TCPIP五层模型的协议

OSI和TCP/IP是很基础但又非常重要的网络基础知识,理解得透彻对运维工程师来说非常有帮助。今天偶又复习了一下:

(1)OSI七层模型

OSI中的层功能 TCP/IP协议族

应用层文件传输,电子邮件,文件服务,虚拟终端 TFTP,HTTP,SNMP,FTP,SMTP,DNS,Telnet

表示层数据格式化,代码转换,数据加密没有协议

会话层解除或建立与别的接点的联系没有协议

传输层提供端对端的接口 TCP,UDP

网络层为数据包选择路由 IP,ICMP,RIP,OSPF,BGP,IGMP

数据链路层传输有地址的帧以及错误检测功能 SLIP,CSLIP,PPP,ARP,RARP,MTU

物理层以二进制数据形式在物理媒体上传输数据 ISO2110,IEEE802,IEEE802.2

(2)TCP/IP五层模型的协议

应用层

传输层

网络层

数据链路层

物理层

物理层:中继器、集线器、还有我们通常说的双绞线也工作在物理层

数据链路层:网桥(现已很少使用)、以太网交换机(二层交换机)、网卡(其实网卡是一半工作在物理层、一半工作在数据链路层)

网络层:路由器、三层交换机

传输层:四层交换机、也有工作在四层的路由器

二、TCP/UDP协议

TCP (Transmission Control Protocol)和UDP(User Datagram Protocol)协议属于传输层协议。其中TCP 提供IP环境下的数据可靠传输,它提供的服务包括数据流传送、可靠性、有效流控、全双工操作和多路复用。通过面向连接、端到端和可靠的数据包发送。通俗说,它是事先为所发送的数据开辟出连接好的通道,然后再进行数据发送;而UDP则不为IP提供可靠性、流控或差错恢复功能。一般来说,TCP对应的是可靠性要求高的应用,而UDP对应的则是可靠性要求低、传输经济的应用。TCP支持的应用协议主要有:Telnet、FTP、SMTP等;UDP支持的应用层协议主要有:NFS(网络文件系统)、SNMP(简单网络管理协议)、DNS(主域名称系统)、TFTP(通用文件传输协议)等.

TCP/IP协议与低层的数据链路层和物理层无关,这也是TCP/IP的重要特点

三、OSI的基本概念

OSI是Open System Interconnect的缩写,意为开放式系统互联。

OSI七层参考模型的各个层次的划分遵循下列原则:

1、同一层中的各网络节点都有相同的层次结构,具有同样的功能。

2、同一节点内相邻层之间通过接口(可以是逻辑接口)进行通信。

3、七层结构中的每一层使用下一层提供的服务,并且向其上层提供服务。

4、不同节点的同等层按照协议实现对等层之间的通信。

第一层:物理层(PhysicalLayer),

规定通信设备的机械的、电气的、功能的和过程的特性,用以建立、维护和拆除物理链路连接。具体地讲,机械特性规定了网络连接时所需接插件的规格尺寸、引脚数量和排列情况等;电气特性规定了在物理连接上传输bit流时线路上信号电平的大小、阻抗匹配、传输速率距离限制等;功能特性是指对各个信号先分配确切的信号含义,即定义了DTE和DCE之间各个线路的功能;规程特性定义了利用信号线进行bit流传输的一组操作规程,是指在物理连接的建立、维护、交换信息是,DTE和DCE双放在各电路上的动作系列。在这一层,数据的单位称为比特(bit)。属于物理层定义的典型规范代表包括:EIA/TIA RS-232、EIA/TIA RS-449、V.35、RJ-45等。

第二层:数据链路层(DataLinkLayer):

在物理层提供比特流服务的基础上,建立相邻结点之间的数据链路,通过差错控制提供数据帧(Frame)在信道上无差错的传输,并进行各电路上的动作系列。数据链路层在不可靠的物理介质上提供可靠的传输。该层的作用包括:物理地址寻址、数据的成帧、流量控制、数据的检错、重发等。在这一层,数据的单位称为帧(frame)。数据链路层协议的代表包括:SDLC、HDLC、PPP、STP、帧中继等。

第三层是网络层

在计算机网络中进行通信的两个计算机之间可能会经过很多个数据链路,也可能还要经过很多通信子网。网络层的任务就是选择合适的网间路由和交换结点,确保数据及时传送。网络层将数据链路层提供的帧组成数据包,包中封装有网络层包头,其中含有逻辑地址信息- -源站点和目的站点地址的网络地址。如果你在谈论一个IP地址,那么你是在处理第3层的问题,这是“数据包”问题,而不是第2层的“帧”。IP 是第3层问题的一部分,此外还有一些路由协议和地址解析协议(ARP)。有关路由的一切事情都在这第3层处理。地址解析和路由是3层的重要目的。网络层还可以实现拥塞控制、网际互连等功能。在这一层,数据的单位称为数据包(packet)。网络层协议的代表包括:IP、IPX、RIP、OSPF等。

