各种类型的微分方程及其相应解法

各种类型的微分方程及其相应解法
各种类型的微分方程及其相应解法

各种类型的微分方程及其相应解法

专业班级:交土 01班

姓名:高云 学号:1201110102

微分方程的类型有很多种,解题时先判断微分方程是哪种类型,可以帮助我

们更快解题,所以我们有必要归纳整理一下各类型(主要是一阶和二阶)的微分方程及其相应解法。

一、一阶微分方程的解法1可.分离变量的方程

dy

g ( y )dy?f (x )dx ,或 ?f (x )g (y ) dx

其特点是可以把变量 x 和 y 只分别在等式的两边,解法关键是把变量分离后两边积分。

例 1.求微分方程 dx?xyd?y

2

dx?ydy 的通解 .

2

先合并 dx 及 dy 的各项 ,得 y (x 1)dy ( y 1)dx

?? ? 设

2

1

0, 1 0,

y dy? 1 dx

y ? ? x ? ? 分离变量得 2

x?1

y ?1

两端积分

y

dy?

1 dx 得

1

ln | 2

1| ln |

1| ln | |

2

x?

1

y ?1 2

2

2

( x?1) 2

2

2

?C ( x?1) 2 .

于是 y ?1 ??C

记 C??C , 则得到题设方程的通解y ?1

1

1

2.齐次方程

dy y

(1) ?f ( ) dx

x

dy

(2) ?f (ax?by?c )(a ,b 均不等于 0) dx

例 2 求解微分方程 dx dy

.

2

2

? 2

x ?xy?y 2 y ?xy

y

2

y

? ??

dy

2

2? ?

原方程变形为

2y ?xy

?

x

x

, ?

2

2 ? ?

2

dx

x ?xy?y

y

y

? ?

1? ?? ?

x

x

? ?

y dy du

2

du 2u ?u

,

令 u? , 则 ?u?x ,

方程化为 u?x

?

2

x

dx

dx

dx 1 ?u?u

?1 ? 1 1 ? 2 1 ? dx 分离变量

得 ? ? ? ?? ? ?du? ,

?2 ?u?2

u? u?2

u?1?

x

两边积分得

ln(u?1) ?3

ln(u?2) ?

1

ln u?ln x?ln C, 2 2

各种类型的微分方程及其相应解法

专业班级:交土 01班

姓名:高云 学号:1201110102

微分方程的类型有很多种,解题时先判断微分方程是哪种类型,可以帮助我

们更快解题,所以我们有必要归纳整理一下各类型(主要是一阶和二阶)的微分方程及其相应解法。

一、一阶微分方程的解法1可.分离变量的方程

dy

g ( y )dy?f (x )dx ,或 ?f (x )g (y ) dx

其特点是可以把变量 x 和 y 只分别在等式的两边,解法关键是把变量分离后两边积分。

例 1.求微分方程 dx?xyd?y

2

dx?ydy 的通解 .

2

先合并 dx 及 dy 的各项 ,得 y (x 1)dy ( y 1)dx

?? ? 设

2

1

0, 1 0,

y dy? 1 dx

y ? ? x ? ? 分离变量得 2

x?1

y ?1

两端积分

y

dy?

1 dx 得

1

ln | 2

1| ln |

1| ln | |

2

x?

1

y ?1 2

2

2

( x?1) 2

2

2

?C ( x?1) 2 .

于是 y ?1 ??C

记 C??C , 则得到题设方程的通解y ?1

1

1

2.齐次方程

dy y

(1) ?f ( ) dx

x

dy

(2) ?f (ax?by?c )(a ,b 均不等于 0) dx

例 2 求解微分方程 dx dy

.

2

2

? 2

x ?xy?y 2 y ?xy

y

2

y

? ??

dy

2

2? ?

原方程变形为

2y ?xy

?

x

x

, ?

2

2 ? ?

2

dx

x ?xy?y

y

y

? ?

1? ?? ?

x

x

? ?

y dy du

2

du 2u ?u

,

令 u? , 则 ?u?x ,

方程化为 u?x

?

2

x

dx

dx

dx 1 ?u?u

?1 ? 1 1 ? 2 1 ? dx 分离变量

得 ? ? ? ?? ? ?du? ,

?2 ?u?2

u? u?2

u?1?

x

两边积分得

ln(u?1) ?3

ln(u?2) ?

1

ln u?ln x?ln C, 2 2

各种类型的微分方程及其相应解法

专业班级:交土 01班

姓名:高云 学号:1201110102

微分方程的类型有很多种,解题时先判断微分方程是哪种类型,可以帮助我

们更快解题,所以我们有必要归纳整理一下各类型(主要是一阶和二阶)的微分方程及其相应解法。

一、一阶微分方程的解法1可.分离变量的方程

dy

g ( y )dy?f (x )dx ,或 ?f (x )g (y ) dx

其特点是可以把变量 x 和 y 只分别在等式的两边,解法关键是把变量分离后两边积分。

例 1.求微分方程 dx?xyd?y

2

dx?ydy 的通解 .

2

先合并 dx 及 dy 的各项 ,得 y (x 1)dy ( y 1)dx

?? ? 设

2

1

0, 1 0,

y dy? 1 dx

y ? ? x ? ? 分离变量得 2

x?1

y ?1

两端积分

y

dy?

1 dx 得

1

ln | 2

1| ln |

1| ln | |

2

x?

1

y ?1 2

2

2

( x?1) 2

2

2

?C ( x?1) 2 .

