红外遥控发射电路设计

红外遥控发射电路设计
红外遥控发射电路设计

毕业设计(论文)

题目:红外遥控发射电路设计系:

专业班级:

学生姓名:

指导教师:

20XX年X月

内蒙古电子信息职业技术学院毕业设计(论文)红外遥控发射电路设计

红外遥控发射电路设计

摘要

红外线遥控具有结构简单、制作方便、成本低廉、抗干扰能力强、工作可靠性高等一系列优点,是近距离遥控、特别是室内遥控的优选遥控方式。

该文介绍了基于NEC协议的红外遥控器发射电路的设计,用NEC协议将键盘采集到的信号进行编码。并通过发送电路将信号发送出去。遥控发射器专用芯片很多,本实验以HT6221组成发射电路,一般家庭用的DVD、VCD、音响都使用这种编码方式。当发射器按键按下后,即有遥控码发出,所按的键不同遥控编码也不同。

关键词:红外线遥控NEC协议HT6221

目录

第1章绪论 (3)

1.1项目背景 (3)

1.2红外遥控的发展 (5)

1.3项目背景和建设意义 (5)

第二章几种常用红外遥控器协议 (7)

2.1NEC协议 (7)

2.2Nokia NRC1协议 (7)

2.3Philips RC-5协议 (8)

2.4ITT协议 (9)

2.5Sharp协议 (10)

第三章红外遥控发射电路 (12)

3.1HT6221芯片介绍 (12)

3.2HT6221应用电路 (13)

3.3HT6221键码生成方式 (14)

3.3.1HT6221键码的形成 (14)

3.3.2代码格式 (15)

第1章绪论

1.1项目背景

红外通信是利用红外技术实现两点间的近距离保密通信和信息转发。它一般由红外发射和接收系统两部分组成。发射系统对一个红外辐射源进行调制后发射红外信号,而接收系统用光学装置和红外探测器进行接收,就构成红外通信系统。

特点:保密性强,息容量大,结构简单,既可以是室内使用,也可以在野外使用,由于它具有良好的方向性,适用于国防边界哨所与哨所在之间的保密通信,但在野外使用时易受气候的影响。

红外通讯技术利用红外线来传递数据,是无线通讯技术的一种。

红外通讯技术不需要实体连线,简单易用且实现成本较低,因而广泛应用于小型移动设备互换数据和电器设备的控制中,例如笔记本电脑、PDA、移动电话之间或与电脑之间进行数据交换,电视机、空调器的遥控等。

由于红外线的直射特性,红外通讯技术不适合传输障碍较多的地方,这种场合下一般选用RF无线通讯技术或蓝牙技术。红外通讯技术多数情况下传输距离短、传输速率不高。

为解决多种设备之间的互连互通问题,1993年成立了红外数据协会(IrDA,Infared Data Association)以建立统一的红外数据通讯标准。1994年发表了IrDA1.0规范。

红外线通信是一种廉价、近距离、无线、低功耗、保密性强的通讯方案,主要应用于近距离的无线数据传输,也有用于近距离无线网络接入。从早期的IRDA规范(115200bps)到ASKIR(1.152Mbps),再到最新的FASTIR(4Mbps),红外线接口的速度不断提高,使用红外线接口和电脑通信的信息设备也越来越多。红外线接口是使用有方向性的红外线进行通讯,由于它的波长较短,对障碍物的衍射能力差,所以只适合于短距离无线通讯的场合,进行“点对点”的直线数据传输,因此在小型的移动设备中获得了广泛的应用。

红外线通讯发展早期存在着规范不统一的问题,许多公司都开发出自己的一套红外通讯标准,但不能与其它公司有红外功能的设备进行红外通讯,因此缺乏兼容性。自1993年起,由HP、COMPAQ、INTEL等多家公司发起成立了红外数据协会(Infrared Data

Association,简称IRDA),建立了统一的红外数据通信标准。一年以后,第一个IRDA 的红外数据通讯标准——IrDA1.0发布,又称为SIR(Serial InfraRed),它是基于HP 开发出来的一种异步的、半双工的红外通信方式。通过对串行数据脉冲和光信号脉冲编解码实现红外数据传输。IrDA1.0的最高通讯速率只有115.2Kbps,适应于串行端口的速率。

1996年,该协会发布了IrDA1.1标准,即Fast InfraRed,简称为FIR。FIR采用了全新的4PPM调制解调技术,其最高通讯速率达到4Mbps,这个标准是目前运用得最普遍的标准,我们在采购红外产品时也应注意这标准的产品。继IRDA1.1之后,IRDA又发布了通讯速率高达16Mbps的VFIR技术(Very Fast InfraRed)。不断提高的速率使红外线使它在短距无线通信领域占有一席之地,而不仅是数据线缆的替代。红外线的传输距离为1~100CM,传输方向的定向角30度,点对点直线数据传输。

红外线IrDA,简称IR,是一种无线通讯方式,常常可以使用红外线进行无线数据传输,能够取代复杂的连接线。自1974年发明红外线以来,它已经过风风雨雨二十多年的发展,如今,已经是一种很成熟的传输技术。不光我们可以在手机上找到IR口,我们还可以在一些很普遍的地方找到红外线,最好的例子就是电视机或VCD机上的遥控。

所谓遥控,就是指对被控对象,按照所规定的意图对其内部参数、工作状态等进行远距离操纵。遥控技术在现代工农业生产、科研、国防等领域均有非常广泛的应用,随着现代科技的发展,它们的应用也越来越普遍。

遥控技术一般应用于操作者不能或难以到达受控对象的场合。而对于移动式的受控对象,则更不得不使用遥控技术,例如在恶劣环境下作业的机器,人难以到现场操作,就必须使用遥控技术进行远距离操纵。

遥控的种类有很多,若以遥控信息传送方式区分,可以分为有线遥控和无线遥控两大类,而无线遥控又包含了红外线遥控、超声波遥控和无线电遥控三类。有限遥控和无线电遥控可以达到很远的距离,而红外线和超声波遥控只能在十几米之内,因此多用于家用电器方面。[1]

由于红外线为不可见光,因此对环境影响很小。由于红外光波的波长远小于无线电波的波长,所以红外线遥控不会干扰其他家用电器,也不会影响邻近的无线电设备。

另外,波长小于1.5us的近红外光,在透明大气中的传输特性要比可见光好的多。而且由于它靠近可见光的红光边缘,其直线传播、反射、折射和被物质吸收等物理特性与可见光非常相似。因此,它可以使用与可见光类似的聚焦透镜等光学装置。

红外线遥控不具有像无线电遥控那样穿过遮挡物去控制被控对象的能力。正是由于

这个特点,工厂设计生产电视机、录像机、电风扇等家用电器的红外线遥控器时,不必像制作锁那样,每套(锁和钥匙)必须有一种新的结构(否则,钥匙就变为通用,锁的作用便会失去);也不必像无线电遥控那样,每套(发射器与接收器)要有不相同的遥控频率或编码(否则,就会隔墙去控制或干扰邻居的家用电器),所有同类产品的遥控器可以有相同的遥控频率或编码,而不会出现遥控信号“串门”的情况。这对于工厂大批量生产以及在家用电器上普及红外线遥控提供了极大的方便。

红外线为不可见光线,具有很强的隐蔽性和保密性,因此,在防盗、警戒等安全保卫装置中也得到了广泛的应用。

1.2红外遥控的发展

随着人们生活水平的提高,人们对生活环境和生活质量的要求也在不断提高。空调、音响、以及一些电动玩具应运而生,与此同时,这些电器都会配备一个遥控器以方便用户使用。而红外遥控在其中扮演了不可或缺的角色。

红外遥控有二十五年的历史了,是控制电子设备的一种经济有效的方法。60年代初,一些发达国家开始研究民用产品的遥控技术,但由于受当时技术条件的限制,遥控技术发展很缓慢。70年代末,随着大规模集成电路和计算机技术的发展,遥控技术才得到快速的发展。

在遥控方式上大体上从有线到无线的超声波、从振动子到红外线、再到使用总线的微机红外遥控这样几个阶段。无论你采用何种方式,准确无误传输信号,最终达到满意的控制效果是非常重要的。最初的无线遥控装置采用的是电磁波传输信号,由于电磁波容易产生干扰,也易受干扰,因此逐渐采用超声波和红外线媒介来传输信号。与红外线相比,超声传感器频带窄,所能携带的信息量少,易受干扰而引起误动作。较为理想的是光控方式,逐渐采用红外线的遥控方式取代了超声波遥控方式,出现了红外线多功能遥控器,成为当今时代的主流。由于红外线在频谱上居于可见光之外,所以抗干扰性强,

