电厂用运行中汽轮机油质量标准

电厂用运行中汽轮机油质量标准
电厂用运行中汽轮机油质量标准

本标准适用于各部门电力汽轮机、水轮机和调相机所用的各种牌号的矿物汽轮机油和防锈汽轮机油(以下统称汽轮机油)。在运行过程中,应按本标准各项指标并使其符合本标准的规定。

1 引用标准

GB 246 石油产品酸值测定法

GB 265 石油产品运动粘度测定法

GB 267 石油产吕闪点测定法(开口怀法)

GB 511 石油产品和添加剂机械杂质测定法(重量法)

GB 2537 汽轮机油

GB 7599 运行中变压器油、汽轮机油酸值测定法(BTB法)

GB 7605 运行中汽轮机油破乳化度测定法

SY 1230 防锈汽轮机油

YS-21-1 液相锈蚀测定法

YS-25-1 运行油开口怀老化测定法

YS-27-1 油泥析出测定法

2 技术要求

2.1新汽轮机油的验收,应按GB 2537和中国石油化工总司公标准SY 1230的质量规定进行。

2.2 运行中汽轮机油的质量标准必须与表1的规定相符。

表1 运行中汽轮机油质量标准

注:一般情况下外观目视;在必要时,按GB 511测定其含量。

3 常规检验周期和检验项目

3.1 对于运行中汽轮机油,应加强技术管理,建立必要的技术档案,要定期检验并根据具体情况采取预防劣化技术措施。

3.2 常规检验周期和检验项目按表2进行。

表2 运行中汽轮机油的常规检验周期和检验项目

注:①“检验项目”栏内的1、2……为表1中的技术指标项目序号。

②机组运行正常,可以适当延长检验周期,但发现汽轮机油中混入水分(或水轮机

用油浑浊)时,应培加检验次数,并及时采取措施。

3.3机组大修后,在起动之前,必须对用油按表1所列第1、2、3、4、5、7项进行检验;添加十二烯基丁二酸(746)或1号防锈复合剂时,应增加第6项检验。

4 关于补油或不同牌号油混合使用的规定

4.1不同牌号油非不得已不要混合使用。

4.2 混合使用的油,混合前其质量均必须检验合格。

4.3新的或相当于新油质的不同牌号汽轮机油,如须混合使用时,,应按混合油样的油的实测粘度值决定是否可用。

4.4 质量已下降到接近运行中油的质量标准下限的汽轮机油,若补加同一牌号的新油或接近新油标准的使用过的油时,必须按YS-27-1预先进行混合油样的油泥析出试验,无沉淀物产生方可混合使用;若补加不同牌号油时,,由还需遵守3.3的规定。

4.5 时口油或来源不明的油与不同牌号运行油混合使用时,还应按YS-25-1预先进行混油前及混合油样的老化试验,证实混合油的质量不低于运行中油,方可混合使用。若两种油都属于新油,其混合油的质量应不低于最差的一种新油,并需符合3.3的规定,方可合使用。

附录A

关于运行中汽轮机油采取防劣化措施的规定

(补充件)

为延长油的使用寿命,应加强对运行中油的维护工作,并至少应采用下述任何一种防劣化措施。

A.1 添加2,6-二叔丁基对甲酚(T501)抗氧化剂

A.1.1 新油、再生油中T501含量应不低于0.3~0.5%;运行中汽轮机油应不低于0.15%。

A.1.2 当油中T501含量低于0.15%时,应进行补加;补加时油的pH值不应低于5.0。

A.2 安装连续再生装置

A.2.1 其吸附剂的用量应为油量的1~2%。

A.2.2 漏汽、漏水的机组,应添加“746”防锈剂,其添加量为油量的0.02~0.03%。

________________

附加说明:

本标准由中华人民共和国水利电力部提出,由水利电力部西安热工研究所技术归口。

本标准由水利电力部西安热工研究所,东北电力试验研究院,浙江、西北电力试验研究所负责起草。

本标准主要起草人孙桂兰、温念珠、王玉德、王美文、张警钟。

汽轮机运行分析

机组运行分析 、进汽压力 进汽压力升高的影响: ①汽压升高,汽温不变,汽机低压段湿度增加,不但使汽机的湿汽损失增加,降低汽机的相对内效率,并且增加了几级叶片的侵蚀作用,为了保证安全,一般要求排汽干度大于88%,高压大容量机组为了使后几级蒸汽湿度不致过大,一般都采用中间再热,提高中压进汽温度。 ②运行中汽压升高,调门开度不变,蒸汽流量升高,负荷增加,要防止流量过大,机组过负荷,对汽动给泵则应注意转速升高,防止发生超速,给水压力升高过多。 ③汽压升高过多至限额,使承压部件应力增大,主汽管、汽室,汽门壳体、汽缸法兰和螺栓吃力过大,材料达到强度极限易发生危险,必须要求锅炉减负荷,降低汽压至允许范围内运行。 进汽压力降低的影响: ①汽压降低,则蒸汽流量相应减少,汽轮机出力降低,汽动给泵则转速降低,影响给水压力,流量降低。 ②要维持汽轮机出力不变,汽压降低时,调门必须开大,增加蒸汽流量,各压力级的压力上升,会使通汽部分过负荷,尤其后几级过负荷较严重;同时机组轴向推力增加,轴向位移上升,因此一般汽压过多要减负荷,限制蒸汽流量不过大。 ③低汽压运行对机组经济性影响较大,中压机组汽压每下 降O.IMpa,热耗将增加0.3? 0.5%,一般机组汽压降低1%,使汽耗量上升0.7%。 、进汽温度: 进汽温度升高的影响; ①维持高汽温运行可以提高汽轮机的经济性,但不允许超限运行,因为在超过允许温度运行时,引起金属的高温强度降低,产生蠕胀和耐劳强度降低,脆性增加,长期汽温超限运行将缩短金属部件的使用寿命。 ②汽温升高使机组的热膨胀和热变形增加、差胀上升,汽温升高的速度过快,会引起机组部件温差增大,热应力上升,还使叶轮与轴的紧力、叶片与叶轮的紧力发生松弛,易发生通汽部分动静摩擦,如由于管道补偿作用不足或机组热膨胀不均易引起振动增加。进汽温度降低的影响; ①汽温降低,使汽轮机焓降减少,要维持一定负荷,蒸汽流量增加,调节级压力上升,调节级的焓降减小,对调节级来讲安全性较好。 ②在汽压、出力不变的情况下,汽温降低蒸汽流量增加,末级叶片焓降显著增大,会 使末级叶片和隔板过负荷,一般中压机组汽温每降低10C,就会使最后一级过负荷约1.5%, 一般汽温降低至某一规定值要减负荷,防止蒸汽流量过大。 ③汽温降低为维持同一负荷,蒸汽流量增加,要使蒸汽从各级叶片中通过,叶片反动度要增加,引起转子轴向推力加大,因此低汽温时应加强对轴向位移、推力瓦温的监视。 ④汽温降低,汽轮机后几级蒸汽湿度增加,加剧了湿蒸汽对后几级叶片的冲蚀,缩短叶片的使用寿命。 ⑤汽温降低要注意下降速度不能过快,汽温突降将引起机组各金属部件温差增大,热 应力上升,因温降产生的温差会使金属承受拉伸应力,其允许值比压缩应力小,且差胀向

