微积分方法建模5万有引力定律的发现--数学建模案例分析

微积分方法建模5万有引力定律的发现--数学建模案例分析
微积分方法建模5万有引力定律的发现--数学建模案例分析

§5 万有引力定律的发现

历史背景

德国天文学家、数学家开普勒(1571—1630)在第谷.布拉赫对于行星运动大量观测资料的基础上,经过对观测数据长期深入的分析,归纳出著名的所谓行星运动三定律,即:

(1)各颗行星分别在不同的椭圆轨道上绕太阳运行,太阳位于这些椭圆的一个焦点上;

(2)每颗行星运行过程中单位时间内太阳—行星向径扫过的面积是常数;

(3)各颗行星运行周期的平方与其椭圆轨道长半轴的3次方成正比。

由于当时尚没有计算变速运动的工具,而从开普勒定律可以看出行星运行速度是变化的。十

七、十八世纪许多科学家致力于行星沿椭圆轨道运行时受力状况的研究,终未得到有关引力的结果。

牛顿在研究变速运动过程中发明了微积分,又以此为工具在开普勒三定律和牛顿第二定律的基础上,成功地得到万有引力定律。

模型假设 对任一行星椭圆运行轨道建立极坐标系),(θr ,以太阳为坐标原点,长半轴方向为0=θ,向径r 表示行星的位置。

1、轨道方程为 )1(,,cos 12222e a b a b e r -==+=ρθρ

(1) 其中b a ,为椭圆的长短半轴,e 为离心率。

2、单位时间内向径r 扫过的面积是常数A ,即

A r =?θ22

1 (2) 3、行星运行周期T 满足32a T λ= (3)

4、行星运行时受的作用力→f 等于行星加速度??r 和质量m 的乘积,即→

??→=r m f (4) 模型建立 引入基向量 ?????+-=+=→→

θ

θθθθcos sin sin cos j i u j i u r (5) 向径→r 可表示为:→→=r u r r 。以下记dt d ?=

?? (6) 由(5)可得 ?????-==→?→→?→??r r u u u u θθθ

θ (7) 由(6)、(7)两式可得

?→?→→→+=+=??

θθu r u r u r u r r r r r (8)

→????→???→?→??→??→?→??????? ??++???? ??-=++++=?

?θθθθθθθθθθu r r u r r u r u r u r u r u r r r r r 22 (9) 根据(2)式得 22r A =

?θ,34r r A ???-=θ (10) 于是 02=+????θθr r ,(9)式化为 →????????

? ??-=→r u r r r 2θ (11) 对(1)式求导,并利用(10)式?

θ的结果,得

()θρθθθρsin 2cos 1sin 2Ae e r =?+=?? (12) ()32224cos 4cos 2r r A r e A Ae r ρρθρθθρ-==?=?

?? (13) 把(10)、(13)代入(11)式得 →??-=→r u r

A r 224ρ (14) 把(14)、(6)代入(4)式得 →→-=0224r r m A f ρ ,r r r →

→=0 (15) 又由(2),行星运行一个周期T 向径扫过的面积为ab π,所以 ab TA π= (16)

由(1)、(3)、(16)式容易算出 λ

πρ2

2

=A (17) 把(17)代入(15)式有 →→-=0224r r m f λπ (18) 将λπ2

4写成kM (k 为万有引力常数,M 为太阳质量),于是 →

-=02r r Mm k f (19) 模型验证 由于32a

T =λ,232244T a πλπ=,()米111049.1?=a ,(秒)¨1016.37?=T ,()2311/1071.6秒千克米??=-k ,()千克=30

1096.1?M ,可算得192321007.134?=T a π ,19

1015.13?=kM ,验证了 kM T a =23

24π。

数学建模与计算机关系研究

数学建模与计算机关系研究 【摘要】高等数学与计算机教学具有内在相关性,尤其是在数学建模应用中,根据计算机学科发展来发挥数学建模理论的作用及效果,有助于增强学生对高等数学的理解和应用能力。基于此,本文笔者就从高等数学建模理论与计算机技术的关系研究入手,来阐述建模嵌入在计算机辅助教学中的重要潜力。 【关键词】计算机;高等数学;教学改革;数学建模 1.高等数学与计算机学科发展 有人说,计算机技术的发展可以省去学习数学的麻烦,即便是很多专业计算机教师也抱有同样的想法。然而,对于计算机应用领域及实践中,计算机技术确实给很多从业者带来了便捷与高效,但计算机技术不等于数学,更不能替代数学。从高等数学教学实践来看,对于我们常见的数学概念,如比率、概率、图像、逻辑、误差、机会,以及程序等知识的认识,很多行业都在进行数字化、数量化转变,对数学知识的应用也日益广泛。从这些应用中,数学理论及知识,尤其是数学基本理论研究就显得更为重要。数学,在数学知识的应用中,更需要从练习中来提升对数学知识及概念的理解,也需要通过练习来提升运算能力。如果对数学概念及方法应用的不过,对数学单调性的知识缺乏深刻的认识,就会影响数学知识在实践应用中出现偏差。计算机技术的出现,尤其是程序化语言的应用,使得数学知识在表达与反映中能够依据不同的应用灵活有效、准确的运算,从而减少了不必要的验证,也提升了数学在各行业中的应用效率。 数学软件学科的发展,成为计算机重要的辅助教学的热门领域,也使得计算机技术能够发挥其数学应用能力。在传统的数学教学中,逻辑与直观、抽象与具体始终是研究的矛盾主体,如有些太简单的例子往往无法进行全面的计算;有些复杂的例子又需要更多的计算量。在课堂表现与讲解中,对于理性与感性知识的认知,学生缺乏有效的理解和应用,而强大的计算机运算功能却能够直观的表达和弥补这些缺陷,并依托具体的演示过程中来营造概念间的差异性,帮助学生从中领会知识及方法。在计算机的辅助教学下,教师利用对数学理论课题或应用课题,从鲜活的思维及形象的表达上借助于软件来展现,让学生从失败与成功中得到知识的应用体验,从而将被动的知识学习转变为主动的参与实践,更有助于通过实践来激发学生的创新精神。这种将数学教学思维与逻辑与计算机技术的融合,便于从教学中调整教学目标,依据学生所需知识及专业需求来分配侧重点。数学建模就是从数学学科与计算机学科的融合与实践中帮助学生协作学习,提升自身的能力。 2.信息技术是高等数学应用的产物 现代信息技术的发展及应用无处不在,对数学知识的渗透也是日益深入。当前,各行业在多种协作、多种专业融合中,借助于先进的信息技术都可以实现畅通的表达与物化。如天气预报技术、卫星电视技术、网络通讯技术等都需要从数

