利用相对论验证实验仪进行β衰变研究

利用相对论验证实验仪进行β衰变研究
利用相对论验证实验仪进行β衰变研究

利用相对论验证实验仪进行β衰变研究

张惠澍

(复旦大学物理系上海)

摘要(Abstract)

利用相对论验证实验仪器得到放射源的β衰变能谱,对其能谱进行分析,并计算出放射源放出β粒子的最大能量。

关键词(Keywords)β衰变电子偏转β能谱放射源电子能量

引言(Introduction)

一个有初速度的电荷在垂直其速度方向的很大的均匀磁场中运动,就会发生偏转,从而进行圆周运动。当粒子能量很大(与电子静能相比不可忽略)时,就需要用相对论来考虑电子运动规律。通过闪烁探头和多道分析机,可以得到电子能量、动量与计数量的关系。可以通过电子能量与动量的关系来验证相对论的正确性。也可以用过电子能量与计数量之间的关系来验证放射源β衰变的规律以及计算出放射源进行β衰变的能级。

理论/实验部分 (Theory parts/Experimental details)

1.相对论原理

一个电荷为e的电子以速度v在垂直于速度方向且磁感应强度为B的均匀磁场中运动,其运动规律满足方程:

?

mv2R=eVB

其中m为电子质量,R为电子运动轨道的曲

率半径,将方程改写为:

P=mV=eBR

在经典力学中,动量与动能的关系为:

?

E=P22m

在本实验中,大多数电子的速度很大接近光

速,所以动量与动能满足相对论的关系:

E=√P2c2+m02c4?m0c2

其中m0为电子静质量,c为光速,本实验中测

定β?粒子动量与动能关系应该满足图1

2.β衰变

原子核自发地放射出β粒子或俘获一个轨道电子而发生的转变叫做β衰变。其中放出电子的衰变过程称为β-衰变;放出正电子的衰变过程称为β+衰变;原子核从核外电子壳层中俘获一个轨道电子的衰变过程称为轨道

电子俘获。放射源放出的β粒子有三个规

律:

1) β粒子的能量是连续分布的

2) β粒子的有最大能量值

3) 放射源β衰变放出的β射线强度与

能量分布满足图2的规律

原子核在β衰变过程中,不仅放出一个β粒子,还放出一个不带电的中性粒子,它的质量小得几乎为零,所以叫做中微子,用符号γ表示,中微子能量大小是连续的,因此β粒子的能量也连续。本实验中所用的放射源为Sr 90 ,它的衰变过程为β?衰变

Sr 3890→Y 3990+e ?+γ (半衰期28.8年)

Y 3990 → Z 4090+e ?+γ (半衰期64.1 h )

β衰变概率公式:

I (p )dp =g 2|M if |2

2π3?7c 3F (Z,E ) (E ?E m )2p 2dp (1?1) 它表示单位时间发射动量在p 到p +dp 之间的β 粒子相对数目随动量的分布。其中M if 为跃迁矩阵元,F (Z,E )为费米分布函数,E m 为β粒子最大能量。

3.实验仪器

NaI 单晶闪烁探头、均匀磁场、一级机械泵、真空室及多道分析器

结果与讨论(Results and Discussion )

1. 能量定标

用Cs 的光电峰,反散射峰与Co 的两个光电峰能量与道址能行能量定标。此处已经考虑

粒子通过AL 膜的能量损失。

能量定标图:

定标后得到动能Ei 与道址N 的关系:

Ei =0.00256X +0.11969 2. β射线能谱

闪烁探头处在不同位置处可以得到不同的能谱图(图三),我们可以看到各个峰的位置随着闪烁探头与放射源距离增大道址位置不断增大,且峰值大小先增大后减小。定出此能谱图中各个峰的道址,动能与峰值大小。记为表1

1

将公式1-1进行变换得到:

√I (p )()2=g |M |√2π3?7c 3

E ?E m ) (1?2) 已知当粒子跃迁是容许跃迁时跃迁矩阵元|M if |2(这里上标为脚注)是与粒子能量无关的常数,当粒子跃迁为禁忌跃迁时|M if |满足如下关系式:

M if =M[S n (E)]12? (1?3)

此处n 为禁忌跃迁级数。本实验中Y 3990→

Z 4090 的跃迁为一级禁忌跃迁,其修正因子S 1 (E)

满足: S 1(E )=E 2+2Em 0c 2+(E m ?E)2

022

(1?4) 此时1-2式就变为:

K =√I (p )F (Z,E )S 1(E ) p 2=g |M |√2π3?7c 3

E ?E m ) (1?5) 根据公式我们只需要将左边部分的值与E 进行作图,理论上说是一条直线,那么这条直线Y=0时的E 值就是E m 的大小了。为了定出左边部分的值,我们还需要知道费米分布函

1

这里所用的能量是通过道址定出的动能加上电子静能0.5118MeV 得到的 2 关于M if 取值的具体原因这里不再赘述 M if =∫u f ?u i e

?i(k β+k γ)?r dτ

数F (Z,E )的形式,在这里我们采取近似的方法,其公式如下:

F (Z,E )=

x 1?e ?x 其中 x =2πZc 137v

(1?6) 其中,Z 为原子序数,此处为39。V 为粒子速度,可以用能量E 来计算。至此,我们已经可以完全定出左边部分的数值大小了,将K 与E 作图,结果如图4:

我们知道,实验中所用的磁场并不是完全均匀的,越靠近磁场边缘其磁场均匀性越差,粒子动量越高,运动时越靠近磁场边缘,受到影响也越大,偏离这条直线的程度也越大.而且本身由于高动量粒子数量较少,被薄膜吸收掉一分部分后,对实验造成影响较大,误差就较大,因此最后四个点偏离直线程度较大。故而可以忽略只把前边的点连成直线,其与X 轴交点处E=2.279MeV ,与β射线最大理论值2.274MeV 的相对误差为0.2%,精

度较高。据此,我们就验证了Y 3990→Z 4090 衰变的能级大小。

3. 误差的分析

从实验结果上来看,相对误差只有0.2%,但是实际上这个实验的误差还是较大的。误差来源主要有以下几点:

1) 磁场不均匀性造成的误差:磁场越靠近边缘其不均匀性越大,特别是高能粒子在运动时

曲率半径较大,较为靠近磁场边缘,就会产生较大的误差,导致测量不准确。

2) 薄膜和铝膜对粒子的吸收:把粒子计数率当做强度来计算时,没有考虑到薄膜与铝膜对

粒子的吸收,特别是能量较大计数率较低的粒子,这些吸收就不可忽略不计,但是以此实验仪器,难以对这些吸收做出修正。

3) 数据采集的点不够多造成的误差:因为此实验中实验仪器上可供采集数据的位置并不多,

很多地方没有加上薄膜的孔,所以造成闪烁接收器可采集到数据的位置较少,再加上单个点采集时间较长(约为200S )所以数据点较少。

4) 近似误差与读书误差:在β射线能谱上读出峰道址的位置与峰的高度并不是很准确,对

于道址来说左右平移10以内的数字在图上相差不大;对于高峰来说上下浮动10左右都在许可范围里,对于较低的峰,上下移动1左右也不会有大的影响,但是其相对的误差就会很大。还有就是近似误差,在实验数据处理的时候对于F (Z,E )与M if 的近似都会造成一些计算误差。

