第三章 复杂直流电路

第三章 复杂直流电路
第三章 复杂直流电路

第三章复杂直流电路

重点难点:

1.掌握基尔霍夫定律及其应用,学会运用支路电流法分析计算复杂直流电路。

2.掌握叠加定理及其应用。

3.掌握戴维宁定理及其应用。

4.掌握两种实际电源模型之间的等效变换方法并应用于解决复杂电路问题。

第一节基尔霍夫定律

一、常用电路名词

以图所示电路为例说明常用电路名词。

1. 支路:电路中具有两个端钮且通过同一电流的无分支电路。如图3-1电路中的ED、AB、FC均为支路,该电路的支路数目为b = 3。

2. 节点:电路中三条或三条以上支路的联接点。如图3-1电路的节点为A、B两点,该电路的节点数目为n = 2。

3. 回路:电路中任一闭合的路径。如图3-1电路中的CDEFC、AFCBA、EABDE路径均为回路,该电路的回路数目为l = 3。

4. 网孔:不含有分支的闭合回路。如图3-1电路中的AFCBA、EABDE回路均为网孔,该电路的网孔数目为m = 2。

常用电路名词的说明

5. 网络:在电路分析范围内网络是指包含较多元件的电路。

二、基尔霍夫电流定律(节点电流定律) 1.电流定律(KCL)内容

电流定律的第一种表述:在任何时刻,电路中流入任一节点中的电流之和,恒等于从该节点流出的电流之和,即

∑∑=流出流入I I

例如图3-2中,在节点A 上:I 1 I 3 = I 2 I 4 I 5

电流定律的第二种表述:在任何时刻,电路中任一节点上的各支路电流代数和恒等于零,即

0=∑I

一般可在流入节点的电流前面取“+”号,在流出节点的电流前面取“”

号,反之亦可。例如图3-2中,在节点A 上:I 1

I 2 + I 3

I 4

I 5 = 0。

在使用电流定律时,必须注意:

(1) 对于含有n 个节点的电路,只能列出(n

1)个独立的电流方程。 (2)

列节点电流方程时,只需考虑电流的参考方向,然后再带入电流的数值。

图3-2 电流定律的举例说明

为分析电路的方便,通常需要在所研究的一段电路中事先选定(即假定)电流流动的方向,叫做电流的参考方向,通常用“→”号表示。

电流的实际方向可根据数值的正、负来判断,当I > 0时,表明电流的实际方向与所标定的参考方向一致;当I < 0时,则表明电流的实际方向与所标定的参考方向相反。

2.KCL 的应用举例

(1) 对于电路中任意假设的封闭面来说,电流定律仍然成立。如图3-3中,对于封闭面S 来说,有I 1 + I 2 = I 3。

(2) 对于网络 (电路)之间的电流关系,仍然可由电流定律判定。如图3-4中,流入电路B 中的电流必等于从该电路中流出的电流。

(3) 若两个网络之间只有一根导线相连,那么这根导线中一定没有电流通过。

(4) 若一个网络只有一根导线与地相连,那么这根导线中一定没有电流通过。

例如图3-5所示电桥电路,已知I 1 = 25 mA ,I 3 = 16 mA ,I 4 = 12 A ,试求其余电阻中的电流I 2、I 5、I 6

图3-3 电流定律的应用举例(1)

图3-4 电流定律的应用举例(2)

图3-5 例题3-1

图3-6 电压定律的举例说明

解:在节点a 上: I 1 = I 2 + I 3,则I 2 = I 1 I 3 = 25 16 = 9 mA 在节点d 上: I 1 = I 4 + I 5,则I 5 = I 1 I 4 = 25 12 = 13 mA 在节点b 上: I 2 = I 6 + I 5,则I 6 = I 2

I 5 = 9

13 =

4 mA

电流I 2与I 5均为正数,表明它们的实际方向与图中所标定的参考方向相同,I 6为负数,表明它的实际方向与图中所标定的参考方向相反。

三、基夫尔霍电压定律(回路电压定律) 1. 电压定律(KVL)内容

在任何时刻,沿着电路中的任一回路绕行方向,回路中各段电压的代数和恒等于零,即

0=∑U

以图3-6电路说明基夫尔霍电压定律。沿着回路abcdea 绕行方向,有

U ac = U ab + U bc = R 1I 1 + E 1, U ce = U cd + U de = R 2I 2

E 2, U ea = R 3I 3

则 U ac + U ce + U ea = 0 即 R 1I 1 + E 1 R 2I 2

E 2 + R 3I 3 = 0

上式也可写成

R 1I 1

R 2I 2 + R 3I 3 =

E 1 + E 2 对于电阻电路来说,任何时刻,在任一闭合回路中,各段电阻上的电压降代数和等于各电源电动势的代数和,即。

∑∑=E

RI

2.利用RI = E列回路电压方程的原则

(1)标出各支路电流的参考方向并选择回路绕行方向(既可沿着顺时针方

向绕行,也可沿着反时针方向绕行);

(2)电阻元件的端电压为±RI,当电流I的参考方向与回路绕行方向一致

时,选取“+”号;反之,选取“”号;

电源电动势为E,当电源电动势的标定方向与回路绕行方向一致时,选取“+”号,反之应选取“”号。

第二节支路电流法

以各支路电流为未知量,应用基尔霍夫定律列出节点电流方程和回路电压方程,解出各支路电流,从而可确定各支路(或各元件)的电压及功率,这种解决电路问题的方法叫做支路电流法。对于具有b条支路、n个节点的电路,可

列出(

n 1)个独立的电流方程和b (n 1)个独立的电压方程。

例如图3-7所示电路,已知E1 = 42 V,E2 = 21 V,R1 = 12 ,R2 = 3 ,R3 = 6 ,试求:各支路电流I1、I2、I3 。

解:该电路支路数b = 3、节点数n = 2,所以应列出1 个节点电流方程和2个回路电压方程,并按照RI = E 列回路电压方程的方法:

(1) I1 = I2 + I3(任一节点)

(2) R1I1 + R2I2 = E1 + E2(网孔1)

(3) R3I 3 R2I2 = E2(网孔2)

代入已知数据,解得:I1 = 4 A,I2 = 5 A,I3 = 1 A。

电流I1与I2均为正数,表明它们的实际方向与

图中所标定的参考方向相同,I3为负数,表明它们

的实际方向与图中所标定的参考方向相反。

图3-7 例题3-2

第三节 叠加定理

一、叠加定理的内容

当线性电路中有几个电源共同作用时,各支路的电流(或电压)等于各个电源分别单独作用时在该支路产生的电流(或电压)的代数和(叠加)。

在使用叠加定理分析计算电路应注意以下几点:

(1) 叠加定理只能用于计算线性电路(即电路中的元件均为线性元件)的支路电流或电压(不能直接进行功率的叠加计算);

(2) 电压源不作用时应视为短路,电流源不作用时应视为开路; (3)