数学建模-微积分模型

第四章 微积分模型 今天人们不论从事什么活动都讲究高效益,即希望所采取的策略使某个或某些指标达到最优。商店订货要使订货、存贮等费用最小,体育比赛运动员要创造最好的成绩,工程设计要追求最佳方案。普遍存在的优化问题经常成为人们研究的对象,建立这类问题的模型,我们称为优化模型。 建立优化模型首先要确定所关心的优化指标的数量描述,然后构造包括这个指标及各种限制条件的模型,通过模型求解给出达到优化指标的所谓策略。本章仅考虑定常情况(即所给的策略不随时间改变)。 4.1 不允许缺货模型 某配送中心为所属的几个超市送配某种小电器,假设超市每天对这种小电器的需求量是稳定的,订货费与每个产品每天的存贮费都是常数。如果超市对这种小家电的需求是不可缺货的,试制定最优的存贮策略(即多长时间订一次货,一次订多少货)。 如果日需求量价值100元,一次订货费用为 5000元,每件电器每天的贮存费1元,请给出最 优结果。 模型假设: (1)每天的需求量为常数r ; (2)每次的订货费用为c 1,每天每件产品的存贮费为c 2 ; (3)T 天订一次货,每次订Q 件,且当存贮量 为0时,立即补充,补充是瞬时完成的; (4)为方便起见,将r ,Q 都视为连续量。 模型建立 将存贮量表示为时间的函数(),0q t t =时,进货Q 件这类小电器,储存量(0),()q Q q t =以需求r 的速率递减,直到q (T )=0。 易见 Q=rT (4.1) 一个周期的存贮费用 C 2= A c ds s q T 20 )(=? 一个周期的总费用 C =2 2 21rT c c + 每天平均费用

建立数学建模案例分析

§15.4锁具装箱问题 [学习目标] 1.能表述锁具装箱问题的分析过程; 2.能表述模型的建立方法; 3.会利用排列组合来计算古典概型; 4.会利用Mathematica求解锁具装箱问题。 一、问题 某厂生产一种弹子锁具,每个锁具的钥匙有5个槽,每个槽的高度从{1,2,3,4,5,6}6个数(单位从略)中任取一数。由于工艺及其它原因,制造锁具时对5个槽的高度有两个要求:一是至少有3个不同的数;二是相邻两槽的高度之差不能为5。满足上述两个条件制造出来的所有互不相同的锁具称为一批。销售部门在一批锁具中随意地抽取,每60个装一箱出售。 从顾客的利益出发,自然希望在每批锁具中不能互开(“一把钥匙开一把锁”)。但是,在当前工艺条件下,对于同一批中两个锁具是否能够互开,有以下实验结果:若二者相对应的5个槽的高度中有4个相同,另一个槽的高度差为1,则可能互开;在其它情况下,不可能互开。 团体顾客往往购买几箱到几十箱,他们会抱怨购得的锁具中出现互开的情形。现请回答以下问题: 1.每批锁具有多少个,能装多少箱? 2.按照原来的装箱方案,如何定量地衡量团体顾客抱怨互开的程度(试对购买一、二箱者给出具体结果)。 二、问题分析与建立模型 因为弹子锁具的钥匙有5个槽,每个槽的高度从{1,2,3,4,5,6}这6个数中任取一数,且5个槽的高度必须满足两个条件:至少有3个不同的数;相邻两槽的高度之差不能为5。所以我们在求一批锁具的总数时,应把问题化为三种情况,即5个槽的高度由5个不同数字组成、由4个不同数字组成、由3个不同数字组成,分别算出各种情况的锁具个数,然后相加便得到一批锁具的总个数。在分别求这三种情况锁具个数的时候,先求出满足第1个条件的锁具个数再减去不满足第2个条件的锁具个数。在求这三种情况锁具个数的时候,主要依靠排列组合的不尽相异元素的全排列公式。 下面用一个5元数组来表示一个锁具: Key=(h1,h2,h3,h4,h5) 其中h i表示第i个槽的高度,i=1,2,3,4,5。此5元数组表示一把锁,应满足下述条件: 条件1:h i∈{1,2,3,4,5,6},i = 1,2,3,4,5。

微积分方法建模2经济增长模型--数学建模案例分析

§2 经济增长模型 发展经济、增加生产有两个重要因素,一是增加投资(扩大厂房、购买设备、技术革新等), 二是增加劳动力。恰当调节投资增长和劳动力增长的关系,使增加的产量不致被劳动力的增长抵消,劳动生产率才能不断提高,从而真正起到发展经济的作用。为此,需要分析产量、劳动力和投资之间变化规律,从而保证经济正常发展。 记 )(t Q —某地区、部门或企业在t 时刻的产量 )(t L —某地区、部门或企业在t 时刻的劳动力 )(t K ?某地区、部门或企业在t 时刻的资金 )(t Z —每个劳动力在t 时刻占有的产量(劳动生产率) 一、道格拉斯(Douglas )生产函数 由于现在关心的是产量、劳动力、投资的相对增长量,不是绝对量, 所以定义 ,)0()()(Q t Q t i Q =)0()()(L t L t i L = ,)0()()(K t K t i K = (1) 分别称为产量指数、劳动力指数和投资指数。 在正常的经济发展过程中这三个指数都是随时间增长的,但它们之间的关系难以从机理分析 得到,只能求助统计资料.Douglas 从大量统计数据中发现下面的规律: 如果令 )()(ln )(t i t i t K L =ξ,) ()(ln )(t i t i t K Q =ψ (2) 则散点),(ψξ在ψξ~平面直角坐标系上的图象大致如下