具有光波的直线传播特性,不易产生相互间的干扰,是很好的信息传输媒体。

1.2项目背景和建设意义

红外通信是以红外线作为载体来传送数据信息。它作为无线通信的一种,与无线电通信相比,由于其性能价格比高,实现简单,具有抗电磁干扰、便于高速应用、空间接入灵活、经济的特点,可用于室内外实现点对点、无线红外LAN通信及军用红外引信,在移动计算和移动通讯的设备中获得了广泛的应用。

在某些场合,需要数据交换但又不是很大,且实时性要求又不是很高的情况下,可以使

用红外通讯方式,这样既可以得到无绳化通信带来的便利,又可以避开采用无线电高频电路可能引发的一些问题。譬如用于家用电器的遥控器,计算机的遥控键盘和遥控鼠标以及便携式数据收集装置(煤水电表的登录器、报税机)与主机的数据交换等。

目前,利用红外线进行无线数据通信,无论从小型化、轻量化,还是从安全性等方面考虑,其可行性都比较高,并且已经在无线多信道室内话音系统,无绳电话以及键盘和终端间的短距离无线连接中得到了应用。所有这些应用中的工作带宽远低于WLAN需要的带宽。

现代遥控技术也十分普遍的应用于各类家用电器中,例如电视遥控、电灯遥控、电风扇遥控、空调器遥控等。这类应用提高了家电的功能和档次,更重要的是给使用者带来极大的方便。设有遥控功能的电视机使用者不必离开座位只需使用手持红外遥控器就可以进行节目切换,以及对音量、对比度、亮度等的调节。在这些应用中,操作者与受控者之间并非“遥”,也非“难以到达”,仅为方便而已,因此对“遥控”的定义,应广义的理解为操作者没有直接对受控对象进行操作。

遥控的种类有很多,若以遥控信息传送方式区分,可以分为有线遥控和无线遥控两大类,而无线遥控又包含了红外线遥控、超声波遥控和无线电遥控三类。有限遥控和无线电遥控可以达到很远的距离,而红外线和超声波遥控只能在十几米之内,因此多用于家用电器方面。[1]

本设计基于对现今市面上主流的红外遥控编码格式进行学习,最终从近百个编码协议中选取最为高效的RC5编码规范协议,并通过广播和电视向外扩散,使得产品在短时间内的到广大消费者的认可,和引来大量的用户。

第二章几种常用红外遥控器协议

2.1NEC协议

NEC协议特征:

八位地址码和八位数据码

载波频率为38k hz

脉冲宽度调制

地址码和数据码发两次,以增加可靠性

图2-1NEC红外协议编码效果图

由上图可知,0.56ms的载波随后0.56ms的低电平的电平组合,代表的是信号0;0.56ms的载波随后1.69ms的低电平的电平组合,代表信号1。

NEC的红外编码格式如下图所示:

图2-2NEC红外编码协议格式图

首先,一条完整的NEC协议,包括引导码、8位地址码、8位地址反码、8位数据码和8位数据反码。引导码位9毫秒的持续脉冲和4.5毫秒的空脉冲序列。随后是8bit的地址码和8bit地址反码,8bit的数据码与8bit的数据反码。

数据码和地址码,都是先发最低有效位LSB,再发最高有效位MSB。

2.2Nokia NRC1协议

特征:

8bit数据码,4bit地址码4bi t替代码

载波频率为38k hz

二相编码

传送一位的时间为1ms

图2-3诺基亚红外协议编码效果图

由上图可知,500us的载波随后500us的低电平的电平组合,代表的是信号1;500us 的低电平随后500us的载波的电平组合,代表信号0。

诺基亚的红外编码格式如下图所示:

图2-4诺基亚红外编码协议格式图

首先,一条完整的NEC诺基亚协议,包括引导码、8位数据码、4位地址反码、4位替代码。引导码位0.5us的持续脉冲和3毫秒的空脉冲序列。随后是8bit的数据码和4bit地址码,4bit的替代码。

数据码和地址码,都是先发最低有效位LSB,再发最高有效位MSB。

2.3Philips RC-5协议

特征:

5bit地址码和6bit的命令码

二相编码(曼切斯特编码)

载波频率36k hz

传发送一位的时间1.778ms

图2-5RC-5红外协议编码效果图

由上图可知,500us的载波随后500us的低电平的电平组合,代表的是信号1;500us

的低电平随后500us的载波的电平组合,代表信号0。

RC-5的红外编码格式如下图所示:

图2-6RC-5红外编码协议格式图

首先,一条完整的RC-5协议,包括引导码、5位地址码、6位数据码。

2.4ITT协议

ITT是最早的一种红外线传输协议。该协议不像其他红外线信号传输协议那样用载波频率来传输红外线信号,而是用宽度为10us的14个脉冲来传送遥控命令,通过改变脉冲I间距来对命令编码。用ITT协议传输数据非常可靠,而且功耗极低。在欧洲,包括ITT(国际电话电报公司)、Greatz、Schaub-Lorenz、Finlux、Nokia等在内的很多公司均采用此协议来做用户电子标签。

(1)主要特性

每条信息只有14个非常窄的脉冲(脉宽10us,不对信号进行调制);

采用脉冲距离编码;

电池寿命极长;

4位地址码、6位命令码;

带时间自校准,发送器中可使用RC振荡器;

6)通信速度快,发送一条信息只需1.7ms-2.7ms;

(2)协议

14个脉冲传送1条红外信息,每个脉冲宽10us,用三种不同的脉冲周期来区别每位所表达的内容:10us表示二进制的“0”,200us表示“1”,300us表示预备脉冲或结束脉冲。图2-1是ITT的“0”和“1”的表示方法示意,图10b是用ITT传送的命令的格式。

图2-7ITT红外编码协议格式图

图2-8ITT红外编码协议格式图

预备脉冲的作用是让接收器设置放大器的增益,其后是30us的引入延时。然后是

起始脉冲,起始脉冲的周期为100us,即逻辑“0”,起始脉冲可以用于接收器的时间校准。起始脉冲的后面是4位地址码(高位在前),接着是6位命令码(高位在前),命令码后面紧跟着一个尾脉冲。最后是300us的引出延时及结束脉冲。

接收软件从两方面来验证接收信息的有效性:一是引出延时必须是起始脉冲的周期的3倍,而起始脉冲的周期为10us;二是逻辑0的空号时间误差不得超过起始脉冲的周期的+20%,逻辑1的空号时间是起始脉冲的周期的2倍。另外,接收尾脉冲到收到结束脉冲的等待时间不超过360us,超过360us,则可能是信号传送中断或没传送。预备脉冲仅作自动增益调整用,接收软件可以对其不予理会。信息的解码从起始脉冲开始。

控制信息分成4位地址和6位命令两部分,地址范围从0~15,命令范围从0~63。地址成对使用,一组地址从0~7,一组是其反码15~8。按键时第一次发出的信息中的地址是低地址,而后续发送的信息中的地址则是第一次所发地址的反码,直到该按键被释放,这就允许接收器中止对重复码的接收。在按键没有释放之前,每130ms将重复发送

一次控制信息。

2.5Sharp协议

Sharp协议用于Sharp的VCR中。

(1)主要特性

8位命令、5位地址;PWM脉冲宽度编码方式;载波频率38kHz;一位用时1ms或2ms。(2)协议

协议采用PWM脉冲宽度编码方式,传号时间320us,载波频率38kHz(约12个周期),推荐的载波占空比为1/4或1/3。逻辑“1”占用时间为2ms,逻辑“0”占用时间为1ms,如图所示。图是其传送命令的格式示意图,5位地址码和8位命令码,均是低位在前,命令码后面是扩展位(Exp)和检测位(Chk),分别用逻辑“1”和逻辑“0”表示,最后是一个320us的尾脉冲。图中的地址码和命令码分别是03H和11H。

图2-9sharp红外编码协议图

图2-10sharp红外编码协议格式图

如图17所示,每条完整的遥控命令由两部分信息组成,两部分信息之间间隔40ms,两者的地址码完全相同,但后者传的命令码、扩展位、检测位则是前者的反码。接收器

可以据此判断所接收的数据是否有效。

第三章红外遥控发射电路

3.1HT6221芯片介绍

本设计选用的红外发射芯片为HT6221,该芯片特征如下:

特征:

工作电压:1.8V~3.5V

Dout 输出38KHz

最小发射字:一个字

一个455KHz 的陶瓷或晶体

16位地址码

8位数据码

最大活动键

HT6221:32键

HT6222:64键

主要应用场景:

电视和录像录音机控制器

夜盗警报系统

烟火警报系统

车门控制器

汽车警报系统

安全系统

其它遥控系统

HT6221/HT6222能编码16位地址码和8位数据码,HT6221/HT6222包含32键(K1~K32)和64键(K1~K64)

图3-1HT6221引脚图

-20 DIP/SOP HT6221VSS X1X2D7VDD DOUT R4R3R2R110

98

765

432116151413121117181920LED C8C7C6C5C4C3C2C1AIN R2R1AIN C1C2C3C4C5C6C7C8LED R3R4R5R6R7R8DOUT VDD D7X2X1VSS 1234567891011121314

15161718192021222324HT6222-24 DIP/SOP

HT6221内部结构图如下所示:图3-2HT6221内部结构图HT6221引脚说明如下所示:表3-1红外引脚说明表

引脚号

引脚名称I/0描述1~6

R3~R8输入键盘行控制,高电平有效7

DOUT 输出串行数据输出引脚,38KHz 发射频率8

V DD 输入 1.8V ~3.5V 9

DT 输入最重要数据位(DT)代码设置10

X2输出455KHz 振荡器输出11

X1输入455KHz 振荡器输入12

V SS 输入地13

LED 输出发射输出14~21

C8~C1输入/输出键盘列控制22

AIN 输入低8位地址码输入23~24R1~R2输入键盘行控制,高电平有效

3.2

HT6221应用电路

HT6221芯片在实际使用时,需要接入455KHZ 的时钟信号,为此需要需要采用455KHZ 的晶振提供时钟振荡源。同时,该芯片还需要接入电源,本设计采用3V 纽扣电池供电,实现芯片正常工作。在正常工作模式下,按下一个按键,HT6221获取按键按下信息,并输出与之配套的红外发射数据,通过红外发射管发射出去。

HT6221实际电路如下所示:& Buffer Data Select Circuit Sync.Binary Detector 1 of 24 Decoder /24 Counter && Registers Data Rom Circuit

Gate Matrix &Keyboard Divider Oscillator DOUT LED

VDD VSS AIN D7C8C1R1

R8X1

X2.

.............

图3-3HT6221典型电路图

图3-4HT6221遥控实物图

3.3HT6221键码生成方式

3.3.1HT6221键码的形成

当一个键按下超过36ms,振荡器使芯片激活,如果这个键按下且延迟大约108ms,这108ms发射代码由一个起始码(9ms),一个结果码(4.5ms),低8位地址码(9ms~18ms),高8位地址码(9ms~18ms),8位数据码(9ms~18ms)和这8位数据的反码(9ms~18ms)

组成。如果键按下超过108ms仍未松开,接下来发射的代码(连发代码)将仅由起始码

(9ms)和结束码(2.5ms)组成。

3.3.2代码格式

①位定义

②单发代码格式

③连发代码格式

注:代码宽度算法:16位地址码的最短宽度:1.12×16=18ms

16位地址码的最长宽度:2.24ms×16=36ms

易知8位数据代码及其8位反代码的宽度和不变:(1.12ms+2.24ms)×8=27ms ∴32

位代码的宽度为(18ms+27ms)~(36ms+27ms)。

“0”

“1”

data period(2.24ms)

32位代码(4.5m s ~63m s )

(A0~A15+D0~D7+D0~D7)

致谢(致谢内容)

参考文献

[1]纪宗南.红外线遥控发射器的原理及应用[J].国外电子元器件,1999,10(3);32-3

[2]雷晓平.单片计算机及其应用(第二版)[M].北京:高等教育出版社,2005:214~219

[3]阎石.数字电子技术基础(第五版)[M].北京:高等教育出版社,2006.

[4]周巍黄雄华.数字逻辑电路实验·设计·仿真[M].电子科技出版社,2007:95~103

[5]康华光.电子技术基础(模拟部分第五版)[M].北京:高等教育出版社,2008.

[6]林雪梅.热释电红外传感器及其应用[J].甘肃科技纵横,2005,(01).

[7]李志强,黄顺,张卫华.基于TPS434的红外传感测温仪的设计[J].现代电子技术,2007,(12).

[8]邓易冬,贾雨,李向上,戴振麟.基于红外传感技术的电机堵转智能控制系统设计[J].电气开关,2007,(06).

[9]胡汉才.单片机原理及其接口技术[M].北京:清华大学出版社,1996.

[10]邵宝生,郑建立.基于芯片tir1000红外传感系统的设计[J].中国集成电路,2006,(12).

[11]Jon S.Wilson.Sensor technology handbook[M].USA:John wiley,2005

38kHz 红外发射与接收

38kHz 红外发射与接收 红外线遥控器在家用电器和工业控制系统中已得到广泛应用,了解他们的工作原理和性能、进一步自制红外遥控系统,也并非难事。 1.红外线的特点 人的眼睛能看到的可见光,若按波长排列,依次(从长到短)为红、橙、黄、绿、青、蓝、紫,如图1所示。 由图可见,红光的波长范围为0.62μm~0.76μm,比红光波长还长的光叫红外线。红外线遥控器就是利用波长0.76μm~1.5μm之间的近红外线来传送控制信号的。 红外线的特点是不干扰其他电器设备工作,也不会影响周边环境。电路调试简单,若对发射信号进行编码,可实现多路红外遥控功能。 2.红外线发射和接收 人们见到的红外遥控系统分为发射和接收两部分。发射部分的发射元件为红外发光二极管,它发出的是红外线而不是可见光,如图2所示。 常用的红外发光二极管发出的红外线波长为940nm左右,外形与普通φ5 mm发光二极管相同,只是颜色不同。一般有透明、黑色和深蓝色等三种。判断红外发光二极管的好坏与判断普通二极管一样的方法。单只红外发光二极管的发射功率约100mW。红外发光二极管的发光效率需用专用仪器测定,而业余条件下,只能凭经验用拉距法进行粗略判定。 接收电路的红外接收管是一种光敏二极管,使用时要给红外接收二极管加反向偏压,它才能正常工作而获得高的灵敏度。红外接收二极管一般有圆形和方形两种。由于红外发光二极管的发射功率较小,红外接收二极管收到的信号较弱,所以接收端就要增加高增益放大电路。然而现在不论是业余制作或正式的产品,大都采用成品的一体化接收头,如图3所示。红外线一体化接收头是集红外接收、

放大、滤波和比较器输出等的模块,性能稳定、可靠。所以,有了一体化接收头,人们不再制作接收放大电路,这样红外接收电路不仅简单而且可靠性大大提高。 图3是常用两种红外接收头的外形,均有三只引脚,即电源正VDD、电源负(GND)和数据输出(Out)。接收头的引脚排列因型号不同而不尽相同,图3列出了因接收头的外形不同而引脚的区别。 红外接收头的主要参数如下: 工作电压:4.8~5.3V 工作电流:1.7~2.7mA 接收频率:38kHz 峰值波长:980nm 静态输出:高电平 输出低电平:≤0.4V 输出高电平:接近工作电压 3.红外线遥控发射电路 红外线遥控发射电路框图如图4所示。 框图4是目前所有红外遥控器发射电路的功能组成,其中的编码器即调制信号,按遥控器用途的编码方式可以很简单、也可以很复杂。例如用于电视机、VCD、DVD和组合音响的遥控发射的编码器,因其控制功能多达50种以上,此时的编码器均采用专用的红外线编码协议进行严格的编程,然而对控制功能少的红外遥控器,其编码器是简单而灵活。前者编码器是由生产厂家的专业人员按红外遥控协议进行编码,而后者适用于一般电子技术人员和电子爱好者的编码。图4中的38kHz振荡器即载波信号比较简单,但专业用的和业余用的也有区别,专业用的振荡器采用了晶振,而后者一般是RC振荡器。例如彩电红外遥控器上的发射端用了455kHz的晶振,是经过整数分频的,分频系数为12,即455kHz÷12= 37.9kHz。当然也有一些工业用的遥控系统,采用36kHz、40kHz或56kHz等的载波信号。 因红外遥控器的控制距离约10米远,要达到这个指标,其发射的载波频率(38kHz)要求十分稳定,而非专业用的RC(38kHz)载波频率稳定性差,往往偏离38kHz甚至很远,这就大大缩短了遥控器的控制距离。因晶振频率十分稳定,所以专业厂家的遥控器全部采用晶振的38kHz作遥控器的载波发送信号。 图4中编码器的编码信号对38kHz的载波信号进行调制,再经红外发射管D向空间发送信号供遥控接收端一体化接收头接收、解调输出、再作处理。