汽轮机油使用问题和解决办法

汽轮机油使用问题和解决办法 1、不同种类的汽轮机油能否混用? 不同种类的汽轮机油不能混用,如符合L-TSA汽轮机油和L-TCD汽轮机油均不能混用。 2、如均是防锈汽轮机油(L-TSA)但牌号不同能否混用? 一般说来不同牌号的油非不得已不能混用,因为不同牌号的汽轮机油的粘度不同,而粘度与汽轮机转速之间有严格的规定,如必须混合时,应先按实际混合比做混合油样的粘度,如粘度符合要求后,才考虑进行混油的其他试验,如进行油泥析出试 验等。 3、如何对运行中汽轮机油质量下降并接近运行中油的质量标准(GB/T 7596-87)下限值的汽轮机油进行补加油? 当发生此种情况时,若补加同一牌号的新油或接近新油标准的使用过的油时,必须预先进行混合油样的油泥试验,无沉淀物产生方可混合使用。若补加不同牌号油时,则需对油品进行外观、运动粘度、闪点、机械杂质、酸值和破乳化度等项目试验,视其能否符合GB7596-87质量标准。如添加T746防锈剂时,应增加液相锈蚀的检验。均合格后方可使用。 4、如何对进口油或来源不明的油与不同牌号运行油混合使用? 对进口油或来源不明的油与不同牌号运行油混合时,应先进行混合试验。 该试验方法系预先进行混油前及混合油样的老化试验,当证实混合油质不低于运行中油时,方可混合使用。若两种油都属于新油,其混合油质量应不低于最差的一种新油,并对油品进行外观、运动粘度、闪点、机械杂质、酸值和破乳化度等项目检验。视其能否符合GB7596-87中质量标准。如添加T746防锈剂时,应增加相锈蚀检验。经上述检验均合格后方可使用。 5、如何对运行中L-TSA汽轮机油采取防劣措施? 为延长油的使用寿命,可对油品采用以下防劣措施。 1)添加T501抗氧剂。对新油、再生油中T501抗氧剂含量应不低于0.3%-0.5%,运行中汽轮机油应不低于0.15%。当油中T501含量小于0.15%时,应进行补加抗氧剂,补加时油的PH值不应小于5.0。