第四层是处理信息的传输层

第4层的数据单元也称作数据包(packets)。但是,当你谈论TCP等具体的协议时又有特殊的叫法,TCP的数据单元称为段 (segments)而UDP协议的数据单元称为“数据报(datagrams)”。这个层负责获取全部信息,因此,它必须跟踪数据单元碎片、乱序到达的数据包和其它在传输过程中可能发生的危险。第4层为上层提供端到端(最终用户到最终用户)的透明的、可靠的数据传输服务。所为透明的传输是指在通信过程中传输层对上层屏蔽了通信传输系统的具体细节。传输层协议的代表包括:TCP、UDP、SPX等。

第五层是会话层

这一层也可以称为会晤层或对话层,在会话层及以上的高层次中,数据传送的单位不再另外命名,而是统称为报文。会话层不参与具体的传输,它提供包括访问验证和会话管理在内的建立和维护应用之间通信的机制。如服务器验证用户登录便是由会话层完成的。

第六层是表示层

这一层主要解决拥护信息的语法表示问题。它将欲交换的数据从适合于某一用户的抽象语法,转换为适合于OSI系统内部使用的传送语法。即提供格式化的表示和转换数据服务。数据的压缩和解压缩,加密和解密等工作都由表示层负责。

第七层应用层

应用层为操作系统或网络应用程序提供访问网络服务的接口。应用层协议的代表包括:Telnet、FTP、HTTP、SNMP等。

除了层的数量之外,开放式系统互联(OSI)模型与TCP/IP协议有什么区别?

开放式系统互联模型是一个参考标准,解释协议相互之间应该如何相互作用。TCP/IP协议是美国国防部发明的,是让互联网成为了目前这个样子的标准之一。开放式系统互联模型中没有清楚地描绘TCP/IP协议,但是在解释TCP/IP协议时很容易想到开放式系统互联模型。两者的主要区别如下:

TCP/IP协议中的应用层处理开放式系统互联模型中的第五层、第六层和第七层的功能。

TCP/IP协议中的传输层并不能总是保证在传输层可靠地传输数据包,而开放式系统互联模型可以做到。TCP/IP协议还提供一项名为UDP(用户数据报协议)的选择。UDP不能保证可靠的数据包传输。

TCP/UDP协议

TCP(Transmission Control Protocol)和UDP(User Datagram Protocol)协议属于传输层协议。其中TCP

提供IP环境下的数据可靠传输,它提供的服务包括数据流传送、可靠性、有效流控、全双工操作和多路复用。通过面向连接、端到端和可靠的数据包发送。通俗说,它是事先为所发送的数据开辟出连接好的通道,然后再进行数据发送;而UDP则不为IP提供可靠性、流控或差错恢复功能。一般来说,TCP对应的是可靠性要求高的应用,而UDP对应的则是可靠性要求低、传输经济的应用。

TCP支持的应用协议主要有:Telnet、FTP、SMTP等;UDP支持的应用层协议主要有:NFS(网络文件系统)、SNMP(简单网络管理协议)、DNS(主域名称系统)、TFTP(通用文件传输协议)等。

TCP/IP协议与低层的数据链路层和物理层无关,这也是TCP/IP的重要特点。

TCP和UDP协议简介

TCP和UDP协议简介 从专业的角度说,TCP的可靠保证,是它的三次握手机制,这一机制保证校验了数据,保证了他的可靠性。而UDP就没有了,所以不可靠。不过UDP的速度是TCP比不了的,而且UDP的反应速度更快,QQ就是用UDP协议传输的,HTTP是用TCP协议传输的,不用我说什么,自己体验一下就能发现区别了。再有就是UDP和TCP的目的端口不一样(这句话好象是多余的),而且两个协议不在同一层,TCP在三层,UDP不是在四层就是七层。TCP/IP协议介绍 TCP/IP的通讯协议 这部分简要介绍一下TCP/IP的内部结构,为讨论与互联网有关的安全问题打下基础。TCP/IP协议组之所以流行,部分原因是因为它可以用在各种各样的信道和底层协议(例如T1和X.25、以太网以及RS-232串行接口)之上。确切地说,TCP/IP协议是一组包括TCP 协议和IP协议,UDP(User Datagram Protocol)协议、ICMP(Internet Control Message Protocol)协议和其他一些协议的协议组。 TCP/IP整体构架概述 TCP/IP协议并不完全符合OSI的七层参考模型。传统的开放式系统互连参考模型,是一种通信协议的7层抽象的参考模型,其中每一层执行某一特定任务。该模型的目的是使各种硬件在相同的层次上相互通信。这7层是:物理层、数据链路层、网路层、传输层、话路层、表示层和应用层。而TCP/IP通讯协议采用了4层的层级结构,每一层都呼叫它的下一层所提供的网络来完成自己的需求。这4层分别为: 应用层:应用程序间沟通的层,如简单电子邮件传输(SMTP)、文件传输协议(FTP)、网络远程访问协议(Telnet)等。 传输层:在此层中,它提供了节点间的数据传送服务,如传输控制协议(TCP)、用户数据报协议(UDP)等,TCP和UDP给数据包加入传输数据并把它传输到下一层中,这一层负责传送数据,并且确定数据已被送达并接收。 互连网络层:负责提供基本的数据封包传送功能,让每一块数据包都能够到达目的主机(但不检查是否被正确接收),如网际协议(IP)。 网络接口层:对实际的网络媒体的管理,定义如何使用实际网络(如Ethernet、Serial Line 等)来传送数据。 TCP/IP中的协议 以下简单介绍TCP/IP中的协议都具备什么样的功能,都是如何工作的: 1.IP 网际协议IP是TCP/IP的心脏,也是网络层中最重要的协议。 IP层接收由更低层(网络接口层例如以太网设备驱动程序)发来的数据包,并把该数据包发送到更高层---TCP或UDP层;相反,IP层也把从TCP或UDP层接收来的数据包传送到更低层。IP数据包是不可靠的,因为IP并没有做任何事情来确认数据包是按顺序发送的