总之,虽然实验结果较精确,但是引起误差的因素还是存在而且不小,所以这个结果也存在一定的偶然性,并不能完全当成精确值对待。

结论/小结(Conclusion/Summary ):

通过这个实验,我计算出了Y 3990→Z 4090衰变的能级大小为2.279MeV ,

与理论值误差很小。本实验中我只要在数据的分析上花了较多的精力。

运用如上绘制库里厄图的方法(W-E 的图像),可以用来测定放射源放出β射线最大能量,用以定出放射源是什么。并且也可以用来测定放射源发生的β衰变属于的跃迁形式3。因为能发生β衰变的粒子基本遍布于整个元素周期表,所以对于β衰变的研究还是很重要的。

但是实验本身还是需要改进的,比如说可以增大磁铁大小使电子无法靠近其边缘;增加薄膜大小使得数据的测量也能较连续的进行等。

总之,通过此次实验,我验证了相对论的正确性,也让我对β衰变有了较深的了解。

致谢(Acknowledgments )

指导老师:蒋最敏

老师:乐永康

老师:俞熹

同学:朱宝成

参考资料(References ):

1. 近代物理实验补充讲义 复旦大学物理教学实验中心

2. 原子物理学 第三版 复旦大学出版社 杨福家 著

3. 北京大学核物理与粒子物理导论课程课件 第六章 β衰变

3 容许跃迁或几级禁忌跃迁

相对论的验证

用-β粒子验证相对论动量—能量关系 学号:0810130956 姓名:刘荣沛 实验日期:2010.9.14 指导老师:王引书 摘 要 本实验中我们通过测算9038Sr -9039Y 源衰变产生的β-粒子的动能和动量来比较经典理论和相对论的异同,从而验证相对论的正确性。β-粒子的能量我们利用能谱仪及多道分析器进行测定,在测定之前还需要利用137Cs 和60Co 对多道分析器进行定标,确定粒子能量和微机多道数之间的关系(E a bn =+),从而可以算出不同道数的对应β-粒子的能量。β-粒子的动量我们通过磁谱仪测出。 关键词 β-粒子 相对论 能量 动量 一、引言 爱因斯坦狭义相对论揭示了高速运动物体的运动规律,创立了全新的时空观,给出了质量对速度的依赖关系、能量与质量的普遍联系等一系列重要结果。狭义相对论已应用于近代物理各个领域,原子核物理和粒子物理更是离不开狭义相对论。本实验的目的是通过同时测量速度接近光速的β-粒子的动量和动能,证明牛顿力学只适用于低速运动的物体,当物体的运动速度接近光速时,必须使用相对论力学,同时学习带电粒子特别是β-粒子与物质的相互作用,学习β磁谱仪和β闪烁谱仪的测量原理和使用以及其他核物理的试验方法和技术。 二、原理 1、牛顿力学动量与动能之间的关系 牛顿的经典力学总结了低速物体的运动规律,也反映了牛顿的绝对时空观。在不同的惯性参考系中观察同一物体的一切运动学量(坐标、速度)都可以用伽利略变换而相互联系,而在任何惯性参照系中其动力学量(加速度、质量)都相同,一切力学规律(牛顿定律、守恒定律)的表达式在所有的惯性系中都相同。这就是伽利略力学相对性原理:一切力学规律在伽利略变换下是不变的。 在牛顿力学中,任何物体的质量0m 都是一个常量。当其以速度v 运动时,其动量和动能的值p 和k E 分别用下列两式表示 0p m v = (1) 201 2 k E m v = (2) 所以动量和动能的关系为

15[1].4_广义相对论简介_学案(新人教版选修3-4)2

15.4 广义相对论简介学案 ★知识目标 1.了解广义相对性原理和等效原理。 2.了解广义相对论的几个结论。 ★教学重点 广义相对性原理和等效原理。 ★教学难点 理解广义相对论的几个结论。 ★知识梳理 一、超越狭义相对论的思考 爱因斯坦思考狭义相对论无法解决的两个问题: 1、引力问题,万有引力定律不满足洛伦兹变换,无法纳入狭义相对论的理论框架; 2、非惯性系问题,狭义相对论只适用于惯性系。它们是促成广义相对论的前提。 二、广义相对性原理和等效原理 把相对性原理从“任何惯性系平权”推广到“包括非惯性系在内的任意参考系(即包括惯性系和非惯性系)平权”。 三、广义相对论几个结论以及相关实验验证 1、光线经过强引力场中发生弯曲 2、引力红移 3、水星轨道近日点的进动 四、关于的宇宙大爆炸理论 大爆炸宇宙学:多方分析表明,我们的宇宙是在约200亿年以前从一个尺度很小的状态发展演化而来的。 ★随堂检测 1. 和问题难以用狭义相对论解决,催促了广义相对论的诞 生。 2.广义相对论认为,在任何参考系中,物理规律都是_____________。 3.等效原理的基本内容是一个均匀的_____________场与一个做__________________运动的参考系是等价的。 4.广义相对论告诉我们,____________的存在使得空间不同位置的____________出现差别,物质的____________使光线弯曲。 5.下列属于广义相对论结论的是 ( ) A.尺缩效应 B.时间变慢

C.光线在引力场中弯曲 D.物体运动时的质量比静止时大大 6、简答:从广义相对论的两个基本原理出发,可以直接得到一些“意想不到”的结论。请大家阅读教材,说明得到了哪些结论这些解论的实验验证是什么? 7、查阅相关资料了解,宇宙发展演化的过程。 参考答案:1、引力问题,非惯性系问题 2、相同的 3、引力,匀加速 4、引力场,时间进程,引力 5、C 6、1:第一个结论,物质的引力使光线弯曲。20世纪初,人们观测到了太阳引力场引起的光线弯曲。观测到了太阳后面的恒星。 2:第二个结论,引力场的存在使得空间不同位置的时间进程出现差别。例如在强引力的星球附近,时间进程会变慢。天文观测到了引力红移现象,验证了这一结论的成立。 7、略

