eb-jck4b 车辆检测器拨码开关的使用

eb-jck4b 车辆检测器拨码开关的使用

仅内部资料使用

USER

第 1 页

2013-3-30

EB-JCK4B 车辆检测器拨码开关的使用

面板拨码开关示意图如下:

(说明:“1”表示拨下开关,“0”表示未拨下开关。) 一、地址位和数据通讯模式的设置

1、地址位1-3:(ADD1、ADD

2、ADD3)

二进制开关拨码可以支持地址1-8。 2、两种数据通讯模式(ADD4)

地址第4位:

0=查询式发送(多机使用时必须采用查询式) 1=主动发送 (只能单机使用)。

二、PM1(检测模式设置)和PM2(通信波特率设置)

1、PM1检测模式设置

0=轮询模式,连接后(RUN)1次短闪。(轮询模式可以减小线圈间干扰,但是会降低检测速度。)

1=同步模式,连接后(RUN)2次短闪。

2、PM2通信波特率设置 0=115200bps 1=9600bps

三、N1(内部指示灯L7、L8显示状态)和N2(滤波设置)

1、N1 内部显示状态选择(仅用于调试)

0=内部指示灯L7、L8显示线圈通断状态

1=内部指示灯L7、L8显示红灯输入状态

2、N2 滤波设置(在遇到现场干扰造成检测指示灯乱闪时,可以启用滤波。)

0=滤波关闭

1=滤波开启(滤波设置有效时会降低检测速度,特别在车速测量时要注意。)

四、灵敏度设置

前面板1、2、3、4共4组开关,每路是对应4个开关,全部空为灵敏度最高,拔动ON 时,数值依次加大,对应灵敏度依次降低。 取值越大灵敏度越低。

阀值开关灵敏度计算:初始值=1,4位开关1、2、3、4对应+1、+2、+4、+8;取值范围1-16(说明:“1”表示拨下开关,“0”表示未拨下开关。) 灵敏度真值表

几种主要车辆检测器的对比

几种主要检测技术的对比 道路交通信息采集是智能交通系统的一项重要内容。在道路交通信息采集技术中,环形线圈车辆检测器因其技术成熟、易于掌握、初期建设成本较低而成为当前国内用量最大一种检测设备。但是,环形线圈检测器同时具有获得的信息量少,难于安装和较低的灵活性等缺点。为克服以上不足,微波车辆检测器和视频车辆检测器技术得以发展并应用于城市道路和高速公路的交通信息检测。 下面对几种检测技术的优缺点做具体分析 随着道路交通检测技术的发展,基于视频图像处理、模式识别技术的视频车辆检测器应运而生。视频车辆检测器具有采集信息量大、区域广泛、设定灵活、调整维护简便等特点,与传统的交通信息系统采集技术相比,视频检测器可提供现场的视频图像。 1.地感线圈 环形线圈车辆检测器是传统的交通检测器,其工作原理为在道路上埋设感应线圈,感应线圈与车辆检测器连接。当车辆经过线圈时,由于线圈电感量的变化,车辆的通过状态变化将被检测到,同时将状态信号传输给车辆检测器,由其进行采集和计算。 环形线圈车辆检测器相对于其他检测器具有低成本、高可靠性、高检测精度、全天候工作的优点,是目前应用最广泛的车辆检测器。 缺点:1、按照环形线圈施工要求,检测线圈在初次安装时要切割路面,植入环形检测线圈。封路施工不可避免会造成交通阻塞,对于城市主干道交通产生影响。2、埋植线圈的切缝容易使路面受损,缩短路面及检测线圈的使用寿命。实际使用中尤其对沥青路面的损坏更为严重,导致检测线圈的损毁率居高不下,使用和维护成本上升,影响系统的可用性。3、检测线圈容易受到路面下沉、裂缝、冰冻等环境影响,产生误报。4、受自身测量原理限制,当车流拥堵、车辆间距较小时,其测量精度大幅度下降,不适于城市交叉路口交通流检测。5、环形线圈车辆检测器一经设置即固定不变,在道路通行状况改变时调整困难。 2.微波车辆检测器 微波车辆检测器是以微波对车辆发射电磁波产生感应原理为基础。以RTMS微波为例,其工作方式为:悬挂于路侧,在扇形区域内发射连续的低功率调制微波,