即大多数点靠近一条过原点的直线,这提示ξ和ψ的关系为 )10(<<=γγξ ψ (3) 上式代入得 )()()(1t i t i t i K L Q γγ-= (4) 记)0()0()0(1--=γγK L Q a ,则由(1)、(4),可得 )0,10(),()()(1><<=-a t K t aL t Q γγγ (5) 这就是经济学中著名的Douglas 生产函数,它表明产量与劳动力、投资之间的关系。由(5)有 K K L L Q Q )1(γγ-+= (6) (6)表明年相对增长量Q Q 、L L 、K K 之间呈线性关系。且1→γ说明产量增长主要靠劳动力的增长;0→γ说明产量增长主要靠投资的增长。称γ是产量对劳动力的弹性系数。 二、劳动生产率增长的条件 定义 )()()(t L t Q t Z =—劳动生产率,则L L Q Q Z Z -=,由(6)代入 则 ))(1(L L K K Z Z --=γ (7) 可见,只要L L K K >,就能保证0>Z Z ,即劳动生产率的提高需要由投资的相对增长大于劳动力的相对增长为前提条件。 问题:考虑到物价上升因素我们记物价上升指数为)((t P 设)1)0(=P ,则产品的表面价值)(t y 、实际价值)(t Q 和物价指数)(t P 之间满足)(t y )()(t P t Q =。 (1)导出)(t y 、)(t Q 、)(t P 的相对增长率之间的关系,并作解释。 (2)设雇佣工人数目为)(t L ,每个工人工资为),(t W 企业的利润简化为产品的收入)(t y 中扣除工人的工资和固定成本,企业应雇佣多少工人能使利润最大。

数学建模案例分析--对策与决策方法建模6决策树法

§6 决策树法 对较为复杂的决策问题,特别是需要做多个阶段决策的问题,最常用的方法是决策树法。决策树法是把某个决策问题未来发展情况的可能性和可能结果所做的预测用树状图画出来。其步骤如下: 1、用方框表示决策点。从决策点画出若干条直线或折线,每条线代表一个行动方案,这样的直线或折线称为方案枝。 2、在各方案枝的末端画一个园圈,称为状态点,从状态点引出若干直线或折线,每条线表示一个状态,在线的旁边标出每个状态的概率,称为概率枝。 3、把各方案在各个状态下的损益期望值算出标记在概率枝的末端。 4、把计算得到的每个方案的损益期望值标在状态点上,然后通过比较,选出损益期望值最小的方案为最优方案。 例1某厂准备生产一种新产品,产量可以在三种水平n1、n2、n3中作决策。该产品在市场上的销售情况可分为畅销、一般和滞销三种情况,分别为S1、S2、S3。通过调查,预测市场处于这三种情况的概率分别为0.5、0.3、0.2。三种决策在各种不同市场情况下的利润见下表: 表1 基于各种决策的各种市场情况的利润表(万元) 我们可以计算每种决策下利润的期望值: 实行在水平n1下生产的利润的期望值为:90×0.5+30×0.3-60×0.2=42 实行在水平n2下生产的利润的期望值为:60×0.5+50×0.3-10×0.2=43 实行在水平n3下生产的利润的期望值为:10×0.5+9×0.3-6×0.2=6.5 由于在水平n2下生产利润的期望值最大,因而应选择产量水平n2生产。 可以应用决策树帮助解决这样的决策问题,把各种决策和情况画在图1上: 图1

图中的方框(□)称为决策点,圆圈(○)称为状态点,从方框出发的线段称为对策分支,表示可供选择的不同对策。在圆圈下面的线段称为概率分支,表示在此种对策下可能出现的各种情况。在概率分支上注明了该情况出现的概率。在每一个概率分支的末端注明了对应对策和对应情况下的收益(利润)。在计算时,我们把相应的期望值写在相应的状态点旁边,再由比较大小后选择最优决策,在图上用∥表示舍弃非最优的对策,并在决策点上注明最优决策所对应的期望利润。 图2 利用决策树还可以解决多阶段的决策问题。 例2 某公司在开发一种新产品前通过调查推知,该产品未来的销售情况分前三年和后三年两种情况。因此生产该产品有两种可供选择的方案:建造大厂和建造小厂。如果建造大厂,投资费用5000万元,当产品畅销时,每年可获利2000万元,当产品滞销时,每年要亏损120万元。如果建造小厂,投资费用1000万元,当产品畅销时,每年可获利300万元,当产品滞销时,每年仍可获利150万元。若产品畅销可考虑在后三年再扩建,扩建投资需2000万元,随后三年每年可获利1000万元;也可不再扩建。预测这六年该产品畅销的概率为0.6,滞销的概率为0.4。试分析该公司开发新产品应如何决策? 根据问题的各种情况可以画出决策树如下:这是一个两阶段的决策问题。注意到图中有两个决策点,反映建小厂的方案中可以分成前三年和后三年两个阶段,并在后三年还要做出一次决策。 图3 把各种数据填到图适当的位置后,由后向前计算获利的期望值。由图可见应采用决策:建造大厂。 500 900 1000*3=3000 300*3=900 6.5