CycloneTCP协议栈移植与使用简介

Arda Technology Arda Tech P.F.FU 2014-12-19 Ver 0.1 #elif defined(USE_XXXXXX) #include "os_port_xxxxxx.h"

NicType type;//控制器类型。0:以太网接口,1:PPP接口,2:6LowPan接口 NicInit init;//控制器初始化函数指针 NicTick tick;//控制器周期性事务处理函数指针 NicEnableIrq enableIrq;//打开控制器中断函数指针 NicDisableIrq disableIrq;//关闭控制器中断函数指针 NicEventHandler eventHandler;//控制器中断响应函数指针,这个是下半段的中断处理部分。 NicSetMacFilter setMacFilter;//配置多播MAC地址过滤函数指针 NicSendPacket sendPacket;//发送包函数指针 NicWritePhyReg writePhyReg;//写PHY寄存器函数指针 NicReadPhyReg readPhyReg;//读PHY寄存器函数指针 bool_t autoPadding;//是否支持自动填充 bool_t autoCrcGen;//是否支持自动生成CRC校验码 bool_t autoCrcCheck;//是否支持自动检查CRC错误 NicSendControlFrame sendControlFrame;//发送控制帧函数指针 NicReceiveControlFrame receiveControlFrame;//接收控制帧函数指针 NicPurgeTxBuffer purgeTxBuffer;//清除发送缓冲函数指针 NicPurgeRxBuffer purgeRxBuffer;//清除接受缓存函数指针 xxxxEthInitGpio(...)//用于在init中初始化GPIO。 xxxxEthInitDmaDesc(...)//用于在init中初始化DMA任务描述符列表。 XXXX_Handler(...)//用于MAC中断的上半段处理。 xxxxEthReceivePacket(...)//用于在eventHandler中收包,把数据从dma的缓冲复制到外部缓冲。xxxxEthCalcCrc(...)//计算CRC值,这个函数基本上是固定的。 xxxxEthDumpPhyReg(...)//用于调试的打印PHY寄存器列表值。

TCPIP协议栈实践报告

《专业综合实践》 训练项目报告训练项目名称:TCP/IP协议栈

1.IP协议 IP协议是TCP/IP协议的核心,所有的TCP,UDP,IMCP,IGCP的数据都以IP数据格式传输。要注意的是,IP不是可靠的协议,这是说,IP协议没有提供一种数据未传达以后的处理机制--这被认为是上层协议--TCP或UDP要做的事情。所以这也就出现了TCP是一个可靠的协议,而UDP就没有那么可靠的区别。这是后话,暂且不提 1.1.IP协议头如图所示

挨个解释它是教科书的活计,我感兴趣的只是那八位的TTL字段,还记得这个字段是做什么的么?这个字段规定该数据包在穿过多少个路由之后才会被抛弃(这里就体现出来IP协议包的不可靠性,它不保证数据被送达),某个ip数据包每穿过一个路由器,该数据包的TTL数值就会减少1,当该数据包的TTL成为零,它就会被自动抛弃。这个字段的最大值也就是255,也就是说一个协议包也就在路由器里面穿行255次就会被抛弃了,根据系统的不同,这个数字也不一样,一般是32或者是64,Tracerouter这个工具就是用这个原理工作的,tranceroute 的-m选项要求最大值是255,也就是因为这个TTL在IP协议里面只有8bit。 现在的ip版本号是4,所以也称作IPv4。现在还有IPv6,而且运用也越来越广泛了。 1.2.IP路由选择 当一个IP数据包准备好了的时候,IP数据包(或者说是路由器)是如何将数据包送到目的地的呢?它是怎么选择一个合适的路径来"送货"的呢? 最特殊的情况是目的主机和主机直连,那么主机根本不用寻找路由,直接把数据传递过去就可以了。至于是怎么直接传递的,这就要靠ARP协议了,后面会讲到。 稍微一般一点的情况是,主机通过若干个路由器(router)和目的主机连接。那么路由器就要通过ip包的信息来为ip包寻找到一个合适的目标来进行传递,比如合适的主机,或者合适的路由。路由器或者主机将会用如下的方式来处理某一个IP数据包 如果IP数据包的TTL(生命周期)以到,则该IP数据包就被抛弃。 搜索路由表,优先搜索匹配主机,如果能找到和IP地址完全一致的目标