双路车辆检测器说明书中文

线圈型车辆检测器使用说明 NO:9001- 0410-110 ■安装检测器 ■接线图 车车辆检测器必须安装在离探测线圈尽可 能近的、防水防潮的干燥环境里。在安装车辆检 测器时,应与其它设备或装置保持一定的距离 (约10—20mm)以方便维护。并且应当注意其 工作环境温度不要超过55oC。检测器能否良好 工作在很大程度上取决于它所连接的感应线圈。 线圈的几个重要参数包括:线圈材料,线圈形状 和是否正确施工埋设。关于线圈的安装请参阅后续章节的“线圈安装指南”。) ■使用及工作指示 接通电源后,检测器将会自动校准。校准过程约3秒。校准进行时,面板上的LED会闪烁(亮0.5秒,灭0.5秒)几次。在校准期间,不应有车停在线圈上。当校准成功后,面板上的“检测”指示灯熄灭,当线圈上有车通过时,面板上的“检测”指示灯亮起,且存在输出继电器1(7、8脚)吸合导通;若在校准过程中未检测到线圈或线圈电感值不在允许范围内,对应的LED指示灯会不 停地闪烁。其闪烁 情况如下: 线圈未连接: 线圈电感太小: 线圈电感太大: ■工作频率调节 线圈频率调整用设置在电路板上的两个DIP开关进行。如进行调整,必须先关闭电源再将检测器从插座上取下并拆下胶壳。DIP开关5(LB)用于设置线圈2的频率;DIP开关6(LA)用于设置线圈1的频率。开关在“ON”位置表示低频频工作方式,在“OFF”位置表示高频工作方式。在频率调整后,检测器会在重新上电复位时自动进行标定。 注意:双路车检在出厂时已将线圈1设为高频,线圈2设为低频。所以用户一般不需对线圈频率作调整。 ■灵敏度调节 灵敏度调节使用顶端面板上的滑动开关,有三档:H为高灵敏度,M为中灵敏度,L为低灵敏度。在试运行时,先将灵敏度设在较低档位,在实际测试后如果车辆检测没有反应,则应将灵敏度调高一档,如此反复,直至车检器稳定、正常工作。 ■继电器输出方式 当有车辆进入线圈时,继电器的输出方式由主控板上的拔码开关设定(见左图)。 双路车检有两个线圈,对应有两个输出继电器。线圈1(7、8引脚)对应继电器1(5、6、10引脚)的输出为固定的存在输出信号,线圈2(7、9引脚)对应继电 器2(3、4、 11引脚)的 输出信号 由DIP拔 码开关的 DIP1、 DIP2、 DIP3 (SW0、SW1、SW2)决定。 表 一双路 A-D型 表二、H/ I/ K 车辆存在 检测模 式输出 信号与设置 车辆方向(计数)检测模式输出信号与设置 ■检测器复位 当检测器上电时,或改变顶端面板上灵敏度开关时,检测器会进行复位操作。在复位后,检测器会被初始化为无车状态。 ■技术参数 工作电源:AC 220V±10% 110V±10% 24V±5% 12V±5% DC 24V±5% 12V±5% 频率范围:20KHz—170KHz 灵敏度:三级可调 反应时间:180毫秒 环境补偿:自动飘移补偿 线圈电感:推荐80uH—300uH(包含连接线)最大50uH—500uH(包含连接线) 连线长度:最长5米,每米至少绞合20次,总电阻小于10欧姆。

TLD100-110车辆检测器技术手册V200印刷版

TLD-100/110系列车辆检测器 技术手册 版本 2.00

TLD-100/110型智能车辆检测器,主要用于车辆存在检测。适用于停车场、公路车辆收费站以及交通信号灯控制等系统。TLD-100和TLD-110系列均为单通道型,它只能联接一个电感线圈,但有两个输出继电器可提供两组输出信号;TLD-100和TLD-110系列分别提供不同的输出信号供用户选择。 工作电源:AC220V、AC110V、AC/DC24V、 AC/DC12V 可选择,2.5W功率 频率范围:20KHz—170KHz 灵敏度:三级可调 反应时间:100毫秒 环境补偿:自动飘移补偿 线圈电感:推荐80uH—300uH(包含连接线) 最大50uH—500uH(包含连接线) 连线长度:最长5米,每米至少绞合20次,总 电阻小于10欧姆。 储存温度:-40oC到+85oC

工作温度:-40oC到+65oC 相对湿度:最大95% 外形尺寸:85×74×36mm 3.1 检测器的安装 车辆检测器必须安装在离探测线圈尽可能近的、防水防潮的干燥环境里。在安装车辆检测器时,应与其它设备或装置保持一定的距离(约10—20mm)以方便维护。 检测器能否良好工作在很大程度上取决于它所连接的感应线圈。线圈的几个重要参数包括:线圈材料,线圈形状和是否正确施工埋设。关于线圈的安装请参阅后续章节的“线圈安装指南”。 3.2 车辆检测器接线示意图

图一、TLD-100/110接线端子接线示意图 3.3 工作频率设定 线圈频率调整用设置在电路板上的两个DIP开关进行。如进行调整,必须先关闭电源再将检测器从插座上取下并拆开胶壳。DIP开关6(LA)用于设置频率;开关在“ON”位置时表示低频工作方式,在“OFF”位置表示高频工作方式。在频率调整后,检测器会在重新上电复位时自动进行标定。 注意:TLD-100和TLD-110在出厂时已设为高频。当两个检测器的安装距离较近时,用户可以将两个检测器设置成不同的频率。

在EC10上实现四位BCD拨码开关数据输入

在EC10上实现四位BCD拨码开关设定值输入 概要: 本文使用EC10的源型输入功能,利用四个输入口和四个输出口来实现一组四位拨码开关设定值的读入,并且可以在此基础上实现更多位拨码开关设定值的读入,还可在这个程序编制过程中体会到如何在PLC控制系统中节省输入口的一些技巧。 关键词:BCD码、拨码开关、PLC、源型输入、漏型输入 一、拨码开关简介 如果PLC控制系统中的某些控制参数或数据经常需要人工修改,可使用拨码开关与PLC进行连接,在PLC外部进行数据设定或修改。如下图所示的四位一组的拨码开关,每一位拨码开关可以输入十进制的0-9,或者是十六进制的0-A。 BCD拨码开关是十进制输入,BCD码(即2-10十进制)输出,又称为8421拨码开关。每位BCD拨码开关可输入1位10进制数,4片BCD拨码开关拼接可得4位10进制输入拨码组。每个BCD拨码开关后面有5个接点,其中C为输入控制线,另外4根是BCD 码输出信号线。拨盘拨到不同的位置时,输入控制线C分别与4根BCD码输出线中的某根或某几根接通。其接通的BCD码输出线状态正好与拨盘指示的10进制数相一致,符合2-10进制编码关系。 拨码开关外形图拨码开关接线端子图 二、PLC的源型输入 EC10系列PLC提供给用户进行输入方式的选择,端子排上的S/S端子用来选择信号的输入方式,可以设置成源型输入方式或漏型输入方式。将S/S端子与+24V端子相连,即设置为漏型输入方式,可以连接NPN型传感器,PLC的+24V端子和COM端子配合,提供给输入元件24V直流电源;将S/S端子和COM端子相连,即设置为源型输入方式,可以连