于是 y ?1 ??C

记 C??C , 则得到题设方程的通解y ?1

1

1

2.齐次方程

dy y

(1) ?f ( ) dx

x

dy

(2) ?f (ax?by?c )(a ,b 均不等于 0) dx

例 2 求解微分方程 dx dy

.

2

2

? 2

x ?xy?y 2 y ?xy

y

2

y

? ??

dy

2

2? ?

原方程变形为

2y ?xy

?

x

x

, ?

2

2 ? ?

2

dx

x ?xy?y

y

y

? ?

1? ?? ?

x

x

? ?

y dy du

2

du 2u ?u

,

令 u? , 则 ?u?x ,

方程化为 u?x

?

2

x

dx

dx

dx 1 ?u?u

?1 ? 1 1 ? 2 1 ? dx 分离变量

得 ? ? ? ?? ? ?du? ,

?2 ?u?2

u? u?2

u?1?

x

两边积分得

ln(u?1) ?3

ln(u?2) ?

1

ln u?ln x?ln C, 2 2

二阶齐次线性方程

''

'

2.

y ?P (x )y?Q (x )y?0 (1)

''

'

二阶非齐次线性方程y ?P (x )y?Q (x )y?f (x ) (2)

3二.阶常系数齐次线性方程

'''

其中 , 是常数,若特征方程

2

y?py?qy?0,

p q

r ?pr?q?0

()有两个不相等的实根 r 1,r 2, 则通解为

rx

rx

1

2

1

y?Ce 1

?Ce 2

)有两个相等的实根 ,则通解为

rx

(2

r

y?(C 1 ?C 2 x )e (3) 一对共轭复根

则通解为 ?x

r 1,2 ????i ,

y?e (C 1 cos ?x?C 2 sin ?x )

例 7.解方程 y ??2y??2y?0 .

y ?2y?2y?0

的特征方程为

r?2r?2 ?0 ? r 1,2 ???1i

解: ? ?

2

?x

则方程的通解为 y?e

(C cos x?C sin x )

1

2

x

例 8.设 fx ()?sin x? (x?tftdt )()

? 其中 f (x )为连续函数,求 f (x ).

x

x

解:原方程整理得 fx ()?sin x?x ftdt ()? tfdt ()

?

?

0 0

x

两边求导

f (x )?cos x??0ftdt ()

?

再两边求导得 ? ??sin x?fx (),

f (x )

整理得 f ?(x )?fx ()??sin x , f (0) ?0, f?(0) ?1 (初始条件到原方程中找)

1 x 解得 fx () ? sin x? cos x

2

2

有关微分方程的题目有很多,不可能一一列举出来,但我们可以举一反三,开拓思维,这样我们的高数才会得以提高。

变系数线性常微分方程的求解

变系数线性常微分方程的求解 张慧敏,数学计算机科学学院 摘要:众所周知,所有的常系数一阶、二阶微分方程都是可解的,而变系数 二阶线性微分方程却很难解,至今还没有一个普遍方法。幂级数解法是一个非常有效的方法,本文重点讨论二阶变系数线性常微分方程的解法,从幂级数解法、降阶法、特殊函数法等方面探究了二阶微分方程的解法,简单的介绍了几种高阶微分方程的解法,并讨论了悬链线方程等历史名题。 关键词:变系数线性常微分方程;特殊函数;悬链线方程;幂级数解法 Solving linear ordinary differential equations with variable coefficients Huimin Zhang , School of Mathematics and Computer Science Abstract:As we know, all of ordinary differential equations of first, second order differential equations with constant coefficients are solvable. However, the linear differential equations of second order with variable coefficients are very difficult to solve. So far there is not a universal method. The method of power-series solution is a very efficient method. This article focuses on solving linear ordinary differential equations of second order with variable coefficients, and exploring the solution of in terms of power-series solution, the method of reducing orders, the method of special functions. Also, this paper applies the above methods to solve several linear differential equations of higher order and especially discusses the famous catenary equation. Key words:Linear ordinary differential equations with variable coefficients; Special Functions; catenary equation; Power Series Solution.

一阶常微分方程解法总结

页脚内容1 第 一 章 一阶微分方程的解法的小结 ⑴、可分离变量的方程: ①、形如 )()(y g x f dx dy = 当0)(≠y g 时,得到 dx x f y g dy )()(=,两边积分即可得到结果; 当0)(0=ηg 时,则0)(η=x y 也是方程的解。 例1.1、xy dx dy = 解:当0≠y 时,有xdx y dy =,两边积分得到)(2ln 2为常数C C x y += 所以)(11212 C x e C C e C y ±==为非零常数且 0=y 显然是原方程的解; 综上所述,原方程的解为)(1212 为常数C e C y x = ②、形如0)()()()(=+dy y Q x P dx y N x M 当0)()(≠y N x P 时,可有dy y N y Q dx x P x M ) ()()()(=,两边积分可得结果; 当0)(0=y N 时,0y y =为原方程的解,当0(0=) x P 时,0x x =为原方程的解。 例1.2、0)1()1(22=-+-dy x y dx y x