mtcp协议栈

mTCP:A Highly Scalable User-level TCP Stack for Multicore Systems EunYoung Jeong,Shinae Woo,Muhammad Jamshed,Haewon Jeong Sunghwan Ihm*,Dongsu Han,and KyoungSoo Park KAIST*Princeton University Abstract Scaling the performance of short TCP connections on multicore systems is fundamentally challenging.Although many proposals have attempted to address various short-comings,inef?ciency of the kernel implementation still persists.For example,even state-of-the-art designs spend 70%to80%of CPU cycles in handling TCP connections in the kernel,leaving only small room for innovation in the user-level program. This work presents mTCP,a high-performance user-level TCP stack for multicore systems.mTCP addresses the inef?ciencies from the ground up—from packet I/O and TCP connection management to the application inter-face.In addition to adopting well-known techniques,our design(1)translates multiple expensive system calls into a single shared memory reference,(2)allows ef?cient?ow-level event aggregation,and(3)performs batched packet I/O for high I/O ef?ciency.Our evaluations on an8-core machine showed that mTCP improves the performance of small message transactions by a factor of25compared to the latest Linux TCP stack and a factor of3compared to the best-performing research system known so far.It also improves the performance of various popular applications by33%to320%compared to those on the Linux stack. 1Introduction Short TCP connections are becoming widespread.While large content transfers(e.g.,high-resolution videos)con-sume the most bandwidth,short“transactions”1dominate the number of TCP?ows.In a large cellular network,for example,over90%of TCP?ows are smaller than32KB and more than half are less than4KB[45]. Scaling the processing speed of these short connec-tions is important not only for popular user-facing on-line services[1,2,18]that process small messages.It is 1We refer to a request-response pair as a transaction.These transac-tions are typically small in size.also critical for backend systems(e.g.,memcached clus-ters[36])and middleboxes(e.g.,SSL proxies[32]and redundancy elimination[31])that must process TCP con-nections at high speed.Despite recent advances in soft-ware packet processing[4,7,21,27,39],supporting high TCP transaction rates remains very challenging.For exam-ple,Linux TCP transaction rates peak at about0.3million transactions per second(shown in Section5),whereas packet I/O can scale up to tens of millions packets per second[4,27,39]. Prior studies attribute the inef?ciency to either the high system call overhead of the operating system[28,40,43] or inef?cient implementations that cause resource con-tention on multicore systems[37].The former approach drastically changes the I/O abstraction(e.g.,socket API) to amortize the cost of system calls.The practical lim-itation of such an approach,however,is that it requires signi?cant modi?cations within the kernel and forces ex-isting applications to be re-written.The latter one typically makes incremental changes in existing implementations and,thus,falls short in fully addressing the inef?ciencies. In this paper,we explore an alternative approach that de-livers high performance without requiring drastic changes to the existing code base.In particular,we take a clean-slate approach to assess the performance of an untethered design that divorces the limitation of the kernel implemen-tation.To this end,we build a user-level TCP stack from the ground up by leveraging high-performance packet I/O libraries that allow applications to directly access the packets.Our user-level stack,mTCP,is designed for three explicit goals: 1.Multicore scalability of the TCP stack. 2.Ease of use(i.e.,application portability to mTCP). 3.Ease of deployment(i.e.,no kernel modi?cations). Implementing TCP in the user level provides many opportunities.In particular,it can eliminate the expen-sive system call overhead by translating syscalls into inter-process communication(IPC).However,it also in-

MODBUS-TCP协议介绍

MODBUS-TCP ~ ~~ IEEE 802.3 CSMA/CD 10Mb/s (1)10 Base 5 RG-8 500m (2)10 Base 2 RG-58 185m (3)10 Base T UTP STP 100m ~~ 100Mb/s 802.3a 100 Base Tx 100 Base Fx ~~ 10/100M 100M “ ” (UTP) 100m 2 3km 100km 1000Mb/s 802.3z/802.3ab 10Gb/s 802.3ae ~ ~~ IEEE802.3 EN50081-2 EN50082-2 1 DIN UTP STP( ) ~TCP/IP 1. TCP/IP ~~ TCP/IP 20 80 X.25 TCP/IP ( ) TCP/IP TCP/IP TCP/IP

Internet TCP/IP TCP/IP ~~ TCP/IP OSI OSI TCP/IP 1 TCP/IP 2. Internet Protocol(IP) ~~IP Internet https://www.360docs.net/doc/9d9140444.html, RFC79 ( RFC: Request For Comments ) ~~IP IP “ ” I/O IP IP IP “IP ” “ ” “ ” “ ” IP IP ~~IP IP 2