接PNP 型传感器,这时外部输入元件将使用外部辅助电源。 EC20出厂设置为漏型输入,但可通过改焊PLC 内部接口板上的JP0、JP1、JP2三个跳线(0欧姆SMT 电阻)来实现源型输入,参照板上的丝印说明(√表示焊接,×表示断开): JP0 JP1 JP2 源型输入方式 √ × × 漏型输入方式(出厂设置) × √ √ 在主模块中,所以的输入端口只能采用同一种输入方式(源型或漏型),如果EC20需要采用源型输入方式,请在订货时咨询供应商,不要擅自改动,以免造成损坏。 在本文中,要利用四个PLC 输入端口实现四位拨码开关设定值的读入,因此将使用四个PLC 输出口来分别控制四位拨码开关的依次读入,所以对于PLC 输入口而言,是采用源型输入方式。 下图为源型输入方式的EC10主模块输入端口内部等效电路图 三、设备及连线 设备器材说明:EC10-1614BTA 1台 四位拨码开关 1只 二极管IN4001 16只 PLC 接线图: 各种信号输入设备

拨码开关选择屏幕说明

拨码开关选择屏幕说明 (ON 是0 , OFF 是 1) 1 2 3 4 Panel 1 1 1 1 STD_1366_768_Voltage① 1 1 1 STD_1366_768_PWM② 1 0 1 1 STD_1920_1080_8Bit_Voltage③ 0 1 1 STD_1920_1080_8Bit_PWM④ 1 1 0 1 STD_1920_1080_10Bit_Voltage⑤ 1 0 1 STD_1920_1080_10Bit_PWM⑥ 1 0 0 1 TBD 0 0 1 TBD 1 1 1 0 TBD 1 1 0 TBD 1 0 1 0 TBD 0 1 0 TBD 1 1 0 0 TBD

1 0 0 TBD 1 0 0 0 TBD 0 0 0 0 TBD ① STD_1366_768_Voltage 表示我们支持标准的1366X768分辨率的屏,不分具体的三星的还是LG,或者其他品牌的,只要是分辨率1366X768的都支持,并且是通过电压控制背光亮度的. ② STD_1366_768_PWM 表示我们支持标准的1366X768分辨率的屏,不分具体的三星的还是LG,或者其他品牌的,只要是分辨率1366X768的都支持,并且是通过PWM 控制背光亮度的. ③ STD_1920_1080_8Bit_Voltage 表示我们支持标准的1920X1080分辨率的屏,并且输出是 8BIT 的 RGB 数据,不分具体的三星的还是 LG,或者其他品牌的,只要是分辨率 1920X1080的都支持,并且是通过电压控制背光亮度的. ④ STD_1920_1080_8Bit_PWM 表示我们支持标准的1920X1080分辨率的屏, 并且输出是8BIT 的RGB 数据,不分具体的三星的还是LG,或者其他品牌的,只要是分辨率1920X1080的都支持,并且是通过PWM 控制背光亮度的. ⑤ STD_1920_1080_10Bit_Voltage 表示我们支持标准的1920X1080分辨率的屏, 并且输出是10BIT 的RGB 数据,不分具体的三星的还是LG,或者其他品牌的,只要是分辨率1920X1080的都支持,并且是通过电压控制背光亮度的. ⑥ STD_1920_1080_10Bit_PWM 表示我们支持标准的1920X1080分辨率的屏, 并且输出是10BIT 的RGB 数据,不分具体的三星的还是LG,或者其他品牌的,只要是分辨率1920X1080的都支持,并且是通过PWM 控制背光亮度的. ⑦ TBD 的都是预留给以后其他分辨率的屏.

车辆检测技术的介绍

车辆检测技术的介绍 摘要:车辆检测是智能交通的组成部分,是实现智能化监测、控制、分析、决策、调度和疏导的依据。本文分析了智能交通中常用的车辆检测方式、环境适应性和优缺点及线圈检测和视频检测的应用。 1.引言 智能交通系统(Intelligent Transportation Systems,ITS)在我国得到了广泛应用。车辆检测是智能交通系统的组成部分,通过车辆检测方式采集有效的道路交通信息,获得交通流量、车速、道路占有率、车间距、车辆类型等基础数据,有目的地实现监测、控制、分析、决策、调度和疏导。目前,车辆检测器的种类很多,如有线圈检测、视频检测、微波检测、激光检测、声波检测、超声波检测、磁力检测、红外线检测等。本文列举了几种国内智能交通中常用的车辆检测方式、环境适应性以及优缺点。 2.车辆检测方式特点比较 2.1线圈检测方式 通过一个电感器件即环形线圈与车辆检测器构成一个调谐电子系统,当车辆通过或停在线圈上会改变线圈的电感量,激发电路产生一个输出,从而检测到通过或停在线圈上的车辆。线圈检测技术成熟、易于掌握、计数非常精确、性能稳定。缺点是交通流数据单一、安装过程对可靠性和寿命影响很大、修理或安装需中断交通、影响路面寿命、易被重型车辆、路面修理等损坏。另外高纬度开冻期和低纬度夏季路面以及路面质量不好的地方对线圈的维护工作量比较大的。 2.2视频检测方式 视频检测方式是一种基于视频图像分析和计算机视觉技术对路面运动目标物体进行检测分析的视频处理技术。它能实时分析输入的交通图像,通过判断图像中划定的一个或者多个检测区域内的运动目标物体,获得所需的交通数据。该系统的优点是无需破坏路面,安装和维护比较方便,可为事故管理提供可视图像、可提供大量交通管理信息、单台摄像机和处理器可检测多车道。它的缺点是精度不高,容易受环境、天气、照度、干扰物等影响,对高速移动车辆的检测和捕获有一定困难。因为,拍摄高速移动车辆需要有足够快的快门(至少是1/3000S )、