基于单片机的红外遥控小车设计

单片机系统设计实例 红外遥控小车 专业:信息对抗技术 姓名:吴志飞 学号:1411050121 指导教师:张东阳

目录 1 绪论 (1) 2 系统分析 (2) 2.1系统框架 (2) 2.2电机驱动模块 (3) 2.3 LCD显示模块 (4) 3 系统硬件设计 (5) 3.1主控模块的电路设计 (6) 3.1.1AT89C51单片机的简介 (8) 3.1.2AT89C51管脚功能 (8) 3.2红外遥控模块的电路设计 (9) 3.2.1红外遥控的实现原理 (10) 3.2.2红外发射器 (11) 3.2.3红外接收器 (12) 3.3电机驱动模块的电路设计 (12) 3.4显示模块的电路设计 (13) 4 系统软件设计 (14) 4.1程序代码 (14) 4.2软件流程图 (17) 5 调试与仿真 (18) 5.1在keil中进行调试 (18) 5.2在Proteus中进行仿真 (19) 6 总结 (21) 参考文献 (22) I

沈阳理工大学课程设计说明书 1 绪论 随着计算机、微电子、信息技术的快速进步,智能化技术的开发速度越来越快,,智能化程度越来越高,应用范围也越来越广,包括海洋开发、宇宙探测、工农业生产、军事、社会服务、娱乐等各个领域。智能电动小车系统以迅猛发展的汽车电子为背景,涵盖了控制、模式识别、传感技术、电子、电气、计算机、机械等多个学科。主要由路径识别、角度控制及车速控制等功能模块组成。同时,当今机器人技术发展的如火如荼,其在国防等众多领域的应用广泛开展。神五、神六升天、无人飞船等等无不得益于机器人技术的迅速发展。一些发达国家已把机器人制作比赛作为创新教育的战略性手段,参加者多数为学生,目的在于通过大赛全面培养学生的动手能力、创造能力、合作能力和进取精神,同时也普及智能机器人的知识。从某种意义上来说,机器人技术反映了一个国家综合技术实力的高低,而智能电动小车是机器人的雏形,它的控制系统的研制将有助于推动智能机器人控制系统的发展,同时为智能机器人的研制提供更有利的手段。 本次课设设计的红外遥控智能小车可以分为四大组成部分:红外遥控部分、显示部分、执行部分、控制部分。智能小车可以实现按遥控指示前行,后退,左转和右转。该设计主要通过对系统硬件电路的设计,软件设计和程序的编写,然后通过后期软硬件调试达到设计初衷。 1

红外遥控器电路(接收电路)

电子技术基础课程设计任务书2014-2015学年第一学期第18周-19周

目录 1、总体方案的设计与选择........................... 错误!未定义书签。 1.1、选题及要求 (1) 1.2、原理与方案 (1) 1.2.1、红外线与红外接收二极管 (1) 1.2.2、红外接收电路 (1) 1.2.3、电源电路 (3) 1.2.4、红外接收总电路 (3) 1.2.5、元器件的选择 (4) 1.2.3方案确定 (4) 2、总电路图,印刷图及相关说明 (5) 2.1、原理图 (5) 2.2、清单图 (5) 2.3、PCB (6) 2.4、PCB三维图 (6) 2.5、PCB板3D显示图 (7) 3、计算机仿真及相关说明 (9) 3.1、仿真电路图 (9) 3.2、仿真过程 (9) 4、电路制作与调试 (11) 4.1、元件确定 (11) 4.2、元件检测 (11) 4.3、仪表仪器 (11) 4.4、电路板制作 (11) 4.5、电路板调试 (13) 4.6、调试常见故障与处理方法 (15) 5、心得体会 (16) 6、参考文献 (17)

引言 随着时代的发展,人民的生活水平不断提高,各种家用电器设备也随之进入千家万户,一些家用电器开关在使用的时候非常麻烦,为了方便大家使用,现在社会上也设计出了各种各样的控制开关,其中包括红外遥控开关,红外遥控是目前家用电器中用的较多的遥控方式。 红外遥控有以下特点: 1、抗干扰能力强。由于其无法穿透墙壁,故不同房间的家用电器可以使用通用的遥控器而不会产生相互的干扰; 2、电路调试简单,操作简单; 3、成本低,符合大众消费观念。 由于其抗干扰能力强,操作简单等诸多有点,红外遥控已经广泛应用于彩色电视机、DVD、空调、组合音响等各种家用电器上。 基于红外遥控发射与接收原理,我们小组设计了一款简易红外遥控电路,通过这个设计,不仅可以明白红外遥控的工作原理,还能在之后自己DIY红外遥控开关。相信通过这个设计也能让其他人对红外遥控开关的工作原理有进一步的了解。

红外遥控信号的解码

红外线遥控是目前使用最广泛的一种通信和遥控手段。由于红外线遥控装置具有体积小、功耗低、功能强、成本低等特点,因而,继彩电、录像机之后,在录音机、音响设备、空凋机以及玩具等其它小型电器装置上也纷纷采用红外线遥控。工业设备中,在高压、辐射、有毒气体、粉尘等环境下,采用红外线遥控不仅完全可靠而且能有效地隔离电气干扰。 1 红外遥控系统 通用红外遥控系统由发射和接收两大部分组成。应用编/解码专用集成电路芯片来进行控制操作,如图1所示。发射部分包括键盘矩阵、编码调制、LED红外发送器;接收部分包括光、电转换放大器、解调、解码电路。 图1 红外线遥控系统框图 2 遥控发射器及其编码 遥控发射器专用芯片很多,根据编码格式可以分成两大类,这里我们以运用比较广泛,解码比较容易的一类来加以说明,现以日本NEC的uPD6121G组成发射电路为例说明编码原理(一般家庭用的DVD、V CD、音响都使用这种编码方式)。当发射器按键按下后,即有遥控码发出,所按的键不同遥控编码也不同。这种遥控码具有以下特征: 采用脉宽调制的串行码,以脉宽为0.565ms、间隔0.56ms、周期为1.125ms的组合表示二进制的“0”;以脉宽为0.565ms、间隔1.685ms、周期为2.25ms的组合表示二进制的“1”,其波形如图2所示。

图2 遥控码的“0”和“1” (注:所有波形为接收端的与发射相反) 上述“0”和“1”组成的32位二进制码经38kHz的载频进行二次调制以提高发射效率,达到降低电源功耗的目的。然后再通过红外发射二极管产生红外线向空间发射,如图3所示。 图3 遥控信号编码波形图 UPD6121G产生的遥控编码是连续的32位二进制码组,其中前16位为用户识别码,能区别不同的电器设备,防止不同机种遥控码互相干扰。该芯片的用户识别码固定为十六进制01H;后16位为8位操作码(功能码)及其反码。UPD6121G最多额128种不同组合的编码。 遥控器在按键按下后,周期性地发出同一种32位二进制码,周期约为108ms。一组码本身的持续时间随它包含的二进制“0”和“1”的个数不同而不同,大约在45~63ms之间,图4为发射波形图。 图4 遥控连发信号波形 当一个键按下超过36ms,振荡器使芯片激活,将发射一组108ms的编码脉冲,这108ms发射代码由一个引导码(9ms),一个结果码(4.5ms),低8位地址码(9ms~18ms),高8位地址码(9ms~18ms),8位数据