周成康_广义相对论学习心得

广义相对论学习心得 理论物理周成康 学号16212289 张宏浩老师您好,我是选修了您的广义相对论的硕士生周成康,首先谢谢您在广相课程中的付出的劳动。 我的导师是姚道新老师,方向是关联电子体系的蒙特卡洛模拟。虽然方向与广义相对无关,但是基于兴趣选择了广义相对论的课程。很高兴选修了张宏浩老师的广义相对论的课程,本人本科只是一般院校,基础一般,不能说得上好,所以刚开始听的几堂课都比较吃力,但老师您的课幽默不失风趣,是我能够坚持听下来,对广义相对论与黎曼几何有了一定程度的了解。 广义相对是描述物质间的引力相互作用的理论,将引力与时空的变化相联系起来,而描述时空变化的工具是黎曼几何和张量分析。黎曼几何相对于欧几里的几何的优势在于,在描述同样的空间扭曲时,不需要引入额外的维度来描述,例如描述二维曲面时,在欧氏几何需要三维空间才能表达,但是在黎曼几何却只需要同样的二维表达。这意味着分析广相时,使用黎曼几何能有效简化过程,只利用最少的维度便可以表示清楚。 在广义相对论理论体系中,基本假设包含以下几点:1,等效原理:爱因斯坦提出“等效原理”,即引力和惯性力是等效的。这一原理建立在引力质量与惯性质量的等价性上。根据等效原理,爱因斯坦把狭义相对性原理推广为广义相对性原理,即物理定律的形式在一切参考系都是不变的。物体的运动方程即该参考系中的测地线方程。测地线方程与物体自身固有性质无关,只取决于时空局域几何性质。而引力正是时空局域几何性质的表现。物质质量的存在会造成时空的弯曲,在弯曲的时空中,物体仍然顺着最短距离进行运动(即沿着测地线运动——在欧氏空间中即是直线运动),如地球在太阳造成的弯曲时空中的测地线运动,实际是绕着太阳转,造成引力作用效应。正如在弯曲的地球表面上,如果以直线运动,实际是绕着地球表面的大圆走;2,广义相对性原理:物理定律的形式在一切参考系都是不变的。该定理是狭义相对性原理的推广。在狭义相对论中,如果我们尝试去定义惯性系,会出现死循环:一般地,不受外力的物体,在其保持静止或匀速直线运动状态不变的坐标系是惯性系;但如何判定物体不受外力?回答只能是,当物体保持静止或匀速直线运动状态不变时,物体不受外力。很明显,逻辑出现了难以消除的死循环。这说明对于惯性系,人们无法给出严格定义,这不能不说是狭义相对论的严重缺憾。为了解决这个问题,爱因斯坦直接将惯性系的概念从相对论中剔除,用“任何参考系”代替了原来狭义相对性原理中“惯性系”;3,引力质量与惯性质量:人们做了许多实验以测量同一物体的惯性质量和引力质量。所有的实验结果都得出同一结论:惯性质量等于引力质量(实际上是成正比,调整系数后,就变成"等于"了,这么做是为了方便计算),牛顿自己意识到这种质量的等同性是由某种他的理论不能够解释的原因引起的。但他认为这一结果是一种简单的巧合。与此相反,爱因斯坦发现这种等同性中存在着一条取代牛顿理论的通道。 广义相对不但是人们对时空与引力的认识跨入一个新的高度,同时也预言了许多新的现象和结论,包括引力波,引力透镜效应等。 引力波随着LIGO成功测得,成为时下热词。在爱因斯坦的广义相对论中,引力被认为是时空弯曲的一种效应。这种弯曲是因为质量的存在而导致。通常而言,在一个给定的体积内,包含的质量越大,那么在这个体积边界处所导致的时空曲率越大。当一个有质量的物体在时空当中运动的时候,曲率变化反应了这些物体的位置变化。在某些特定环境之下,加速

伽马能谱与相对论验证

伽马能谱与相对论验证 【摘要】 本实验先通过γ能谱对多道分析仪进行定标,再通过测量β-粒子动量的磁谱仪和测量β-粒子动能的能谱仪,记录多道分析仪所在峰值道数和探测器与源之间间距2R ,根据公式p=eBR 得到粒子动量。再根据公式 2042 0220c m c m p c E E E k -+=-=得到粒子动能。画出动量-动能关系图,并与 相对论理论值和经典理论值进行比对,对相对论进行验证。 【关键词】 β-粒子 多道分析仪 磁谱仪 能谱仪 相对论 【引言】 爱因斯坦狭义相对论揭示了高速运动物体的运动规律,创立了全新的时空观,给出了质量对速度的依赖关系,能量与质量的普遍联系等一系列重要结果。本实验的目的是通过同时测量速度接近光速的β-粒子的动量和动能,证明牛顿力学只适合于低速运动物体,当物体的运动接近光速时,必须使用相对论力学,同时学习带电粒子特别是β-粒子与物质的相互作用,学习β磁谱仪和β闪烁仪的测量原理和使用以及其他核物理的实验方法。 【实验原理】 一、γ闪烁能谱 1、γ光子及其与物质的相互作用 通过核衰变或核反应形成的原子核,往往处于不稳定的高激发态。处于高激发态能级上的原子核E2,在不改变原子核组成的情况下,跌回到较 低的激发态E1,原子核发出γ涉嫌或内转换电子。因此γ射线的能量为 E γ=E2-E1。放射性原子核放出的γ射线的能量通常在几千电子伏与几兆电子伏之间。γ射线由不在店的γ光子组成,静止质量为零。γ光子和物质相互作用主要有三种效应:光电效应、康普顿效应、电子对效应。 (1)光电效应 入射的γ光子把全部能量转移给原子中的束缚电子,而把束缚电子打 出来形成光电子,这就是光电效应 K i E E E γ=- (1) γ射线产生光电效应的几率随着物质原子序数的增大而增大,随着γ射线能量 增大而减小 (2)康普顿效应 入射的γ光子与院子的外层电子发生非弹性碰撞,一部分能量转移给电 子,使它脱离院子成为反冲粒子,同时γ光子被散射,这种过程称为康普顿散射效应 '1(1cos )E E γ γαθ= +- (2-1)

语言相对论的产生及发展

语言相对论的产生及发展 语言相对论往往被称作“萨丕尔-沃尔夫假说”。实际上,美国语言学家、人类学家萨丕尔(Edward Sapir)和美国语言学家沃尔夫(Benjamin Lee Whorf)并没有合著过,也没有明确地为实证研究提出过假说。“萨丕尔-沃尔夫假说”这一说法是萨丕尔的学生,美国语言学家、人类学家哈利?霍衣哲(Harry Hoijer)在1954年提出的(Koerner 2002:2)。 ①后来的学者,如美国心理语言学家罗杰?布朗(Roger Brown)(1976)等,将假说分为两类:强式,语言决定论(Linguistic Determinism),即语言决定思维、信念、态度等;弱式,语言相对论(Linguistic Relativity),语言反映思维、信念、态度等(高一虹,1994:4)。前者认为语言不同的民族,思维方式完全不同,后者认为语言不同的民族,思维方式上有差异。但值得注意的是,萨丕尔和沃尔夫并未作此区分,沃尔夫本人也并不同意极端的语言决定论。 目前,研究者通常使用沃尔夫自己的术语,即语言相对论(Linguistic Relativity)。这个陈述暗示了萨丕尔和沃尔夫并不是最早或唯一对语言和思维的关系进行研究的学者。其他思想流派也有对这个问题的研究。 对语言和思维之间关系的思考可以追溯到古希腊时期。