页脚内容2 解:当0)1)(1(22≠--y x 时,有dx x x dy y y 1 122-=-两边积分得到 )0(ln 1ln 1ln 22≠=-+-C C y x ,所以有)0()1)(1(22≠=--C C y x ; 当0)1)(1(22=--y x 时,也是原方程的解; 综上所述,原方程的解为)()1)(1(22为常数C C y x =--。 ⑵可化为变量可分离方程的方程: ①、形如)(x y g dx dy = 解法:令x y u = ,则udx xdu dy +=,代入得到)(u g u dx du x =+为变量可分离方程,得到)(0),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x x y f =。 ②、形如)0(),(≠+=ab by ax G dx dy 解法:令by ax u +=,则b du adx dy +=,代入得到)(1u G b a dx du b =+为变量可分离方程,得到)(0),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x by ax f =+。 ③、形如 )(222111c y b x a c y b x a f dx dy ++++= 解法:01、02211 =b a b a ,转化为)(by ax G dx dy +=,下同①; 02、0221 1 ≠b a b a ,???=++=++00222111c y b x a c y b x a 的解为),(00y x ,令???-=-=00y y v x x u

一阶常微分方程解法总结

第 一 章 一阶微分方程的解法的小结 ⑴、可分离变量的方程: ①、形如 )()(y g x f dx dy = 当0)(≠y g 时,得到 dx x f y g dy )() (=,两边积分即可得到结果; 当0)(0=ηg 时,则0)(η=x y 也是方程的解。 例1.1、 xy dx dy = 解:当0≠y 时,有 xdx y dy =,两边积分得到)(2ln 2为常数C C x y += 所以)(112 12 C x e C C e C y ±==为非零常数且 0=y 显然是原方程的解; 综上所述,原方程的解为)(12 12 为常数C e C y x = ②、形如0)()()()(=+dy y Q x P dx y N x M 当0)()(≠y N x P 时,可有 dy y N y Q dx x P x M ) () ()()(=,两边积分可得结果; 当0)(0=y N 时,0y y =为原方程的解,当0(0=) x P 时,0x x =为原方程的解。 例1.2、0)1()1(2 2 =-+-dy x y dx y x 解:当0)1)(1(2 2 ≠--y x 时,有 dx x x dy y y 1 122-=-两边积分得到 )0(ln 1ln 1ln 22≠=-+-C C y x ,所以有)0()1)(1(22≠=--C C y x ; 当0)1)(1(2 2 =--y x 时,也是原方程的解; 综上所述,原方程的解为)()1)(1(2 2 为常数C C y x =--。 ⑵可化为变量可分离方程的方程: ①、形如 )(x y g dx dy = 解法:令x y u =,则udx xdu dy +=,代入得到)(u g u dx du x =+为变量可分离方程,得到

高阶线性微分方程常用解法介绍

高阶线性微分方程常用解法简介 关键词:高阶线性微分方程 求解方法 在微分方程的理论中,线性微分方程是非常值得重视的一部分内容,这不仅 因为线性微分方程的一般理论已被研究的十分清楚,而且线性微分方程是研究非线性微分方程的基础,它在物理、力学和工程技术、自然科学中也有着广泛应用。下面对高阶线性微分方程解法做一些简单介绍. 讨论如下n 阶线性微分方程:1111()()()()n n n n n n d x d x dx a t a t a t x f t dt dt dt ---++++= (1),其中()i a t (i=1,2,3,,n )及f(t)都是区间a t b ≤≤上的连续函数,如果 ()0f t ≡,则方程(1)变为 1111()()()0n n n n n n d x d x dx a t a t a t x dt dt dt ---++++= (2),称为n 阶齐次线性微分方程,而称一般方程(1)为n 阶非齐次线性微分方程,简称非齐次线性微分方程,并且把方程(2)叫做对应于方程(1)的齐次线性微分方程. 1.欧拉待定指数函数法 此方法又叫特征根法,用于求常系数齐次线性微分方程的基本解组。形如 111121[]0,(3),n n n n n n n d x d x dx L x a a a x dt dt dt ---≡++++=其中a a a 为常数,称为n 阶常系数齐次线性微分方程。 111111111111[]()()()n t n t t t t n n n n n n n t t n n n n n n n d e d e de L e a a a e dt dt dt a a a e F e F a a a n λλλλλλλλλλλλλλλλ---------≡++++=++++≡≡++++其中=0(4)是的次多项式. ()F λ为特征方程,它的根为特征根. 1.1特征根是单根的情形 设12,,,n λλλ是特征方程111()0n n n n F a a a λλλλ--≡++++=的n 个彼此不相等的根,则应相应地方程(3)有如下n 个解:12,,,.n t t t e e e λλλ(5)我们指出这n 个解在区间a t b ≤≤上线性无关,从而组成方程的基本解组. 如果(1,2,,)i i n λ=均为实数,则(5)是方程(3)的n 个线性无关的实值 解,而方程(3)的通解可表示为1212,n t t t n x c e c e c e λλλ=+++其中12,,,n c c c 为任意常数. 如果特征方程有复根,则因方程的系数是实常数,复根将称对共轭的出现.设1i λαβ=+是一特征根,则2i λαβ=-也是特征根,因而于这对共轭复根