电厂汽轮机运行中节能降耗的对策分析 孙利华

电厂汽轮机运行中节能降耗的对策分析孙利华 发表时间:2018-01-31T12:10:13.450Z 来源:《基层建设》2017年第33期作者:孙利华 [导读] 摘要:汽轮机运行的节能降耗在电厂的降耗管理中的作用重大,要使得汽轮机节能降耗工作能够顺利实施,就要对其影响因素进行研究分析,采取科学合理的解决措施,有效提升电场汽轮机运行的节能降耗。 神华国能(神东电力)郭家湾电厂陕西榆林 719408 摘要:汽轮机运行的节能降耗在电厂的降耗管理中的作用重大,要使得汽轮机节能降耗工作能够顺利实施,就要对其影响因素进行研究分析,采取科学合理的解决措施,有效提升电场汽轮机运行的节能降耗。本文探讨了电厂汽轮机运行中节能降耗的对策。 关键词:电厂;汽轮机运行;节能降耗;对策 在当前社会发展形势下,发展节能经济、绿色经济、环保经济已成为我国现代社会发展的主要内容。为了实现我国经济的可持续发展,在电厂汽轮机运行过程中,就必须做好节能降耗工作,保证凝汽器的真空度,保证汽轮机所需水的温度,做好余烟回收利用,加强管理,进而为电厂的综合效益提供保障。 1汽轮机节能降耗的必要性 汽轮机是电厂生产运行过程中的重要组成部分,同时也是电厂进行能源控制的关键设备。在我国电力系统的发展进程中,通过不断的研究探索,研发了有关汽轮机的节能改造技术,这一技术改造,可有效提高电能的使用效率,减少能耗损失,对电厂在正产运转情况下做到节能降耗有着重要的促进关系,不仅可在极大程度上提升电厂的经济效益,还对电厂实现可持续发展具有积极的促进作用。除此之外,相关研究人员在进行汽轮机节能降耗研究分析时,还提升了汽轮机的使用和维护水平,发挥了汽轮机的作用,提高了生产效益。 2发电厂汽轮机运行能耗问题 2.1汽轮机组能耗高问题 汽轮机是发电厂中的主要动力设备,通过汽轮机实现了电能、动能、热能的转化。通常情况下,汽轮机应配合其他相关设备一起使用才能最大程度发挥其应有的功能。这些相关设备包括:发电机、凝汽器、加热器、泵、锅炉等。而导致汽轮机组能耗高情况出现的原因主要有以下几方面:汽轮机外缸、喷嘴室发生变形;汽轮机轴端汽封部位、隔板汽封部位漏气;汽轮机低压缸出汽边被腐蚀,导致气阀压被损伤;调整汽轮机组时,冷却水温度过高;凝汽器真空度过高;汽轮机实际运行负荷与设计负荷存不相符;运转方式不合理,没有进行优化等。 2.2空冷凝汽器问题 导致空冷凝汽器出现问题的主要原因有以下几方面:受空气中风沙影响,凝汽器中会积累大量沙尘,造成凝汽器翘片管热阻增加,进而对凝汽器传热功能产生严重的影响,阻挡通道;凝汽器位于负风压区域时,风机会吸入部分空气,导致流通受阻;凝结水含溶氧量大时,会降低凝汽器热传效率,并导致管道和相关设备受侵蚀;冬季时,空冷凝汽器容易出现流量不均衡情况,就会对汽轮机的正常运行造成严重影响,从而使得汽轮机运行效率被降低。 2.3冷却塔问题 冷却塔问题主要表现在以下方面:冷却塔喷头堵塞;喷头与喷孔设计部匹配。一旦冷却塔出现上述问题,就会使得冷却塔内部水温升高,进而导致汽轮机排气温度升高,降低其真空度,造成能耗增加。 3电厂汽轮机运行中节能降耗的对策 3.1汽封换型 导致汽轮机组热耗高的一个重要原因是汽轮机的汽缸运行效率低。汽轮机通流间隙是否合理、汽封密封性的优劣直接影响着汽缸的运行效率。部分电厂的梳齿式汽封为结构落后的传统汽封,它的安装间隙较大,密封效果不佳,这将显著降低汽缸的运行效率。因此,选择合理的气封形式,科学调整通流间隙是提高汽轮机缸效率的有效途径。目前,汽轮机最常用的气封类型有七种:梳齿型汽封、侧齿型汽封、刷式汽封、蜂窝型汽封、接触型汽封、DAS型汽封、布莱登汽封。这七种气封类型各有优缺点,采用何种类型应根据具体电厂的实际情况,充分考虑改造效果和设备运行的可靠性。 3.2通流部分节能降耗措施 3.2.1通流部分湿蒸汽冲洗及化学冲洗方法。针对通流部件会出现积垢问题,在此提出两种冲洗方法,湿蒸汽冲洗与化学冲洗方法。在处理通流部分的积垢时,将转子吊出,置于备妥的支架上,首先使用高压水或溶剂进行湿冲洗,之后用刮刀、砂纸等工具手工清除,清除积垢时要叶片的保护。湿蒸汽冲洗是最常使用的清洗措施,它是将清洗装置(减温减压器)产生的饱和蒸汽通入汽轮机,在运转状态下冲洗积垢,积盐被湿蒸汽中凝结水带走而得以清除,对垢层是盐和SiO2混合物的积垢,当溶于水的化合物被冲掉后,不溶于水的SiO2垢层会随之瓦解而被除去。在特殊情况下,当湿蒸汽冲洗不能有效清除硅垢时(湿蒸汽冲洗方法不能彻底清除积垢),可以用化学冲洗,化学冲洗是在冲洗蒸汽的基础上加入化学药品进行冲洗,如加入NaOH溶液。但化学药品会腐蚀通流部分的构件,当时用化学冲洗时,应严格控制添加剂的浓度、温度,并在最后用纯净的湿蒸汽进行二次冲洗以避免残留的化学药剂对叶片产生腐蚀。 3.2.2低压缸排气通道优化节能改造。国产汽轮机低压缸排汽通道普遍存在一定的结构设计缺陷,这就是在排汽通道内部设计安装了7号、8号低压加热器;此外,还安装了大量的支撑钢架和抽汽管道。此种结构既加大了汽轮机低压缸排汽的阻力系数,同时使凝汽器汽侧排汽场的汽流分配严重不均,甚至产生涡流场。这种不合理的结构是致使凝汽器换热效率低、真空低的一个重要原因。针对这一问题,根据Fluent流场模型在通道内部安装排气导流板。 3.3加强汽轮机的运行管理 汽轮机在运行过程中可以采用定—滑—定的运行方式。就是在高负荷区域下,改变通流面积。在低负荷下,使用低水平的定压调节。而在中间负荷区,根据实际情况来加减负荷,使得汽门的开关处于滑压运行状态。为了提高给水温度和投入率,减少加热器端差,应该在高负荷运行时适当提高汽轮机的主汽温度、主汽压力。 3.4汽轮机冷端改造 3.4.1凝汽器改造。针对凝汽器换热效率低的问题,可以采用基于先进三维计算流体力学开发的新型管束布置(可以采用基于流体力学软件优化的管束布置),可以增大管束边界、降低汽侧边界流速、缩短汽流流程、均衡凝结负荷、疏通不凝结气体抽气通道、消除不凝结

运行中变压器油质量标准 GB7595—87

中华人民共和国国家标准 UDC621.892.098 ∶543.06 运行中变压器油质量标准GB7595—87 Quality criteria of transformer oils in service 国家标准局1987-03-26批准1988-01-01实施 本标准适用于充油电气设备所用各种牌号矿物变压器油在运行中的质量监督;对上述油品规定了常规检验项目、检验周期及必须达到的质量标准。 1 引用标准 GB 261 石油产品闪点测定法(闭口杯法) GB 264 石油产品酸值测定法 GB 507 电气用油绝缘强度测定法 GB 2536 变压器油 GB 5654 液体绝缘材料工频相对介电常数、介质损耗因数和体积电阻率的试验方法 GB 6541 石油产品油对水界面张力测定法(圆环法) GB 7598 运行中变压器油、汽轮机油水溶性酸测定法(比色法) GB 7599 运行中变压器油、汽轮机油酸值测定法(BTB法) GB 7600 运行中变压器油水分含量测定法(库仑法) GB 7601 运行中变压器油水分测定法(气相色谱法) YS-6-1界面张力测定法 YS-27-1 油泥析出测定法 YS-30-1 介质损耗因数和体积电阻率测定法 YS-C-3-1 气体含量测定法(真空脱气法) YS-C-3-2 气体含量测定法(二氧化碳洗脱法) 2 技术要求 2.1 新变压器油的验收,应按GB 2536的规定进行。 2.2 运行中变压器油应达到的常规检验质量标准列于表1。 2.3 当主要变压器用油的pH值接近4.4或颜色骤然变深时,应加强监督; 若其他某项指标亦接近允许值或不合格时,则应立即采取措施。 2.4 发现闪点下降时,应按YS—C—3—1分析油中溶解气体,以查明原因。 表 1 运行中变压器油质量标准

油站说明书

供油装置使用说明书 杭州汽轮机股份有限公司 辅机分公司 2002年6月

目录 一、供油装置的简介 1、性能简介 (3) 2、接口尺寸表 (3) 3、安装基础图…………………………………………………….4 4、外型图 (4) 5、主要组成部套(设备)说明 5.1油箱 (7) 5.2油箱排风机 (9) 5.3主辅油泵 (9) 5.4事故油泵 (9) 5.5仪表架 (10) 5.6调节油滤油器 (10) 5.7润滑油滤油器 (12) 5.8双联板式冷油器 (13) 5.9蓄能器 (14) 5.10排汽阻油器 (14) 5.11温控阀 (15) 5.12三通切换装置 (15) 二、供油装置的运行 1、供油装置的安装 (16) 2、供油装置运行前的检

验 (16) 3、供油装置的运行 (16) 4、供油装置的检修 (17)