~~IP 4 ( 3 ) A 16387064 (1 126) B 64516 ( 128 191) C 254 ( 192 223) D (“0.0.0.0”) 1 (“255.255.255.255”) 3. Transmission Control Protocol (TCP) ~~TCP ( 4 ) RFC793 TCP TCP TCP

TCPIP协议分析

TCP/IP协议分析及应用 在计算机网络的发展过程中,TCP/IP网络是迄今为止对人类社会影响最重要的一种网络。TCP和IP是两种网络通信协议,以这两种协议为核心协议的网络总称为TCP/IP网络。人们常说的国际互联网或因特网就是一种TCP/IP网络,大多数企业的内部网也是TCP/IP网络。 作为一名学习计算机的学生,我们一定要对TCP/IP协议进行深刻的解析。通过对协议的分析进一步了解网络上数据的传送方式和网络上出现的问题的解决方法。本实验就是对文件传输协议进行分析来确定FTP协议工作方式。 目的:通过访问FTP:202.207.112.32,向FTP服务器上传和下载文件。用抓包工作来捕捉数据在网络上的传送过程。为的方便数据包的分析,通过上传一个内容为全A的TXT文件,来更直观的分析文件传输的过程。 过程: 1.在本机上安装科莱抓包软件 2.对科莱进行进滤器的设置(arp、ftp、ftp ctrl、ftp data) 3.通过运行CMD窗口进行FTP的访问 4.用PUT和GET进行文件的上传与下载 5.对抓到的包进行详细的分析 CMD中的工作过程: C:\Documents and Settings\Administrator>ftp 202.207.112.32 Connected to 202.207.112.32. 220 Serv-U FTP Server v5.1 for WinSock ready... User (202.207.112.32:(none)): anonymous //通过匿名方式访问 331 User name okay, please send complete E-mail address as password. Password: 230 User logged in, proceed. ftp> cd 学生作业上传区/暂存文件夹 250 Directory changed to /学生作业上传区/暂存文件夹 ftp> put d:\aaa123.txt //上传aaa123.txt文件 200 PORT Command successful. 150 Opening ASCII mode data connection for aaa123.txt.

tcp、ip协议栈移植

This article was downloaded by: [University of Jiangnan] On: 27 March 2015, At: 06:51 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Journal of Discrete Mathematical Sciences and Cryptography Publication details, including instructions for authors and subscription information: https://www.360docs.net/doc/9d9140444.html,/loi/tdmc20 An abridged protocol stack for micro controller in place of TCP/IP R. Seshadri a a Computer Centre, S.V. University , Tirupati , 517 502 , India Published online: 03 Jun 2013. PLEASE SCROLL DOWN FOR ARTICLE

An abridged protocol stack for micro controller in place of TCP/IP R.Seshadri ? Computer Centre S.V .University Tirupati 517502India Abstract The existing TCP/IP protocol stack running in hosts takes lot of overhead while the node in network is for a speci?c purpose.For example transferring simple messages across network.If the node in the network is not a PC but,some thing like a micro controller,which measures some values and stores in its local memory,then it becomes lavishness in using the micro controller’s memory.As it is a node in a network,working with TCP/IP ,it should be able to transfer those values in the form of messages to other hosts which are in either local network or global network. But in micro controller terms the memory is expensive and compact.The existing TCP/IP stack consumes a few mega bytes of memory.Therefore it can’t be accommodated in the memory of micro controller.Hence one needs to reduce the memory consumption.In this regard,an abridged protocol which replaces the existing TCP/IP has been designed to suit the above needs.For this purpose,the TCP/IP have been combined with KEIL C51features for 8051micro controller to make it work in transferring messages in local area network as well as global network. The above scheme was implemented and tested and the system was working satisfac-torily.The results are found to be more effective in communicating information/message from the micro controller to a PC. Keywords :Ethernet,stack,Transmission Control Protocol (TCP ),Internet Protocol (IP ).Introduction to TCP/IP The name TCP/IP refers to a suite of communication protocols.The name is misleading because TCP and IP are the only two of the dozens of protocols that compose the suite.Its name comes from two of the most ?E-mail :ravalaseshadri@yahoo.co.in —————————————————– Journal of Discrete Mathematical Sciences &Cryptography Vol.9(2006),No.3,pp.523–536 c Taru Publications D o w n l o a d e d b y [U n i v e r s i t y o f J i a n g n a n ] a t 06:51 27 M a r c h 2015

详解TCPIP协议总结

TCP/IP 协议 TCP/IP 不是一个协议,而是一个协议族的统称。里面包括IP 协议、 IMCP 协议、TCP 协议。 这里有儿个需要注意的知识点: ?互联网地址:也就是IP 地址,一般为网络号+子网号+主机号 ?域名系统:通俗的来说,就是一个数据库,可以将主机名转换成IP 地址 ? RFC : TCP/IP 协议的标准文档 ?端口号:一个逻辑号码,IP 包所带有的标记 ? Socket :应用编程接口 数据链路层的工作特性: ?为IP 模块发送和接收IP 数据报 ?为ARP 模块发送ARP 请求和接收ARP 应答(ARP :地址解析协议,将IP 地 址转换 成MAC 地址) ? 为RARP 发送RARP 请求和接收RARP 应答 接下来我们了解一下TCP/IP 的工作流 程: 数据链路层从ARP 得到数据的传递信息,再从IP 得到具体的数据信息 IP 协议 IP 协议头当中,最重要的就是TTL (IP 允许通过的最大网段数量)字 段(八位),规定该数据包能穿过儿个路山之后才会被抛弃。 IP 路由选择 版本首部长圍区分服务 总长度 标识 标志 片偏移 生存时间 协议 首部检验利 源地址 目的地址 可选字段(长度可变) 填充 I 4 8 24 31 部分 16 19 数 据 部 分 固 皆定 部分 发送在前 IP 数据