地磁车辆检测器安装(参考指南)说明书V1.0

地球磁场型车辆检测器/车位探测器安装说明书 参考指南(V1.0) 概述 地磁车辆检测器安装方式有两种: 一、埋入路面下安装。埋入路面下安装优点:车辆距离检测器安装固定后,其离车辆地 盘距离可控制在某个范围内(一般0.5米以内),需要埋设设备和牵引电缆线,要对路面挖掘安装空和引线槽。但工程量相对埋设线圈是很少的。另外灵敏度调节和其他参数设置可离线设置,相对占用车道时间也是很短的。所以该方式并不会在施工方面带来特别大的困扰。 二、道路侧(路)边安装。 也可选择路边安装。特别适合某些不能破坏路面或路面比较松软(安装后无法保证检测器位置长期不发生位移的)场合。这种场合下,能够在道路侧边安装仍能实现车辆检测,且综合考虑价格、性能因素,地磁检测器某种意义上将是唯一的有性价比的产品选择了。另外车道较窄,宽度不超过3~4米,可选择侧边安装方式,道路两侧各安装一个检测器,就可非常方便的检测每一侧车辆;如高速公路出入口匝道,一般很窄,就可直接将检测器安装在护栏上,非常方便,高速公路收费站的出入口,也可选择侧边安装(在收费亭上)。 安装方式一:埋入路面下安装

图一检测器埋设安装示意图 图一为车辆检测器在路面下安装示意图, 安装步骤如下: 1、在路面上挖掘或钻一个安装孔,宽度以能放入检测器为适宜,深度为0.2~0.6米。 2、在路面挖掘引线槽。 3、将套好(地磁检测器的)电缆线的PVC管放入槽中。 4、调节电缆线,将地磁检测器放入孔中,调整好距离地面高度H=0.2~0.4米。电缆线 要出于松弛状态。 5、往地磁检测器与安装孔间隙处填充固化且防水材料。 6、将电缆线连接到客户控制系统。 材料与安装要点: 1、PVC管选择不要太粗,比电缆线直径稍大,能套入电缆线为妥。 2、电缆线在PVC管中应处于适当松弛状态(不可处于紧绷状态),避免PVC管变形, 拉断电缆电气线。PVC与电缆出入口出要填充防水材料。 3、同样的,装PVC管的引线槽宽度以能埋下PVC槽为合适。 4、引线槽深度不能太浅,太浅,容易被车轮压塌该槽,并影响到其中的电缆性能,甚至 会压断。 5、安装孔与检测器间隙的填充材料可选用水泥或环氧树脂,沥青等,视情况而定。 参数调试: 1、参数预设置: 预固定好检测器(只要确实保证检测器不会移动,)。然后,根据参数设置步骤设置背景参数,灵敏度,反应设置,恢复设置等,可按参考下表。 表1 反应设置数恢复设置数灵敏度 小于5 小于5 30~200 高速100公里/小时 较高速60~100公里/小时 5~30 5~30 30~200 中速40~80公里/小时 20~30 20~30 30~200 大于30 大于30 30~200 低速10~40公里/小时 设置后,按规定速度范围,通过一辆汽车,应能被检测到,否则要检查检测器与安装孔是否有问题。 2、固化安装,如果预调通过,说明安装高度基本合适,检测器没有故障,可填入防水、 固化材料,进行防水和加固。 安装方式二:道路侧边安装 道路侧边安装是本检测器不同与线圈型检测器的鲜明特点,它由于这种特点,它可为客户提供更高的性价比,最小的施工量。

828D调试流程

828D调试流程 一、上电前检查 1. 查线:包括反馈、动力、24V电源,地线。 2. 查拨码开关,MCP(7,9,10)和PP72/48(1,4,9,10)。 二、上电调试 1. 检查版本 2. 初始设定:语言,口令,日期时间,选项,MD12986,RCS连接 3. 检查PLC I/O是否正确,包括急停、硬限位… 4. 检查手轮接线(DB2700.DBB12) 5. 下载PLC 6. 检查急停功能是否正常 7. 驱动调试:拓扑识别,分配轴,修改拓扑比较等级(p9906),配置供电数据,电网识别(p3410) 8. 调整硬限位 9. NC数据设定:机械参数,轴速度,方向,设置零点,软限位…(参见附表) 10. 刀库调试 11. 辅助功能调试 12. 基本功能备份(BASIC_FUNCTION.ard),驱动要选ASCII格式 13. 考机48小时 三、伺服优化 1. 轴策略选适中 2. 自动优化,导出每个轴的优化结果(.xml)和优化报告(.rtf) 3. 各轴参数整定,策略1101,选择所有轴,包括主轴 4. 圆度测试 四、激光干涉仪测试 1. 螺补 2. 反向间隙 3. 球杆仪测试 五、试切 1. 标准圆,标准方 2. 机床厂自己样件 六、备份 1. 机床测试协议 2. 电柜检查表 3. ard全部备份 4. NC生效数据全部备份:测量系统误差补偿,机床数据,设定数据,刀具/刀库数据… 5. 制造商循环备份,包括换刀子程序L6或者TCHANGE,TCA,CYCPE_MA,MAG_Conf… 6. PLC程序备份.ptp 7. PLC报警文本.ts和.qm,报警帮助文本 8. Easy Extend 9. 用户自定义界面 10. E-log,txt和xml