一、供油装置的简介 1、性能简介: 1.1供油装置为集中油站,两个供油装置为对称布置。 1.2供油装置的型号为:YG-0630—05和YG—0630—06。 1.3供油装置供汽轮机润滑油、调节油和盘车油。 1.4本供油装置的没汁和制造,按照标准: ZBK54036—89 《工业汽轮机润滑和调节供油系统技术条件》。 带单独的溢流底盘,仪表架(带接线盒)。 1.5本供油装置的使用环境为: 电气防爆等级为: dIIBT4 1.6正常工况下的供油参数如下: 1.6.1供给汽轮机和给水泵的润滑油,经过节流阀、冷油器和润滑油 滤油器。供油参数如下: 油量为: 26m3/h,油的过滤精度为: 25μm, 油压为: 0.25MPa, 油温为: 45”—:℃ 1.6.2供给汽轮机的调节油,不经过冷油器,经过节流阀、调节油滤 油器。供油参数如下: 油量为: 1m3/h,油的过滤精度为: 25μm, 油压为: 0.9MPa, 油温为: 43~60℃ 1.6.3供给汽轮机的盘车油,不经过节流阀、冷油器和滤油器,直接 取自主油泵出来的油,并且要求二台油泵同时运行。供 油参数如下: 油量为: 75m3/h, 油压为: 0.6MPa, 油温为: 43~60℃ 1.7事故状态下润滑油供油说明 在事故状态下,供给润滑系统的油,不经过节流阀、冷油器和润 滑油滤油器,直接由事故油泵从油箱中打出。供油参数如下: 油量为: 18m3/h, 油压为; 0.3MPa, 油温为: 43~60℃ 2、接口尺寸表 序号接口名称管口规格数量 1润滑油出口DN80 PN2.5 JB/T82.11 2调节油出口DN50 PN2.5 JB/T82.11 3油箱回油口DN200 PN2.5 JB/T82.11 4油箱排风机出口DN80 PNO.6 JB/T811 5盘车油出口DN80 PN2.5 JB/T82.11 6过滤机进口DN50 PN2.5 JB/T82.11

2017电厂汽轮机工作总结

2017电厂汽轮机工作总结 2017电厂汽轮机工作总结 电厂汽轮机工作总结 1.汽轮机的概念:将蒸气的热能转变为机械能的旋转式原动机。 2.汽轮机的分类:a.按工作原理分为:冲动式(由冲动级组成)和反动式(由反动级组成)。 b.按热力特性分为:凝汽式(进入汽轮机的蒸汽除回热抽汽外全部排至凝汽器);背压式(进入汽轮机的蒸汽除回热抽汽外全部送至热用户);调整抽汽式(进入汽轮机的蒸汽除回热抽汽送往回热加热器外,还有调整抽汽送往热用户,其余排至凝汽器)。中间再热式(从锅炉出来的蒸汽进入汽轮机作过功后送往锅炉再热,然后再进入汽轮机作功)。 3.汽轮机型号:△x—x1x2(x3)—N。 4.级的概念:由喷嘴和紧跟其后的动叶组成的基本作功单元。 5.在级内的能量转换过程:热能在喷嘴中转换为动能,动能在动叶中转换为机械能。 6.级的工作原理(按在动叶中的流动情况不同分):冲动作用原理(蒸汽在动叶中流动只改变速度方向,不改变速度大小),反动作用原理(物理上的反动作用原理是:蒸汽在动叶中流动只改变速度大小,不改变速度方向,但在汽轮机中应用反动作用原理工作的同时必须应用冲动作用原理,即蒸汽在动叶中流动既改变速度方向也改变速度大小,否则无法推动动叶旋转)。

7.级的反动度:蒸汽在动叶中的理想焓降与级的理想滞止焓降之比。即Ω=ΔhbΔht*。 8.级的分类:a.按工作原理分:纯冲动级(反动度=0,动叶叶型对称弯曲),反动级(反动度=0.5,动叶叶型叶喷嘴叶型完全相同),冲动级(反动度=0.05~0.2,动叶叶型介于纯冲动级和反动级之间) b.按结构分:单列级(同一级只有一列动叶栅),双列速度级(同一级有两列动叶栅,只有小机组的第一级是双列速度级) c.按工况变化时通流截面积是否变化分:调节级(变,只有喷嘴配汽式汽轮机*的第一级和调整抽汽口后的第一级是调节级)c12hn 9.喷嘴出口汽流实际速度的计算公式, 10.喷嘴的速度系数:喷嘴出口实际速度与理想速度的比值。即φ=c1c1t。 11.喷嘴损失的计算:hnc12t(12)2 *12.喷嘴的压力比:喷嘴出口压力与进口滞止压力之比。即εn=p1p0。 13.蒸汽在渐缩斜切喷嘴中的膨胀:当压力比≥临界压力比时,在斜切部分不膨胀,喷嘴出口汽流方向角等于喷嘴出口的结构角;当压力比<临界压力比时,在斜切部分膨胀,喷嘴出口汽流方向角大于喷嘴出口的结构角,两者之差称为偏转角。偏转的原因:在斜切部分,一侧压力由临界压力突然降至出口压力,另一侧则由临界压力缓慢降至出口压力,所以造成两侧压力不等,汽流就是由这个压力差推动偏转的。 15.动叶的进口速度速度三角形:udbn60 w1c12u22uc1cos1 sin1c1sin1w1