叠加时要注意电流或电压的参考方向,正确选取各分量的正负号。

例如图3-8(a)所示电路,已知E 1 = 17 V ,E 2 = 17 V ,R 1 = 2 ,R 2 = 1 ,R 3 = 5 ,试应用叠加定理求各支路电流I 1、I 2、I 3 。

解:(1) 当电源E 1单独作用时,将E 2视为短路,设

R 23 = R 2∥R 3 = 0.83

A

1A 5A

683

.217

13

22

313

23

223111=+==+===+=

'I R R R 'I 'I R R R 'I R R E 'I

(2) 当电源E 2单独作用时,将E 1视为短路,设

R 13 =R 1∥R 3 = 1.43

图3-8 例题3-3

图3-9 二端网络

A

2A 5A

743

.217

23

11

323

13

113222=+==+===+=

''I R R R ''I ''I R R R ''I R R E ''I

(3) 当电源E 1、E 2共同作用时(叠加),若各电流分量与原电路电流参考方向相同时,在电流分量前面选取“+”号,反之,则选取“”号:

I 1 = I 1′ I 1″ = 1 A , I 2 = I 2′ + I 2″ = 1 A , I 3 = I 3′ + I 3″ = 3 A

第四节 戴维宁定理

一、二端网络的有关概念

1. 二端网络:具有两个引出端与外电路相联的网络。又叫做一端口网络。

2. 无源二端网络:内部不含有电源的二端网络。

3. 有源二端网络:内部含有电源的二端网络。阿

4. 开路电压:一个有源二端网络开路时的电压。

5. 输入电阻:将电路中的电压源短路,保留内阻,

电流源开路,求等效电阻。 二、戴维宁定理

任何一个线性有源二端电阻网络,对外电路来说,总可以用一个电压源E 0

与一个电阻r 0相串联的模型来替代。电压源的电动势E 0等于该二端网络的开路电压,电阻r 0等于该二端网络中所有电源不作用时(即令电压源短路、电流源开路)的等效电阻(叫做该二端网络的等效内阻)。该定理又叫做等效电压源定理。

例如图所示电路,已知E 1 = 7 V ,E 2 = 6.2 V ,R 1 = R 2 = 0.2 ,R = 3.2 ,试应用戴维宁定理求电阻R 中的电流I 。

解:(1) 将R 所在支路开路去掉,如图3-11所示,求开路电压U ab :

A 24

.08

.021211==+-=

R R E E I , U ab = E 2 + R 2I 1 = 6.2 + 0.4 = 6.6 V = E 0 (2) 将电压源短路去掉,如图3-12所示,求等效电阻R ab :

R ab = R 1∥R 2 = 0.1 = r 0

(3)画出戴维宁等效电路,如图所示,求电阻R 中的电流I :A 23

.36

.600==+=

R r E I

例如图所示的电路,已知E = 8 V ,R 1= 3 ,R 2 = 5 ,R 3 = R 4 = 4 ,R 5 = 0.125 ,试应用戴维宁定理求电阻R 5中的电流I 。

解:(1) 将R 5所在支路开路去掉,如图3-15所示,求开路电压U ab :

A 1 A 14

3432121=+===+=

=R R E

I I R R E I I , U ab = R 2I 2 R 4I 4 = 5 4 = 1 V = E 0

(2) 将电压源短路去掉,如图3-16所示,求等效电阻R ab :

R ab = (R 1∥R 2) + (R 3∥R 4) = 1.875 + 2 = 3.875 = r 0

(3) 根据戴维宁定理画出等效电路,如图3-17所示,求电阻R 5中的电流

A 25.04

1

5005==+=

R r E I

第五节 两种电源模型的等效变换

一、电压源

通常所说的电压源一般是指理想电压源,其基本特性是其电动势 (或两端电压)保持固定不变E 或是一定的时间函数e (t ),但电压源输出的电流却与外电路有关。

实际电压源是含有一定内阻r 0的电压源。

求电阻R 中的电流I

二、电流源

通常所说的电流源一般是指理想电流源,其基本特性是所发出的电流固定不变(I s)或是一定的时间函数i s(t),但电流源的两端电压却与外电路有关。

实际电流源是含有一定内阻r S 的电流源。

三、两种实际电源模型之间的等效变换

实际电源可用一个理想电压源E和一个电阻r0串联的电路模型表示,其输出电压U与输出电流I之间关系为

U = E r

I

实际电源也可用一个理想电流源I S和一个电阻r S并联的电路模型表示,其输出电压U与输出电流I之间关系为

U = r

S I

S

r

S

I

对外电路来说,实际电压源和实际电流源是相互等效的,等效变换条件是

r

= r S , E = r S I S 或I S = E/r0

例如图所示的电路,已知电源电动势E = 6 V,内阻r0 = 0.2 ,当接上R = 5.8 负载时,分别用电压源模型和电流源模型计算负载消耗的功率和内阻消耗的功率。

图电流源模型

图 例题

两个电压源等效成两个电流源

解:(1) 用电压源模型计算:

A 10=+=

R

r E

I ,

负载消耗的功率P L = I 2R = 5.8 W ,内阻的功率P r = I 2r 0 = 0.2 W (2) 用电流源模型计算:

电流源的电流I S = E/r 0 = 30 A ,内阻r S = r 0 = 0.2 负载中的电流 A 1S S S

=+=

I R

r r I ,负载消耗的功率 P L = I 2R = 5.8 W , 内阻中的电流 A 29S S =+=

I R

r R

I r ,内阻的功率 P r = I r 2r 0 = 168.2 W 两种计算方法对负载是等效的,对电源内部是不等效的。

例如图所示的电路,已知:E 1 = 12 V ,E 2 = 6 V ,R 1 = 3 ,R 2 = 6 ,R 3 = 10 ,试应用电源等效变换法求电阻R 3中的电流。

最简等效电路

解:(1) 先将两个电压源等效变换成两个电流源, 如图3-20所示,两个电流源的电流分别为

I S1 = E 1/R 1 = 4 A , I S2 = E 2/R 2 = 1 A

(2) 将两个电流源合并为一个电流源,得到最简等效 电路,如图3-21所示。等效电流源的电流

I S = I S1 I S2 = 3 A

其等效内阻为

R = R 1∥R 2 = 2

(3) 求出R 3中的电流为

A 5.0S 33=+=

I R

R R

I

本章小结

本章学习了分析计算复杂直流电路的基本方法,内容包括:

一、基夫尔霍定律

1.电流定律

电流定律的第一种表述:在任何时刻,电路中流入任一节点中的电流之和,恒等于

从该节点流出的电流之和,即I流入= I流出。

电流定律的第二种表述:在任何时刻,电路中任一节点上的各支路电流代数和恒等于

零,即I = 0。

在使用电流定律时,必须注意:

(1) 对于含有n个节点的电路,只能列出(n 1)个独立的电流方程。

(2) 列节点电流方程时,只需考虑电流的参考方向,然后再带入电流的数值。

2.电压定律

在任何时刻,沿着电路中的任一回路绕行方向,回路中各段电压的代数和恒等于零,

即U = 0。

对于电阻电路来说,任何时刻,在任一闭合回路中,各段电阻上的电压降代数和等于

各电源电动势的代数和,即RI = E。

二、支路电流法

以各支路电流为未知量,应用基尔霍夫定律列出节点电流方程和回路电压方程,解出各支路电流,从而可确定各支路(或各元件)的电压及功率,这种解决电路问题的方法叫做支路电流法。