最新二阶变系数线性微分方程的一些解法

二阶变系数线性微分方程的一些解法

第九节 二阶变系数线性微分方程的 一些解法 常系数线性齐次方程和某些特殊自由项的常系数线性非齐次方程的解法已在第七节中介绍,而对于变系数线性方程,要求其解一般是很困难的。本节介绍处理这类方程的二种方法 §9.1 降阶法 在第五节中我们利用变量替换法使方程降阶,从而求得方程的解,这种方法也可用于二阶变系数线性方程的求解。 考虑二阶线性齐次方程 22dx y d +p(x) dx dy +q(x)y =0 (9.1) 设已知其一个非零特解y 1,作变量替换,令 y =uy 1 (9.2) 其中u =u(x)为未知函数,求导数有 dx dy =y 1dx du +u dx dy 1 求二阶导数有22dx y d =y 122dx u d +2dx du dx dy 1 +u 2 12dx y d 代入(9.1)式得

y 122dx u d +(2dx dy 1+p(x)y 1)dx du +(212dx y d +p(x) dx dy 1 +q(x)y 1)u =0 (9.3) 这是一个关于u 的二阶线性齐次方程,各项系数是x 的已知函数,因为y 1是(9.1)的解,所以其中 212dx y d +p(x) dx dy 1 +q(x)y 1≡0 故(9.3)式化为 y 122dx u d +(2dx dy 1+p(x)y 1) dx du =0 再作变量替换,令dx dy =z 得 y 1dx dz +(2dx dy 1 +p(x)y 1)z =0 分离变量 z 1dz =-[1 y 2 +p(x)]dx 两边积分,得其通解 z =21 2y C e -∫p(x)dx 其中C 2为任意常数 积分得u =C 2∫21 y 1e -∫p(x)dx dx +C 1代回原变量得(9.1) 的通解 y =y 1[C 1+C 2∫21 y 1e -∫p(x)dx dx ]

常微分方程解题方法总结.doc

常微分方程解题方法总结 来源:文都教育 复习过半, 课本上的知识点相信大部分考生已经学习过一遍 . 接下来, 如何将零散的知 识点有机地结合起来, 而不容易遗忘是大多数考生面临的问题 . 为了加强记忆, 使知识自成 体系,建议将知识点进行分类系统总结 . 著名数学家华罗庚的读书方法值得借鉴, 他强调读 书要“由薄到厚、由厚到薄”,对同学们的复习尤为重要 . 以常微分方程为例, 本部分内容涉及可分离变量、 一阶齐次、 一阶非齐次、 全微分方程、 高阶线性微分方程等内容, 在看完这部分内容会发现要掌握的解题方法太多, 遇到具体的题 目不知该如何下手, 这种情况往往是因为没有很好地总结和归纳解题方法 . 下面以表格的形 式将常微分方程中的解题方法加以总结,一目了然,便于记忆和查询 . 常微分方程 通解公式或解法 ( 名称、形式 ) 当 g( y) 0 时,得到 dy f (x)dx , g( y) 可分离变量的方程 dy f ( x) g( y) 两边积分即可得到结果; dx 当 g( 0 ) 0 时,则 y( x) 0 也是方程的 解 . 解法:令 u y xdu udx ,代入 ,则 dy 齐次微分方程 dy g( y ) x dx x u g (u) 化为可分离变量方程 得到 x du dx 一 阶 线 性 微 分 方 程 P ( x)dx P ( x) dx dy Q(x) y ( e Q( x)dx C )e P( x) y dx

伯努利方程 解法:令 u y1 n,有 du (1 n) y n dy , dy P( x) y Q( x) y n(n≠0,1)代入得到du (1 n) P(x)u (1 n)Q(x) dx dx 求解特征方程:2 pq 三种情况: 二阶常系数齐次线性微分方程 y p x y q x y0 二阶常系数非齐次线性微分方程 y p x y q x y f ( x) (1)两个不等实根:1, 2 通解: y c1 e 1x c2 e 2x (2) 两个相等实根:1 2 通解: y c1 c2 x e x (3) 一对共轭复根:i , 通解: y e x c1 cos x c2 sin x 通解为 y p x y q x y 0 的通解与 y p x y q x y f ( x) 的特解之和. 常见的 f (x) 有两种情况: x ( 1)f ( x)e P m ( x) 若不是特征方程的根,令特解 y Q m ( x)e x;若是特征方程的单根,令特 解 y xQ m ( x)e x;若是特征方程的重根, 令特解 y*x2Q m (x)e x; (2)f (x) e x[ P m ( x) cos x p n ( x)sin x]

二阶线性微分方程的解法

二阶常系数线性微分方程 一、二阶常系数线形微分方程的概念 形如 )(x f qy y p y =+'+'' (1) 的方程称为二阶常系数线性微分方程.其中p 、q 均为实数,)(x f 为已知的连续函数. 如果0)(≡x f ,则方程式 (1)变成 0=+'+''qy y p y (2) 我们把方程(2)叫做二阶常系数齐次线性方程,把方程式(1)叫做二阶常 系数非齐次线性方程. 本节我们将讨论其解法. 二、二阶常系数齐次线性微分方程 1.解的叠加性 定理1 如果函数1y 与2y 是式(2)的两个解, 则2211y C y C y +=也是 式(2)的解,其中21,C C 是任意常数. 证明 因为1y 与2y 是方程(2)的解,所以有 0111 =+'+''qy y p y 0222 =+'+''qy y p y 将2211y C y C y +=代入方程(2)的左边,得 )()()(22112211221 1y C y C q y C y C p y C y C ++'+'+''+'' =0)()(2222111 1=+'+''++'+''qy y p y C qy y p y C 所以2211y C y C y +=是方程(2)的解. 定理1说明齐次线性方程的解具有叠加性. 叠加起来的解从形式看含有21,C C 两个任意常数,但它不一定是方程式(2)的通解. 2.线性相关、线性无关的概念