提高汽轮机性能及运行特性分析

提高汽轮机性能及运行特性分析 发表时间:2018-11-02T21:44:21.237Z 来源:《电力设备》2018年第17期作者:梁柯 [导读] 摘要:汽轮机是能够将蒸汽热能转化成机械能的外燃回转式机械,它的主要运行功能就是对来自锅炉的蒸汽进行处理,使之转化成其他形式的能量。 (呼和浩特热电厂内蒙古呼和浩特 010080) 摘要:汽轮机是能够将蒸汽热能转化成机械能的外燃回转式机械,它的主要运行功能就是对来自锅炉的蒸汽进行处理,使之转化成其他形式的能量。汽轮机在人们日常生产中的应用十分广泛,例如压缩机、船舶螺旋桨等机器的工作都需要汽轮机的驱动。汽轮机常规热力试验和性能监测对电厂生产管理和节能有重要意义,一般通过热力性能的试验可以找到汽轮机热力系统中对机组整体运行性能影响最大且有较大改进空间的环节,基于此,本文作者就哈尔滨有限责任公司制造的CZK350/320-24.2/0.4/566/566型超临界、中间再热、单轴、双缸双排汽、直接空冷、采暖供热抽汽式汽轮发电机组进行分析,其中不足之处,希望同行多加指正。 关键词:汽轮机;性能;技术 1高载荷静叶的开发 在相同叶弦长度条件下,高载荷静叶的数量比以往静叶少了约14%,且性能得到提高。由于减少了叶片数量,叶片表面的摩擦损失和产生于叶片后缘的尾流损失减少,使提高行性能得以实现。高负荷静叶的特征是:(1)由于叶片头部大头化,因此叶片上游侧也承担负荷,均衡了叶片整体负荷;(2)利用反映叶片背面喉部下游位置曲率分布的曲线和紊流分析等详细的设计方法,设计出最佳的叶片数量和叶型。另外,在叶片头部的圆化时还考虑到了入射角特性和强度方面。 2高载荷动叶的开发 高载荷动叶和高载荷静叶一样,也是削减了叶片数量、增大了每枚叶片的载荷。高载荷动叶的开发目标是:与以动叶相比,降低约15%的叶片数量。与高载荷静叶一样,叶片数量减少,叶片负荷增大,因此叶片负压侧的流动就易于脱流。尤其是冲动式叶片,由于叶片根部附近的背弧曲率大,此倾向很明显。 因此在开发高负荷动叶时,条件是需将叶片强度控制在允许值以内,重点放在其根部附近的叶型设计上:(1)为了控制脱流和边界层的发展,降低二次流损失,设计出增大叶片后缘附近负荷的后加载叶型;(2)在动叶叶片根部设计阶段中,想通过前置静叶的侧壁损失预测正确的入射角是很困难的,因此采取了将叶片前缘部位椭圆化,增大曲率半径和改善入射角特性等措施。特别是,使用了二维叶片紊流分析技术和规定喉部长度的反问题设计法,以及曲线进行叶型设计。使用这些设计手段,设计出沿叶高方向多个基本截面的叶型,并通过积叠面形成叶片。 3优化反动式叶片的开发 3.1开发背景 本次使用的是呼和浩特热电厂2×350MW供热机组,汽轮机采用哈尔滨有限责任公司制造的CZK350/320-24.2/0.4/566/566型超临界、中间再热、单轴、双缸双排汽、直接空冷、采暖供热抽汽式汽轮发电机组。为了进一步提高效率,谋求通过级数、转子直径、反动度等设计参数来优化汽轮机结构,并开发适用于此结构的优化叶型。另一方面,在汽轮机高压级中,叶片长度相对较短,沿叶高方向的边界层和二次流领域所占的比例变大,因此必需考虑到这些流场特性的高性能叶片。根据静叶出口的绝对速度和旋转动叶的周向速度,蒸汽将以相对速度流入动叶。由此可见,此相对速度方向离动叶几何入口角越远,叶型损失也交越大。另外,实际中必须考虑边界层和二次流的影响,故想将动叶相对流入角设计成预想的高精度是困难的。如今,在叶型设计中综合应用了基于实验的强化设计法,反问题设计法和二维紊流分析技术,针对流入角的变化,开发出损失特性变化缓慢的圆头动叶。 3.2强化设计的应用 3.2.1测量特性和信号因子 将叶栅视为系统,利用系统输入与输出的理想关系(通过原点的直线),选择信号因子(输入)和测量特性(输出)。 3.2.2误差因子和控制因子 误差因子是可能阻碍理想功能的因子,进行此研究时,选定流入角作为误差因子,考虑到下面叙述的设计叶型时的几何入角,采用了现实的3种流入角(30°,50°,70°)。另一方面,在此研究中,控制因子是决定叶型的参数,由于数值实验时利用了计算机,从计算机环境和设计期间的观点出发,采用选定与流入角特性和损失特性有密切关系的叶片转向角、前缘曲率半径、节弦比和最大叶片负荷部位这4个参数作为控制因子,分别设定了三种方案。在强化设计中,由流入角特性和损失特性对应于比特性和灵敏度特性。 3.2.3叶型设计 四个控制因子进行叶型设计时,仅用这些控制因子不能完全定义叶型形状。因此需预先根据二维紊流分析,将损失评价反映到叶型设计中。再用反问题设计法移动叶片的最大载荷部位,对叶型进行修正。通过用这种反问题设计法进行修正,已足以确定喉部长度。叶片载荷分布的修正范围仅限最大载荷部位附近。 3.2.4SN比和灵敏度特性 针对9种计算方案,进行二维紊流分析,根据此计算结果在三种情况下4个控制因子(A―D),对SN比和灵敏度平均值的因果图。在此研究中,目标是不公将离散度变小(SN比变大),最终还要开发出损失小的叶片。 3.2.5根据最优条件的研究 按照上述两种最佳条件进行叶型设计时,通过二维紊流分析和损失评价可决定叶型。通过积叠沿叶高方向的多个截面,即形成1枚动叶。同以往叶片相比,最佳叶片的数量减少了约33%。 3.3利用二维叶栅风洞进行性能确认试验 通过二维叶栅风洞中,用5孔探针所进行的逐点测量,计算出能量损失系统数。从此结果中,相当于广泛范围汽流入角,损失特性平坦化,而与以往叶片相比,损失自身也大幅降低。 3.4利用空气透平进行级效率的确认试验 为了确认汽轮机的级效率,针对以往叶片和最佳叶片,时行了模型透平试验。用内置热电偶的5孔探针,沿级的出入口径向,对压

L-TSA汽轮机油国家标准

xx国家标准 L-TSA汽轮机油 Turbine oils L-TSAGB11120-1989本标准的一级品参照采用国际标准ISO 8068-87《石油产品和润滑剂-石油基汽轮机油(ISO-L-TSA和ISO-L-TGA)-技术条件》 1主题内容与适用范围 本标准规定了由深度精制基础油并加抗氧剂和防锈剂等调制而成的L-TSA汽轮机油的技术条件。 本标准中所属产品适用于电力、工业、船舶及其他工业汽轮机组、水汽轮机组的润滑和密封。 40℃按运动粘度中心值分为32,46,68和100等四个牌号。 2引用标准 GB/T260石油产品水分测定法 GB/T264石油产品酸值测定法 GB/T265石油产品运动粘度测定法和动力粘度计算法 GB/T511石油产品和添加剂机械杂质测定法(重量法) GB/T1884石油和液体石油产品密度测定法(密度计法) GB/T1885石油计量换算表 GB/T1995石油产品粘度指数计算法 GB/T3141工业用润滑油粘度分类 GB/T35石油倾点测定法 GB/T3536石油产品闪点和燃点测定法(克利夫兰开口杯法) GB/T4756石油和液体石油产品取样法(手工法)