对于具有b条支路、n个节点的电路,可列出(n 1)个独立的电流方程和b (n 1)个独立的电压方程。

三、叠加定理

当线性电路中有几个电源共同作用时,各支路的电流(或电压)等于各个电源分别单独作用时在该支路产生的电流(或电压)的代数和(叠加)。

四、戴维宁定理

任何一个线性有源二端电阻网络,对外电路来说,总可以用一个电压源E0与一个电阻r0相串联的模型来替代。

电压源的电动势E0等于该二端网络的开路电压,电阻r0等于该二端网络中所有电源不作用时(即令电压源短路、电流源开路)的等效电阻。

五、两种实际电源模型的等效变换

实际电源可用一个理想电压源E和一个电阻r0串联的电路模型表示,也可用一个理想电流源I S和一个电阻r S并联的电路模型表示,对外电路来说,二者是相互等效的,等效变换条件是

r

= r S , E = r S I S 或I S = E/r0

如有侵权请联系告知删除,感谢你们的配合!

第三章复杂直流电路练习题答案

电工技术基础与技能 第三章复杂直流电路练习题 班别:高二()姓名:学号:成绩: 一、是非题(2X20) 1、基尔霍夫电流定律仅适用于电路中的节点,与元件的性质有关。() 2、基尔霍夫定律不仅适用于线性电路,而且对非线性电路也适用。() 3、基尔霍夫电压定律只与元件的相互连接方式有关,而与元件的性质无关。() 4、在支路电流法中,用基尔霍夫电流定律列节点电流方程时,若电路有n个节点,则一定要列 出n个方程。() 5、叠加定理仅适用于线性电路,对非线性电路则不适用。() 6、叠加定理不仅能叠加线性电路中的电压和电流,也能对功率进行叠加。() 7、任何一个含源二端网络,都可以用一个电压源模型来等效替代。() 8、用戴维南定理对线性二端网络进行等效 替代时,仅对外电路等效,而对网路内电路 是不等效 的。 () 9、恒压源和恒流源之间也 能等效变换。() 10、理想电流源的输出电流和电压都是恒定的,是不随 负载而变化的。() 二、选择题

1、在图3-17中,电路的节点数为()。 2、上题中电路的支路数为( )。 3、在图3-18所示电路中,I1和I 2的关系是 ()。 A. I1>I2 B. I1

《电工技术基础与技能》第三章 直流电路习题

第三章直流电路 3.1闭合电路欧姆定律 填空题 1、闭合电路由两部分组成,一部分是电路,另一部分是电路。外电路上的电阻称为电阻,内电路上的电阻称为电阻。 2、负载上的电压等于电源的电压,也等于电源的电动势减去电源的内压降,即U=E-Ir。 选择题 1、用万用表测得全电路中的端电压为0,这说明() A外电路断路 B外电路短路 C外电路上电流比较小 D电源内阻为零 2、用电压表测得电源端电压为电源的电动势E,这说明() A 外电路断路 B 外电路短路 C 电源内阻为零D无法判断 3、电源电动势为2V,内电阻是0.1Ω,当外电路断路时电路中的电流和端电压分别为() A、0A,2V B、20A,2V C、20A ,0V D、0V ,0V 4、在闭合电路中,负载电阻减少,则端电压将()。 A、增大 B、减小 C、不变 D、不能确定 5、一直流电源,开路时测得其端电压为6V,短路时测得其短路电流为30A,则该电源的电动势E和内阻r分别为()。 A、6V,0.5Ω B、16V,0.2Ω C、6V,0.2Ω 判断题 1、全电路中,在开路状态下,开路电流为零,电源的端电压也为零。() 2、短路电流很大,要禁止短路现象。() 3、短路状态下,电源内阻的压降为零。() 4、当外电路开路时,电源的端电压等于零() 计算题 1、如图所示,电源电动势E=4.5V,内阻r=0.5Ω,外接负载R=4Ω,则电路中的 电流I=? 电源的端电压U=?电路的内压降U =?

2.如下图,已知电源电动势E=110V,r=1Ω,负载R=10Ω,求:(1)电路电流;(2)电源端电压;(3)负载上的电压降;(4)电源内阻上的电压降。 3.如下图所示,已知E=5V,r=1Ω,R1=14Ω,R2=20Ω,R3=5Ω。求该电路电流大小应为 多少?R2两端的电压是多少? 4.如图所示电路中,已知E=12V,r=1Ω,负载R=99Ω。求开关分别打在1、2、3位置时电 压表和电流表的读数 5、如图所示,E=220V,负载电阻R为219Ω,电源内阻r为1Ω,试求:负载电阻消耗的功 率P负、电源内阻消耗功率P内及电源提供的功率P。 3.2负载获得最大功率的条件 判断题 1、当负载获得最大功率时,电源的利用率不高,只有50%。() 2、在电力系统中,希望尽可能减少内部损失,提高供电效率,故要求()。 A、R 《r B、R 》r C、R = r 计算题 1、如图所示电路中,电源电动势E = 12V,内电阻r = 2Ω。定值电阻R1 =4Ω,可变电阻RP的变化范围0—25Ω,在不改变电路结构的情况下, (1)求RP为多大时,RP 上消耗的功率最大? (2)最大功率为多少?

复杂直流电路-练习题答案

# 电工技术基础与技能 第三章复杂直流电路练习题 班别:高二()姓名:学号:成绩: 一、是非题(2X20) 1、基尔霍夫电流定律仅适用于电路中的节点,与元件的性质有关。() 2、基尔霍夫定律不仅适用于线性电路,而且对非线性电路也适用。() 3、基尔霍夫电压定律只与元件的相互连接方式有关,而与元件的性质无关。()? 4、在支路电流法中,用基尔霍夫电流定律列节点电流方程时,若电路有n个节点,则一定要列 出n个方程。() 5、叠加定理仅适用于线性电路,对非线性电路则不适用。() 6、叠加定理不仅能叠加线性电路中的电压和电流,也能对功率进行叠加。() 7、任何一个含源二端网络,都可以用一个电压源模型来等效替代。() 8、用戴维南定理对线性二端网络进行等效替代时,仅对外电路等效,而对网路内电路是不等效 的。() 9、恒压源和恒流源之间也能等效变换。() \ 10、理想电流源的输出电流和电压都是恒定的,是不随 负载而变化的。() 二、选择题 1、在图3-17中,电路的节点数为()。 2、上题中电路的支路数为( )。 / 3、在图3-18所示电路中,I1和I 2的关系是()。 A. I1>I2 B. I1