数学建模案例分析

案例分析1: 自行车外胎的使用寿命 问题: 目前,自行车在我国是一种可缺少的交通工具。它小巧、灵活、方便、易学,而且价格适中,给广大居民带来了不小的益处。但是,自行车也有令人头痛的地方,最常见的问题莫过于扎胎了。扎胎的原因有很多,但相当一部分是由于外胎磨损,致使一些玻璃碴、小石子很容易侵入、扎破内胎。为了减少不必要的麻烦,如何估计自行车外胎的寿命,及时更换? 分析: 分析角度:由于题目里未明确指出我们是应从厂家角度,还是应从用户角度来考虑这个问题,因此需要我们自己做出合理判断。若从厂家角度,我们面对的应当是一大批自行车外胎的平均寿命的估计。这样的估计要求一定精确度和相对明确的使用环境;而从用户角度来说,面对的仅是个人的一辆车,不需要很高的精确度,这样的寿命估计更简单,易于随时了解,下面仅从用户角度进行分析。 产品的使用者需要了解产品的寿命,是基于安全性及更换的费用来考虑的。我们将这两个标准作为主要标准来分析,首先值得注意的两个关键性问题是如何定义寿命、何时为寿命的终止。寿命的定义要做到科学,直观,有可比性,在航空工业中航天飞机的使用寿命是用重复使用的次数来衡量,而工厂机器设备的寿命则以连续工作的时间来定义。本题外胎的寿命亦可用时间来表征,但由于外胎的寿命直接与其磨损速度相关;而磨损速度又与使用频率及行驶速度相互联系,致使外胎的寿命不一定与使用时间成正比(这种非正比关系使我们不能拿一辆—天跑200公里的自行车与一天只跑1公里的自行车进行寿命比较),降低了可比性。如换成自行车的路程寿命来比较,就好得多。产品寿命是在安全性和更换费用相互制约下达到的一个点,在这个点上,外胎的安全系数降到用户不可接受的最低值,更换费用(寿命越长,在一定意义上更换费用越低)也达到了最大限度的节省。 弄清了上面两个问题后,我们继续明确建立模型需要解决哪些问题及建立模型的重点难点。 自行车使用过程中,一来影响因素多,二来这些因素之间彼此相关,十分复杂,要做到比较准确地估计使用寿命,不但要对外胎的性能有相当的了解,而且对使用环境更不能忽视。当然我们由于是站在用户角度上来考虑的,相对地就可忽略一些次要的影响因素。 这样的数学模型面对着两个主要问题。一、自行车使用寿命与外胎厚度的关系,二、外胎能够抵御小石子破坏作用的最小厚度。后者可处理得相对简略些(如只考虑一块具有一般特征的小石子对外胎的破坏作用),而重点(也是难点)是第一个问题。车重、人重、轮胎性质(力学的、热学的、甚至化学的)和自行车使用频率等都左右着它们的关系。这么多相关因素,不必一一都加以考虑(用户是不会在意这么多的),有些因素,可以先不考虑,在模型的改进部分再作修改,采取逐步深入的方法,如:摩擦损耗有滑动摩擦和滚动摩擦损耗两种,由于滚动摩擦占用的时间(或路程)显然占绝对优势,因此可重点考虑。但滑动摩擦造成的一次损坏又比滚动摩擦大,在刹车使用过频的情况下,就不能不考虑了。 最后,需对得出的结果用简单清晰的文字进行说明,以供用户参考。 案例分析2:城市商业中心最优位置分析 问题: 城市商业中心是城市的基本构成要素之一。它的形成是一个复杂的定位过程。商业中心的选址涉及到各种因素制约,但其中交通条件是很重要的因素之一。即商业中心应位于城市“中心”,如果太偏离这一位置,极有可能在城市“中心”地带又形成一个商业区,造成重复建设。 某市对老商业中心进行改建规划,使居民到商业中心最方便。如果你是规划的策划者,如何建立一个数学模型来解决这个问题。

数学建模案例分析-- 插值与拟合方法建模1数据插值方法及应用

第十章 插值与拟合方法建模 在生产实际中,常常要处理由实验或测量所得到的一批离散数据,插值与拟合方法就是要通过这些数据去确定某一类已经函数的参数,或寻求某个近似函数使之与已知数据有较高的拟合精度。插值与拟合的方法很多,这里主要介绍线性插值方法、多项式插值方法和样条插值方法,以及最小二乘拟合方法在实际问题中的应用。相应的理论和算法是数值分析的内容,这里不作详细介绍,请参阅有关的书籍。 §1 数据插值方法及应用 在生产实践和科学研究中,常常有这样的问题:由实验或测量得到变量间的一批离散样点,要求由此建立变量之间的函数关系或得到样点之外的数据。与此有关的一类问题是当原始数据 ),(,),,(),,(1100n n y x y x y x 精度较高,要求确定一个初等函数)(x P y =(一般用多项式或分段 多项式函数)通过已知各数据点(节点),即n i x P y i i ,,1,0,)( ==,或要求得函数在另外一些点(插值点)处的数值,这便是插值问题。 1、分段线性插值 这是最通俗的一种方法,直观上就是将各数据点用折线连接起来。如果 b x x x a n =<<<= 10 那么分段线性插值公式为 n i x x x y x x x x y x x x x x P i i i i i i i i i i ,,2,1,,)(11 1 11 =≤<--+--= ----- 可以证明,当分点足够细时,分段线性插值是收敛的。其缺点是不能形成一条光滑曲线。 例1、已知欧洲一个国家的地图,为了算出它的国土面积,对地图作了如下测量:以由西向东方向为x 轴,由南向北方向为y 轴,选择方便的原点,并将从最西边界点到最东边界点在x 轴上的区间适当的分为若干段,在每个分点的y 方向测出南边界点和北边界点的y 坐标y1和y2,这样就得到下表的数据(单位:mm )。 根据地图的比例,18 mm 相当于40 km 。

数学建模微积分模型

第四章 微积分模型 今天人们不论从事什么活动都讲究高效益,即希望所采取的策略使某个或某些指标达到最优。商店订货要使订货、存贮等费用最小,体育比赛运动员要创造最好的成绩,工程设计要追求最佳方案。普遍存在的优化问题经常成为人们研究的对象,建立这类问题的模型,我们称为优化模型。 建立优化模型首先要确定所关心的优化指标的数量描述,然后构造包括这个指标及各种限制条件的模型,通过模型求解给出达到优化指标的所谓策略。本章仅考虑定常情况(即所给的策略不随时间改变)。 4.1 不允许缺货模型 某配送中心为所属的几个超市送配某种小电器,假设超市每天对这种小电器的需求量是稳定的,订货费与每个产品每天的存贮费都是常数。如果超市对这种小家电的需求是不可缺货的,试制定最优的存贮策略(即多长时间订一次货,一次订多少货)。 如果日需求量价值100元,一次订货费用为 5000元,每件电器每天的贮存费1元,请给出最 优结果。 模型假设: (1)每天的需求量为常数r ; (2)每次的订货费用为c 1,每天每件产品的存贮费为c 2 ; (3)T 天订一次货,每次订Q 件,且当存贮量 为0时,立即补充,补充是瞬时完成的; (4)为方便起见,将r ,Q 都视为连续量。 模型建立 将存贮量表示为时间的函数(),0q t t =时,进货Q 件这类小电器,储存量(0),()q Q q t =以需求r 的速率递减,直到q (T )=0。 易见 Q=rT (4.1) 一个周期的存贮费用 C 2= A c ds s q T 20 )(=? 一个周期的总费用 C =2 2 21rT c c + 每天平均费用 2 )(21rT c T c T c += (4.2) 模型求解 求T ,使)(T c 取最小值。 由 0=dT dc ,得 2 12 1 2,2c r c Q rc c T = = (4.3)