车辆检测器

交通流检测技术及应用 摘要:车辆检测器是用来实时采集通过检测点的车辆有关交通信息的设备,主要是通过数据采集和设备监视等方式,向监控系统中的信息处理和信息发布单元提供各种交通参数,是监控中心分析、判断、发出信息和提出控制方案的主要依据。 关键词:车辆检测器交通信息 Abstract: ITS real-time traffic information is the most basic one of the information source, only for real-time traffic information having accurate master can effectively implement and play such as traffic guidance and so on ITS functions, so the real-time detection of the traffic information technology is the core of ITS technology ,so is one of the most basic technology. Traffic information collectionneeds to rely on all kinds of detectors. This paper introduces several kinds of mainstream detector technologies, and gives analyses and comparisons on the performance. Key words: traffic information; vehicle detector 分类 ①按安装方式分为永久式安装(固定式安装)、临时性安装(便 携式安装); ②按采集时间长短分为连续式采集设备(一般采用永久式安 装设备)、间隙式采集设备(多采用临时性安装设备); ③按检测技术方法分为感应线圈检测、视频检测、微波检测、 气压管检测、超声波检测、磁映像检测、红外检测、激光检

车辆检测控制器参数设置说明

车辆检测控制器参数设置说明 每块检测板上有5个指示灯,从上而下,第1个为电源指示灯,其它4个为CH1至CH4的状态指示灯,分别对应4个检测通道,当有车辆经过时相应的状态指示灯会亮起;在复位或上电时,状态指示灯会快速闪烁多次,正常情况下会熄灭,但是如果慢闪,则代表线圈为断路或车检器有故障;如果快闪,则表示线圈短路。 面板上共有3个6位拔码开关,从上而下,依次为SW1、SW2和SW3。 1.灵敏度设置 根据需要设定车检器的灵敏度,使其对期望监控的车辆有正常信号输出。SW1和SW2是灵敏度选择开关,用于选择通道和设置每个通道的灵敏度。其中可以选择任意通道工作或不工作。每个通道的灵敏度可以单独设置,共分七级。其中7级灵敏度最高。设置方法见下表。SW1用于设置1通道和2通道。SW2用于设置3通道和4通道。(1=ON,0=OFF) 2.存在时间 状态选择开关SW3的第1和第2位用来设置存在时间。进入型和离开型输出信号脉冲宽度为15ms。存在型输出脉冲宽度取决于车停留在地磁线圈上方的时间和“存在时间”的设置。“存在时间”分为:

10秒、5分钟,35分钟,无穷大。设置方法如下表所示: (1=ON,0=OFF) 3.工作方式 状态选择开关SW3的第3和第4位用来设置工作方式。车辆检测部分有四种工作方式:进入型、存在型、离开型、校准。 ?进入型:当车进入地磁线圈时,检测部分输出车辆检测信号。 ?存在型:当车进入地磁线圈时,“存在时间”开始有效,该信号结束时间与车离开地磁线圈的时间和“存在时间”设置有关。当车辆停在线圈上的时间小于设置的“存在时间”时,车离开线圈时,车辆检测信号结束。当车辆停在线圈上的时间大于设置的“存在时间”时,车辆检测信号在设置的存在时间到时结束。 ?离开型:当车离开地磁线圈时,检测部分输出车辆检测信号。 ?校准:此开关只为仪器调试及维修专用。 工作方式由面板上的开关SW3设置,如下表所示:

DSP实验二 拨码开关实验

实验二拨码开关实验 —、实验目的 1.了解DSP开发系统的组成和结构 2.了解IO的基本编程方法 二、实验设备 计算机,CCS3.3版本软件,DSP仿真器,E300实验箱,2812CPU板。 三、实验原理 8位的数字量输入(由拨码开关产生),当拨码打到靠近LED时为低。相反为高。通过 74LS244(可读)缓冲连接到DSP的数据总线的低8位。CPU通过读指令读取到拨码开关产 生的8位输出的数字量,然后CPU通过写指令把读出的8位数字量写入(0x2200)单元内, 使连接到DSP的数据总线的低8位的74LS273的输出端产生高低信号,此时LED灯产生亮灭。 当对应LED灯点亮时说明输出为低,熄灭时为高。 (器件74LS244和74LS273详细的介绍请参看数据手册) 数字量输入输出单元的资源分配如下: 基地址:2000h(当CS1为0时分配有效) 数字量分配空间为数据空间地址:基地 址+0x2200(低8位,只读) 拨码开关扩展工作原理 说明:74LS244片选号、74LS273 片选信号和74LS273复位信号由E300 上CPLD译码产生。 本实验使用DSP数据总线的低8 位。 实验任务一: 1、编写程序完成将拨码开关的信息读入DSP,然后再将该信息回写,控制led灯。调整"数字输入输出单元"的开关K1~K8,观察LED1~LED8灯亮灭的变化。 2、本实验的程序流程框图如下:

3、输入主要程序 #include "DSP281x_Device.h" // DSP281x Headerfile Include File #include "DSP281x_Examples.h" // DSP281x Examples Include File void main(void) { unsigned int temp; temp = 0; DINT; InitSysCtrl(); InitPieCtrl(); IER = 0x0000; IFR = 0x0000; InitPieVectTable(); for(;;) { asm(" nop "); temp = *(int *)0x2200&0x00ff; asm(" nop "); * (int *)0x2200 = temp; asm(" nop "); } } 四、实验步骤(步骤基本与实验一相同) 1. 2812CPU板的JUMP1的1和2脚短接,拨码开关SW1的第二位置ON。 2.E300板上的开关SW4的第二位置ON,其余OFF;SW5开关全部置ON;其余开关全部置OFF。 3.运行Code Composer Studio (CCS)(CCS3.3需要“DEBUG→Connect”) 4. 用“Project\open”打开系统项目文件 路径为“c:\DSP_examep\DSP281X_examples\e300_02_switch\Example_281x_switch.pjt”双击该文件 5、输入主要程序。

拨码开关输入数码管显示实验

综合课程设计实验报告 班级: 姓名: 学号:11 指导老师:

实验名称: 拨码开关输入数码管显示实验 实验要求: 1. 掌握数码管显示原理 2. 掌握拨码开关工作原理 3. 通过FPGA用拨码开关控制数码管显示 实验目标: 4位拨码开关分别对应4位数码管,拨动任意1位开关,对应的数码管将显示数字1,否则显示数字0。 实验设计软件 Quartus II 实验原理 1.数码管显示模块 电路原理图:

如图所示,数码管中a,b,c,d,e,f,g,dp分别由一个引脚引出,给对应的引脚高电平,则对应引脚的LED点亮,故我们在程序中可以设定一个8位的二进制数reg【7:0】h,每一位对应一个相应的引脚输出,那么我们就可以通过对x的赋值,控制对应的8个LED亮灭的状态进行数字显示。例如,如果我们显示数字2,则在数码管中,a、b、d、e、g亮,c、f、dp不亮,则显示的是数字2,即h=’b代表显示数字2。 2.拨码开关模块 电路原理图: 拨码开关有8个引脚,每个引脚对应于数码管的一个LED灯,当拨码开关的一个引脚是高电平时,则对应的数码管一个LED灯亮,其他7个LED等不亮。通过此原理来实现数码管的LED灯亮暗情况从而实现数码管的数字显示。例如当第一个拨码接通时,此时输入信号为8'b对应的数码管的输出信号为out=8'b,此时相当于数码管a,b,c,d,e,f,g亮,7段数码管全部显示,显示的数字为8。 程序代码 module bomakaiguan(out,key_in,clk); assign p='b1111; output[7:0] out=8'b; input[7:0] key_in; input clk; reg[7:0] out; always @(posedge clk) begin case(key_in) 8'b: out=8'b;

TLD-600_中性车辆检测器说明书

线圈型车辆检测器使用说明 NO: 9001- 0600-103 ■ 技术参数 工作电源: AC 220 V ±10% 频率范围:20KHz ~ 170KHz 灵 敏 度: 十级可调(0~9级)反应时间:10ms 工作温度: -40oC 到+80oC 相对湿度:< 90%环境补偿: 自动飘移补偿 输出方式: 继电器 线圈电感: 推荐100uH ~ 300 uH (包含连接线) 外形尺寸:长100mm 宽70mm 高118mm ■ 线圈埋设 线圈一般切成平行四边形的凹槽采用耐高温铁氟龙线埋设多圈,测试正常后用液体沥青灌封。当地面下有较多钢筋时增加1~2圈进行补偿,线圈电感量保持在150~300uH 之间。线圈引出线必须紧密双绞以防止震动产生干扰。 请务必注意:线圈宽度的一半约为车辆检测高度。 线圈施工要点: ? 导线截面:大于0.75mm 2 ? 相邻线圈:圈数不能相同? 地面切槽:宽约5mm 、深30mm 以上 ? 灌封材料:液体沥青 ? 切槽清洗:切槽务必清洗晾干后再绕线圈 ? 绕线方法:顺时针、逆时针均可 ? 相邻间距:边到边的距离大于1个线圈宽度 ? 导线材质:耐高温铁氟龙多股镀锡铜线? 线圈引线:无接头、每米必须至少双绞20次 ■ 安装检测器 车辆检测器必须安装在防水、防潮、远离热源、远离强磁场的位置,与机箱壁至少保持10mm 以上的距离(切勿紧贴机箱安装)。检测器应在机箱中垂直安装,以防止接触不良。 ■ 接线方法 通常情况下,1、2脚接电源,11、12脚接线圈A ,13、14脚接线圈B ,5、6脚接继电器A1,8、9脚接继电器B1,18、19脚接继电器B2,15、16脚接继电器A2。 务必注意:线圈引出线必须紧密双绞,否则不稳定。 ■ 工作模式 当面板上DIP1拨到OFF 位置,两个线圈可独立工作(即只接一个线圈也可以工作)。 在单线圈独立工作模式(DIP1为OFF )时:线圈A 输出为继电器A2(15、16脚);线圈B 输出为继电器B2(18、19脚)。A2 和B2的输出类型有三种:车辆进入线圈、线圈上有车、车辆离开线圈,最终由面板上 的DIP2、DIP3决定。见右图在车辆行驶方向判别模式(DIP1为 ON )时:车辆由线圈A 进入线圈B 的方向信号由继电器B2输出,接18、19引脚;车辆由线圈B 进入线圈A 的方向信号由继电器A2输出,接15、16引脚。A2和B2的输出类型由面板上的DIP2和DIP3设置选择(见“选择继电器2输出”)。 无论线圈工作在何种模式,继电器A1始终只输出线圈A 的有车存在信号(不能改变),接5、6引脚;继电器B1始终只输出线圈B 的有车存在信号(不能改变),接8、9引脚。 ■ 检测器复位 当接通电源或改变面板上灵敏度开关时,会自动复位为无车状态。 ■ 工作状态指示 接通电源或按复位按钮后,自动校准过程约2秒,面板上的状态指示灯会长亮2秒。在校准期间,如有车停在线圈上会当作无车处理。自动校准后,当线圈上有车时,对应状态指示灯点亮;当线圈上无车时,对应状态指示灯熄灭。如果检测器在工作中未检测到线圈或线圈短路,状态指示灯会持续闪烁。 ■ 调试灵敏度 灵敏度调节使用面板上的旋转编码开关,共有十档,“0”为最低,“9”为最高。左侧的编码开关A 对应线圈A ;右侧的编码开关B 对应线圈B 。在试运行时,先将灵敏度设在“5”档,在实际测试后如检测器没有反应则应将灵敏度调高一档,如此反复几次直至检测器达到稳定状态。 注意: “8”档或以上档位应谨慎使用!若地感线圈匝数较少时,灵敏度调至“8”或以上档位,反应太快,会导致线圈上没有车时也会误检测为有车,出现“假死”现象。 ■ 调整工作频率 当发现车辆检测器与相邻车辆检测器、中远距离读卡器、遥控设备等有干扰时,可以尝试调整工作频率,减轻或消除干扰。 调整方法:首先拆下面板四个角上的螺丝,用手指捏紧接线端子往外拉出电路板,按上图设置拨码开关SW1或 SW2的DIP1、DIP2位置,选择相应频率。SW1用于调整线圈A 的频率,SW2用于调整线圈B 的频率。一般频率越低,稳定性越好。 线圈长度建议2~3米,具体视车道而定,但线圈离两侧路肩距离大于1/2线圈宽。小 汽 车:宽1米,绕5~7圈小型货车:宽1.2米,绕5~7圈中型货车:宽1.5米,绕4~6圈 大型货车或拖挂车:宽一般1.8米,长一般3.5米,绕4-5圈 车辆由线圈A 进入线圈B 车辆离开线圈A 后,继电器B2闭合导通直至车辆离开线圈B 车辆离开线圈A 后,继电器B2闭合导通0.5秒然后断开车辆进入线圈B 后,继电器B2闭合导通直至车辆离开线圈B 车辆进入线圈B 后,继电器B2闭合导通0.5秒然后断开 车辆由线圈B 进入线圈A 车辆离开线圈B 后,继电器A2 闭合导通直至车辆离开线圈A 车辆离开线圈B 后,继电器A2 闭合导通0.5秒然后断开 车辆进入线圈A 后,继电器A2 闭合导通直至车辆离开线圈A 车辆进入线圈A 后,继电器A2 闭合导通0.5秒然后断开