对语言相对论来说,其思想发展历程大致经过以下几个时期。 古希腊时期 古希腊哲学家柏拉图认为,世界存在于预设的外部理念,语言若要存在下去,就必须尽力正确地反映这些理念。“除了我们把思维准确地称作由心灵与它自身进行的无声 的对话之外,思维和言谈是一回事。”“从心中发出通过嘴唇流出来的声音之流称作言谈。”② 持该种观点的人认为,语言的背后是普遍的理性本质,为天下人共有,至少为所有思想家共有。词语不过是这种深层精华的表达媒介,语言是反映内在思想活动的“标签”,是体验世界的工具,还没有考虑到语言对思想的作用。 德国语言学传统时期 直至18世纪晚期19世纪早期,人们才逐渐认识到不同民族有不同的特征,即民族精神。随着这种认识的发展,逐渐形成了民族主义。 1820年,德国语言学者洪堡德(Wilhelm V on Humboldt)将语言学和民族浪漫主义的研究联系起来,认为正是语言构造了思维。思维由内部对话产生,这个过程使用了语言使用者相同的语法结构。所使用语言的语法被认为反映了这个民族国家的世界观(Weltanschauug)。“语言的多样性不仅仅是符号和声音的多样性,而且是价值观的多样性。”③

验证快速电子的动量与动能的相对论关系实验报告

验证快速电子的动量与动能的相对论关系 实验报告 摘要: 实验是验证快速电子的动量与动能的相对论关系,本实验是通过对快速电子的动量值及动能的同时测定来验证动量和动能之间的相对论关系;同时了解β磁谱仪测量原理、闪烁记数器的使用方法及一些实验数据处理的思想方法。通过实验过程完成实验内容,得到实验结果,获得实验体会。 关键字: 动量动能相对论β磁谱仪闪烁探测器定标 引言: 动量和能量是描述物体或粒子运动状态的两个特征参量,在低速运动时,它们之间的关系服从经典力学,但运动速度很高时,却是服从相对论力学。相对论力学理论是由伟大的科学家爱因斯坦建立的。 19世纪末到20世纪初期,相继进行了一些新的实验,如著名迈克尔逊—莫雷实验、运动电荷辐射实验、光行差实验等,这些实验的结果不能完全被经典力学和伽利略变换所解释,为解决这一矛盾,爱因斯坦于1905年创立了狭义相对论。 基于相对论的原理,可以解释所有这些实验结果,同时对低速运动的物体,相对论力学能过渡到经典力学。原子核发生β衰变时,放出高速运动的电子,其运动规律应服从相对论力学。通过测量电子的动能与动量,并分析二者之间的关系,可以达到加深理相对论理论的目的。 正文: 1905年,阿尔伯特·爱因斯坦的《论运动物体的电动力学》首次提出了崭新的时间空间理论——狭义相对论。其在1915年左右发表的一系列论文中给出了广义相对论最初的形式。相对论和量子力学的提出给物理学带来了革命性的变化,它们共同奠定了近代物理学的基础。相对论极大的改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”、“四维时空”、“弯曲时空”等全新的概念。不过近年来,人们对于物理理论的分类有了一种新的认识——以其理论是否是决定论的来划分经典与非经典的物理学,即“非古典的=量子的”。在这个意义下,相对论仍然是一种经典的理论。 本实验通过对快速电子的动量值及动能的同时测定,验证其动能与动量的关系,同时了解半圆聚焦β磁谱仪的工作原理。

相对论验证实验中的结果解释和能谱图分析

相对论验证实验中的结果解释和能谱图分析 摘要:文章首先通过简单介绍作者在相对论验证实验中得到的结果,针对实验计算机一步给出的数据结果和图形结果进行解释,然后针对β- 粒子能谱图的两个峰值的数据进行峰值来源的分析,最后针对峰值随探测器位置变化的现象进行浅析,得出分析结论。 关键词:相对论验证实验,结果解释,能谱图变化分析 正文: 实验原理介绍: 电荷为e,速度为v的电子在磁感应强度为B的磁场中运动时,运动方程为: B V e dt V m d r r r ×?=)( ……(1) 电子在垂直于均匀磁场的平面中运动时,上式化为: mV 2/R=eVB → P=mV=eBR ……(2) P 为电子动量,R 为电子运动轨道的曲率半径。基于(2)式P 和BR 的关系,在磁谱仪中常以BR 值表示电子的动量,对应不同的B 值和R 值可以对应不同的电子动量,可见β磁谱仪是一个可进行动量分析的仪器。 实验的基本思想是以高速电子即β-粒子作为实验对象,验证其动能与动量符合相对论关系式, 从而验证爱因斯坦相对论的基本理论及其推论的正确性。 经典力学中的动能与动量的关系式为E k =p 2c 2/2m 0c 2 ……(3),而在相对论下推得的动能与动量的关系式为E k =E - E 0=(P 2c 2 + m 02c 4)1/2 - m 0c 2 ……(4)。只需通过实验测出高速电子的动量与动能,并依此作出E k -Pc 图,将其与经典力学下的E k -Pc 图进行比较,从而得出实验的结论 。 实验装置: (1)真空、非真空半圆聚焦B磁谱仪; (2) β放射源90Sr—90Y (强度≈ 1毫居里) , 定 标用γ放射源137Cs和60Co (强度≈ 2微居 里) ; (3) 200um Al窗NaI(Tl)闪烁探头; (4) 数据处理计算软件,计算机; (5) 高压电源、放大器、多道脉冲幅度分析器。 实验结果: (1) 能量定标: 表一 能量定标数据 E/MeV 0.184 0.662 1.17 1.33 CH 87 314 557 630