红外遥控协议

红外遥控器的基本原理 红外线的特点人的眼睛能看到的可见光,若按波长排列,依次(从长到短)为红、橙、黄、绿、青、蓝、紫,红光的波长范围为0.62μm~0.7μm,比红光波长还长的光叫红外线。红外线遥控器就是利用波长0.76μm~1.5μm之间的近红外线来传送控制信号的。 红外线的特点是不干扰其他电器设备工作,也不会影响周边环境。电路调试简单,若对发射信号进行编码,可实现多路红外遥控功能。 红外线发射和接收 人们见到的红外遥控系统分为发射和接收两部分。发射部分的发射元件为红外发光二极管,它发出的是红外线而不是可见光。 常用的红外发光二极管发出的红外线波长为940nm 左右,外形与普通φ5mm 发光二极管相同,只是颜色不同。一般有透明、黑色和深蓝等三种。判断红外发光二极管的好坏与判断普通二极管一样的方法。单只红外发光二极管的发射功率约100mW。红外发光二极管的发光效率需用专用仪器测定,而业余条件下,只能凭经验用拉距法进行粗略判定。 接收电路的红外接收管是一种光敏二极管,使用时要给红外接收二极管加反向偏压,它才能正常工作而获得高的灵敏度。红外接收二极管一般有圆形和方形两种。由于红外发光二极管的发射功率较小,红外接收二极管收到的信号较弱,所以接收端就要增加高增益放大电路。然而现在不论是业余制作或正式的产品,大都采用成品的一体化接收头。红外线一体化接收头是集红外接收、放大、滤波和比较器输出等的模块,性能稳定、可靠。所以,有了一体化接收头,人们不再制作接收放大电路,这样红外接收电路不仅简单而且可靠性大大提高。红外遥控器的协议 鉴于家用电器的品种多样化和用户的使用特点,生产厂家对红外遥控器进行了严格的规范编码,这些编码各不相同,从而形成不同的编码方式,统一称为红外遥控器编码传输协议。了解这些编码协议的原理,不仅对学习和应用红外遥控器是必备的知识,同时也对学习射频(一般大于300MHz)无线遥控器的工作原理有很大的帮助。 到目前为止,笔者从外刊收集到的红外遥控协议已多达十种,如:RC5、SIRCS、Sony、RECS80、Denon、NEC、Motorola、Japanese、SAMSWNG 和Daewoo 等。我国家用电器的红外遥控器的生产厂家,其编码方式多数是按上述的各种协议进行编码的,而用得较多的有NEC协议。 红外遥控器的结构特征 红外遥控发射器由键盘矩阵、遥控专用集成电路、激励器和红外发光二极管组成。遥控专用集成电路(采用AT89S52 单片机)是发射系统的核心部分,其内部由振荡电路、定时电路、扫描信号发生器、键输入编码器、指令译码器、用户码转换器、数码调制电路及缓冲放大器等组成。它能产生键位扫描脉冲信号,并能译出按键的键码,再经遥控指令编码器得到某键位的遥控指令(遥控编码脉冲),由38KHZ 的载波进行脉冲幅度调制,载有遥控指令的调制信号激励红外二极管发出红外遥控信号。 在红外接收器中,光电转换器件(一般是光电二极管或光电三极管,我们这里用的是PIN 光电二极管)将接收到的红外光指令信号转换成相应的电信号。此时的信号非常微弱而且干扰特别大,为了实现对信号准确的检测和转换,除了高性能的红外光电转换器件,还应合理地选择并设计性能良好的电路形式。最常用的光电转换器件是光电二极管,当光电二极管PN 结的光敏面受到光照射后,PN 结的半导体材料吸收光能,并将光能转换为电能。当光电二极管上加有反向电压时,二极管中的反向电流将随入射光照强度的变化而变化,光的辐照强度越大,其反向电流越大。也就是说,光电二级管的反向电流随入射的光脉冲作同频率

单片机的红外遥控器解码设计

第1章红外解码系统分析 第1节设计要求 整个控制系统的设计要求:被控设备的控制实时反应,从接收信号到信号处理及对设备控制反映时间应小于1s;整个系统的抗干扰能力强,防止误动作;整个系统的安装、操作简单,维护方便;成本低。 红外载波、编码电路设计要求:单片机定时器精确产生38KHz红外载波;根据控制系统要求能对红外控制指令信号精确编码并迅速发送。 红外解码电路设计要求:精确接收红外信号,并对所接收信号进行解码、放大、整形、解调等处理,最后输出TTL电平信号;对非红外光及边缘红外光抗干扰能力强。 设备扩展模块设计要求:直流控制交流;抗干扰能力强;反应迅速不产生误动作;能承受大电流冲击。 第2节总体设计方案 2.1方案论证 驱动与开关 方案一:采用晶闸管直接驱动。 其优点是体积小,电路简单,外围元件少。但控制电流小,大电流晶闸管成本高,并且隔离性能差。 方案二:采用三极管驱动继电器。 其体积大,外围元件多。优点是控制电流大,隔离性能好。 根据实际情况,拟采用方案二。 2.2总体设计框图 经过上述方案的分析选择,得出系统硬件由以下几部分组成:电视红外遥控器,51单片机最小系统,接收放大于一体集成红外接收头,1602液晶显示驱动电路。 整体设计思路为:根据扫描到不同的按键值转至相对应的ROM表读取数据。确认设备及菜单选择键后AT89S2将从ROM读取出来的值,按照数据处理要求从P2.5输出控制脉冲与T0产生的38KHz的载波(周期是26.3μs)进行调制,经NPN三极管对信号放大驱动红外发光管将控制信号发送出去。红外数据接收则是采用HS0038一体化红外接收头,内部集成红外接收、数据采集、解码的功能,只要在接收端INT0检测头信号低电平的到来,就可完成对整个串行的信号进行分析得出当前控制指令的功能。然后根据所得的指令去操作相应的用电器件工作,如图1-1所示。

基于51单片机的红外遥控器设计

天津职业大学 二○一五~二○一六学年第1学期 电子信息工程学院 通信系统综合实训报告书 课程名称:通信系统综合实训 班级:通信技术(5)班 学号:1304045640 1304045641 1304045646姓名:韩美红季圆圆陈真真指导教师:崔雁松 2015年11月17日

一、任务要求 利用C51单片机设计开发一套红外线收发、显示系统。 具体要求: ●编写相关程序(汇编、C语言均可); ●用Proteus绘制电路图并仿真实现基本功能; ●制作出实物 二、需求分析(系统的应用场景、环境条件、参数等) 现在各种红外线技术已经源源不断进入我们的生活中,在很多场合发挥着作用。 机场、宾馆、商场等的自动门,会在人进出时自动地开启和关闭。原来,在自动门的一侧有一个红外线光源,发射的红外线照射到另一侧的光电管上,红外线是人体察觉不到的。当人走到大门口,身体挡住红外线,电管接收不到红外线了。根据设计好的指令,触发相应开关,就把门打开了。等人进去后,光电管又可以接到红外线,恢复原来的线路,门又会自动关闭。因此这种光电管被称为“电眼”,在许多自动控制设备中大显身手。 在家庭中,许多电子设备如彩色电视、空调、冰箱和音响等,都使用了各种“红外线遥控器”。利用它我们可以非常方便的转换电视频道或设定空调的温度档次。 三、概要设计(系统结构框图/系统工作说明流程图) 红外线收发、显示系统硬件由以下几部分组成:红外遥控器,51单片机最小系统,接收放大器一体集成红外接收头,LED灯显示电路。 红外线接收是把遥控器发送的数据(已调信号)转换成一定格式的控制指令脉冲(调制信号、基带信号),是完成红外线的接收、放大、解调,还原成发射格式(高、低电位刚好相反)的脉冲信号。这些工作通常由一体化的接收头来完成,输出TTL兼容电平。最后通过解码把脉冲信号转换成数据,从而实现数据的传输。 红外遥控系统电路框图