箝古畫帕igiKMudeu ICMP 协议(网络控制文协议) 将IP 数据包不能传送的错误信息传送给主机 查询报文 1. ping 査询:主机是否可达,通过计算间隔时间和传送多少个包的数量 2. 子网掩码 3. 时间戳:获得当询时间 优元幔萦匹配 ?SEE 失? ■ 匹杞同孑協1的跨用器 ?成切? 发送冷總民避 丿 1 丿 V / 、 Z 、 匹配同网号杓路Fh 器 ?或6 发送IP SS 冕包绘跑国器 1 丿 1 丿 芨索SKIAB^田 发迭IP 数据给淫呂器 艾败 丢弃担个? ARP 协议工作原理 ( e?*Aw>?a? r^?WARpr?s 爸旁丰0?榜 ?ommeu

tcp,ip详解卷1,协议,下载

竭诚为您提供优质文档/双击可除tcp,ip详解卷1,协议,下载 篇一:tcp_ip协议详解 tcp/ip协议详解 这部分简要介绍一下tcp/ip的内部结构,为讨论与互联网有关的安全问题打下基础。tcp/ip协议组之所以流行,部分原因是因为它可以用在各种各样的信道和底层协议(例如t1和x.25、以太网以及Rs-232串行接口)之上。确切地说,tcp/ip协议是一组包括tcp协议和ip协议,udp (userdatagramprotocol)协议、icmp (internetcontrolmessageprotocol)协议和其他一些协议的协议组。 tcp/ip整体构架概述 tcp/ip协议并不完全符合osi的七层参考模型。传统的开放式系统互连参考模型,是一种通信协议的7层抽象的参考模型,其中每一层执行某一特定任务。该模型的目的是使各种硬件在相同的层次上相互通信。这7层是:物理层、数据链路层、网路层、传输层、话路层、表示层和应用层。而tcp/ip通讯协议采用了4层的层级结构,每一层都呼叫它的

下一层所提供的网络来完成自己的需求。这4层分别为:应用层:应用程序间沟通的层,如简单电子邮件传输(smtp)、文件传输协议(Ftp)、网络远程访问协议(telnet)等。 传输层:在此层中,它提供了节点间的数据传送服务,如传输控制协议(tcp)、用户数据报协议(udp)等,tcp和udp给数据包加入传输数据并把它传输到下一层中,这一层负责传送数据,并且确定数据已被送达并接收。 互连网络层:负责提供基本的数据封包传送功能,让每一块数据包都能够到达目的主机(但不检查是否被正确接收),如网际协议(ip)。 网络接口层:对实际的网络媒体的管理,定义如何使用实际网络(如ethernet、serialline等)来传送数据。 tcp/ip中的协议 以下简单介绍tcp/ip中的协议都具备什么样的功能,都是如何工作的: 1.ip 网际协议ip是tcp/ip的心脏,也是网络层中最重要的协议。 ip层接收由更低层(网络接口层例如以太网设备驱动程序)发来的数据包,并把该数据包发送到更高层---tcp或udp层;相反,ip层也把从tcp或udp层接收来的数据包传