从相对论穿越时空到未来星际时间的探索

从相对论穿越时空到未来星际时间的探索 温海龙 (河北省保定市农业科学研究所,河北保定071000) 摘要:可以说,如今人们对空间性质的各种认识还停留在爱因斯坦相对论的基础上,文中通过另一个角度从另一方面对空间的性质做了一些讨论,得出了一些新的看法。得出信息传递需要时间并且具有方向性,并且进一步可以推算出空间上两个不同的点之间的联系与距离成反比。得出正是空间的这一性质造成了相对论中钟慢、尺缩、超光速时间倒流等各种幻像。关键词:穿越时空;相对论;相对同时;幻像;测量问题 根据相对论,如果一种物质以超光速(300000000m/s 一般光速为每秒钟 30万千米)行驶的话,就可以实现穿越时空。等于光速时只能是在所在的时空静止了(相当于时空停止,时间不在流逝!),超过光速时可穿越时空! 这个问题目前科学界还没有定论。史蒂芬·霍金写的《时间简史》里对此做过专门的讨论,霍金认为即使真的超过光速,也不可能真正穿越时空,时间倒流只是一个假象,超光速事件将引起时间和空间一系列量子力学上的反应,最终使得穿越时空无法实现。 有人是这样理解相对论的:如果一个钟,以0.5倍声速从原点远去,我们会听到什么现象呢? 于是我们发现,在本地钟1.5秒时,远处的钟报1秒,本地钟3秒时,远离的钟报2秒,也就是我们在忽略测量时间时,误以为远去的钟慢了。而且速度越快,钟慢得越厉害。超过声速我们将追上钟以前发出的声音,也就是先听到钟敲3下,报3点,再听到钟敲2下,报2点,然后听到钟敲1下,报1点,这就是超过声速时间倒流现象!爱因斯坦相对论中钟慢、尺缩、超光速时间倒流现象,都可以用声音试验做出效果! 爱因斯坦自己的理解,速度无穷大,“绝对同时”有意义,但观测速度上限是光速,因此“绝对同时”无意义。 说明爱因斯坦有时候明白相对论是由于光速太慢,引起的测量问题。如果测量速度无穷大,则同时性的相对性问题不存在。对一群盲人来说,测量速度的上限是声速,则爱因斯坦奉献给他们的伟大理论将是声速相对论,但不能因此得出声速最快。 那么,是不是真的如同相对论说的那样,超光速真的可以穿越时空吗? 1正文和分析 下面总结一下,作出以下对穿越时空的探索与思考。穿越时空总共有3种情况:1穿越空间,即到达另一个与本空间不同的并且相互独立的另一个空间。甚至我们可以到一个与我们这个空间完全相同的空间,包空人,物。2穿越时间,离开现在的空间,回到过去的某一个时间点,严格的讲这也算另一种形式的穿越空间吧,这个空间已经不是原来的空间,不过这两个空间存在一一对应的关系。3本空间的时间倒流,即我们所处的空间发生改变,回到过去的某一时间点,这种情况属于穿越时间,这个空间还是原来的空间。 当然上面3种情况都是猜想。不过,根据相对论说得超光速时间倒流穿越时空确不属于上面3种中的任何一个。所以说,这只能算是一种幻像。 下面用下面的实验来说明这一点,来具体分析相对论所谓的穿越时空,时间倒流! 在地球上有AB两个人,在距离地球10万光年远处有个星球乙,上面住着C。在地球上AB用望远镜发现C正在举行婚礼。并且A发现C长的像他妹妹,于是A决定乘宇宙飞船去乙星球看看C。假设此时地球上是西元元年,A用望远镜看到C举行婚礼后立即乘飞船动身前往乙星球。 现在我们请上帝帮个忙,让他在此刻也就是地球上的西元元年,在即将动身的A的飞船

几个狭义相对论验证试验的重新分析

几个狭义相对论验证实验的重新分析 尽管相对论解释了许多实验,但是否揭示了导致实验的本质原因,需要继续研究.1971年美国科学家在地面将精度为0.000000001秒的铯原子钟对准,把其中4台原子钟放到喷气式飞机上绕地球一圈,然后返回地球与地面上静止的原子钟比较,结果是绕了地球一圈的这4个原子钟比地面上的慢了59毫微秒(0.000000059秒),与广义相对论的计算结果误差为10%.后来将这个实验的喷气式飞机换成宇宙飞船,实验数据更接近广义相对论的计算结果.物理学家曾经利用原子钟高速运动时钟减缓寿命的延长,说明狭义相对论的正确,笔者认为这是不妥的.因为原子钟在高速运动过程中,地面上的时钟相对于它也在高速运动,为什么地面上的时钟不减缓呢?因为原子钟在实验中有一定的飞行高度,在飞行过程中实际是变速运动,加速运动的物体可以产生引力场,根据广义相对论引力场中时间延缓,所以对此应当重新分析.引力场强度不变,时钟的快慢不变,强度变大,时钟延缓,反之时钟加速.1971年,为了验证相对论的时间变化,美国进行了原子钟环球飞行实验,其结果是:时钟向东飞行时慢了59×10-9,往西飞行时快了273×10-9 .广义相对论的计算值与实验结果有一定的偏差(尤其钟快现象).总之,在实验中的三组原子钟相互看来,实验中既有“动钟变慢”现象,也有“动钟变快”现象. 一般认为,来自外层空间的宇宙线轰击地球大气,产生了大量的μ介子,这些μ子具有很宽的能量范围,飞行速度有大有小,高能量的μ子速度非常接近光速c ,可大于0.9954c.μ子寿命很短暂,产生后会很快衰变掉,各个μ子的实际寿命有长有短,但是当我们统计群体μ子的平均寿命时发现,其平均寿命是恒定的.一群μ子衰变掉一半所需的时间,称为半衰期,常被用作寿命的标志,大量的实验统计出静止μ子的半衰期T = 1.53×10-6秒,恒定不变.在μ子和介子实验中,μ子和介子作有加速的圆周运动,实验证实作这样运动的μ子和介子的平均寿命大于静止μ子和介子的平均寿命.因为1963年的一次实验中,人们在高1910米的山顶上,测量铅直向下的速度在0.9950C ~0.9954C 之间的 μ- 子数目,每小时平均有563 ± 10个;然后在离海平面3米高的地方测量相同速度的 μ- 子数目,平均每小时408 ± 9个. μ- 子从山顶运动到海平面所需时间应为:()()s s m m 68 106.41030.995231910t -?=??-=. 这是静止 μ- 子半衰期()21T 的4倍多,如果高速运动的 μ- 子半衰期和静止时相等的话,人们预期在飞行经过1907米距离后,在海平面附近的 μ- 子数应不到 352 5634≈个.而当时实际测量却有408个,这清楚地表明,运动着

验证相对论关系实验报告

验证相对论关系实验报告 Prepared on 22 November 2020

验证快速电子的动量与动能的相对论关系实验报告 摘要:实验利用β磁谱仪和NaI(Tl)单晶γ闪烁谱仪,通过对快速电子的动量值及动能的同时测定来验证动量和动能之间的相对论关系。同时介绍了β磁谱仪测量原理、NaI(Tl)单晶γ闪烁谱仪的使用方法及一些实验数据处理的思想方法。 关键词:电子的动量电子的动能相对论效应β磁谱仪闪烁记数器。 引言: 经典力学总结了低速的宏观的物理运动规律,它反映了牛顿的绝对时空观,却在高速微观的物理现象分析上遇见了极大的困难。随着20世纪初经典物理理论在电磁学和光学等领域的运用受阻,基于实验事实,爱因斯坦提出了狭义相对论,给出了科学而系统的时空观和物质观。为了验证相对论下的动量和动能的关系,必须选取一个适度接近光束的研究对象。β-的速度几近光速,可以为我们研究高速世界所利用。本实验我们利用源90Sr—90Y射出的具有连续能量分布的粒子和真空、非真空半圆聚焦磁谱仪测量快速电子的动量和能量,并验证快速电子的动量和能量之间的相对论关系。 实验方案: 一、实验内容 1测量快速电子的动量。 2测量快速电子的动能。 3验证快速电子的动量与动能之间的关系符合相对论效应。 二、实验原理 经典力学总结了低速物理的运动规律,它反映了牛顿的绝对时空观:认为时间和空间是两个独立的观念,彼此之间没有联系;同一物体在不同惯性参照系中观察到的运动学量(如坐标、速度)可通过伽利略变换而互相联系。这就是力学相对性原理:一切力学规律在伽利略变换下是不变的。 19世纪末至20世纪初,人们试图将伽利略变换和力学相对性原理推广到电磁学和光学时遇到了困难;实验证明对高速运动的物体伽利略变换是不正确的,实验还证明在所有惯性参照系中光在真空中的传播速度为同一常数。在此