微积分方法建模如何预报人口的增长--数学建模案例分析

§9 如何预报人口的增长 人口的增长是当前世界上引起普遍关注的问题,我们常在报刊上看见关于人口增长的预报,而且你可能注意到不同的报刊对同一时间同一国家或地区的人口预报在数字上常有较大的差别,这其实是由于使用了不同的人口模型计算的结果.建立人口模型的意义在于利用模型中的参数及时控制人口的增长. 模型一 Malthus 指数增长模型 英国人口学家malthus 根据百余年的人口统计资料,于1787年提出著名的指数增长模型. 假设 1、某国家或地区在时刻t 的人口)(t x 为连续可微函数; 2、人口的增长率r 是常数,或者说,单位时间人口的增长量与当时的人口成正比. 建模 记0x 为初始时刻)0(=t 的人口,由假设2,t 到t t ?+时间内的人口增量为 t t rx t x t t x ?=-?+)()()( 易导出下面的微分方程 ?????==0 )0(x x rx dt dx 求解 易解出)0()(0>=r e x t x rt 分析 模型与19世纪以前欧洲一些地区和国家的人口增长率长期稳定不变的人口统计数据可以很 好地吻合,但是与19世纪以后许多国家的人口统计资料却有很大差异.出现这种差异的原因是19世纪以后人口的增长率已不再是常数.比如美国19世纪100年的10年增长率0.266,20世纪80年的10年增长率0.137,而1970至1980年的10年增长率为0.0307. 模型二 Logistic 阻滞增长模型 假设 1、同模型一; 2、当人口增加到一定数量后,增长率随着人口的继续增加而逐渐减少,且)(x r 为x 的线性函数sx r x r -=)()0,(>s r ,其中r 相当于0=x 时的增长率,称固有增长率; 3、自然资源和环境条件所能容纳的最大人口数量m x ,称最大人口容量. 建模 当m x x =时增长率应为0,即0)(=m x r ,从而m x r s = ,于是)1()(m x x r x r - =,其中r ,m x 是根据人口统计数据确定的常数.m x 常由经验确定.仿模型一同样得 ?? ???=-=0)0()1(x x x x x r dt dx m

微积分方法建模飞机的降落曲线数学建模案例分析

第二章 微积分方法建模 现实对象涉及的变量多是连续的,所以建立连续模型是很自然的,而连续模型一般可以用微积分为工具求解,得到的解析解便于进行理论分析,于是有些离散对象,如人口的演变过程,也可以构造连续模型.当我们描述实际对象的某些特性随时间(或空间)而演变的过程,分析它的变化规律,预测它的未来性态时,通常要建立对象的动态模型.建模时首先要根据建模目的和对问题的具体分析作出简化假设,然后按照对象内在的或可以类比的其它对象的规律列出微分方程,求出方程的解并将结果翻译回实际对象,就可以进行描述、分析或预测了. §1 飞机的降落曲线 根据经验,一架水平飞行的飞机,其降落曲线是一条三次抛物线(如图).在整个降落过程中,飞机的水平速度保持为常数u ,出于安全考虑,飞机垂直加速度的最大绝对值不得超过10/g (这里g 是重力加速度).已知飞机飞行高度h (飞临机场上空时),要在跑道上O 点着陆,应找出开始下降点0x 所能允许的最小值. 一、 由题设有 .将上述的四个条件代入y 的 表达式 ??? ????=++='=+++==='==023)()(0)0(0)0(020*******c bx ax x y h d cx bx ax x y c y d y 得 ,0,0,3,22030===-=d c x h b x h a 飞机的降落曲线为 )32(230 20x x x x h y --= 二、 找出最佳着陆点 飞机的垂直速度是y 关于时间t 的导数,故

dt dx x x x x h dt dy )66(20 20--= 其中dt dx 是飞机的水平速度,,u dt dx = 因此 )(60 2 20x x x x hu dt dy --= 垂直加速度为 )12(6)12(6020 202022--=--=x x x hu dt dx x x x hu dt y d 记 ,)(22dt y d x a =则126)(0 202-=x x x hu x a ,[]0,0x x ∈ 因此,垂直加速度的最大绝对值为 202 6)(max x hu x a = []0,0x x ∈ 设计要求 106202 g x hu ≤,所以g h u x 600?≥ (允许的最小值) 例如:小时/540km u =,m h 1000=,则0x 应满足: )(117378 .9100060360010005400m x =??≥ 即飞机所需的降落距离不得小于11737米.