设,,,,21n y y y 为定义在区间I 内的n 个函数,若存在不全为零的常数 ,,,,21n k k k 使得当在该区间内有02211≡+++n n y k y k y k , 则称这n 个函数在区间I 内线性相关,否则称线性无关. 例如 x x 22sin ,cos ,1在实数范围内是线性相关的,因为 0sin cos 12 2≡--x x 又如2,,1x x 在任何区间(a,b)内是线性无关的,因为在该区间内要使 02321≡++x k x k k 必须0321===k k k . 对两个函数的情形,若=21y y 常数, 则1y ,2y 线性相关,若≠2 1y y 常数, 则1y ,2y 线性无关. 3.二阶常系数齐次微分方程的解法 定理 2 如果1y 与2y 是方程式(2)的两个线性无关的特解,则 212211,(C C y C y C y +=为任意常数)是方程式(2)的通解. 例如, 0=+''y y 是二阶齐次线性方程,x y x y cos ,sin 21==是它的 两个解,且≠=x y y tan 2 1常数,即1y ,2y 线性无关, 所以 x C x C y C y C y cos sin 212211+=+= ( 21,C C 是任意常数)是方程0=+''y y 的通解. 由于指数函数rx e y =(r 为常数)和它的各阶导数都只差一个常数因子, 根据指数函数的这个特点,我们用rx e y =来试着看能否选取适当的常数r , 使rx e y =满足方程(2).

变系数_非线性微分方程的求解

变系数/非线性微分方程的求解:Example1: van der Pol equation Rewrite the van der Pol equation (second-order) The resulting system of first-order ODEs is 见:vdp_solve.m及vdp.mdl vdp_solve.m vdp.mdl

Example2: 2 with x(0) = 4 x (0)=0 5(5)5sin()5 +-+= x t x t x 见:exam2_solve.m及exam2.mdl exam2_solve.m exam2.mdl

Example3: ODEs 函数实现及封装说明[以一阶微分方程为例] 510 w i t h (0)4 dx x x dt +==- 引言: 一步Euler 法求解[相当于Taylor 展开略去高阶项]: 11()k k k k k k k k k k k x x x Ax bu t x x t x x t Ax bu ++-==+??=+??=+??+ 补充说明1:对于任意方程/方程组可化为如下一阶形式[方程组]: x Ax Bu =+ 或者(,)(,)M t x x f t x = 补充说明2:ODEs 的解法不同之处在于 1、时间步长的选取(及导数的求解?):有无误差控制 变步长; 2、积分方法:选用哪几个时间状态信息。 见:my_ode_rough.m[直接求解] / test_my_ode.m[按Matlab/ODEs 方式封装] my_ode_rough.m

二阶变系数线性微分方程的一些解法

第九节 二阶变系数线性微分方程 的一些解法 常系数线性齐次方程和某些特殊自由项的常系数线性非齐次方程的解法已在第七节中介绍,而对于变系数线性方程,要求其解一般是很困难的。本节介绍处理这类方程的二种方法 §9.1 降阶法 在第五节中我们利用变量替换法使方程降阶,从而求得方程的解,这种方法也可用于二阶变系数线性方程的求解。 考虑二阶线性齐次方程 22dx y d +p(x) dx dy +q(x)y =0 (9.1) 设已知其一个非零特解y 1,作变量替换,令 y =uy 1 (9.2) 其中u =u(x)为未知函数,求导数有 dx dy =y 1dx du +u dx dy 1 求二阶导数有22dx y d =y 122dx u d +2dx du dx dy 1+u 21 2dx y d 代入(9.1)式得

y 122dx u d +(2dx dy 1+p(x)y 1)dx du +(21 2dx y d +p(x) dx dy 1+q(x)y 1)u =0 (9.3) 这是一个关于u 的二阶线性齐次方程,各项系数是x 的已知函数,因为y 1是(9.1)的解,所以其中 21 2dx y d +p(x) dx dy 1+q(x)y 1≡0 故(9.3)式化为 y 122dx u d +(2dx dy 1+p(x)y 1) dx du =0 再作变量替换,令dx dy =z 得 y 1dx dz +(2dx dy 1 +p(x)y 1)z =0 分离变量 z 1 dz =-[1y 2+p(x)]dx 两边积分,得其通解 z =21 2y C e -∫p(x)dx 其中C 2为任意常数 积分得u =C 2∫21 y 1e -∫p(x)dx dx +C 1代回原变量得(9.1) 的通解 y =y 1[C 1+C 2∫21 y 1e -∫p(x)dx dx ]