全桥变换器主电路分析

全桥变换器主电路分析 王振存 2006.04 1.电源概述 本电源,额定电流1000A。主电路采用全桥拓扑结构,两路并联的供电方式。主电路原理框图如图1所示。 2. 输入整流滤波电路的设计 电源交流输入采用三相三线输入方式,经三相桥式整流器输出脉动直流,经直流母线滤波供给后级功率变换电路。输入整流电路如图2所示。 图 1 对图中元件说明如下: D1-D6:三相整流桥,PE:输入端保护熔断器,PV压敏电阻; R56缓起电阻,C5、C6、C7:共模滤波电容; KA:接触器,C8直流母线滤波电容: 为限制刚开始投入时电解电容充电产生的电流浪涌,在输入整流电路增加了缓起电路。具体工作原理是,电源经外部加电,此时A、C线电压经R56、R55、D1、D2、D5、D6给电容充电,直流母线电压慢慢上升,上升到辅助电源启动电压时,辅助电源工作控制板得电将接触器闭合,将R56、R55短路,缓起动过程结束。 输入滤波电容的选择过程如下:取整流滤波后的直流电压的最大脉动值为低

交流峰值电压的10%,按照下面步骤计算电容的容量: ● 输入电压的有效值%10380±V 即342V ~418V; ● 输入交流电压峰值:482V ~591V ; ● 整流滤波后直流电压的最大脉动值:V V 2.4810482%=?; ● 整流后直流电压的范围:433.8V ~542.8V ; ● 电源总功率按50KW 计算则等效电阻为Ω== 76.350000 8.4332 L R ; ● 一般取放电时间常数τ=R L C=(3~5)T/6故最小电容F C μ265076 .301.0== ; 3. 全桥逆变电路工作状况分析 3.1 工作模态分析 电源由全桥逆变器和输出整流滤波电路构成。全桥逆变器的主电路如图2所示,由四功率管Q1~Q4及其反并二级管D1~D4,和输出变压器(L LK 为主变压器漏感),吸收电路,隔直电容等组成。 LD R V 图2 在一个开关周期中,电流连续的情况下,全桥变换器共有有4种开关模态。 在t0时刻,对应于图3(a )。Q1、Q4导通。电压经Q1、Q4、C3、加到变压

第三章复杂直流电路的分析教案

基尔霍夫定律(一)教案 教学过程: 基尔霍夫定律(一) 复习旧课:串联和并联电路及特点 讲授新课:基尔霍夫定律 安全教育3分钟,走路小心,不要碰到墙壁。 基尔霍夫定律包括电流定律和电压定律。 一、复杂电路的基本概念。 以图3-1所示电路为例说明常用电路名词。 1. 支路:电路中具有两个端钮且通过同一电流的无分支电路。如图3-1电路中的AB、AR2B均为支路,该电路的支路数目为b = 3。 2. 节点:电路中三条或三条以上支路的联接点。如图3-1电路的节点为A、B两点,该电路的节点数目为n = 2。 3. 回路:电路中任一闭合的路径。如图3-1电路中的CDEFC、AFCBA、EABDE路径均为回路,该电路的回路数目为l = 3。

4. 网孔:不含有分支的闭合回路。如图3-1电路中的AFCBA 、EABDE 回路均为网孔,该电路的网孔数目为m = 2。 图2-19常用电路名词的说明 5. 网络:在电路分析范围内网络是指包含较多元件的电路。 二、基尔霍夫第一定律 基尔霍夫电流定律(KCL ) 1.电流定律(KCL)内容 电流定律的第一种表述:在任何时刻,电路中流入任一节点中的电流之和,恒等于从该节点流出的电流之和,即 ∑∑=流出流入I I 例如图3-2中,在节点A 上:I 1 + I 3 = I 2 + I 4 + I 5 电流定律的第二种表述:在任何时刻,电路中任一节点上的各支路电流代数和恒等于零,即 0=∑I 一般可在流入节点的电流前面取“+”号,在流出节点的电流前面取“-”号,反之亦可。例如图3-2中,在节点A 上:I 1 - I 2 + I 3 - I 4 - I 5 = 0。 在使用电流定律时,注意: (1) 对于有n 个节点的电路,只能列出(n - 1)个独立的电流方程。 (2) 列节点电流方程时,只需考虑电流的参考方向,然后再带入电流的数值。 作业,巩固与练习 1

第三章01-降压型直流变换器.

第二节降压型开关电源 第三章直流变换器 * VT "Ln lk? 第二节降压型开关电源 (&5祥Sfi开关电8电》图 4 0 t ----- t onr- J ???0 ;aa) VT—高频晶体开关管, 工作在:导通饱和状态 ?止状态 起开关作用,可用M OS管和IGBT管代 替; 开关管与负载RL侧电路相率联,VT的反复 周期性导通和《止,控制了U1是否加到负 ?R L的时间比例,起到斩波作用? VD—续流二极管?当开关管VT截止时? VD 提 供一个称为“续流辭电流的通路?使电感电流 不致迅变中断,避免电感感应出高压而将晶体 管击穿损坏-此续流通路也是电感能 量放出到负载的通路? L—储能电感.有两个作用,能a转换和滤波 C—滤波电容,減小负《电压的脉动成分和?小 输出阻抗? R L—等效负我电阻,用电设备.

lk? + vr __________ 95 ttS生开关电源电路图 + Eo U—输入直流电压?该电压大小不穂定或者有纹波卩0?输出直流电压,纹波小,稳定? 将?个直流电压Ui转换成另 4 0 t ■----- t onr- I ?13 Q * hl U L * 、丫〔二二+ 图S MSfi开*??鼻匕1?创6图?个宜流电压Uo, KUo

第5章直流-直流变换电路习题

一、问答题 5-1、试说明直流斩波器主要有哪几种电路结构试分析它们各有什么特点 答:直流斩波电路主要有降压斩波电路(Buck ),升压斩波电路(Boost ),升-降压斩波电路(Buck-Boost )和库克(Cuk )斩波电路。 降压斩波电路是输出电压的平均值低于输入电压的变换电路。它主要用于直流稳压电源和直流电机的调速。 升压斩波电路是输出电压的平均值高于输入电压的变换电路。它可用于直流稳压电源和直流电机的再生制动。 升-降压变换电路是输出电压的平均值可以大于或小于输入直流电压,输出电压与输入电压极性相反。主要用于要求输出与输入电压反向,其值可大于或小于输入电压的直流稳压电源。 库克电路也属升-降压型直流变换电路,但输入端电流波纹小,输出直流电压平稳,降低了对滤波器的要求。 5-2、简述图3-1基本降压斩波电路的工作原理。 输出电压电流波形。 答:0=t 时刻驱动V 导通,电源E 向负载供电,负载电压E u =0,负载电流0i 按指数曲线上升。1t t =时控制V 关断,二极管VD 续流,负载电压0u 近似为零,负载电流呈指数曲线下降。通常串接较大电感L 使负载电流连续且脉动小。 5-3、根据下图简述升压斩波电路的基本工作原理。(图中设:电感L 、与电容 C 足够大) 输出电流波形 答:当V 处于通态时,电源E 向电感L 充电,设充电电流为i 1,L 值很大,i 1基本恒定,同时电容C 向负载供电,C 很大,使电容器电压u 0基本不变,设V 处于通态的时间为t on ,在t on 时间内,电感L 上积蓄的能量为EI 1t on ; 图3-2 基本升压斩 图3-1基本降压斩波电路