初中数学建模案例

中学数学建模论文指导 中学阶段常见的数学模型有:方程模型、不等式模型、函数模型、几何模型和统计模型等。我们也把运用数学模型解决实际问题的方法统称为应用建模。可以分五种模型来写。论文最好自己写,如果是参加竞赛的话从网上找的会被搜出来的。 一、建模论文的标准组成部分 建模论文作为一种研究性学习有意义的尝试,可以锻炼学生发现问题、解决问题的能力。一般来说,建模论文的标准组成部分由论文的标题、摘要、正文、结论、参考文献等部分组成。现就每个部分做个简要的说明。 1. 题目 题目是给评委的第一印象,所以论文的题目一定要避免指代不清,表达不明的现象。建议将论文所涉及的模型或所用的计算方式写入题目。如“用概率方法计算商场打折与返券的实惠效应”。 2. 摘要 摘要是论文中重要的组成部分。摘要应该使用简练的语言叙述论文的核心观点和主要思想。如果你有一些创新的地方,一定要在摘要中说明。进一步,必须把一些数值的结果放在摘要里面,例如:“我们的最终计算得出,对于消费者来说,打折比返券的实惠率提高了23%。”摘要应该最后书写。在论文的其他部分还没有完成之前,你不应该书写摘要。因为摘要是论文的主旨和核心内容的集中体现,只有将论文全部完成且把论文的体系罗列清楚后,才可写摘要。 摘要一般分三个部分。用三句话表述整篇论文的中心。 第一句,用什么模型,解决什么问题。 第二句,通过怎样的思路来解决问题。 第三句,最后结果怎么样。 当然,对于低年级的同学,也可以不写摘要。 3. 正文 正文是论文的核心,也是最重要的组成部分。在论文的写作中,正文应该是从“提出问题—分析问题—选择模型—建立模型—得出结论”的方式来逐渐进行的。其中,提出问题、分析问题应该是清晰简短。而选择模型和建立模型应该是目标明确、数据详实、公式合理、计算精确。在正文写作中,应尽量不要用单纯

数学建模案例分析--灰色系统方法建模2灰色预测模型GM(1-1)及其应用

§2 灰色预测模型GM(1,1)及其应用 蠕变是材料在高温下的一个重要性能。处于高温状态下的材料长期受到载荷作用时,即使其载荷较低,并且在短时间的高温拉伸试验中材料不发生变形,但在此情况下仍会有微小的蠕变,极端的情况下,甚至会使材料发生破坏。高温材料多应用于各种车辆的发动机及冶金厂中各种设备上,如果因蠕变引起破坏,可能造成很大的事故。 为了保证设备的安全可靠,在某一使用温度下,预先知道该材料对不同载荷应力下断裂的时间是很重要的。过去,人们都是通过蠕变试验测量断裂时间。而做蠕变试验时,需要很长时间才能得到结果,即使通过试验得出的数据,也只是对某几个具体试样而言,存在很大的偶然性,不能代表普遍的规律。如果将实测的数据用灰色系统理论来处理,可以预测在某一温度下的任何载荷应力的断裂时间。 一、灰色预测模型GM (1,1) 建模步骤如下: (1)GM (1,1)代表一个白化形式的微分方程: u aX dt dX =+)1() 1( (1) 式中,u a ,是需要通过建模来求得的参数;) 1(X 是原始数据) 0(X 的累加生成(AGO )值。 (2)将同一数据列的前k 项元素累加后生成新数据列的第k 项元素,这就是数据处理。表示为: ∑==k n n X k X 1 )0() 1()()( (2) 不直接采用原始数据) 0(X 建模,而是将原始的、无规律的数据进行加工处理,使之变得较有规 律,然后利用生成后的数据列来分析建模,这正是灰色系统理论的特点之一。 (3)对GM (1,1),其数据矩阵为 ???? ?? ? ? ?+--+-+-=1)]()1([5.01)]3()2([5.01)]2()1([5.0)1()1()1()1()1()1(N X N X X X X X B (3) 向量T N N X X X Y )](,),3(),2([)0()0()0( = (4)作最小二乘估计,求参数u a , N T T Y B B B u a 1)(?-=??? ? ??=α (4) (5)建立时间响应函数,求微分方程(1)的解为 a u e a u X t X at +-=+-))1(()1(?)0()1( (5)

微积分模型

第一篇 微积分模型 在微积分部分的应用实例中,通过对应用问题建模主要培养应用极限、连续、相对变化率、微元、无穷级数、最优化和微分与差分方程等思想解决实际应用问题的能力。 函数的性质包括分段性质、单调性、奇偶性等,由函数的基本性质可以产生对函数进行分类的方法。与函数基本特性相关的应用实例有:市话费是降了还是升了,外币兑换与股票交易中的涨跌停板,库存问题与库存曲线,“另类”的常量函数,蠓虫分类的初等数学模型,核军备竞赛问题等。 数列与函数的极限和函数连续性质是处理变量变化过程的工具,应用重要极限计算连续复利利率的计算,应用函数的连续性和介值定理解决特殊的应用问题。与极限和连续等内容相关的应用实例有:从科赫雪花谈起,复利、连续复利与贴现,出售相同产品的公司为什么喜欢扎堆,椅子为什么能放稳等。 导数、微分是函数的相对变化的极限过程,函数的特性和极值理论可以解决经济管理中的实际应用问题,导数、微分在经济管理中的应用反映为边际、弹性等。相关的应用实例有:影子为什么那么长,边际是什么?弹性是什么?商家应该怎样制定自己的价格策略?不同消费群体的需求弹性问题,机械与人工的调配问题,易拉罐的形状,这批酒什么时候出售最好,该不该接受供货商的优惠条件,作者与出版商的利益冲突等。 微元分析是微积分中一种重要的分析方法,特别是函数的连续求和归结为该函数的积分。与积分和微元分析内容相关的应用实例有:洛伦兹曲线与基尼系数,均匀货币流的总价值与投资回收期的计算,下雪时间的确定,第二宇宙速度是怎样计算出来的等。 离散变量的求和可以用无穷级数来表达,无穷级数的求和是一个极限过程。与无穷级数内容相关的应用实例有:最大货币供应量的计算,政府支出的乘数效应,运用现值计算进行投资项目的评估,谈谈龟兔赛跑悖论 等。 如果影响研究问题的主要因素有两个或者两个以上,则要用多元函数的微积分学来处理,涉及到多元函数偏导数、偏边际、偏弹性和交叉弹性、条件极值等内容。相关的应用实例有:空调销售量的预测,相互关联商品的需求分析,衣物怎样漂洗最干净,拉格朗日乘数与影子价格等。 变量的变化过程可以用微分方程或差分方程来描述,通过对微分方程或差分方程的建立与求解,可以研究变量的形态和变化规律。与微分方程和差分方程相关的应用实例有:人口模型,单种群动物模型,相对封闭环境中的传染病模型,江河污染物的降解系数,怎样计算固定资产的折旧,放射性元素衰变模型,市场上的商品价格是怎样波动的,再谈下雪时间的确定,溶液浓度模型,饲养物的最佳销售时机,信贷消费中每月还款金额的确定,资源的合理开发与利用,从诺贝尔奖谈起,蛛网模型,梵塔问题,平面内直线交点的个数,菲波那契数列的通项公式等。 1