最新几种主要车辆检测器的对比

几种主要车辆检测器 的对比

几种主要检测技术的对比 道路交通信息采集是智能交通系统的一项重要内容。在道路交通信息采集技术中,环形线圈车辆检测器因其技术成熟、易于掌握、初期建设成本较低而成为当前国内用量最大一种检测设备。但是,环形线圈检测器同时具有获得的信息量少,难于安装和较低的灵活性等缺点。为克服以上不足,微波车辆检测器和视频车辆检测器技术得以发展并应用于城市道路和高速公路的交通信息检测。 下面对几种检测技术的优缺点做具体分析 随着道路交通检测技术的发展,基于视频图像处理、模式识别技术的视频车辆检测器应运而生。视频车辆检测器具有采集信息量大、区域广泛、设定灵活、调整维护简便等特点,与传统的交通信息系统采集技术相比,视频检测器可提供现场的视频图像。 1.地感线圈 环形线圈车辆检测器是传统的交通检测器,其工作原理为在道路上埋设感应线圈,感应线圈与车辆检测器连接。当车辆经过线圈时,由于线圈电感量的变化,车辆的通过状态变化将被检测到,同时将状态信号传输给车辆检测器,由其进行采集和计算。 环形线圈车辆检测器相对于其他检测器具有低成本、高可靠性、高检测精度、全天候工作的优点,是目前应用最广泛的车辆检测器。 缺点:1、按照环形线圈施工要求,检测线圈在初次安装时要切割路面,植入环形检测线圈。封路施工不可避免会造成交通阻塞,对于城市主干道交通产生影响。2、埋植线圈的切缝容易使路面受损,缩短路面及检测线圈的使用寿命。实际使用中尤其对沥青路面的损坏更为严重,导致检测线圈的损毁率居高不下,使用和维护成本上升,影响系统的可用性。3、检测线圈容易受到路面下沉、裂缝、冰冻等环境影响,产生误报。4、受自身测量原理限制,当车流拥堵、车辆间距较小时,其测量精度大幅度下降,不适于城市交叉路口交通流检测。5、环形线圈车辆检测器一经设置即固定不变,在道路通行状况改变时调整困难。 2.微波车辆检测器 微波车辆检测器是以微波对车辆发射电磁波产生感应原理为基础。以RTMS微波为例,其工作方式为:悬挂于路侧,在扇形区域内发射连续的低功率调制微波,