第三章复杂直流电路计算部分

复杂直流电路计算部分 1、 求图1中所示电路中电压U 。 2、 求图2中的电流I 。 3、 利用电压源和电流源等效变换法求图3中的电流I 。 4、 用戴维宁定理求图4中的电流I 。 16V 6A 5Ω 6V 3I

5、计算图5所示电路中5Ω电阻中的电流I 。 6、用戴维宁定理求图6所示的电流I 。 7、试用叠加原理求图7中的电压U 。 8、图8所示电路,负载电阻R L 可以改变,求(1)R L =2Ω时的电流I ab ; (2)R L =3Ω时的电流I ab 。 1V 46Ω 30V I U - 20V

9、试用叠加原理求图9电路中的电压U 。 10、图10中已知R 1=R=12Ω,R 2=4Ω,R 3=R 4=6Ω,E 1=21V ,E 2=5V ,E 3=9V ,E 4=6V ,I S =2A 。求(1)打开开关K 时,I 、U AB ;(2)开关K 闭合时,I 和U 。 11、试用戴维宁定理求图11所示电路中电流I , R 4 E 1S Ω I

12、利用电压源、电流源等效变换法求图 13、如图13所示,N A 为线性有源二端网络,电流表、电压表均为理想的,已知当开关S 置“1”位置时,电流表读数为2A ;当S 置“2”位置时,电压表读数为4V 。求当S 置于“3”位置时,图中的电压U 。 14、图14所示电路为计算机加法原理电路,已知V a =12V ,V d =6V ,R 1=9K Ω,R 2=3K Ω,R 3=2K Ω,R 4=4K Ω,求ab 两端的开路电压 Uab 。 15、求图15中各支路电流。 10Ω 1A 6A

电工基础题库-复杂直流电路

第三章复杂直流电路 [知识点] 1.支路节点回路网孔的概念 2.基尔霍夫定律 3.支路电流法 4.叠加定理 5.戴维南定理 6.两种电源模型及等效变换 [题库] 一、是非题 1.基尔霍夫电流定律是指沿任意回路绕行一周,各段电压的代数和一定等于零。 2.任意的闭合电路都是回路。 3.理想电压源和理想的电流源是可以进行等效变换的。 4.电压源和电流源等效变换前后电源部是不等效的。 5.电压源和电流源等效变换前后电源外部是不等效的。 6.在支路电流法中用基尔霍夫电流定律列节点电流方程时。若电路有m个节点,那么一定要列出m个方程来。 7.回路电流和支路电流是同一电流。 8.在电路中任意一个节点上,流入节点的电流之和,一定等于流出该节点的电流之和。 9.在计算有源二端网络的等效电阻时,网络电源的电动势可去掉,电源的阻也可不考虑。 10.由若干个电阻组成的无源二端网络,一定可以把它等效成一个电阻。11.任意一个有源二端网络都可以用一个电压源来等效替代。

12.用支路电流法求解各支路电流时,若电路有n条支路,则需要列出n-1个方程式来联立求解。 13.电路中的电压、电流和功率的计算都可以应用叠加定理。 14.如果网络具有两个引出端与外电路相连,不管其部结构如何,这样的网络就叫做二端网络。 15.在任一电路的任一节点上,电流的代数和永远等于零。 二、选择题 1.某电路有3个节点和7条支路,采用支路电流法求解各支路电流时,应列出电流方程和电压方程的个数分别为 A、3,4 B、4,3 C、2,5 D、4,7 2.如图所示,可调变阻器R获得最大功率的条件是 A、1.2Ω B、2Ω C、3Ω D、5Ω 3.实验测得某有源二端线性网络的开路电压为6V,短路电流为2A,当外接电阻为3Ω,其端电压为 A、2V B、3V C、4V D、6V 4.在上题中,该线性网络的开路电压为6V,短路电流为2A,当外接电阻为()时,可获得最大功率。 A、1Ω B、2Ω C、3Ω D、4Ω 5.上题中,该有源二端线性网络等效为一个电压源的电压为

第三章 复杂直流电路计算部分

复杂直流电路计算部分 1、求图1中所示电路中电压U 。 2、求图2中的电流I 。 3、利用电压源和电流源等效变换法求图3中的电流I 。 4、用戴维宁定理求图4中的电流I 。 16V 6A 3I

5、计算图5所示电路中5Ω电阻中的电流I 。 6、用戴维宁定理求图6所示的电流I 。 7、试用叠加原理求图7中的电压U 。 8、图8所示电路,负载电阻R L 可以改变,求(1)R L =2Ω时的电流I ab ; (2)R L =3Ω时的电流I ab 。 4Ω6Ω I U -

9、试用叠加原理求图9电路中的电压U 。 10、图10中已知R 1=R=12Ω,R 2=4Ω,R 3=R 4=6Ω,E 1=21V ,E 2=5V ,E 3=9V ,E 4=6V ,I S =2A 。求(1)打开开关K 时,I 、U AB ;(2)开关K 闭合时,I 和U 。 11、试用戴维宁定理求图11所示电路中电流 12 R 4 E Ω I 10Ω

13、如图13所示,N A 为线性有源二端网络,电流表、电压表均为理想的,已知当开关S 置“1”位置时,电流表读数为2A ;当S 置“2”位置时,电压表读数为4V 。求当S 置于“3”位置时,图中的电压U 。 14、图14所示电路为计算机加法原理电路,已知V a =12V ,V d =6V ,R 1=9K Ω,R 2=3K Ω,R 3=2K Ω,R 4=4K Ω,求ab 两端的开路电压Uab 。 15、求图15中各支路电流。 1A d 6A

16、求图16所示电路中R L 17、图17所示,已知电源电动势E=12V ,电源内阻不计,电阻R 1=9Ω, R 2=6Ω,R 3=18Ω,R 4=2Ω,用戴维宁定理求R 4中的电流I 。 18、利用叠加原理求如图18所示的电路中当开关K 由1改向2时,电容器C 上 电荷的变化。已知C=20μF 。 19、如图19所示电路中,N 为有源二端网络,当开关K 断开时,电流表的读数为1.8A ,当开关K 闭合时,电流表的读数为1A ,试求有源二端网络N 的等值 电压源参数。 L R 4 1A

直流变换器课程设计

目录第一章.设计概要 1.1 技术参数 1.2 设计要求 第二章.电路基本概述 第三章. 电力总体设计方案 第三章.电力总体设计方案 3.1 电路的总设计思路 3.2电路的设计总框图 第四章BUCK 主电路设计 4.1 Buck变换器主电路原理图 4.2 Buck变换器电路工作原理图 4.3 主电路保护(过电压保护) 4.4 Buck变换器工作模态分析 4.5 主电路参数分析 第五章控制电路 5.1 控制带你撸设计方案选择 5.2 SG3525控制芯片介绍 5.3 SG3525各引脚具体功能 5.4 SG3525内部结构及工作特性 5.5 SG3525构成的控制电路单元电路图 第六章驱动电路原理与设计 6.1 驱动电路方案设计与选择 6.2 驱动电路工作分析 第七章附录 第八章设计心得