GB/T4945石油产品和润滑剂中和值测定法(颜色指示剂法)GB/T5096石油产品铜片腐蚀试验法 GB/T7305石油和合成液抗乳化性能测定法 GB/T11143加抑制剂矿物油在水存在下防锈性能测定法 GB/T12579润滑油泡沫性测定法 GB/T12581加抑制剂矿物油的氧化特性测定法 SH/T0124含抗氧剂的汽轮机油氧化安定性测定法 SH/T0164石油产品包装、贮运及交货规则 SH/T0308润滑油空气释放值测定法 3技术内容 3.1产品质量等级 本产品质量分为优级品、一级品和合格品等三个等级。3.2技术要求 运动粘度,(40℃)mm2/S 粘度指数1 倾点2,℃不高于 闪点(开口),℃不低于 密度(20℃),kg/m3 酸值,mgKOH/g不大于 中和值,mgKOH/g不大于 机械杂质,%

TL系列汽轮机油(透平油)专用滤油机说明书

●润滑系统油液的高效优质净化 ●液压系统油液的现场高效净化 ●各种机械油的高效优质净化 ●其它润滑冷却油的高效优质净化 TL系列汽轮机油(透平油)专用滤油机 使用说明书 重庆万美机电有限公司

重庆万美滤油机研究所研制 (使用本机前请先详阅此说明书) 前言 感谢您使用万美牌滤油机。您能成为我们的用户,接受我们的服务,是我们莫大的荣幸。为了使您尽快熟练地正确操作、使用万美牌滤油机,达到理想的滤油效果,我们随机配备了内容详细的使用说明书。另外还有随机零配件,内容视具体机型而定。 在第一次安装和使用之前,请务必仔细阅读随机配送的所有资料,这会有助于您更好地使用万美滤油机。如因您未按照所配资料的要求而操作,由此引起的任何损失,万美有限公司将不承担责任。如您对本说明书未提出书面异议,则表明您默示同意本说明书的全部内容。 为了满足用户所提出的特殊要求或万美在技术上的不断创新,我们会对滤油机做一些改进,这样可能产生设备实物与设备使用说明书在某些细节上不一致的情况。对这种情况,我们会加装一些说明资料来弥补这些不一致。 万美和万美标徽已经在中华人民共和国商标局注册。 本说明书中的信息如有变动,恕不另行通知。 版权所有,翻版必究。未经重庆万美机电有限公司书面许可,不准以任何方式对本说明书进行复制。 在编写本说明书时难免会有错误和疏漏之处,请多加包涵并热切欢迎您的指正。 如果您在使用万美牌滤油机的过程中遇到什么困难和发现什么问题,请打我们的服务热线。服务热线为:023——68929189。谢谢您的合作。

公司简介 重庆万美机电有限公司是专业从事滤油净化设备开发制造的高新技术企业,已获得多项专利、专有证书和荣誉证书,在业内率先通过I S O9001国际质量保证体系认证。 万美公司汇聚了一大批科技人才和专业生产技术人员,公司成员70%具备大专以上学历,由分离工程专家及油品分析工程师领导组成的滤油技术研发中心,长期致力于滤油净化技术的研究与开拓,根据各种油液的性质和用途,针对性地研制出28大系列200多个品种的滤油设备,满足了各个行业对各种油品的过滤净化需要。其中,T L 系列汽轮机油(透平油)专用滤油机、D Y J系列多功能润滑油净油机、Z L系列高效真空滤油机、Z L A系列高效双级真空滤油机、J Z L系列绝縁油再生专用真空滤油机、Z L Q系列全自动高效真空滤油机,Z L Z系列智能检测型高效真空滤油机、J F S系列聚结分离式净油机、D J L系列多级精密过滤机、G L系列轻便型滤油加油机、B Z系列变压器油运行再生装置、L F固定式有载开关在线滤油机等,已广泛应用于电力、石化、油田、冶金、矿山、交通运输、机械制造等领域,为用户实现安全生产、节能降耗、减少环境污染发挥了极其重要的作用。 万美牌滤油机以其过滤精度高、保护功能完备、运行稳定可靠、节能降耗显著、检测维修方便和良好的性价比等优点,得到用户广泛赞誉。“万美滤油机——中国滤油净化技术专家”的形象正迅速被市场所认同。 万美公司凭借着雄厚的科技开发实力、先进的生产设备、完善的检测手段和快捷优质的售后服务,已成为品质

电厂汽轮机节能降耗的主要措施正式版

In the schedule of the activity, the time and the progress of the completion of the project content are described in detail to make the progress consistent with the plan.电厂汽轮机节能降耗的主要措施正式版

电厂汽轮机节能降耗的主要措施正式 版 下载提示:此解决方案资料适用于工作或活动的进度安排中,详细说明各阶段的时间和项目内容完成的进度,而完成上述需要实施方案的人员对整体有全方位的认识和评估能力,尽力让实施的时间进度与方案所计划的时间吻合。文档可以直接使用,也可根据实际需要修订后使用。 电厂是生产电力的主要企业,也是能耗很高的企业,但是,电厂也有节能的巨大潜力。对电厂的汽轮机运行进行节能降耗是有效提升电厂效益的关键环节,对其进行节能降耗可以提高转换能源的效率,进而在激烈的市场中占据有利的地位。笔者主要按照多年实践经验,根据电厂的实际情况对汽轮机的节能与降耗进行详细分析,以便为电厂的发展提供借鉴。 一、电厂汽轮机节能降耗的可行性电厂的汽轮机运转在电厂中占据关键地位,是将热能转为电能的核心,一般和电厂的

发电机一起运转。对电厂的汽轮机运转节能降耗有影响的因素有很多,主要有方面:技术与经济。我国的技术员通过长期的工作和总结,已经有一套有效、系统的改造技术,改造后的汽轮机不仅可以有效调高对能源进行转化的效率,也极大的减少了消耗的能源,并尽可能的提高汽轮机运行安全与可靠。所以,不管是经济层面还是技术方面,汽轮机的节能降耗都具有较高的可行性。 二、电厂的汽轮机节能降耗措施分析 1.提高系统中给水的温度,确保凝汽器中维持真空电厂的汽轮机在运行时,汽轮机与锅炉组成热力循环体系,从热力学的相关知识可以看出,提高其循环的参数能够