常微分方程数值解法

i.常微分方程初值问题数值解法 常微分方程初值问题的真解可以看成是从给定初始点出发的一条连续曲线。差分法是常微分方程初值问题的主要数值解法,其目的是得到若干个离散点来逼近这条解曲线。有两个基本途径。一个是用离散点上的差商近似替代微商。另一个是先对微分方程积分得到积分方程,再利用离散点作数值积分。 i.1 常微分方程差分法 考虑常微分方程初值问题:求函数()u t 满足 (,), 0du f t u t T dt =<≤ (i.1a ) 0(0)u u = (i.1b) 其中(,)f t u 是定义在区域G : 0t T ≤≤, u <∞上的连续函数,0u 和T 是给定的常数。我们假设(,)f t u 对u 满足Lipschitz 条件,即存在常数L 使得 121212(,)(,), [0,]; ,(,)f t u f t u L u u t T u u -≤-?∈∈-∞∞ (i.2) 这一条件保证了(i.1)的解是适定的,即存在,唯一,而且连续依赖于初值0u 。 通常情况下,(i.1)的精确解不可能用简单的解析表达式给出,只能求近似解。本章讨论常微分方程最常用的近似数值解法-差分方法。先来讨论最简单的Euler 法。为此,首先将求解区域[0,]T 离散化为若干个离散点: 0110N N t t t t T -=<< <<= (i.3) 其中n t hn =,0h >称为步长。 在微积分课程中我们熟知,微商(即导数)是差商的极限。反过来,差商就是微商的近似。在0t t =处,在(i.1a )中用向前差商 10()()u t u t h -代替微商du dt ,便得 10000()()(,())u t u t hf t u t ε=++ 如果忽略误差项0ε,再换个记号,用i u 代替()i u t 便得到 1000(,)u u hf t u -= 一般地,我们有 1Euler (,), 0,1, ,1n n n n u u hf t u n N +=+=-方法: (i.4) 从(i.1b) 给出的初始值0u 出发,由上式可以依次算出1,,N t t 上的差分解1,,N u u 。

[整理]一阶微分方程解的存在定理.

第三章 一阶微分方程解的存在定理 [教学目标] 1. 理解解的存在唯一性定理的条件、结论及证明思路,掌握逐次逼近法,熟练近似解的误差估计式。 2. 了解解的延拓定理及延拓条件。 3. 理解解对初值的连续性、可微性定理的条件和结论。 [教学重难点] 解的存在唯一性定理的证明,解对初值的连续性、可微性定理的证明。 [教学方法] 讲授,实践。 [教学时间] 12学时 [教学内容] 解的存在唯一性定理的条件、结论及证明思路,解的延拓概念及延拓条件,解对初值的连续性、可微性定理及其证明。 [考核目标] 1.理解解的存在唯一性定理的条件、结论,能用逐次逼近法解简单的问题。 2.熟练近似解的误差估计式,解对初值的连续性及可微性公式。 3.利用解的存在唯一性定理、解的延拓定理及延拓条件能证明有关方程的某些性质。 §1 解的存在性唯一性定理和逐步逼近法 微分方程来源于生产实践际,研究微分方程的目的就在于掌握它所反映的客观规律,能动解释所出现的各种现象并预测未来的可能情况。在第二章介绍了一阶微分方程初等解法的几种类型,但是,大量的一阶方程一般是不能用初等解法求出其通解。而实际问题中所需要的往往是要求满足某种初始条件的解。因此初值问题的研究就显得十分重要,从前面我们也了解到初值问题的解不一定是唯一的。他必须满足一定的条件才能保证初值问题解的存在性与唯一性,而讨论初值问题解的存在性与唯一性在常微分方程占有很重要的地位,是近代常微分方程定性理论,稳定性理论以及其他理论的基础。 例如方程 dy dx =过点(0,0)的解就是不唯一,易知0y =是方程过(0,0)的解,此外,容易验证,2 y x =或更一般地,函数 2 0 0() c<1x c y x c x ≤≤?=?-≤? 都是方程过点(0,0)而且定义在区间01x ≤≤上的解,其中c 是满足01c <<的任一数。 解的存在唯一性定理能够很好地解释上述问题,它明确地肯定了方程的解在一定条件下的存在性 和唯一性。另外,由于能得到精确解的微分方程为数不多,微分方程的近似解法具有重要的意义,而解的存在唯一性是进行近似计算的前提,如果解本身不存在,而近似求解就失去意义;如果存在不唯一,不能确定所求的是哪个解。而解的存在唯一性定理保证了所求解的存在性和唯一性。 1.存在性与唯一性定理: (1)显式一阶微分方程 ),(y x f dx dy = (3.1) 这里),(y x f 是在矩形域:00:||,||R x x a y y b -≤-≤ (3.2)

二阶常系数齐次线性微分方程求解方法

第六节 二阶常系数齐次线性微分方程 教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数 非齐次线性微分方程的解法 教学重点:二阶常系数齐次线性微分方程的解法 教学过程: 一、二阶常系数齐次线性微分方程 二阶常系数齐次线性微分方程 方程 y py qy 0 称为二阶常系数齐次线性微分方程 其中p 、q 均为常数 如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解 那么y C 1y 1C 2y 2就是它的通解 我们看看 能否适当选取r 使y e rx 满足二阶常系数齐次线性微分方程 为此将y e rx 代入方程 y py qy 0 得 (r 2pr q )e rx 0 由此可见 只要r 满足代数方程r 2pr q 0 函数y e rx 就是微分方程的解 特征方程 方程r 2pr q 0叫做微分方程y py qy 0的特征方程 特征方程的两个根r 1、r 2可用公式 2 422,1q p p r -±+-= 求出 特征方程的根与通解的关系 (1)特征方程有两个不相等的实根r 1、r 2时 函数x r e y 11=、x r e y 22=是方程的两个线性无关的解 这是因为