第一章.设计概要 1.1 技术参数: 输入直流电压Vin=25V,输出电压Vo=10V,输出电流Io=0.5A,最大输出纹波电压50mV,工作频率f=30kHz。 1.2 设计要求: (1)设计主电路,建议主电路为:采用BUCK 变换器,大电容滤波,主功率管用MOSFET;(2)选择主电路所有图列元件,并给出清单; (3)设计MOSFET 驱动电路及控制电路; (4)绘制装置总体电路原理图,绘制:MOSFET 驱动电压、BUCK 电路中各元件的电压、电流以及输出电压波形(波形汇总绘制,注意对应关系); (5)编制设计说明书、设计小结。 第二章.电路基本概述 直流斩波电路(DC Chopper)的功能是将直流电变为另一固定电压或可调电压的直流电,也称为直接直流-直流变换器(DC/DC Converter)。直流斩波电路一般是指直接将直流电变为另一直流电的情况,输入与输出不之间不隔离。直流斩波电路的种类较多,包括6 种基本斩波电路:降压斩波电路,升压斩波电路,升降压斩波电路,Cuk 斩波电路,Sepic 斩波电路和Zeta 斩波电路。Buck 电路作为一种最基本的DC/ DC 拓扑,结构比较简单,输出电压小于输入电压,广泛用于各种电源产品中。根据对输出电压平均值进行调制的方式不同,斩波电路可以分为脉冲宽度调试、频率调制和混合型三种控制方式,Buck 电路的研究对电子产品的发展有着重要的意义。MOSFET 特点是用栅极电压来控制漏极电流,驱动电路简单,需要的驱动功率小,开关速度快,工作频率高,热稳定性优于GTR,但其电流容量小,耐压低,一般只适用于功率不超过10kW 的电力电子装置。功率MOSFET 的种类:按导电沟道可分为 P 沟道和N 沟道。按栅极电压幅值可分为;耗尽型;当栅极电压为零时漏源极之间就存在导电沟道,增强型;对于N(P)沟道器件,栅极电压大于(小于)零时才存在导电沟道,功率MOSFET 主要是N 沟道增强型。 第三章.电力总体设计方案 3.1 电路的总设计思路 Buck 变换器电路可分为三个部分电路块。分别为主电路模块,控制电路模块和驱动电路模块。主电路模块,由MOSFET 的开通与关断的时间占空比来决定输出电压u。的大小。控制电路模块,可用SG3525 来控制MOSFET 的开通与关断。驱动电路模块,用来驱动MOSFET。 3.2 电路设计总框图 电力电子器件在实际应用中,一般是有控制电路,驱动电路,保护电路和以电力电子器件为核心的主电路组成一个系统。有信息电子电路组成的控制电路按照系统的工作要求形成控制信号,通过驱动电路去控制主电路中电力电子器件的导通或者关断,来完成整个系统的功能。因此,一个完整的降压斩波电路也应该包括主电路,控制电路,驱动电路和保护电路致谢环节。根据降压斩波电路设计任务要求设计主电路、控制电路、驱动及保护电路,设计出降压斩波电路的结构框图如下图所示。

第三章-复杂直流电路-练习题答案

一、是非题(2X20) 1、基尔霍夫电流定律仅适用于电路中的节点,与元件的性质有关。() 2、基尔霍夫定律不仅适用于线性电路,而且对非线性电路也适用。() 3、基尔霍夫电压定律只与元件的相互连接方式有关,而与元件的性质无关。() 4、在支路电流法中,用基尔霍夫电流定律列节点电流方程时,若电路有n个节点, 则一定要列出n个方程。() 5、叠加定理仅适用于线性电路,对非线性电路则不适用。() 6、叠加定理不仅能叠加线性电路中的电压和电流,也能对功率进行叠加。() 7、任何一个含源二端网络,都可以用一个电压源模型来等效替代。() 8、用戴维南定理对线性二端网络进行等效替代时,仅对外电路等效,而对网路内电路是不等效 的。() 9、恒压源和恒流源之间也能等效变换。() 10、理想电流源的输出电流和电压都是恒定的,是不随 负载而变化的。() 二、选择题 1、在图3-17中,电路的节点数为()。 A.2 B.3 C.4 D.1 2、上题中电路的支路数为( )。 A.3 B.4 C.5 D.6 3、在图3-18所示电路中,I1和I 2的关系是()。 A. I1>I2 B. I1

第三章复杂直流电路练习题答案(可编辑修改word版)

电工技术基础与技能 第三章 复杂直流电路 练习题 班别:高二( ) 姓 名: 学号: 成绩: 10、理想电流源的输出电流和电压都是恒定的,是不随 负载而变化的。 ( ) 二、选择题 1、在图 3-17 中,电路的节点数为( )。 A .2 B .3 C .4 D .1 2、上题中电路的支路数为( )。 A .3 B .4 C .5 D .6 3、在图 3-18 所示电路中,I 1 和 I 2 的关系是( )。 A . I 1>I 2 B . I 1

全桥(H桥)DCDC变换电路实验

实验3 全桥(H桥)DC/DC变换电路实验一.实验目的 1.掌握开环直流脉宽调速系统的组成、原理及各主要单元部件的工作原理。 2.熟悉直流PWM专用集成电路SG3525的组成、功能与工作原理。 3.熟悉H型PWM变换器的各种控制方式的原理与特点。 二.实验内容 1.PWM控制器SG3525性能测试。 2.控制单元测试。 3.H型PWM变换器性能测试。 三.实验系统的组成和工作原理 在中小容量的直流传动系统中,采用自关断器件的脉宽调速系统比相控系统具有更多的优越性,因而日益得到广泛应用。 PWM变换器主电路系采用H型结构形式,UPW为脉宽调制器,DLD为逻辑延时环节。 脉宽调制器UPW采用美国硅通用公司(Silicon General)的第二代产品SG3525,这是一种性能优良,功能全、通用性强的单片集成PWM控制器。由于它简单、可靠及使用方便灵活,大大简化了脉宽调制器的设计及调试,故获得广泛使用。 四.实验设备及仪器 1.MCL系列教学实验台主控制屏。 2.NMCL-22实验箱。 3.直流电动机M03及测速发电机 4.双踪示波器、万用表。 五.实验方法 采用NMCL—22挂箱 1.UPW模块的SG3525性能测试 (1)用示波器观察UPW的“1”端的电压波形,记录波形的周期,幅度(最大值、最小值); (2)调节RP电位器,记录2端输出波形的最大占空比和最小占空比。 2.控制电路的测试——逻辑延时时间的测试 将UPW的“2”端与DLD(逻辑延迟环节)的”1”相连接。用示波器同时观察DLD的“2”端和“3”端。记录延迟时间t d 3.DC/DC带电阻(灯箱)负载。