38khz红外发射与接收解析

38khz红外发射与接收 38khz红外发射与接收 红外线遥控器在家用人的眼睛能看到的可见光,若按波长排列,依次(从长到短)为红,橙,黄,绿,青,蓝,紫,如图1所示. 由图可见,红光的波长范围为0.62μm~0.76μm,比红光波长还长的光叫红外线.红外线遥控器就是利用波长0.76μm~1.5μm之间的近红外线来传送控制信号的. 红外线的特点是不干扰其他电器设备工作,也不会影响周边环境. 人们见到的红外遥控系统分为发射和接收两部分.发射部分的发射元件为红外发光二极管,它发出的是红外线而不是可见光,如图2所示. 常用的红外发光二极管发出的红外线波长为940nm左右,外形与普通φ5mm发光二极管相同,只是颜色不同.一般有透明,黑色和深蓝色等三种.判断红外发光二极管的好坏与判断普通二极管一样的方法.单只红外发光二极管的发射功率约100mW.红外发光二极管的发光效率需用专用仪器测定,而业余条件下,只能凭经验用拉距法进行粗略判定. 接收电路的红外接收管是一种光敏二极管,使用时要给红外接收二极管加反向偏压,它才能正常工作而获得高的灵敏度.红外接收二极管一般有圆形和方形两种.由于红外发光二极管的发射功率较小,红外接收二极管收到的信号较弱,所以接收端就要增加高增益放大电路.然而现在不论是业余制作或正式的产品,大都采用成品的一体化接收头,如图3所示.红外线一体化接收头是集红外接收,放大,滤波和比较器输出等的模块,性能稳定,可靠.所以,有了一体化接收头,人们不再制作接收放大电路,这样红外接收电路不仅简单而且可靠性大大提高. 图3是常用两种红外接收头的外形,均有三只引脚,即红外接收头的主要参数如下: 工作电压:4.8~5.3V 工作电流:1.7~2.7mA 接收频率:38kHz 峰值波长:980nm 静态输出:高电平 输出低电平:≤0.4V 输出高电平:接近工作电压 3.红外线遥控发射电路 红外线遥控发射电路框图如图4所示. 框图4是目前所有红外遥控器发射电路的功能组成,其中的编码器即调制信号,按遥控器用途的编码方式可以很简单,也可以很复杂.例如用于电视机,VCD,DVD 和组合音响的遥控发射的编码器,因其控制功能多达50种以上,此时的编码器均采用专用的红外线编码协议进行严格的编程,然而对控制功能少的红外遥控器,其编码器是简单而灵活.前者编码器是由生产厂家的专业人员按红外遥控协议进行编码,而后者适用于一般图4中编码器的编码信号对38kHz的载波信号进行调制,再经红外发射管D向空间发送信号供遥控接收端一体化接收头接收,解调输出,再作处理.

红外遥控原理(红外开发)

红外遥控器的原理 一. 关于遥控器 遥控器其核心元器件就是编码芯片,将需要实现的操作指令例如选台、快进等事先编码,设备接收后解码再控制有关部件执行相应的动作。显然,接收电路及CPU也是与遥控器的编码一起配套设计的。编码是通过载波输出的,即所有的脉冲信号均调制在载波上,载波频率通常为38K。载波是电信号去驱动红外发光二极管,将电信号变成光信号发射出去,这就是红外光,波长范围在840nm到960nm之间。在接收端,需要反过来通过光电二极管将红外线光信号转成电信号,经放大、整形、解调等步骤,最后还原成原来的脉冲编码信号,完成遥控指令的传递,这是一个十分复杂的过程。 红外线发射管通常的发射角度为30-45度之间,角度大距离就短,反之亦然。遥控器在光轴上的遥控距离可以大于8.5米,与光轴成30度(水平方向)或15度(垂直方向)上大于6.5米,在一些具体的应用中会充分考虑应用目标,在距离角度之间需要找到某种平衡。 对于遥控器涉及到如下几个主要问题: 1. 遥控器发出的编码信号驱动红外线发射管,必须发出波长范围在940nm左右的的红外光线,因为红外线接收器的接收二极管主要对这部分红外光信号敏感,如果波长范围不在此列,显然无法达到控制之目的。不过,几乎所有的红外家电遥控器都遵循这一标准。正因为有这一物理基础,多合一遥控器才有可能做成。 2. 遥控器发出一串编码信号只需要持续数十ms的时间,大多数是十多ms或一百多ms重复一次,一串编码也就包括十位左右到数十位二进制编码,换言之,每一位二进制编码的持续时间或者说位长不过2ms左右,频率只有500kz这个量级,要发射更远的距离必需通过载波,将这些信号调制到数十khz,用得最多的是38khz,大多数普通遥控器的载波频率是所用的陶瓷振荡器的振荡频率的1/12,最常用的陶瓷振荡器是455khz规格,故最常用的载波也就是455khz/12=37.9khz,简称38k载波。此外还有480khz(40k)、440khz(37k)、432khz (36k)等规格,也有200k左右的载波,用于高速编码。红外线接收器是一体化的组件,为了更有针对性地接收所需要的编码,就设计成以载波为中心频率的带通滤波器,只容许指定载波的信号通过。显然这是多合一遥控器应该满足的第二个物理条件。不过,家用电器多用38k,很多红外线接收器也能很好地接收频率相近的40k或36k的遥控编码。 3. 一个设备受控,除了满足上面提到的两个基本物理条件外,最重要的变化多种多样的当然应该是遥控器发出一串二进制编码信号了,这也是不同的遥控器不能相互通用的主要原因。由于市场上出现成百上千的编码方式并存,并没有一个统一的国际标准,只有各芯片厂商事实上的标准,这也是模拟并替换各种原厂遥控器最大的难点。随着技术的不断发展,很多公司开发家电设备的遥控子系统时还不采用通用的编码芯片,而是用通用的单片机随心所欲地自编一些编码,这就使通用遥控的问题更加复杂化了。 4. 采用同样的编码芯片,也不意味着可以通用,因为还有客户码。客户码设计的最初本意就是为了不同的设备可以相互区分互不干扰。最初芯片厂商会从全局考虑给不同的家电厂商安排不同的客户码以规范市场,例如录像机和电视机就用不同的设备码,给甲厂分配的设备码和乙厂分配的设备码就区分在不同的范围内。

38KHz红外线发射和接收

38KHz红外发射和接收常识 红外线遥控器在家用电器和工业控制系统中已得到广泛应用,了解他们的工作原理和性能、进一步自制红外遥控系统,也并非难事。 1.红外线的特点 人的眼睛能看到的可见光,若按波长排列,依次(从长到短)为红、橙、黄、绿、青、蓝、紫,如图1所示。 由图可见,红光的波长范围为0.62μm~0.76μm,比红光波长还长的光叫红外线。红外线遥控器就是利用波长0.76μm~1.5μm之间的近红外线来传送控制信号的。 红外线的特点是不干扰其他电器设备工作,也不会影响周边环境。电路调试简单,若对发射信号进行编码,可实现多路红外遥控功能。 2.红外线发射和接收 人们见到的红外遥控系统分为发射和接收两部分。发射部分的发射元件为红外发光二极管,它发出的是红外线而不是可见光,如图2所示。 常用的红外发光二极管发出的红外线波长为940nm左右,外形与普通φ5 mm发光二极管相同,只是颜色不同。一般有透明、黑色和深蓝色等三种。判断红外发光二极管的好坏与判断普通二极管一样的方法。单只红外发光二极管的发射功率约100mW。红外发光二极管的发光效率需用专用仪器测定,而业余条件下,只能凭经验用拉距法进行粗略判定。 接收电路的红外接收管是一种光敏二极管,使用时要给红外接收二极管加反向偏压,它才能正常工作而获得高的灵敏度。红外接收二极管一般有圆形和方形两种。由于红外发光二极管的发射功率较小,红外接收二极管收到的信号较弱,所以接收端就要增加高增益放大电路。然而现在不论是业余制作或正式的产品,大都采用成品的一体化接收头,如图3所示。红外线一体化接收头是集红外接收、

放大、滤波和比较器输出等的模块,性能稳定、可靠。所以,有了一体化接收头,人们不再制作接收放大电路,这样红外接收电路不仅简单而且可靠性大大提高。 图3是常用两种红外接收头的外形,均有三只引脚,即电源正VDD、电源负(GND)和数据输出(Out)。接收头的引脚排列因型号不同而不尽相同,图3列出了因接收头的外形不同而引脚的区别。 红外接收头的主要参数如下: 工作电压:4.8~5.3V 工作电流:1.7~2.7mA 接收频率:38kHz 峰值波长:980nm 静态输出:高电平 输出低电平:≤0.4V 输出高电平:接近工作电压 3.红外线遥控发射电路 红外线遥控发射电路框图如图4所示。 框图4是目前所有红外遥控器发射电路的功能组成,其中的编码器即调制信号,按遥控器用途的编码方式可以很简单、也可以很复杂。例如用于电视机、VCD、DVD和组合音响的遥控发射的编码器,因其控制功能多达50种以上,此时的编码器均采用专用的红外线编码协议进行严格的编程,然而对控制功能少的红外遥控器,其编码器是简单而灵活。前者编码器是由生产厂家的专业人员按红外遥控协议进行编码,而后者适用于一般电子技术人员和电子爱好者的编码。图4中的38kHz振荡器即载波信号比较简单,但专业用的和业余用的也有区别,专业用的振荡器采用了晶振,而后者一般是RC振荡器。例如彩电红外遥控器上的发射端用了455kHz的晶振,是经过整数分频的,分频系数为12,即455kHz÷12= 37.9kHz。当然也有一些工业用的遥控系统,采用36kHz、40kHz或56kHz等的载波信号。 因红外遥控器的控制距离约10米远,要达到这个指标,其发射的载波频率(38kHz)要求十分稳定,而非专业用的RC(38kHz)载波频率稳定性差,往往偏离38kHz甚至很远,这就大大缩短了遥控器的控制距离。因晶振频率十分稳定,所以专业厂家的遥控器全部采用晶振的38kHz作遥控器的载波发送信号。 图4中编码器的编码信号对38kHz的载波信号进行调制,再经红外发射管D向空间发送信号供遥控接收端一体化接收头接收、解调输出、再作处理。