数学核心素养之数学建模教学案例

数学核心素养之数学建模教学案例 1引言:新修订的高中数学课程提出,数学核心素养是数学课程目标的集中体现,是具有数学基本特征、适应个人终身发展和社会发展需要的必备品格与关键能力。高中数学核心素养主要包括:数学抽象、逻辑推理、数学建模、数学运算、直观想象、数据分析。 其中,对于数学建模,详细描述为数学建模是对现实问题进行数学抽象,用数学语言表达问题、用数学知识与方法构建模型解决问题的过程。主要包括:在实际情境中从数学的视角发现问题、提出问题,分析问题、构建模型,求解结论,验证结果并改进模型,最终解决实际问题。数学模型构建了数学与外部世界的桥梁,是数学应用的重要形式。数学建模是应用数学解决实际问题的基本手段,也是推动数学发展的动力。 在数学建模核心素养的形成过程中,积累用数学解决实际问题的经验。学生能够在实际情境中发现和提出问题;能够针对问题建立数学模型;能够运用数学知识求解模型,并尝试基于现实背景验证模型和完善模型;能够提升应用能力,增强创新意识。 特级教师张思明提出“我们通过数学建模的教与学要为学生创设一个学数学、用数学的环境,为学生提供自主学习、自主探索、自主提出问题、自主解决问题的机会。近年来,数学建模应用题的数量和分值在高考中逐步增加,可见在命题中已经在转变传统的数学学科体系观念,旨在引导学生关心社会、关心未来,实现高考命题改革与中学教育、教学观念改革的结合。 2.中学数学模型的教学 2.1中学数学中常见的数学模型分类: (1)与函数的最值相关问题。工程中的用料最省、利润最大,列出所求量的函数解析式,利用代数工具解函数最大值。 (2)线性回归直线、非线性回归直线;如中学生身高和体重的关系,红铃虫产卵数与温度的关系。 (3)与周期有关的三角函数模型建立。电路信号,音频震动,潮水涨落周期。 (4)线性规划问题。关于求解含有多个约束条件的,目标函数的最有解问题。 (5)抽样统计调查类,独立性假设检验。 2.2数学建模的课堂陷入几个误区。 (1)数学建模课堂,教师陷入了对数学建模理论的讲解,而数学建模的基本步骤是什么,介绍集中常见的数学建模工具,里面有大量的数学公式推到,学生对数学建模的思想领会很少。

微积分与数学建模学习知识情况总结

微积分与数学模型(上册) 任课教师:陈骑兵 小组成员 张程1440610405 王子尧1440610402 李昊奇1440610403 梅良玉1440610426 方旭建1440610406 李柏睿1440610428

第1章 函数,极限与连续 1.1 函数的基本概念 准备知识(掌握集合与区间的相关知识) 函数定义:设x 和y 是两个变量,D 是一个给定的数集。如果对于任意x ∈D , 按照某一法则f ,变量y 都有确定的值和它对应,则称f 为定义在D 上的函数,数集D 称为函数的定义域,x 称为自变量,y 称为因变量。与x 对应的y 的值记做f(x),称为函数f 在x 处的函数值。D 上所有的数值对应的全体函数值的集合称为值域 函数特性: 1:函数的有界性 设f(x)在集合X 上有定义,若存在M>=0,使得对任意x 属于X 都有f(x 的绝 对值<=M, 则称函数f(x 在)X 上有界;否则,称函数f(x)在X 上无界。 2:函数的单调性 3:函数的奇偶性 4:函数的周期性 5:分段函数 6:复合函数 1.2初等函数 常值函数 如:y=C,C 为常数; 幂函数 如:y=x α,α∈R 为常数; 指数函数 如:y=a x ,a>0且a ≠1; 对数函数 如:y=a x log ,a>0且a ≠1; 三角函数 如:y=sinx,y=cosx,y=tanx ; 反三角函数 如:y=arcsinx,y=arccosx,y=arctanx ; 以及双曲函数 1.3 极限的概念 (1) .极限的直观定义:当x 接近于某个常数x 0但不等于x 0时,若f(x)趋向于 常数A ,则 称A 为f(x)当x 趋向于x 0时的极限。 (2) .极限的精确定义:给定函数f(x)和常数A ,若对于?ε>0(无论ε多么小),总彐δ>0,使得当0<|x-x 0|<ε,则称A 为f(x)当x 趋于x 0时的极限,记做

小学数学建模案例

小学数学建模案例 相遇问题。①创设问题情境,激发学生的求知欲。先请两位同学在黑板的两边同时相向而行,可以让学生重复多走几次。接着可以问同学们看到了什么。学生的回答会有很多,如:他们在中间碰到了;两个人面对面在走;两个人背对背在走……此时就可以引入相遇问题中的一些条件:同时出发、相向而行、相背而行、途中相遇。当学生对此有一定的了解之后就可以举一个具体的例子来进入教学重点了。例如:甲乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即返回,第二次在距A地60千米处相遇。求A、B两地间的路程。②抽象概括,建立模型,导入学习课题。此题可以将整个过程用线段图来形象地描述,这就是这个相遇问题建立的数学模型。③研究模型,形成数学知识。 总结出一般规律之后可以举个例子让学生做,看看学生是否已经掌握,是否会应用这个规律来解决实际问题。如:两艘渡轮在同一时刻垂直驶离H河的甲、乙两岸相向而行,它们在距离甲岸720米处相遇。到达预定地点后,每艘船都要停留10分钟,以便让乘客