1)将H桥的U、V、W分别与电源的U、V、W相连。H桥的1、3相连。 2)将电阻负载(灯箱)以串联的方式接入“6”端和“7”端。 3)确认灯箱的所有灯泡处于断开位置。 3)调整RP电位器,将占空比调整为50%。合上主电源,将一组串联的灯泡打向通的位置。观察并记录负载两端的电压波形,并用万用表直流档记录负载电压的数值(参考方向为6->7),同时观察灯泡的亮度。 4)调整RP,使占空比为0.25,观察并记录负载两端的电压波形,并用万用表直流档记录负载电压的数值(参考方向为6->7),同时观察灯泡的亮度有何变化。 5) 调整RP,使占空比为0.75,观察并记录负载两端的电压波形,并用万用表直流档记录负载电压的数值(参考方向为6->7),同时观察灯泡的亮度有何变化。 6)其他感兴趣的波形和数据,例如用万用表交流档记录负载电压的数值,然后分析交流档数值和直流档数值的关系。 7) 实验完毕,断开主电源。 4.DC/DC带电阻-电感(电动机M03)负载。 1)拆掉电阻负载 2) 将电动机M03的并励绕组与励磁电源相连接。 3)将电动机M03的电枢绕组接入H桥的“6”端和“7”端。 4)调整RP电位器,将占空比调整为50%。合上主电源,观察并记录负载两端的电压波形,并用万用表直流档记录负载电压的数值(参考方向为6->7)。 5)调整RP,使占空比为0.25,观察并记录负载两端的电压波形,并用万用表直流档记录负载电压的数值(参考方向为6->7),同时记录电动机的转速和转向。 6) 调整RP,使占空比为0.75,观察并记录负载两端的电压波形,并用万用表直流档记录负载电压的数值(参考方向为6->7),同时记录电动机的转速和转向。 7)其他感兴趣的波形和数据,例如用万用表交流档记录负载电压的数值,然后分析交流档数值和直流档数值的关系。 8)实验完毕,断开主电源。 六.实验报告 1.根据实验数据,列出SG3525的周期、幅度 2.列出DLD延时环节的延时时间,分析设置延迟时间的目的。 3.列出不同占空比下的电压值和电压波形。 4.H桥输出带灯箱负载时,在不同占空比的情况下,输出电压值发生变化,而灯泡的亮度基本不发生变化,这是为什么。 5.H桥输出带电动机负载时,分析占空比与电机转速的关系。 6.在电力电子技术教材上讲了H桥可以四象限运行,请问实验中,H桥分别运行了在了那几个象限。

交流变直流变换电路综述

班级:11自动化2班姓名:王帅学号:201110320222 电力电子技术论文 交流变直流变换电路综述 基本概念 交直流转换有热电变换、电动系、静电系、电子系等方法。迄今,热电变换仍是一种误差小、灵敏度高、有较好稳定性的交直流转换方法。交流/直流(AC/DC)变换器AC-DC transfer 热电变换器由加热丝和热电偶组成,其间有云母绝缘,热电变换器原理示意图1.加热丝;2.云母片;3.热偶洪.隔离云母片; 5.冷端散热片;6.加热丝引线刃.热偶引线电流通过加热丝所产生的热量使热电偶产生热电势,大小决定于通过加热丝的电流。有效值相等的交流和直流电流在加热丝上产生的电功率相等,翰出的热电势也相等,由此可实现交直流电流的比较。热电变换器的交直流转换误差中包含有在热电转换过程中通过直流和交流电流时,由于一些物理效应(汤姆孙效应和帕尔蒂效应)的影响不同所引起的直流误差,这是因为,这些效应所引起的附加发热在通过直流时不能像通过交流时可以抵消。此外,还有高频下容性泄漏和趋肤效应所引起的高频误差,以及低频下温度波动所引起的低频误差。单元热电变换器的转换误差小于1 x 10一5,使用频率可到10MHZ;多元热电变换器的转换误差则小于1 x 10,但其频率特性较单元热点变换器的差,一般只使用在100khz以下。中国研制的具有保护热电偶的多元热电变换器在4OHZ- 15kHZ范围内交直流转换误差小于1 x 10一‘。还有一种称为薄膜型的热电变换器,是利用集成电路制造技术将加热丝和热偶都集中在一块小基片上而成的,目前有的已做到2(X)多个结。其频率特性介于单结和多结变换器之间,可使用到1 MHz以上,在100翻Hz以下不确定度也可达10一6数t级。近年来发展起来的模数转换器和采样及数据处理技术,也可看作为一种交直流转换方法,尽管准确度目前还比不上热电转换,但已经取得了很多实际应用。当模数转换器对交流信号采样测量时,得到的是交流信号的瞬时值,再按照交流量的定义,通过计算获得如有效值、平均值等特征量模数转换器一般是以直流参考电压(齐纳管)为转换标准的,因此实际上这也是一种交直流转换。为了提高转换精度,人们在提高数模转换器的性能(速率和位数)、改进采样策略和数据处理。由于方法等方面进行了有意义的工作 工作原理 单相AC-DC变换电路设计以Boost升压斩波电路为主电路,MSP430F1611单片机作为微处理器。通过检测电路,单片机控制电路,驱动电路完成对Boost 升压斩波电路实现闭环反馈控制。硬件电路包括Boost升压斩波电路拓扑、场效应管驱动电路、电压采样电路、电流采样电路、矩阵键盘、5110液晶显示模块、辅助电源供电模块、和MSP430F1611单片机最小系统控制电路。 设计以Boost升压斩波拓扑电路作为电源主电路,控制部分以MSP430F1611单片机为控制微处理器。交流20V-30V输入电压条件下Boost升压斩波电路可满