基于单片机的红外遥控系统设计

课程设计 基于单片机的红外遥控系统设计 学院:计算机与通信工程学院 专业:通信工程 班级:通信11-3班 姓名: 学号:

天津理工大学 摘要 本设计采用51单片机作为遥控发射接收芯片,HS003B作为红外一体化接收发射管,在此基础上设计了一个简易的智能红外遥控系统。系统包括接收和发射两大部分,发射部分有16个按键,接收部分含有8盏彩色LED灯、一片二位数码管和蜂鸣器系统。发射部分通过键盘扫描判断哪个键被按下,经过单片机编码程序进行编码,控制红外发射电路发送信号。接收部分解码信号,实现相应的输出。本设计方案结合红外遥控设计简单、作方便、成本低廉等特点。 关键字:红外遥控信号调制编码解码

天津理工大学 目录 摘要................................................................................................................................................... I I 1.绪论 (1) 1.1课题目的和意义 (1) 1.2红外线简介 (1) 1.3红外遥控系统简介 (1) 2 课题方案和设计思路 (2) 2.1总体方案 (2) 2.2红外发射器设计 (3) 2.2.1红外发射器原理 (3) 2.2.2红外编码 (3) 2.3红外接收端设计 (4) 3硬件结构设计与介绍 (5) 3.1AT89C51系列单片机功能特点 (5) 3.1.1主要特性 (5) 3.1.2管脚说明 (5) 3.1.3基本电路 (7) 3.2红外发射电路 (8) 3.3红外接收电路设计 (9) 3.3.1红外接收模块 (9) 3.3.2数码管 (9) 3.3.3彩灯系统 (10) 3.3.4蜂鸣器系统 (11) 3.3.5红外接收端电路图 (12) 4 软件设计 (12) 4.1定时/计数器功能简介 (12) 4.2遥控码的发射 (13) 4.3红外接收 (14) 5.课程设计总结和心得 (15) 参考文献 (16) 附录 (17) 附录1P ROTEUS仿真图 (17) 附录2发射程序 (17) 附录3接收程序 (20)

红外遥控器信号接收和显示的设计1

电子电路综合设计总结报告 题目:红外遥控器信号接收和显示的设计 摘要: 随着电子技术的发展,红外遥控器越来越多的使用到电器设备中,但各种型号遥控器的大量使用带来的遥控器大批量多品种的生产,使得检测成为难题,因此智能的红外遥控器检测装置成为一种迫切的需要。在该红外遥控器信号的接收和显示电路以单片机和一体化红外接收器为核心技术,具体由单片机最小系统、单片机和PC机间的通信模块、红外接收模块、数码管显示模块和流水灯模块组成。在本系统的设计中,利用红外接收器接收遥控器发出的控制信号,并通过软件编程将接收信号存储、处理、比较,并将数据处理送至数码管显示模块。总之,通过对电路的设计和实际调试,可以实现红外遥控器信号的接收和显示功能。根据比较接收信号的不同,在数码管显示电路及流水灯电路上显示相应的按键数字或闪烁变化功能,并可实现单片机及PC机之间的通信功能,使得控制信号能在PC机上显示。

关键词:单片机红外接收器HS0038 解码串口调试

设计任务 结合单片机最小电路和红外线接收接口电路共同设计一个基于单片机的红外遥控信号接收和转发系统,用普通电视机遥控器控制该系统,使用数码管显示信号的接收结果。 1、实现单片机最小系统的设计。 2、当遥控器按下数字键时,在数码管上显示其键值。如按下数字键1,则在数码管上显示 号码01。 3、当遥控器按下音量△及音量▽时,用两位数码的周围段实现顺时针或者逆时针旋转的流 水灯功能。(为使得音量的增减清晰显示,试验中在单片机的P1口外接一排流水灯,具体功能的实现见方案的可行性论证) * 运用串口调试助手,在遥控器有按键按下时,将其键值显示在PC机上。 * 当遥控器按下频道△及频道▽时,在数码管上显示加1或减1后的数值。 一、系统方案比较和论证 1、方案比较和选择 为了实现系统整体功能,红外解码部分是核心,红外解码是指将遥控发射器所产生的红外遥控编码脉冲所对应的键值翻译出来的过程。下面将系统方案做一论证,通常有硬件解码和软件解码两种方案。 方案一:此方案中,使用专用遥控器作为控制信号发出装置,当按下遥控器的按键后,一体化红外接收装置接收到遥控器发出的设置控制信号,然后将信号送到专用的解码芯片中进行解码,解码后将信号送到单片机,由单片机查表判断这个信号是按键数值信号或控制音量、频道等信号,当确认是何种信号后,启动子程序,然后进行查询。每次红外接收头接收到红外信号传到解码器中,解码器解码完毕后送到单片机,单片机再通过查表确定这些数值并进行相应功能的控制。设计原理图如图1所示。 图1、方案一设计原理图 方案二:此方案中,采用普通的家用遥控器作为控制信号发出装置,当按下遥控器的按键后,一体化红外接收装置接收到遥控器发出的红外线控制信号,然后把这个信号转换成电信号,传到单片机中,利用单片机对这个信号进行解码,解码完成后查表确定是按键数值信号或控制音量、频道等信号,启动子程序,进行相应的显示数字等功能。然后查询,重复上述流程。设计原理图如图2所示。

红外遥控发射和接收系统课程设计

红外遥控发射和接收系统设计 摘要 本设计是以红外技术为基础,可以实现无线遥控,摆脱了信息传递需要导线的限制,而且红外实现方式灵活,得到了广泛的应用。特别是随着芯片技术的发展,红外集成芯片价格的降低,更加扩展了红外的应用范围。现在在我们的日常生活中都能感受到红外的应用,以及它给我们带来的便利。本设计充分利用能够很容易买到的普通电视机遥控器,通过编码发射红外线,然后由通用红外接收芯片sw0038实现对红外的接收,但是因为考虑到题目的要求仅仅是实现对一个开关的简单开管控制,所以舍弃了依靠单片机来对遥控器发出的红外进行解码实现多种控制的方案。本方案简洁可行,充分利用现有的资源进行开发,取得比较好的效果,并且具有良好的移植性,可以通过简单的修改就应用到其他领域。 关键字:红外遥控红外解码双稳态 Abstract This design is take the infrared technology as a foundation, realizing the wireless remote control, getting rid of the the limit of wire information transmission. Beacause infrared technology is easy to be realized,it is widely used in many fields. Specially ,with the chip technology development, infrared integrated chip price reducing, even more expanded the infrared application scope . Now in our daily life ,we can feel the application of the infrared, and the convenience it has brought us.In this design,I take ordinary television remote control device to realize coding and Infrared Emission,then it is received by the general infrared receive chip sw0038 .what the topic requests is merely the realization of a simple switch control,so I give up the program on the MCU. The program is simple and feasible, making full use of the existing resources for development, and achieve fairly good results.It has a good portability,so only after a little change,it can be transplanted to other fields. Key word: infrared remote control infrared decode bistability

万能学习型红外遥控器制作(毕业设计)

学号 密级 ××大学本科毕业论文 万能学习型红外遥控器设计 院(系)名称:×××× 专业名称:×××× 学生姓名:×××× 指导教师:×××× 二○○九年五月

BACHELOR'S DEGREE THESIS OF ×××× UNIVERSITY Design of Universal IR Learning Remote Controller College :×××× Subject :×××× Name :×××× Directed by :×××× May 2009

