凝水通过水泵由P 3升压至P 4的可逆绝热压缩过程,需要消耗的轴功 kg kJ H H H W P /34 -=?= 把水看作是不可压缩流体,则 ()kg kJ P P V VdP W P P P /344 3 -== ? 4→1 的过程表示水在锅炉中等压升温和等压汽化,成为过热蒸汽的过程。工质在锅炉中吸收的热量 kg kJ H H H Q /411-=?= 理想朗肯循环的热效率 () ()() 4 14 3 2 1 1 H H H H H H Q W W P s --+-= +-= η 蒸汽动力循环中,水泵的耗功量远小于汽轮机的做功量 4 1211 H H H H Q W s --= -≈ η 热效率的高低可以反映出不同装置输出相同功量时所消耗的能量的多少,它是评价蒸汽 汽轮机 水泵 冷凝器 锅炉

动力装置的一个重要指标。 作出单位量净功所消耗的蒸汽量称为汽耗率,用 SSC (Specific Steam Consumption)表示。 ()h kW kg W kJ kg W SSC ?-= -= /3600/1 当对外作出的净功相同时,汽耗率大的装置其尺寸相应增大。所以汽耗率的高低可用来比较装置的相对尺寸大小和过程的经济性。 工质的热力学性质可以由热力学图表或公式求得。用热力学图表的计算方法如下 状态点1 根据P 1、t 1 值可查得H 1、S 1值; 状态点2 S 2=S 1,根据P 2、S 2 值可查得H 2、t 2值; 状态点3 P 3=P 2,查P 3下的饱和液体可得H 3、V 3 、S 3值; 状态点4, P 4=P 1,S 4=S 3,根据P 4、S 4可查得 H 4值,或者将液体水的比容当作常数,由 H 4=H 3+W p =H 3+V(P 4-P 3) 计算。 蒸汽通过汽轮机的绝热膨胀实际上不是等熵的,而是向着墒增加的方向偏移,用1→2′线表示。 水泵的耗功量远小于汽轮机的做功量,可不考虑不可逆的影响。 蒸汽通过汽轮机膨胀,实际做出的功应为H 1 – H 2′,它小于等熵膨胀的功H 1 – H 2。两者之比称为透平机的等熵效率。 ()() 2 121H H H H W W s s s --= --= '可不η 实际朗肯循环的热效率 ()() 4 1214 14 3 2 1H H H H H H H H H H -'-≈ --+'-= η 例6-1 例6-2 通过改变蒸汽参数提高朗肯循环的热效率 (1) 提高蒸汽的过热温度 在相同的蒸汽压力下,提高蒸汽的过热温度时, 可提高平均吸热温度,增大作功量,提高循环的热效率,并且可以降低汽耗率。同时乏气的干度增加,使透平机的相对内部效率也可提高。但是蒸汽的最高温度受到金属材料性能的限制,不能无限地提高,一般过热蒸汽 的最高温度以不超873K 为宜。 (2) 提高蒸汽的压力 当蒸汽压力提高时,热效率提高、而汽耗率下降。但是随着压力的提高,乏汽的干度下降,即湿含量增加,因而会引起透乎机相对内部效率的降低.还会使透平中最后几级的叶片受到磨蚀,缩短寿命。乏汽的干度一般不应低于0.88。另外,蒸汽压力的提高,不能超过水的临界压力,设备制造费用也会因蒸汽压力的提高而大幅上升。 6.2 节流膨胀与作外功的绝热膨胀 6.2.1节流膨胀 ΔH = 0 流体进行节流膨胀是,由于压力变化而引起的温度变化称为节流效应或Joule-thomson 效应。

相关文档
最新文档