带飞跨电容的三电平全桥直流变换器输入中点电压的自平衡分析

2018年9月电工技术学报Vol.33 No. 18 第33卷第18期TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY Sep. 2018 DOI: 10.19595/https://www.360docs.net/doc/9f6520263.html,ki.1000-6753.tces.171245 带飞跨电容的三电平全桥直流变换器 输入中点电压的自平衡分析 刘朋陈昌松段善旭 (华中科技大学电气与电子工程学院强电磁工程与新技术国家重点实验室武汉 430074) 摘要输入中点电压平衡问题通常是三电平拓扑的研究重点,但是在现有的文献中针对三电平全桥(TLFB)直流变换器的输入中点电压平衡问题还没有深入分析。针对TLFB直流变换器,给出其详细的模态分析,进而揭示其中点电压偏移的原因,并说明飞跨电容能带来中点电压自平衡的功能。首先通过对比无飞跨电容的三电平半桥(TLHB)和TLFB变换器的供电模态,指出在对管关断不一致的情况下,TLFB电路也会出现单个分压电容提供负载电流的模态,从而导致输入中点电压偏移;之后针对带飞跨电容的TLFB电路进行模态分析,证明即使在对管关断不一致的情况下,飞跨电容的引入能极大缓解中点电压的偏移,从而实现自平衡;最后分析稳态情况下偏移电压的影响因素,推导带飞跨电容的TLFB电路中点电压稳态误差的数学表达式,该表达式能够对TLFB变换器中飞跨电容的设计提供理论指导。通过仿真和实验验证了所提方法的有效性。 关键词:三电平全桥直流变换器中点电压平衡飞跨电容 中图分类号:TM46 Self-Balance Mechanism Analysis of the Neutral Point Voltage in Three-Level Full Bridge DC-DC Converter with Flying Capacitors Liu Peng Chen Changsong Duan Shanxu (State Key Laboratory of Advanced Electromagnetic Engineering and Technology School of Electrical and Electronic Engineering Huazhong University of Science and Technology Wuhan 430074 China) Abstract The balance of the neutral point voltage is always an important issue for the three-level topologies, but the deep analysis about the neutral point voltage balance in the three-level full bridge (TLFB) DC-DC converter has not been provided in publications. Focusing on the TLFB converter, this paper provides the detailed mode operation analysis of the converter and reveals the cause of the unbalanced neutral point voltage. Moreover, the mechanism of the self-balance ability brought by the flying capacitors is explained in detail. First, the supply modes of three-level half bridge (TLHB) and TLFB converters without flying capacitors are compared. It is pointed out that in the case of inconsistent turn-off of the diagonal switches, an individual input capacitor will have to provide the load current, resulting in an offset of the neutral point voltage. Then the detailed mode operation of TLFB with flying capacitor has been provided when the diagonal switches turn off inconsistently, which proves that flying capacitors can relieve the drift of the neutral point voltage and further achieve the self-balance of the neutral point voltage. At last, the influence factor of the voltage drift in steady 国家自然科学基金(51477067)和光宝电力电子技术科研基金(PRC20161047)资助项目。 收稿日期 2017-08-29 改稿日期 2017-11-18

直流电压变换电路

第七章 直流电压变换电路 目的要求 1.掌握直流电压变换电路的基本原理和三种控制变换方式。 2.了解晶闸管直流电压变换电路的工作原理及晶闸管换流原理。 3.掌握降压和升压直流变换电路的工作原理及库克(Cuk )电路的工作原理。 4. 了解复合直流电压变换电路的组成及应用。 主要内容及重点难点 1. 直流电压变换电路的基本原理 2. 直流电压变换电路的三种控制变换方式 3. 晶闸管直流电压变换电路的工作原理 4. 晶闸管换流原理 5. 降压及升压直流变换电路的工作原理 6. 库克(Cuk )电路的工作原理 7. 复合直流电压变换电路的组成以及应用 第一节 直流电压变换电路的工作原理及分类 直流电压变换电路也称为直流斩波器,它是将直流电压变换为另一固定电压或大小可调的直流电压的电路。具有效率高、体积小、重量轻、成本低等优点,广泛地应用于可控直流开关稳压电源、直流电动机调速控制和焊接电源等。 一、直流电压变换电路的工作原理 1.电路构成:如图7-1所示为直流电压变换电路原理图及工作波形图, R 为负载;S 为控制开关,是电路中的关键功率器件,它可用普通型晶闸管、可关断晶闸管GTO 或者其它自关断器件来实现。 2.电路输出波形: a) b) 图7-1 直流电压变换电路原理图及工作波形 a) 电路原理图 b) 工作波形 3.工作原理分析: 当开关S 闭合时,负载电压u o =U d ,并持续时间t on ,当开关S 断开时,负载上电压u o =0V ,并持续时间t off 。则T =t on +t off 为直流变换电路的工作周期,电路的输出电压波形如图7-1b 所示。若定义占空比为T t k on =,则由波形图上可得输出电压得平均值为 d d on d off on on o kU U T t U t t t U ==+= (7-1)

直流变换器开题报告..

开题报告 一背景 直流变换器是一种将模拟量转变为数字量的半导体元件。按功能可分为:升压变换器、降压变换器和升降压变换器。在燃料电池汽车中主要采用升压变换器。变换器首先通过电力电子器件将直流电源转变成交流电(AC),一般称作逆变,然后通过变压器(升压比为1∶n)升压,最后通过整流、滤波电路产生变压后的直流电,以供负载使用. 直流转换器与一般的变换器相比,具有抗干扰能力强、可靠性高、输出功率大、品种齐全等特点,用途广泛,输入输出完全隔离,输出多路不限,极性任选。宽范围输入变换器是专为满足输入电压变化范围较大场合需要而开发的一种直流稳压电源,其输入直流电压可以在DC100V-375V宽范围内变动而保证输出电压的稳定性.此外,这种电源体积小,重量轻、保护功能完善,具有良好的电磁兼容性。本身具有过流、过热、短路保护。多档输出的变换器,它不仅提供电源而且有振铃和报警功能。该变换器分为军用、工业及商业三个品级,在诸如通信机房、舰船等蓄电池供电的场合极为适用。直流—直流变换器(DC/DC Converter)早在10年前就做成了元器件式样,在系统中损坏 时可以卸下更换。目前,它正从低技术、元器件型转向高技术、插件(Building black)型发展。系统设计师在开始方案设计阶段就要考虑系统究竟需要什么样的电源输入、输出?DC/DC变换器作为子系统的一个部件,应该更仔细地规定它的指标以及要付出多少费用。有趣的是,全球声称可供给军用DC/DC变换器的厂家超过300家,但却没有两

种产品是相同的,这给系统设计师选用该产品时造成困难。设计师们考虑的最重要的事是:对产品的性能价格比进行综合平衡,决定取舍。需求和市场决定制造厂的发展战略目前,对制造厂家而言,面临着要求降低噪声、减小尺寸以及提高功率和效率的挑战和市场竞争。现扼要介绍几家公司的做法。当今,在任何一个计算机系统中,各种电源都是以插件形式出现的。供应厂商均按用户的要求作相应改动以适应需求。DC/DC直流变换器的军品市场占很大比重,但增长缓慢。分析家们预测:到1996年,DC/DC变换器最大市场将是计算机和通信领域。 美国InterPoint公司的研究开发战略是:针对军用及宇航系统应用,提供一种更便宜、功率更大、性能更好的产品,它们比现有DC/DC 变换器有全面改进。预计今后几年的实际问题仍是产品价格。采用模块化方法可以降低成本,同时提高DC/DC变换器输出功率。一些应用系统要求功率高达2KW,如果采用200W的产品去构建系统,至少要10~12个产品,既麻烦也影响系统可靠性。该公司认为必须研制出功率比200W大2~3倍的大功率电源,而且单件成本控制在1.3~1.7倍才合适。 模块化方法,可以通过消除非重复工程成本(NRE)使系统成本降低。这种模块化的器件也是分布式供电系统的基本构件。鉴于分布式供电比集中供电系统有更多优点,而绝大多数应用系统要求在母线级上直流电压要分别供给不同逻辑电路各种电压,例如+5V、+12V、+3.3V 等等。一些厂家利用板级(on-Card)DC/DC变换器来实现,另一些供应商则把几种输出合在一起,把电源放在靠近需要供电的电路板上。

相关文档
最新文档