LTSA汽轮机油国家标准

中华人民共和国国家标准 L-TSA汽轮机油 Turbine oils L-TSA GB11120-1989 本标准的一级品参照采用国际标准ISO 8068-87《石油产品和润滑剂-石油基汽轮机油(ISO-L-TSA和ISO-L-TGA)-技术条件》 1主题内容与适用范围 本标准规定了由深度精制基础油并加抗氧剂和防锈剂等调制而成的L-TSA汽轮机油的技术条件。 本标准中所属产品适用于电力、工业、船舶及其他工业汽轮机组、水汽轮机组的润滑和密封。 40℃按运动粘度中心值分为32,46,68和100等四个牌号。 2引用标准 GB/T260 石油产品水分测定法 GB/T264 石油产品酸值测定法 GB/T265 石油产品运动粘度测定法和动力粘度计算法 GB/T511 石油产品和添加剂机械杂质测定法(重量法) GB/T1884 石油和液体石油产品密度测定法(密度计法) GB/T1885 石油计量换算表 GB/T1995 石油产品粘度指数计算法

GB/T3141 工业用润滑油粘度分类 GB/T3535 石油倾点测定法 GB/T3536 石油产品闪点和燃点测定法(克利夫兰开口杯法)GB/T4756 石油和液体石油产品取样法(手工法) GB/T4945 石油产品和润滑剂中和值测定法(颜色指示剂法)GB/T5096 石油产品铜片腐蚀试验法 GB/T7305 石油和合成液抗乳化性能测定法 GB/T11143加抑制剂矿物油在水存在下防锈性能测定法 GB/T12579 润滑油泡沫性测定法 GB/T12581 加抑制剂矿物油的氧化特性测定法 SH/T0124 含抗氧剂的汽轮机油氧化安定性测定法 SH/T0164 石油产品包装、贮运及交货规则 SH/T0308 润滑油空气释放值测定法 3技术内容 3.1 产品质量等级 本产品质量分为优级品、一级品和合格品等三个等级。3.2 技术要求

汽轮机使用说明书

N30-3.43/435型汽轮机使用说明书 1、用途及应用范围 N30-3.43/435型汽轮机系单缸、中温中压、冲动、凝汽式汽轮机。额定功率30MW,与汽轮发电机配套,装于热电站中,可作为电网频率为50HZ地区城市照明和工业动力用电。 其特点是结构简单紧凑、操作方便、安全可靠。汽轮机不能用以拖动变速旋转机械。 2、主要技术数据 2.1 额定功率:30MW 2.1 最大功率:33MW 2.3 转速:3000r/min 2.4 转向:从机头看为顺时针方向 2.5 转子临界转速:1622.97r/min 2.6 蒸汽参数: 压力: 3.43MPa 温度:435℃ 冷却水温:27℃(最高33℃) 排汽压力(额定工况):0.0086MPa 2.7 回热抽汽:4级(分别在3、6、8、11级后) 2.8给水加热:2GJ+1CY+1DJ 2.9 工况: 工 况 项 目进汽量抽汽量排汽量冷却水温电功率汽耗Go Gc Ge Ne t/h t/h t/h ℃kW Kg/kw·h 额定工况131.0 0.0 102.77 27 30007.1 4.366 夏季凝汽工况135.5 0.0 107.98 33 30029.4 4.512 最大凝汽工况145.0 0.0 114.14 27 33055.7 4.387 最大供热工况143.5 20.0 93.51 27 30049.2 4.776 70%额定负荷工况93.0 0.0 73.93 27 21013.9 4.426 50%额定负荷工况69.5 0.0 56.47 27 15009.0 4.631 高加切除工况122.0 0.0 107.8 27 30032.7 4.062 2.10 各段汽封漏汽流量 前汽封后汽封

电厂汽轮机节能降耗的主要措施(正式)

编订:__________________ 单位:__________________ 时间:__________________ 电厂汽轮机节能降耗的主要措施(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-2859-20 电厂汽轮机节能降耗的主要措施(正 式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行 具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常 工作或活动达到预期的水平。下载后就可自由编辑。 电厂是生产电力的主要企业,也是能耗很高的企业,但是,电厂也有节能的巨大潜力。对电厂的汽轮机运行进行节能降耗是有效提升电厂效益的关键环节,对其进行节能降耗可以提高转换能源的效率,进而在激烈的市场中占据有利的地位。笔者主要按照多年实践经验,根据电厂的实际情况对汽轮机的节能与降耗进行详细分析,以便为电厂的发展提供借鉴。 一、电厂汽轮机节能降耗的可行性电厂的汽轮机运转在电厂中占据关键地位,是将热能转为电能的核心,一般和电厂的发电机一起运转。对电厂的汽轮机运转节能降耗有影响的因素有很多,主要有方面:技术与经济。我国的技术员通过长期的工作和总结,已经有一套有效、系统的改造技术,改造后的汽轮机不