学习广义相对论宇宙论的心得体会

学习广义相对论心得体会学习广义相对论宇宙论的心得体会 最近看完梁灿斌的微分几何与广义相对论教程中的宇宙论部分,果然比以前的学到的科普知识深了一层,下面就来写一段自己的小结体会。 先谈一下宇宙论的范围,以前总觉得好像研究宇宙中的东西就叫做宇宙论,但现在知道宇宙论研究的就是宇宙本身,如果研究其中恒星、黑洞之类的,还称不上的严格意义上宇宙论。宇宙论有一条基本原理,就是宇宙在大尺度下是均匀与各向同性的,即使是星系(比如我们的银河系)乃至星系团,在浩瀚宇宙中也只是沧海一粟而已。 由宇宙学原理,我们可以选定各向同性参考系,并且知道宇宙的空间几何(三维)是常曲率的,因此只可能有球形、平直或者是双曲型的度规结构。然而,我们还要考虑的宇宙四维时空结构,为此我们需要使用所谓的Robertson-Walker度规。请注意,宇宙的时空并不是一个单纯的容器,而是与物质分布通过Einstein方程G=8πT相联系。Einstein当年并不满意这个方程得到的动态解,特别增加了一项宇宙因子项Λ,通过求解修正的Einstein 方程G+Λg=8πT得到静态宇宙解,但遗憾的是这个解是不稳定的。然而,关于宇宙因子Λ的讨论却是几经周折,当量子场论发现“真空不空”时就解释成了真空的能量密度,1998 年的观测发现宇宙加速膨胀时又以Λ作为了主要原因。 借助于Robertson-Walker度规,可以对Einstein方程做一番复杂的推到,最后得到Friedmann方程,实际上宇宙论的讨论大都是从Friedmann方程出发的。由Friedmann方程,我们可以得到两种极端情况,对于尘埃宇宙的能量密度ρ∝a^(-3),而辐射宇宙(极早期)则有ρ∝a^(-4),其中a是R-W度规中的尺度因子。此外,Friedmann方程还引出了奇点问题,后来Penrose与Hawking断言了在相当宽容的条件下,奇点是不可避免的,这说明广义相对论与经典物理有着不相容的一面。物理学家曾试图用量子力学的方法来消除奇点问题, - 1 -

相对论是谁提出的

相对论是谁提出的 试题: 相对论是由谁提出的? A.爱因斯坦 B.牛顿 c.霍金 D.达尔文 答案:(A)。 相关阅读: 相对论是关于时空和引力的基本理论,相对论的基本假设是相对性原理,即物理定律与参照系的选取无关。狭义相对论和广义相对论的区别是,前者讨论的是匀速直线运动的参照系(惯系参照系)之间的物理定律,后者则推广到具有加速度的参照系中(非惯性系),并在等效原理的假设下,广泛应用于引力场中。相对论提出了“时间和空间的相对性”“四维时 空”“弯曲空间”等概念。狭义相对论最著名的推论是质能公式,它能够用来计算核反应过程中所释放的能量,并导致了原子弹的诞生。而广义相对论预言的引力透镜和黑洞,也被天文观测证实。 提出过程

除了量子理论以外,1905年刚刚得到博士学位的爱因斯坦发表的一篇题为《论动体的电动力学》的引发了二十世纪物理学的另一场革命。研究的是物体的运动对光学现象的影响,这是当时经典物理学应对的另一个难题。 电磁波-内部结构模型图十九世纪中叶,麦克斯韦建立了电磁场理论,并预言了以光速c传播的电磁波的存在。到十九世纪末,实验完全证实了麦克斯韦理论。电磁波是什么?它的传播速度c是对谁而言的呢?当时流行的看法是整个宇宙空间充满一种特殊物质叫做“以太”,电磁波是以太振动的传播。但人们发现,这是一个充满矛盾的理论。如果认为地球是在一个静止的以太中运动,那么根据速度叠加原理,在地球上沿不一样方向传播的光的速度必定不一样,但是实验否定了这个结论。如果认为以太被地球带着走,又明显与天文学上的一些观测结果不符。 1887年迈克尔逊和莫雷利用光的干涉现象进行了十分精确的测量,仍没有发现地球有相对于以太的任何运动。对此,洛仑兹提出了一个假设,认为一切在以太中运动的物体都要沿运动方向收缩。由此他证明了,即使地球相对以太有运动,迈克尔逊也不可能发现它。爱因斯坦从完全不一样的思路研究了这一问题。他指出,只要摒弃牛顿所确立的绝对空间和绝对时间的概念,一切困难都能够解决,根本不需要什么以太。电磁场理论 1887年迈克尔逊和莫雷利用光的干涉现象进行了十分精确的测量,仍没有发现地球有相对于以太的任何运动。对此,洛仑兹提出了一个假设,认为一切在以太中运动的物体都要沿运动方向收缩。由此他证明了,即使地球相对以太有运动,迈克尔逊也不可能发现它。爱因斯坦从完全不一样的思路研究了这一问题。他指出,只要摒弃牛顿所确立的绝对空间和绝对时间的概念,一切困难都能够解决,根本不需要什么以太。 爱因斯坦提出了两条基本原理作为讨论运动物体光学现象的基础。第一个叫做相对性原理。它是说:如果坐标系k'相对于坐标系k作匀速运动而没有转动,则相对于这两个坐标系所做的任何物理实验,都不可能区分哪个是坐标系k,哪个是坐标系k′。第二个原理叫光速不变原理,它是说光(在真空中)的速度c是恒定的,它不依靠于发光物体的运动速度。 从表面上看,光速不变似乎与相对性原理冲突。因为按照经典力学速度的合成法则,对于k′和k这两个做相对匀速运动的坐标系,光速就应不一样。爱因斯坦认为,要承认这两个原理没有抵触,就务必重新分析时间与空间的物理概念。

就目前的实验验证来说量子力学与广义相对论谁是最精确的物理学分支

就目前的实验验证来说,量子力学与广义相对论谁是最精确 的物理学分支? 【芦苇声的回答(35票)】: 要破题,首先要准确定义什么叫「精确」。 对「精确」的理解,一般来说有三种: 能测量到的效应最小、最微弱;实验结果与理论预言值偏差最小;实验本身的误差(统计误差+系统误差)最小。如果从实验科学的角度出发,我们采取的是第三种理解。这实际上涉及到两个概念:Accuracy(准度)和Precision(精度)。准度描述的是实验的结果和「真值」——真理的值、绝对意义上的真正的值——之间的差距;「精度」描述的是实验结果和统计意义上的「平均值」之间的差距,也就是「不确定度」。这两者的意义是差了十万八千里的,不可混淆。「真值」是客观存在的,比如光速的值,是客观存在的,但人类未必可以准确地得知。以前的科学工作者,一般采用一个广受承认的理论预言值或预测值,作为「真值」,以方便描述实验的准度。但现代科学认为,所有的物理理论都是「有效理论」,都有其适应范围,否定「普适理论」的存在,即使现今的理论未有找到不适用的反例,未必代表以后没有(参见牛顿绝对时空观和狭义相对论的历史)。从这个意义上来说,「精度」比「准度」更适合用来衡量物理学实验的精确性——因为你