双路车辆检测器说明书中文

双路车辆检测器说明书中 文 The latest revision on November 22, 2020

线圈型车辆检测器使用说明 NO:9001- 0410-110 ■安装检测器 ■接线图 车车辆检测器必须安装在离探测线圈尽可 能近的、防水防潮的干燥环境里。在安装车辆 检测器时,应与其它设备或装置保持一定的距 离(约10—20mm)以方便维护。并且应当注意 其工作环境温度不要超过55oC。检测器能否良 好工作在很大程度上取决于它所连接的感应线 圈。线圈的几个重要参数包括:线圈材料,线 圈形状和是否正确施工埋设。关于线圈的安装请参阅后续章节的“线圈安装指南”。) ■使用及工作指示 接通电源后,检测器将会自动校准。校准过程约3 秒。校准进行时,面板上的LED会闪烁(亮秒,灭秒)几 次。在校准期间,不应有车停在线圈上。当校准成功后, 面板上的“检测”指示灯熄灭,当线圈上有车通过时,面 板上的“检测”指示灯亮起,且存在输出继电器1(7、8 脚)吸合导通;若在校准过程中未检测到线圈或线圈电感 值不在允许范围内,对应的LED指示灯会不停地闪烁。 其闪烁情况如下: 线圈未连接: 线圈电感太小: 线圈电感太大: ■工作频率调节 线圈频率调整用设置在电路板上的两个DIP开关进行。如进行调整,必须先关闭电源再将检测器从插座上取下并拆下胶壳。DIP开关5(LB)用于设置线圈2的频率;DIP开关6(LA)用于设置线圈1的频率。开关在“ON”位置表示低频频工作方式,在“OFF”位置表示高频工作方 式。在频率调整后,检测器会在重新上电复位时自动进行标定。 注意:双路车检在出厂时已将线圈1设为高频,线圈2设为低频。所以用户一般不需对线圈频率作调整。 ■灵敏度调节 灵敏度调节使用顶端面板上的滑动开关,有三档:H为高灵敏度,M为中灵敏度,L为低灵敏度。在试运行时,先将灵敏度设在较低档位,在实际测试后如果车辆检测没有反应,则应将灵敏度调高一档,如此反复,直至车检器稳定、正常工作。 ■继电器输出方式 当有车辆进入线圈时,继电器的输出方式由主控板上的拔码开关设定(见左图)。 双路车检有两个线圈,对应有两个输出继电器。线圈1(7、8引脚)对应继电器1(5、6、10引脚)的输出为固定的存在输出信号,线圈2(7、9引脚)对应继电器2(3、4、11引脚)的输出信号由DIP拔码开关的DIP1、DIP2、DIP3(SW0、SW1、SW2)决定。 表一双路 A-D型表二、H/ I/ K 车辆存在检测模式输出信号与设置车辆方向(计数)检测模式输出信号与设置 ■检测器复位 当检测器上电时,或改变顶端面板上灵敏度开关时,检测器会进行复位操作。在复位后,检测器会被初始化为无车状态。 ■技术参数 工作电源:AC 220V±10% 110V±10% 24V±5% 12V±5% DC 24V±5% 12V±5% 频率范围:20KHz—170KHz 灵敏度:三级可调 反应时间:180毫秒 环境补偿:自动飘移补偿 线圈电感:推荐80uH—300uH(包含连接线)最大50uH—500uH(包含连接线) 连线长度:最长5米,每米至少绞合20次,总电阻小于10欧姆。 储存温度:-40oC到+85oC 工作温度:-20oC到+65oC 相对湿度:最大95% 注:在测车辆方向时,两个线圈的埋设距离不能超 过车身长度,务必使车能够同时压在两个线圈上。

S3实验三 按键拨码开关实验指导手册

高性能软件无线电平台 X6-面向高性能SoC验证和科学仿真 主要特性 支持PCI Express? Gen2 ×8 (但IP另配) 搭载DDR3 SDRAM SO-DIMM系统 搭载FMC连接器,可使用大部分Rocket I/O(GTX) 利用FMC可选基板能够对应各种接口 提供PCI Express和DMA等参考设计 无限扩展行业应用

下一代软件无线电平台 微软研究院软件无线电( Sora )是一种新型基于PC 的可编程无线电平台架构。 Sora 结合了可 编程性和通用处理器(GPP )平台的性能和灵活性,同时使用的硬件和软件技术,以满足高性能 的无线通信算法的计算挑战。 Sora 平台提供 Soft WiFi 开源代码。SoftWiFi 目前支持率的802.11a/b/g 全部协议,无缝 地与商业802.11网卡实现互操作,并达到商业网卡相当的性能。 Sora 是第一平台真正的软件 无线电平台,支持用户开发的802.11a/b/g ,如物理层和MAC ,软件完全是标准PC 架构。 典型应用: White Spaces Mobile Phones Public Safety Radio Land Mobile Broadcast TV and FM Radio Satellite navigation Covers 6 Amateur Radio Bands 射频部分主要特性: Dull-duplex Transceiver 50 MHz to 5.8 GHz coverage 50-100mW (17-20dBm) from 50 MHz to 1.2 GHz 30-70mW (15-18dBm) from 1.2 GHz to 2.2 GHz 25+ dB Output power control range under software control Receive Specs: Noise figure of 5-7 dB IIP3 of 5-10 dBm;IIP2 of 40-55 dBm 全频带射频收发模块

地感式车辆检测器及功能扩展

JN车辆检测及功能扩展 一、系统组成 MCS—51是功能很强的8位高档单片机,由于它自身的特点,很适合用于测控及逻辑控制,JN车辆检测器是以AT89C51单片机为中心配以相关的功能电路组成。见框图1。 1 CPU对车辆途经地感线圈C1、C2所产生的电感变化与基准频率fo进行比较运算,当变化频率大于或等于某一差值时,CPU输出控制信号。 二、工作原理与程序 由电感器件B1、BG1、C1、C2、R1等组成低频振荡电路,外接地感线圈C1就构成了车辆感应电路,见图1。当加电瞬间电流经R2向C1、L2充电,a点为高 电位, 由于C2作用使BG1基极电位上升,集电极电位下降,当BG1的C极电位低于a点时,电源不再向C1充电,此时B1上所聚集的磁能将以电能的形式释放出来,并改变原来充电电流的方向继续向C1充电,BG1的b极仍然保持较高的电位,集电极c 电位继续下降,当B1释放完毕后,BG1的b极失去高电位的支撑,集电极电位开始回升,当回升高于a点电位后又开始向C1充电,周而复始。 改变选频电路C1、L2的值可改变其电路的振荡频率,经实验在不加地感线圈C1时振荡频率应控制在16—20KHz,加C1后频率应提升到40—50KHz。当车辆途经地感线圈瞬间时使C1的电感增大,这等效于B1的初级线圈L1部分线匝短路,使得B1的电感降低,振荡频率从原fo上升至f i 。频差等于fi—fo,从频率变化上就能反映出车辆是否通过C1。不同类型的车辆由于底盘距地面的高度不同,所以频差也不尽相同,在CPU处理过程中我们可以设定不同的阀值用于分类不同的车辆。 Uo经C3由4069与非门整形后送入A T89C51外部P3.4、P3.5进行计数。整图见图2 CPU检测控制流程框图见图2。初始化后基本上是以判断为主的顺序结构,在编程时将检测C1、C2线圈的语句定为子程序以便反复调用, 汇编程序全文如下:

相关文档
最新文档