浅谈提高汽轮机性能及运行特性分析研究

浅谈提高汽轮机性能及运行特性分析研究 发表时间:2019-03-25T16:03:20.293Z 来源:《基层建设》2018年第35期作者:纪震[导读] 摘要:汽轮机是能够将蒸汽热能转化成机械能的外燃回转式机械,它的主要运行功能就是对来自锅炉的蒸汽进行处理,使之转化成其他形式的能量。 哈尔滨汽轮机厂有限责任公司哈尔滨 150001 摘要:汽轮机是能够将蒸汽热能转化成机械能的外燃回转式机械,它的主要运行功能就是对来自锅炉的蒸汽进行处理,使之转化成其他形式的能量。汽轮机在人们日常生产中的应用十分广泛,例如压缩机、船舶螺旋桨等机器的工作都需要汽轮机的驱动。汽轮机常规热力试验和性能监测对电厂生产管理和节能有重要意义,一般通过热力性能的试验可以找到汽轮机热力系统中对机组整体运行性能影响最大且 有较大改进空间的环节,本文就应用于实机的各种提高性能的技术中,摘出与叶片开发有关的技术,尤以高载荷静叶的开发,并详细介绍了优化反动式叶片的开发,从而对汽轮机性能控制进行总结,其中不足之处,希望予以指正。关键词:汽轮机;性能;运行特性一、高载荷静叶的开发 在相同叶弦长度条件下,高载荷静叶的数量比以往静叶少了约14%,且性能得到提高。由于减少了叶片数量,叶片表面的摩擦损失和产生于叶片后缘的尾流损失减少,使提高行性能得以实现。高负荷静叶的特征是:(1)由于叶片头部大头化,因此叶片上游侧也承担负荷,均衡了叶片整体负荷;(2)利用反映叶片背面喉部下游位置曲率分布的曲线和紊流分析等详细的设计方法,设计出最佳的叶片数量和叶型。另外,在叶片头部的圆化时还考虑到了入射角特性和强度方面。 二、高载荷动叶的开发 高载荷动叶和高载荷静叶一样,也是削减了叶片数量、增大了每枚叶片的载荷。高载荷动叶的开发目标是:与以动叶相比,降低约15%的叶片数量。与高载荷静叶一样,叶片数量减少,叶片负荷增大,因此叶片负压侧的流动就易于脱流。尤其是冲动式叶片,由于叶片根部附近的背弧曲率大,此倾向很明显。因此在开发高负荷动叶时,条件是需将叶片强度控制在允许值以内,重点放在其根部附近的叶型设计上:(1)为了控制脱流和边界层的发展,降低二次流损失,设计出增大叶片后缘附近负荷的后加载叶型;(2)在动叶叶片根部设计阶段中,想通过前置静叶的侧壁损失预测正确的入射角是很困难的,因此采取了将叶片前缘部位椭圆化,增大曲率半径和改善入射角特性等措施。特别是,使用了二维叶片紊流分析技术和规定喉部长度的反问题设计法,以及曲线进行叶型设计。使用这些设计手段,设计出沿叶高方向多个基本截面的叶型,并通过积叠面形成叶片。 三、优化反动式叶片的开发 1、开发背景 为了进一步提高效率,谋求通过级数、转子直径、反动度等设计参数来优化汽轮机结构,并开发适用于此结构的优化叶型。另一方面,在汽轮机高压级中,叶片长度相对较短,沿叶高方向的边界层和二次流领域所占的比例变大,因此必需考虑到这些流场特性的高性能叶片。根据静叶出口的绝对速度和旋转动叶的周向速度,蒸汽将以相对速度流入动叶。由此可见,此相对速度方向离动叶几何入口角越远,叶型损失也交越大。另外,实际中必须考虑边界层和二次流的影响,故想将动叶相对流入角设计成预想的高精度是困难的。如今,在叶型设计中综合应用了基于实验的强化设计法,反问题设计法和二维紊流分析技术,针对流入角的变化,开发出损失特性变化缓慢的圆头动叶。 2、强化设计的应用 (1)测量特性和信号因子将叶栅视为系统,利用系统输入与输出的理想关系(通过原点的直线),选择信号因子(输入)和测量特性(输出)。(2)误差因子和控制因子误差因子是可能阻碍理想功能的因子,进行此研究时,选定流入角作为误差因子,考虑到下面叙述的设计叶型时的几何入角,采用了现实的3种流入角(30°,50°,70°)。另一方面,在此研究中,控制因子是决定叶型的参数,由于数值实验时利用了计算机,从计算机环境和设计期间的观点出发,采用选定与流入角特性和损失特性有密切关系的叶片转向角、前缘曲率半径、节弦比和最大叶片负荷部位这4个参数作为控制因子,分别设定了三种方案。在强化设计中,由流入角特性和损失特性对应于比特性和灵敏度特性。(3)叶型设计 四个控制因子进行叶型设计时,仅用这些控制因子不能完全定义叶型形状。因此需预先根据二维紊流分析,将损失评价反映到叶型设计中。再用反问题设计法移动叶片的最大载荷部位,对叶型进行修正。通过用这种反问题设计法进行修正,已足以确定喉部长度。叶片载荷分布的修正范围仅限最大载荷部位附近。(4)根据最优条件的研究按照上述两种最佳条件进行叶型设计时,通过二维紊流分析和损失评价可决定叶型。通过积叠沿叶高方向的多个截面,即形成1枚动叶。同以往叶片相比,最佳叶片的数量减少了约33%。 3、利用二维叶栅风洞进行性能确认试验通过二维叶栅风洞中,用5孔探针所进行的逐点测量,计算出能量损失系统数。从此结果中,相当于广泛范围汽流入角,损失特性平坦化,而与以往叶片相比,损失自身也大幅降低。 4、利用空气透平进行级效率的确认试验为了确认汽轮机的级效率,针对以往叶片和最佳叶片,时行了模型透平试验。用内置热电偶的5孔探针,沿级的出入口径向,对压力、温度和流角进行了逐点测量。然后根据流量孔扳的测量、测功器的出力和探针测量计算出级效率。以顶部的汽封结构也不一样。与以往动叶片相比,效率提高了1.5%。经确认:由于动叶顶部反动度与密封结构的不同,考虑到漏流影响的话,叶片自身的效率可提高3%。此优化反动叶片已应用于实机。 四、汽轮机的控制方式研究

L TSA汽轮机油国家标准

L T S A汽轮机油国家标准 The latest revision on November 22, 2020

中华人民共和国国家标准 L-TSA汽轮机油 Turbine oils L-TSA GB11120-1989 本标准的一级品参照采用国际标准ISO 8068-87《石油产品和润滑剂-石油基汽轮机油(ISO-L-TSA和ISO-L-TGA)-技术条件》 1主题内容与适用范围 本标准规定了由深度精制基础油并加抗氧剂和防锈剂等调制而成的L-TSA汽轮机油的技术条件。 本标准中所属产品适用于电力、工业、船舶及其他工业汽轮机组、水汽轮机组的润滑和密封。 40℃按运动粘度中心值分为32,46,68和100等四个牌号。 2引用标准 GB/T260 石油产品水分测定法 GB/T264 石油产品酸值测定法 GB/T265 石油产品运动粘度测定法和动力粘度计算法 GB/T511 石油产品和添加剂机械杂质测定法(重量法) GB/T1884 石油和液体石油产品密度测定法(密度计法) GB/T1885 石油计量换算表 GB/T1995 石油产品粘度指数计算法 GB/T3141 工业用润滑油粘度分类 GB/T3535 石油倾点测定法 GB/T3536 石油产品闪点和燃点测定法(克利夫兰开口杯法) GB/T4756 石油和液体石油产品取样法(手工法) GB/T4945 石油产品和润滑剂中和值测定法(颜色指示剂法) GB/T5096 石油产品铜片腐蚀试验法 GB/T7305 石油和合成液抗乳化性能测定法 GB/T11143加抑制剂矿物油在水存在下防锈性能测定法 GB/T12579 润滑油泡沫性测定法 GB/T12581 加抑制剂矿物油的氧化特性测定法 SH/T0124 含抗氧剂的汽轮机油氧化安定性测定法 SH/T0164 石油产品包装、贮运及交货规则 SH/T0308 润滑油空气释放值测定法 3技术内容 3.1 产品质量等级 本产品质量分为优级品、一级品和合格品等三个等级。 3.2 技术要求

相关文档
最新文档