tcp-ip协议详细讲解

TCP/IP协议详解 这部分简要介绍一下TCP/IP的部结构,为讨论与互联网有关的安全问题打下基础。TCP/IP协议组之所以流行,部分原因是因为它可以用在各种各样的信道和底层协议(例如T1和X.25、以太网以及RS-232串行接口)之上。确切地说,TCP/IP协议是一组包括TCP协议和IP协议,UDP(User Datagram Protocol)协议、ICMP(Internet Control Message Protocol)协议和其他一些协议的协议组。 TCP/IP整体构架概述 TCP/IP协议并不完全符合OSI的七层参考模型。传统的开放式系统互连参考模型,是一种通信协议的7层抽象的参考模型,其中每一层执行某一特定任务。该模型的目的是使各种硬件在相同的层次上相互通信。这7层是:物理层、数据链路层、网路层、传输层、话路层、表示层和应用层。而TCP/IP通讯协议采用了4层的层级结构,每一层都呼叫它的下一层所提供的网络来完成自己的需求。这4层分别为: 应用层:应用程序间沟通的层,如简单电子传输(SMTP)、文件传输协议(FTP)、网络远程访问协议(Telnet)等。 传输层:在此层中,它提供了节点间的数据传送服务,如传输控制协议(TCP)、用户数据报协议(UDP)等,TCP和UDP给数据包加入传输数据并把它传输到下一层中,这一层负责传送数据,并且确定数据已被送达并接收。 互连网络层:负责提供基本的数据封包传送功能,让每一块数据包都能够到达目的主机(但不检查是否被正确接收),如网际协议(IP)。 网络接口层:对实际的网络媒体的管理,定义如何使用实际网络(如Ethernet、Serial Line等)来传送数据。 TCP/IP中的协议 以下简单介绍TCP/IP中的协议都具备什么样的功能,都是如何工作的: 1. IP 网际协议IP是TCP/IP的心脏,也是网络层中最重要的协议。 IP层接收由更低层(网络接口层例如以太网设备驱动程序)发来的数据包,并把该数据包发送到更高层---TCP或UDP层;相反,IP层也把从TCP或UDP层接收来的数据包传送到更低层。IP数据包是不可靠的,因为IP并没有做任何事情来确认数据包是按顺序发送的或者没有被破坏。IP数据包中含有发送它的主机的地址(源地址)和接收它的主机的地址(目的地址)。 高层的TCP和UDP服务在接收数据包时,通常假设包中的源地址是有效的。也可以这样说,IP地址形成了许多服务的认证基础,这些服务相信数据包是从一

TCPIP协议栈

TCP/IP协议族 IPv4包 UDP包 UDP的伪首部(根据IP数据包的内容建立) UDP校验和覆盖的内容超出了UDP数据报本身的X围。计算校验和,先把零值赋予校验和字段,然后对整个对象,包括伪首部、UDP的首部和用户数据,算出一个16比特的二进制

TCP包 TCP的伪首部(根据IP数据包的内容建立) 三次握手报文序列 在网点1的事件网络报文在网点2的事件 发送SYN seq=x 接收SYN报文段 发送SYN seq=y,ACK x+1

接收SYN+ACK报文段 发送ACK y+1 接收ACK报文段 TCP连接关闭的三次握手 在网点1的事件网络报文在网点2的事件 (应用程序关闭连接) 发送FIN seq=x 接收FIN报文段 发送ACK x+1 接收ACK报文段 发送FIN seq=y,ACK x+1 接收FIN+ACK报文段 发送ACK y+1 接收ACK报文段 IPv6 IPv6是“Internet Protocol Version 6”的缩写,它是IETF设计的用于替代现行版本IP协议-IPv4-的下一代IP协议。IPv6采用了分级地址模式、高效IPXX、服务质量、主机地址自动配置、认证和加密等许多技术。

IPv4和IPv6的主要差别 IPv6包结构 IPv6包由IPv6XX、扩展XX和上层协议数据单元三部分组成:

IPv6XX Version(4bit) Traffic Class(8bit) Flow Label(20bit) Payload Length(16bit) Next Header(8bit) Hop Limit(8bit) Source IP address (128bit) Destination IP address (128bit) 附:常用的Next Header 字段值表 扩展头 一个典型的IPv6包,没有扩展头。仅当需要路由器或目的节点做某些特殊处理时,才由发送方添加一个或多个扩展头。与IPv4不同,IPv6扩展头长度任意,不受40字节限制,但是为了提高处理选项头和传输层协议的性能,扩展头总是8字节长度的整数倍。 目前,RFC 2460中定义了以下6个IPv6扩展头: 1)Hop-by-Hop选项XX 包含分组传送过程中,每个路由器都必须检查和处理的特殊参数选项。Hop-by-Hop选 项XX中的选项描述一个分组的某些特性或用于提供填充。这些选项有: Pad1选项(选项类型为0),填充单字节。

TCPIP协议详解-配置选项

附录E 配置选项 我们已经看到了许多冠以“依赖于具体配置”的T C P/I P特征。典型的例子包括是否使能U D P的检验和(11 .3节),具有同样的网络号但不同的子网号的目的I P地址是本地的还是非本地的(1 8.4节)以及是否转发直接的广播(1 2.3节)。实际上,一个特定的T C P/I P实现的许多操作特征都可以被系统管理员修改。 这个附录列举了本书中用到的一些不同的T C P/I P实现可以配置的选项。就像你可能想到的,每个厂商都提供了与其他实现不同的方案。不过,这个附录给出的是不同的实现可以修改的参数类型。一些与实现联系紧密的选项,如内存缓存池的低水平线,没有描述。 这些描述的变量只用于报告的目的。在不同的实现版本中,它们的名字、默认值、或含义都可以改变。所以你必须检查你的厂商的文档(或向他们要更充分的文档)来 了解这些变量实际使用的单词。 这个附录没有覆盖每次系统引导时发生的初始化工作:对每个网络接口使用i f c o n f i g 进行初始化(设置I P地址、子网掩码等等)、往路由表中输入静态路由等等。这个附录集中描述了影响T C P/I P操作的那些配置选项。 E.1 BSD/386 版本1.0 这个系统是自从4 .2B S D以来使用的“经典”B S D配置的一个例子。因为源代码是和系统一起发布的,所以管理员可以指明配置选项,内核也可重编译。存在两种类型的选项:在内核配置文件中定义的常量(参见c o n f i g( 8)手册)和在不同的C源文件中的变量初始化。大胆而又经验丰富的管理员也可以使用排错工具修改正在运行的内核或者内核的磁盘映像中这些变量的值,以避免重新构造内核。 下面列出的是在内核配置文件中可以修改的常量。 IPFORWARDING 这个常量的值初始化内核变量i p f o r w a r d i n g。如果值为0(默认),就不转发I P数据报。如果是1,就总是使能转发功能。 GATEWAY 如果定义了这个常量,就使得I P F O R WA R D I N G的值被置为1。另外,定义这个常量还使得特定的系统表格(A R P快速缓存表和路由表)更大。 SUBNETSARELOCAL 这个常量的值初始化内核变量s u b n e t s a r e l o c a l。如果值为1(默认),一个和发送主 I P地址被认为是本地的。如果是0,只有在同一个子