不知道你所用的理论是否是「正确的」,失去了标尺,比较也就失去了意义。 那么从这两个概念出发,我们可以判断: 理解1不是个好定义,因为它的精度和准度都有可能很差,比如家用体重秤,以千克为单位可以给你小数点后4位的数字,但误差可能达到500克;理解2定义的是准度,但没有涉及到精度,从上面的讨论中可知,它不是一个好的标准;这是当今实验科学采用的理解。而我们说一个理论「精确」,需要做到两件事: 实验的误差要尽可能地小(理解3意义下)。理论的预言值与实验测量值的差别要尽可能地小。这里有一篇文章: The Most Precisely Tested Theory in the History of Science 作者是Union College in Schenectady, NY的物理系副教授。他介绍了理解1和理解3意义下的两个「最精确」的实验。理解1意义下,相对论胜出,因为它能测量到的效应是 。理解3意义下,QED(量子电动力学)胜出,那就是著名的 实验,测量的是电子的反常磁矩。g是粒子磁矩,狄拉克方程里用g表示,也称为「g因子」。狄拉克方程预言

快速电子的动量与动能的相对论验证-复旦大学物理教学试验中心

快速电子的动量与动能的相对论验证 唐昊 光科学与工程系06300720346 摘要 使用快速电子的动量与动能的关系验证了相对论,比较了等效磁场法和均匀磁场法的差异,并对实验误差的产生原因进行了一些讨论 关键词 相对论;动量-能量关系;快速电子法;等效磁场;均匀磁场 经典力学把时间和空间看作是彼此无关的,把时间和空间的基本属性也看作与物质的运动没有任何关系而是绝对的、永远不变的。这就是所谓经典力学中的“绝对时间”和“绝对空间”的观点,也称作牛顿绝对时空观。但是,随着物理学的发展,特别是20世纪初叶就已发现一些现象与经典力学的一些概念和定律相抵触,牛顿的绝对时空观和建立在这一基础上的经典力学开始陷入了无法解决的困境。 在这种情况下,1905 年爱因斯坦提出了狭义相对论。这一理论描述了一种新的时空观,认为时间和空间是相互联系的,而且时间的流逝和空间的延拓也与物质和运动有不可分割的联系。 本实验利用半圆聚焦β磁谱仪,通过测定快速电子的动量值和动能值,来验证动量和动能之间的相对论关系。 1.实验原理 按照爱因斯坦的狭义相对论,在洛伦兹变换下,静止质量为m 0、速度为v 的质点,其动量应为 mv v m p =-= 2 01β (1) 式中2 01/β-=m m ,c v /=β。相对论能量E 为 2mc E = (2) 这就是著名的质能关系。2 mc 是运动物体的总能量,物体静止时的能量2 00c m E =称为静止能量,两者之差为物体的动能k E ,即 ??? ? ??--=-=11122 02 02 βc m c m mc E k (3) 当1<<β时,式(3)可展开为

爱因斯坦广义相对论

爱因斯坦广义相对论 广义相对论是爱因斯坦继狭义相对论之后,深入研究引力理论,于1913年提出的引力场的相对论理论。这一理论完全不同于牛顿的引力论,它把引力场归结为物体周围的时空弯曲,把物体受引力作用而运动,归结为物体在弯曲时空中沿短程线的自由运动。因此,广义相对论亦称时空几何动力学,即把引力归结为时空的几何特性。 如何理解广义相对论的时空弯曲呢?这里我们借用一个模型式的比拟来加以说明。假如有两个质量很大的钢球,按牛顿的看法,它们因万有引力相互吸引,将彼此接近。而爱因斯坦的广义相对论则并不认为这两个钢球间存在吸引力。它们之所以相互靠近,是由于没有钢球出现时,周围的时空犹如一张拉平的网,现在两个钢球把这张时空网压弯了,于是两个钢球就沿着弯曲的网滚到一起来了。这就相当于因时空弯曲物体沿短程线的运动。所以,爱因斯坦的广义相对论是不存在“引力”的引力理论。 进一步说,这个理论是建立在等效原理及广义协变原理这两个基本假设之上的。等效原理是从物体的惯性质量与引力质量相等这个基本事实出发,认为引力与加速系中的惯性力等效,两者原则上是无法区分的;广义协变原理,可以认为是等效原理的一种数学表示,即认为反映物理规律的一切微分方程应当在所有参考系中保持形式不变,也可以说认为一切参考系是平等的,从而打破了狭义相对论中惯性系的特殊地位,由于参考系选择的任意性而得名为广义相对论。 我们知道,牛顿的万有引力定律认为,一切有质量的物体均相互吸引,这是一种静态的超距作用。 在广义相对论中物质产生引力场的规律由爱因斯坦场方程表示,它所反映的引力作用是动态的,以光速来传递的。 广义相对论是比牛顿引力论更一般的理论,牛顿引力论只是广义相对论的弱场近似。所谓弱场是指物体在引力场中的引力能远小于固有能,力场中,才显示出两者的差别,这时必须应用广义相对论才能正确处理引力问题。 广义相对论在1915年建立后,爱因斯坦就提出了可以从三个方面来检验其正确性,即所谓三大实验验证。这就是光线在太阳附近的偏折,水星近日点的进动以及光谱线在引力场中的频移,这些不久即为当时的实验观测所证实。以后又有人设计了雷达回波时间延迟实验,很快在更高精度上证实了广义相对论。60年代天文学上的一系列新发现:3K微波背景辐射、脉冲星、类星体、X射电源等新的天体物理观测都有力地支持了广义相对论,从而使人们对广义相对论的兴趣由冷转热。特别是应用广义相对论来研究天体物理和宇宙学,已成为物理学中的一个热门前沿。 爱因斯坦一直把广义相对论看作是自己一生中最重要的科学成果,他说过,“要是我没有发现狭义相对论,也会有别人发现的,问题已经成熟。但是我认为,广

研究性学习——爱因斯坦与相对论(原创)

爱因斯坦与相对论 引言:“政治是暂时的,方程是永恒的”——爱因斯坦仰观星空,觉宇宙之浩瀚;俯视大地,察生命之神奇;透过显微镜,是量子的奇迹。我们在理论与实践中穿梭,游走在神秘的物理世界。 一.漫长的探索 纵观人类的历史,从亚里士多德开始,就已经开始探索那浩如烟海的物理世界了——力学。 早期的物理学家们都是从实验的角度来阐述物理(准确说是物理理论)的,亚里士多德从显而易见的现象中便得出重物比轻物下降的快的结论(虽说是错误的),阿基米德也从简单的实验中得出了杠杆原理和浮力定律,伽利略通过理想实验建立了动力学的基础,传出了相对性原理的先声,笛卡尔发明了坐标系,使之能更好的表述,物理开普勒透过第谷的测量用数学知识成功导出了开普勒三大定律。 这一切的积累,终于在一个人身上有了叠加与爆发,1687年,艾萨克·牛顿出版了他的新书《自然哲学的数学原理》,从此“经典力学”建立了,也翻开了数学研究物理的辉煌一页。书中详细的讲解的力学与运动学,阐述了牛顿三大定律,流体阻力原理和万有引力定律,以及牛顿的绝对时空观,是经典力学前所未有的进步。 二.相对论的横空出世