函数x r e y 11=、x r e y 22=是方程的解 又x r r x r x r e e e y y )(212121-==不是常数 因此方程的通解为 x r x r e C e C y 2121+= (2)特征方程有两个相等的实根r 1r 2时 函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解 这是因为 x r e y 11=是方程的解 又 x r x r x r x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+'+'' 0)()2(121111 =++++=q pr r xe p r e x r x r 所以x r xe y 12=也是方程的解 且x e xe y y x r x r ==1112不是常数 因此方程的通解为 x r x r xe C e C y 1121+= (3)特征方程有一对共轭复根r 1, 2i 时 函数y e ( i )x 、y e (i )x 是微分方程的两个线性无关的复数形式的解 函数y e x cos x 、y e x sin x 是微分方程的两个线性无关的实数形式的解 函数y 1e (i )x 和y 2e (i )x 都是方程的解 而由欧拉公式 得 y 1e ( i )x e x (cos x i sin x ) y 2e (i )x e x (cos x i sin x ) y 1y 22e x cos x )(21cos 21y y x e x +=βα y 1y 2 2ie x sin x )(21sin 21y y i x e x -=βα 故e x cos x 、y 2e x sin x 也是方程解 可以验证 y 1e x cos x 、y 2e x sin x 是方程的线性无关解 因此方程的通解为 y e x (C 1cos x C 2sin x )

1、变系数线性微分方程的求解

本科毕业论文 题目:变系数线性微分方程的求解问题院(部):理学院 专业:信息与计算科学 班级:信计081 姓名:张倩 学号:2008121191 指导教师:庞常词 完成日期:2012年6月1日

目录 摘要 (Ⅱ) ABSTRACT (Ⅲ) 1前言 1.1微分方程的发展和应用 (1) 1.2二阶变系数线性常微分方程的重要性 (2) 1.3本文的研究内容及意义 (2) 2二阶变系数线性微分方程特、通解与系数的关系 2.1基本概念 (3) 2.2二阶变系数线性微分方程的求解定理 (3) 2.3二阶变系数线性微分方程特、通解与系数的关系 (5) 3 微分方程的恰当方程解法 3.1恰当方程的概念 (8) 3.2恰当微分方程解法 (10) 4 微分方程的积分因子解法 4.1积分因子的概念 (14) 4.2积分因子解法 (14) 5二阶变系数微分方程可积的条件 结论 (22) 谢辞 (23) 参考文献 (24)

摘要 微分方程在数学理论中占有重要位置,在科学研究、工程技术中有着广泛的应用。在微分方程理论中,一些特殊的微分方程的性质及解法也已经有了深入的研究,它们总是可解的,但是变系数微分方程的解法比较麻烦的。 如果能够确定某一类型的二阶变系数线性微分方程的积分因子或恰当方程,则该二阶变系数线性微分方程就可以求解,问题在于如何确定积分因子和恰当方程及该类方程在何种情况下可积。 本文通过对微分方程的理论研究,用不同的方法探讨这类问题,扩展了变系数线性微分方程的可积类型,借助积分因子和恰当方程的方法求解方程。 关键词:变系数;二阶微分方程;积分因子;恰当因子

S olve For Varied Coefficient Second Order Liner Differential Equation ABSTRACT Second order liner homogeneous differential equation plays an important role in mathematics theory, and use extensively in science research and technology. In differential equation theory, some special differential equation’s solve ways have already been researched. So they can be seemed as could be solved sort of equation. But varied coefficient equation, however, this solve for this sort of equation is hard. If we can make integrating factor or exact equation of some types of second order liner different equation, and this types of second order liner different equation can be solved. The problem is how to make integrating factor and exact equation, and this type equation can be integral in which condition. This article utilizes different ways to research this problem in different equation theories, which expand could be solved type of varied coefficient second order liner differential equation. By integrating factor and exact equation make varied coefficient second order liner differential equation. Key Words: varied coefficient; second order liner differential equation; integrating factor; exact equation

各类微分方程的解法大全

各类微分方程的解法 1.可分离变量的微分方程解法 一般形式:g(y)dy=f(x)dx 直接解得∫g(y)dy=∫f(x)dx 设g(y)及f(x)的原函数依次为G(y)及F(x),则G(y)=F(x)+C为微分方程的隐式通解 2.齐次方程解法 一般形式:dy/dx=φ(y/x) 令u=y/x则y=xu,dy/dx=u+xdu/dx,所以u+xdu/dx=φ(u),即du/[φ(u)-u]=dx/x 两端积分,得∫du/[φ(u)-u]=∫dx/x 最后用y/x代替u,便得所给齐次方程的通解 3.一阶线性微分方程解法 一般形式:dy/dx+P(x)y=Q(x) 先令Q(x)=0则dy/dx+P(x)y=0解得y=Ce- ∫P(x)dx,再令y=u e-∫P(x)dx代入原方程解得u=∫Q(x) e∫P(x)dx dx+C,所以y=e-∫P(x)dx[∫Q(x)e∫P(x)dx dx+C] 即y=Ce-∫P(x)dx +e- ∫P(x)dx∫Q(x)e∫P(x)dx dx为一阶线性微分方程的通解 4.可降阶的高阶微分方程解法 ①y(n)=f(x)型的微分方程 y(n)=f(x) y(n-1)= ∫f(x)dx+C1 y(n-2)= ∫[∫f(x)dx+C1]dx+C2 依次类推,接连积分n次,便得方程y(n)=f(x)的含有n个任意常数的通解②y”=f(x,y’) 型的微分方程 令y’=p则y”=p’,所以p’=f(x,p),再求解得p=φ(x,C1) 即dy/dx=φ(x,C1),所以y=∫φ(x,C1)dx+C2 ③y”=f(y,y’) 型的微分方程