TCPIP协议基础之二(TCPIP协议介绍)

TCP/IP协议基础之二(TCP/IP协议介绍) 这部分简要介绍一下TCP/IP的内部结构,为讨论与互联网有关的安全问题打下基础。TCP/IP 协议组之所以流行,部分原因是因为它可以用在各种各样的信道和底层协议之上。确切地说, TCP/IP协议是一组包括TCP协议和IP协议,UDP(User Datagram Protocol)协议、ICMP (Internet Control Message Protocol)协议和其他一些协议的协议组。 AD: TCP/IP的通讯协议 这部分简要介绍一下TCP/IP的内部结构,为讨论与互联网有关的安全问题打下基础。TCP/IP协议组之所以流行,部分原因是因为它可以用在各种各样的信道和底层协议(例如T1和X.25、以太网以及RS-232串行接口)之上。 确切地说,TCP/IP协议是一组包括TCP协议和IP协议,UDP(User Datagram Protocol)协议、ICMP(Internet Control Message Protocol)协议和其他一些协议的协议组。 TCP/IP整体构架概述 TCP/IP协议并不完全符合OSI的七层参考模型。传统的开放式系统互连参考模型,是一种通信协议的7层抽象的参考模型,其中每一层执行某一特定任务。该模型的目的是使各种硬件在相同的层次上相互通信。这7层是:物理层、数据链路层、网路层、传输层、话路层、表示层和应用层。而TCP/IP通讯协议采用了4层的层级结构,每一层都呼叫它的下一层所提供的网络来完成自己的需求。这4层分别为: 应用层:应用程序间沟通的层,如简单电子邮件传输(SMTP)、文件传输协议(FTP)、网络远程访问协议(Telnet)等。

TCPIP协议体系结构简介

TCP/IP协议体系结构简介 -------------------------------------------------------------------------------- 好喜爱学习网https://www.360docs.net/doc/9d9140444.html, 分类:网络基础网络协议来源:网络收集录入:管理员 -------------------------------------------------------------------------------- 09 协议的定义及意义协议的定义及意义如何定义网络协议,它有哪些意义?协议是对网络中设备以Email协议基础知识1.Email系统的基本原理INTERNET邮件Google重拳:Gmail 支持POP3协议互联网搜索巨擎Google推出其引领业界千兆风潮的Gmail已经有一PPPoE 协议在宽带接入网中的应用近年来,网络数据业务发展迅速,宽带用户呈爆炸式的增长,运营商在采用x1、TCP/IP协议栈 四层模型 TCP/IP这个协议遵守一个四层的模型概念:应用层、传输层、互联层和网络接口层。 网络接口层 模型的基层是网络接口层。负责数据帧的发送和接收,帧是独立的网络信息传输单元。网络接口层将帧放在网上,或从网上把帧取下来。 互联层 互联协议将数据包封装成internet数据报,并运行必要的路由算法。 这里有四个互联协议: 网际协议IP:负责在主机和网络之间寻址和路由数据包。 地址解析协议ARP:获得同一物理网络中的硬件主机地址。 网际控制消息协议ICMP:发送消息,并报告有关数据包的传送错误。 互联组管理协议IGMP:被IP主机拿来向本地多路广播路由器报告主机组成员。 传输层 传输协议在计算机之间提供通信会话。传输协议的选择根据数据传输方式而定。 两个传输协议: 传输控制协议TCP:为应用程序提供可靠的通信连接。适合于一次传输大批数据的情况。并适用于要求得到响应的应用程序。 用户数据报协议UDP:提供了无连接通信,且不对传送包进行可靠的保证。适合于一次传输小量数据,可靠性则由应用层来负责。 应用层 应用程序通过这一层访问网络。 网络接口技术 IP使用网络设备接口规范NDIS向网络接口层提交帧。IP支持广域网和本地网接口技术。 串行线路协议 TCP/IPG一般通过internet串行线路协议SLIP或点对点协议PPP在串行线上进行数据传送。

相关文档
最新文档