19世纪后期,随着经典力学和电磁学的进一步发展(电磁学的主要贡献者法拉第和麦克斯韦一直想把电磁学建立在经典力学上,然而失败了),科学家们相信他们对宇宙的描述达到了尾声,然而,与“以太”思想相悖的理论出现了, 1887年实验证实光的传播速度是不变的(间接否定了“以太”论和经典力学),整个物理学界陷入了巨大恐慌。 这时,1905年,爱因斯坦(生平简介:阿尔伯特·爱因斯坦,Albert.Einstein,1879年3月14日-1955年4月18日,出生于德国符腾堡王国乌尔姆市,毕业于苏黎世大学,犹太裔物理学家,享年76岁。爱因斯坦1879年出生于德国乌尔姆市的一个犹太人家庭<父母均为犹太人>,1900年毕业于苏黎世联邦理工学院,入瑞士国籍。1905年,获苏黎世大学哲学博士学位,爱因斯坦提出光子假设,成功解释了光电效应,因此获得1921年诺贝尔物理奖,创立狭义相对论。1915年创立广义相对论。爱因斯坦为核能开发奠定了理论基础,开创了现代科学技术新纪元,被公认为是继伽利略、牛顿以来最伟大的物理学家。1999年12月26日,爱因斯坦被美国《时代周刊》评选为“世纪伟人”。)的一篇论文《论动体的电动力学》永久地解决了这一棘人的问题,狭义相对论便由此创生了。 1.经典力学的时间和空间 牛顿所谓的时间与空间都是绝对的,与外界无关永远相同和

广义相对论的实验验证

广义相对论的实验验证 (1)厄缶实验 19世纪末,匈牙利物理学家厄缶用扭秤证实了惯性质量与引力质量在极高的精确度下,彼此相等。厄缶实验的设计思想极为简单。扭秤的悬丝下吊起一横杆,横杆两端悬吊着材料不同、重量相同的重物。达到平衡后,使整个装置沿水平旋转180°,若惯性质量与引力质量相等,由于无额外转矩出现,整个装置 将始终保持平衡。最后厄缶以10-9的精度,证实了两种质量的等同。由于利用简单而巧妙的实验得到精度 极高的测量结果,厄缶获得德国格廷根大学1909年度的本纳克(Benecke )奖。 1933年6月20日,爱因斯坦在英国格拉斯哥大学作题为《广义相对论的来源》的讲话,表示他提出等效性原理的当时。并不知道厄缶实验。尽管如此,这并不能贬低厄缶实验的意义,它应该作为全部广义相对论的重要奠基石。鉴于这一实验的精确度直接影响广义相对论理论的可靠性,以后几十年来,人们对这一实验的兴趣有增无减。1960~1966年,狄克(Robert Henry ,Dicke ,1916~)等人为提高厄缶实验的精度,把厄缶的扭秤横杆改成三角形水平框架,又把石英悬丝表面蒸镀铝膜以避免静电干扰,并将整个装 置置于真空容器中,使实验的精度推进了两个数量级,达到(1.3±1.0)×10-11。1972年,前苏联的布拉 金斯基(Braginsky )和班诺夫(Panov )对厄缶实验又做了重大的改进。他们采用电场中的振荡法,旋转 由激光反光光斑记录在胶片上,使实验结果又在狄克的基础上提高了两个数量级,即9×10-13。 (2)水星近日点进动的观测 在经典力学这座坚固的大厦中,牛顿力学犹如擎天大柱,已经经受住了两个世纪的考验。把引力作为力的思想似乎根深蒂固。随着时间的推移,牛顿力学的成功事例在不断地增多。1705年哈雷(Edmund Halley ,1656~1742)用牛顿力学计算出24颗彗星的结果,并指出在1531年、1607年和1688年看到的大彗星,实际上是同一颗,这就是后人所称的哈雷彗星。克雷洛(Alxis Claude Clairaut ,1713~1765)在仔细地研究了哈雷的报告后,又根据牛顿力学计入了木星与土星对彗星轨道的影响,预言人们将在1758年圣诞节观测到这颗彗星,果然它如期而至。后来人们又先后在1801年、1802年、1804年以及1807年发现木星与土星轨道间有四颗小行星,它们的轨道也都与牛顿引力理论的计算结果相符。19世纪40年代,法国的勒威耶(Urbain Jean Jeseph Leverrier ,1811~1877)、英国的亚当斯(John Couch Adems ,1819~1892)分别对天王星的轨道偏差做了计算,由此导致了海王星的发现,这又是牛顿力学的一次辉煌的胜利。 尽管牛顿力学获得一次又一次的巨大成功,人们还是发现有一个现象不能由它得到解释。从1859年起,勒威烈接受了阿拉戈的建议。开始把观测的重点放在众星的微小摄动上。他的观测与计算表明,水星的近日点每百年的进动量大约比牛顿引力理论计算值多出40弧秒。1845年,他提出,水星的反常运动是受到一颗尚未发现的行星的影响,他称这颗行星为“火神星”,但是始终未能从观测中发现这颗火神星。1882年.美国天文学家纽科姆(Simon Newcomb ,1835~1909)对水星的进动又做了更加详细的计算。计算结果表明,水即B 点的进动量应为43″/百年。开始,他认为这是发出黄道光的弥散物质使水星的运动受到了阻尼,后来又有人企图用电磁理论作出解释,但是都没有获得成功。 1915年,爱因斯坦的广义相对论建立后,史瓦西(Karl Sahwarzschild ,1873~1916)很快地找到了球对称引力场情况下的引力场方程解,后来被称为史瓦西解,或史瓦西度规。爱因斯坦认为太阳的引力场适用于史瓦西解,由此应该对水星的近日点进动作出解释。他认为,水星应按史瓦西场中的自由粒子方式运动;其轨迹就是按史瓦西度规弯曲的空间中的测地线。按这种假设计算,水星每公转一周,它的近日点的进动角应为)1(242222 2 e c T a -=πε,其中a 为水星公转轨道的半长轴,e 为椭圆轨道的偏心率,T 为水星年周期。当把水星年折合为地球年以后,计算出水星近日点的近动角为43″/百年。这一结果恰好与纽科姆的结果相符,它不但解决了牛顿引力理论多年的悬案,而且为广义相对论提供了有力的证据,它成为验证广义相对论的三大有名的实验判据之一。 在获得这个实验判据的当时。正是爱因斯坦废除他原来的引力场方程,并建立新的场方程后的不久。

相关文档
最新文档