上船下船,然后返航。这两艘在距离乙岸4OO米处又重新相遇。问:该河的宽度是多少?可以请两位同学到黑板上来做,其他同学做在作业本上,然后讲解,并充分肯定学生的表现,增强学生的学习积极性。案例二:小学高年级数学教学时会遇到“牛吃草问题”,牛吃草问题又称消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的。典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。 由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断变化。例:牧场上一片青草,每天牧草都匀速生长,这片草地可供l0头牛吃20天,或者可以供l5头牛吃10天,问:可供25头牛吃几天?分析:这类题目难就难在牧场上草的数量每天都在发生变化,我们要想办法从变化当中找到不变的量。总草量可以分为牧场上原有的草和新长出来的草两部分。牧场上原有的草是不变的,新长出来的草虽然在变化,因为是匀速生长,所以这片草地每天新长出的草的数量相同,即每天新长出的草是不变的。下面就要设法计算出原有的草量和每天新长出的草这两个不变的量。

数学建模和高等数学的区别与联系

数学建模与高等数学的区别与联系 建立数学模型的过程叫做数学建模,数学模型是指“对于现实世界的某一特定对象,为了某个特定目的,做出一些重要的简化和假设,运用适当的数学工具得到的一个数学结构,它或者能解释特定现象的现实性态;或者能预测对象的未来状况;或者能提供处理对象的最优决策或控制。”这个表述告诉我们,数学模型的对象是现实世界中的实际问题,数学模型本身是一个数学结构,它可以是一个式子,也可以是一种图表。数学模型的作用或目的是对现象进行解释、预测、提供决策或控制。 高等数学(也称为微积分。)是理、工科院校一门重要的基础学科。作为一门科学,高等数学有其固有的特点,这就是高度的抽象性、严密的逻辑性和广泛的应用性。抽象性和计算性是数学最基本、最显著的特点--有了高度抽象和统一,我们才能深入地揭示其本质规律,才能使之得到更广泛的应用。微积分是人类两千年智慧的结晶,它的形成和发展直接得益于物理学、天文学、几何学等研究领域的进展和突破。 高等数学教学强调理论的系统性,结构的严密性,而轻视了基本概念的实际背景,实际意义的解释,割裂了微积分与外部世界的密切联系,没能充分显示微积分的巨大生命力与应用价值,使学生学了一大堆的定义、定理和公式,却不

知道对实际问题有什么用。而数学建模是通过调查、收集数据、资料,观察和研究其固有的特征和内在的规律,抓住问题的主要矛盾,运用数学的思想、方法和手段对实际问题进行抽象和合理假设、创造性地建立起反映实际问题的数量关系,即数学模型;然后运用数学方法辅以计算机等设备对模型加以求解,再返回到实际中去解释、分析实际问题,并根据实际问题的反馈结果对数学模型进行验证、修改、并逐步完善,为人们解决实际问题提供科学依据和手段。因此数学模型是数学与客观实际问题联系起来的纽带,是沟通现实世界与数学世界的桥梁,是解决实际问题的强力工具。然而在实践中能够直接运用数学知识去解决实际问题的情况还是很少的,而且对于如何使用数学语言来描述所面临的实际问题也往往不是轻而易举的,而使用数学知识解决实际问题的第一步就是要从实际问题的看起来杂乱无章的现象中抽象出恰当的数学关系,即数学模型,数学模型的组建过程不仅要进行演绎推理而且还要对复杂的现实情况进行归纳、总结和提炼,这是一个归纳、总结和演绎推理相结合的过程。 经过上述一番分析,我们发现数学建模和高等数学有各自的独到之处,但在学习应用中由着相辅相成的作用。我们必须改变只重视推理的传统数学教学模式,不仅要掌握数学知识而且学会“用数学”,学会用数学的知识与方法解决实际问题因此,在高等数学学习中渗透建模思想尤为重要。

初中数学建模案例

初中数学建模案例 2011年3月10日,云南盈江县发生里氏5.8级 地震。萧山金利浦地震救援队接到上级命令后立即 赶赴震区进行救援。救援队利用生命探测仪在某建筑 物废墟下方探测到点 C 处有生命迹象,已知废墟一侧 地面上两探测点A 、B 相距3米,探测线与地面的夹角 分别是30°和60°(如图),试确定生命所在点 C 的深度。(结果精确到0.1米,参考数据:2 1.41,3 1.73) 解:如图,过点C 作CD ⊥AB 交AB 于点D. ∵探测线与地面的夹角为30°和60° ∴∠CAD=30°,∠CBD=60° 在Rt △BDC 中,BD CD 60tan ∴3 60tan CD CD BD 在Rt △ADC 中,AD CD 30tan ∴3 330tan CD CD AD ∵3 BD AD AB ∴33 33CD CD ∴) (6.2273 .13233米CD 答:生命所在点C 的深度大约为 2.6米。

分析:这是综合解直角三角形的问题,画出示意图,先计算出 360tan CD CD BD ,再计算出3330tan CD CD AD ,进而由关系式3BD AD AB 计算出CD 的长,最 后确定生命所在点 C 的深度。 设计说明与思路: 实际问题是复杂多变的,数学建模较多的是探索性和创造性,但是初中数学应用性问题常见的建模方法还是有规律可以归纳总结的, 本题涉及解直角三角形问题,常需要建立相应的几何模型,转化为几何或三角函数问题求解。 初中数学题源于实际问题,探讨这类问题的解法具有重要的现实意义,数学建模就是 将具有实际意义的应用问题,通过数学抽象转化为数学模型,以求得问题的解决,其基本思路是:实际问题----数学模型----数学问题的解决----抽象----解答----解释(检验)。 在应用性问题和数学建模的教学活动设计中,应把学生当作教学活动的主体,让学生 自己通过观察,只考虑去提问题,解决问题,是数学建模教学的重要环节。不要只把问题解决的过程展示给学生看,教学活动的设计应有利于发挥学生的主体性、创造性、协作精神,让学生能把学习知识、应用知识、探索发现、使用计算机工具和建模求解更好地结合起来,使学生在应用性问题与数学建模教学过程中学数学、 用数学、得到“微科研”的体验,从而达到学好数学,提高素质,增长才干的目的,达到“面向所有的学生,让所有的学生获得更 多可以广泛应用、与现实世界及其他学科密切相关的数学! 让所有的学生学到有价值的、富有挑战性的数学!让所有的学生学会数学地思考, 并积极地参与数学活动,进行自主探索!”的目的。

相关文档
最新文档