摘 要 随着家用电器种类的增加和无线遥控产品的普及,红外遥控器的使用频率越来越高,针对国内红外遥控学习技术成熟,但产品化程度低的特点,本文自主设计一种具有红外学习和触屏显示功能的红外遥控器,借此促进红外遥控学习技术在国内市场的产品化推广。 在红外解码方面,传统方法采用单片机中断或者查询方式采集红外信号,环境不理想情况下可能需要多次解码,本文借助电脑辅助记录全波形,通过相关软件优化波形,解码一次即可成功;在红外发射方面,本文通过实验发现红外发射距离受载波占空比和红外二极管贯通电流影响,通过调试将38KHz载波红外信号发射距离提高到10米;在红外接收方面,进行了红外干扰测试;在触屏校验方面,通过实验获取触屏数据,利用matlab参数估计lsqcurvefit函数求得校正参数,解决了触屏漂移问题;在彩屏显示方面,将遥控器所有按键简化为方向键和确认键,虚拟数码管显示按键位置,避免了单片机片上资源紧张的问题,此外,彩屏仅支持16位R5G6B5格式数据,一张176*220图片占用72. 6KB空间,造成极大浪费,本文借此讨论了适合本系统的图片压缩技术,给出了一种具体的图片压缩格式。 按照由简单到复杂的顺序,本文先后制作了遥控接收解码装置、遥控编码发射装置、万能学习型红外遥控器,以SAA3010遥控器作为典型代表(遵循飞利浦RC-5编码协议),成功的实现了红外编解码、发射接收、按键触屏双输入、彩屏显示等基本功能,最终制作的万能学习型遥控器在功能上可以完全代替SAA3010遥控器。 关键词:红外学习;红外解码;单片机控制;声卡采样;触屏校验

(完整版)红外遥控电路设计

引言 随着远程教育系统的不断发展和日趋完善,利用多媒体作为教学手段在各级各类学校都得到了广泛应用。近年来,在多媒体教学系统的使用、开发和研制中,经常遇到同时使用多种设备,如:数字投影机、DVD、VCD、录像机、电视机等,由于各种设备都自带遥控器,而且不同的设备所遵循的红外传输规约也不尽相同,操纵这些设备得使用多种遥控器,给使用者带来了诸多不便。本次毕业设计的主题就是红外遥控电路设计。红外遥控的特点是利用红外线进行点对点通信的技术,不影响周边环境,不干扰其他电器设备。室内近距离(小于10米),信号无干扰、传输准确度高、体积小、功率低的特点,遥控中得到了广泛的应用。通过基于单片机的控制指令来对多种设备进行远程控制,可以选择不同的按键来控制不同的设备。从而方便快捷的实现远程控制。 常用的红外遥控系统一般分发射和接收两个部分。发射部分的主要元件为红外发光二极管。它实际上是一只特殊的发光二极管;由于其内部材料不同于普通发光二极管,因而在其两端施加一定电压时,它便发出的是红外线而不是可见光。红外发光二极管一般有黑色、深蓝、透明三种颜色。判断红外发光二极管好坏的办法与判断普通二极管一样;用万用表电阻挡量一下红外发光二极管的正、反向电阻即可。红外发光二极管的发光效率要用专门的仪器才能精确测定,而业余条件下只能用拉锯法来粗略判判定。 接收部分的红外接收管是一种光敏二极管。在实际应用中要给红外接收二极管加反向偏压,它才能正常工作,亦即红外接收二极管在电路中应用时是反向运用,这样才能获得较高的灵敏度。红外发光二极管一般有圆形和方形两种。由于红外发光二极管的发射功率一般都较小,所以红外接收二极管接收到的信号比较微弱,因此就要增加高增益放大电路。最近几年不论是业余制作还是正式产品,大多都采用成品红外接收头。成品红外接收头的封装大致有两种:一种采用铁皮屏蔽;一种是塑料封装。均有三只引脚,即电源正(VDD)、电源负(GND)和数据输出(VO或OUT)。 红外接收头的引脚排列因型号不同而不尽相同,红外接收头的优点是不需要复杂的调试和外壳屏蔽,使用起来如同一只三极管,非常方便。

红外遥控原理及解码程序

红外遥控系统原理及单片机 红外线遥控是目前使用最广泛的一种通信和遥控手段。由于红外线遥控装置具有体积小、功耗低、功能强、成本低等特点,因而,继彩电、录像机之后,在录音机、音响设备、空凋机以及玩具等其它小型电器装置上也纷纷采用红外线遥控。工业设备中,在高压、辐射、有毒气体、粉尘等环境下,采用红外线遥控不仅完全可靠而且能有效地隔离电气干扰。 1 红外遥控系统 通用红外遥控系统由发射和接收两大部分组成。应用编/解码专用集成电路芯片来进行控制操作,如图1所示。发射部分包括键盘矩阵、编码调制、LED红外发送器;接收部分包括光、电转换放大器、解调、解码电路。 图1 红外线遥控系统框图 2 遥控发射器及其编码 遥控发射器专用芯片很多,根据编码格式可以分成两大类,这里我们以运用比较广泛,解码比较容易的一类来加以说明,现以日本NEC 的uPD6121G组成发射电路为例说明编码原理(一般家庭用的DVD、VCD、音响都使用这种编码方式)。当发射器按键按下后,即有遥控码发出,所按的键不同遥控编码也不同。这种遥控码具有以下特征:采用脉宽调制的串行码,以脉宽为0.565ms、间隔0.56ms、周

期为1.125ms的组合表示二进制的“0”;以脉宽为0.565ms、间隔1.685ms、周期为2.25ms的组合表示二进制的“1”,其波形如图2所示。 图2 遥控码的“0”和“1” (注:所有波形为接收端的与发射相反)上述“0”和“1”组成的32位二进制码经38kHz的载频进行二次调制以提高发射效率,达到降低电源功耗的目的。然后再通过红外发射二极管产生红外线向空间发射,如图3示。 图3 遥控信号编码波形图 UPD6121G产生的遥控编码是连续的32位二进制码组,其中前16位为用户识别码,能区别不同的电器设备,防止不同机种遥控码互相干扰。该芯片的用户识别码固定为十六进制01H;后16位为8位操作码(功能码)及其反码。UPD6121G最多额128种不同组合的编码。 遥控器在按键按下后,周期性地发出同一种32位二进制码,周期约为108ms。一组码本身的持续时间随它包含的二进制“0”和“1”的个数不同而不同,大约在45~63ms之间,图4为发射波形图。

基于单片机的红外遥控系统设计

单片机红外遥控系统设计 随着社会的发展、科技的进步以及人们生活水平的逐步提高,各种方便于生活的遥控系统开始进入了人们的生活。传统的遥控器采用专用的遥控编码及解码集成电路,这种方法虽然制作简单、容易,但由于功能键数及功能受到特定的限制,只实用于某一专用电器产品的应用,应用范围受到限制。而采用单片机进行遥控系统的应用设计,具有编程灵活多样、操作码个数可随便设定等优点。 本设计主要应用了AT89C51单片机作为核心,综合应用了单片机中断系统、定时器、计数器等知识,应用红外光的优点,设计了一个红外线遥控系统。本系统包含发射和接收两大部分,利用编码/解码芯片来进行控制操作。发射部分包括键盘矩阵、编码调制、LED 红外线发射器;接收部分包括红外线接收芯片、光电转换器、调解电路。其优点硬件电路 简单,软件功能完善,性价比较高等特点,具有一定的使用和参考价值。 关键词:单片机AT89C51;LED红外线发射器

目录 目录 (2) 1 绪论 (2) 1.1研究背景 (2) 1.2国内外研究现状 (3) 1.3研究目的与意义 (3) 2系统方案设计论证 (5) 2.1单片机红外遥控发射器设计原理 (5) 2.2单片机红外遥控接收器设计原理 (5) 2.3方案选择和论证 (6) 3红外解码硬件电路设计 (8) 3.1红外解码系统设计 (8) 3.2单片机及其硬件电路设计 (8) 3.3红外发射电路设计 (10) 3.4红外接收电路设计 (11) 3.5本章小结 (13) 4红外解码程序设计 (14) 4.1红外接收电路主程序流程图 (14) 4.2红外接收电路子程序流程图 (14) 4.3本章小结 (15) 5 联机与调试 (16) 结论和展望 (23) 附录A:系统原理图 (24) 附录B:系统PCB图 (25) 附录C:系统仿真图 (26) 附录D:系统源程序 (27) 1 绪论 1.1研究背景 目前市场上采用的一般是遥控编码及解码集成的电路。此方案的特点是制作简单、容

相关文档
最新文档