令y ’=p 则y ”=pdp/dy,所以pdp/dy=f(y,p),再求解得p=φ(y,C 1) 即dy/dx=φ(y,C 1),即dy/φ(y,C 1)=dx,所以∫dy/φ(y,C 1)=x+C 2 5.二阶常系数齐次线性微分方程解法 一般形式:y ”+py ’+qy=0,特征方程r 2+pr+q=0 6.二阶常系数非齐次线性微分方程解法 一般形式: y ”+py ’+qy=f(x) 先求y ”+py ’+qy=0的通解y 0(x),再求y ”+py ’+qy=f(x)的一个特解y*(x) 则y(x)=y 0(x)+y*(x)即为微分方程y ”+py ’+qy=f(x)的通解 求y ”+py ’+qy=f(x)特解的方法: ① f(x)=P m (x)e λx 型 令y*=x k Q m (x)e λx [k 按λ不是特征方程的根,是特征方程的单根或特征方程的重根依次取0,1或2]再代入原方程,确定Q m (x)的m+1个系数 ② f(x)=e λx [P l(x)cos ωx+P n (x)sin ωx ]型 令y*=x k e λx [Q m (x)cos ωx+R m (x)sin ωx ][m=max ﹛l,n ﹜,k 按λ+i ω不是特征方程的根或是特征方程的单根依次取0或1]再代入原方程,分别确定Q m (x)和R m (x)的m+1个系数

一阶常微分方程的解法

一阶常微分方程的解法 摘要:常微分方程是微积分学的重要组成部分,广泛用于具体问题的研究中,在整个数学中占有重要的地位。本文对一阶常微分方程的解法作了简要的总结,并举例加以分析了变量可分离方程,线性微分方程,积分因子,恰当微分方程,主要归纳了一阶微分方程的初等解法,并以典型例题加以说明。 关键词:变量分离;积分因子;非齐次微分方程;常数变易法 Solution of first-order differential equation Abstract: Differential equations, important parts of calculus, are widely used in the research of practical problems, which also play important role in mathematics. The solution of a differential equation is summarized briefly, and illustrates the analysis of variable separable equation, linear differential equation, integral factor, exact differential equation, mainly summarizes the elementary solution of first order differential equations, and the typical examples to illustrate. Keywords: variable separation; integral factor; non-homogeneous differential equation; constant variation method 1. 引言 一阶常微分方程初等解法,就是把常微分方程的求解问题转化为积分问题, 能用这种方法求解的微分方程称为可积方程. 本文通过对一阶微分方程的初等解法的归纳与总结,以及对变量分离,积分因子,微分方程等各类初等解法的简要分析,同时结合例题把常微分方程的求解问题化为积分问题,进行求解. 2. 一般变量分离 2.1 变量可分离方程 形如 ()()dy f x g y dx = (1.1) 或 1122()()()()M x N y dx M x N y dy = (1.2) 的方程,称为变量可分离方程。分别称(1.1)、(1.2)为显式变量可分离方程和 微分形式变量可分离方程[1] . (1) 显式变量可分离方程的解法 在方程(1.1)中, 若()0g y ≠,(1.1)变形为 ()() dy f x dx g y =

常微分方程数值解法

第八章 常微分方程的数值解法 一.内容要点 考虑一阶常微分方程初值问题:?????==0 0)() ,(y x y y x f dx dy 微分方程的数值解:设微分方程的解y (x )的存在区间是[a,b ],在[a,b ]内取一系列节 点a= x 0< x 1<…< x n =b ,其中h k =x k+1-x k ;(一般采用等距节点,h=(b-a)/n 称为步长)。在每个节点x k 求解函数y(x)的近似值:y k ≈y(x k ),这样y 0 , y 1 ,...,y n 称为微分方程的数值解。 用数值方法,求得f(x k )的近似值y k ,再用插值或拟合方法就求得y(x)的近似函数。 (一)常微分方程处置问题解得存在唯一性定理 对于常微分方程初值问题:?????==0 0)() ,(y x y y x f dx dy 如果: (1) 在B y y A x x 00≤-≤≤,的矩形内),(y x f 是一个二元连续函数。 (2) ),(y x f 对于y 满足利普希茨条件,即 2121y y L y x f y x f -≤-),(),(则在C x x 0≤≤上方程?????==0 0)() ,(y x y y x f dx dy 的解存在且唯一,这里C=min((A-x 0),x 0+B/L),L 是利普希茨常数。 定义:任何一个一步方法可以写为),,(h y x h y y k k k 1k Φ+=+,其中),,(h y x k k Φ称为算法的增量函数。 收敛性定理:若一步方法满足: (1)是p 解的. (2) 增量函数),,(h y x k k Φ对于y 满足利普希茨条件. (3) 初始值y 0是精确的。则),()()(p h O x y kh y =-kh =x -x 0,也就是有 0x y y lim k x x kh 0h 0 =--=→)( (一)、主要算法 1.局部截断误差 局部截断误差:当y(x k )是精确解时,由y(x k )按照数值方法计算出来的1~ +k y 的误差y (x k+1)- 1~ +k y 称为局部截断误差。 注意:y k+1和1~ +k y 的区别。因而局部截断误差与误差e k +1=y (x k +1) -y k +1不同。 如果局部截断误差是O (h p+1),我们就说该数值方法具有p 阶精度。

线性微分方程的解法

§12.4 线性微分方程 一、 线性方程 线性方程: 方程)()(x Q y x P dx dy =+叫做一阶线性微分方程. 如果Q (x )≡0 , 则方程称为齐次线性方程, 否则方程称为非齐次线性方程. 方程0)(=+y x P dx dy 叫做对应于非齐次线性方程)()(x Q y x P dx dy =+的齐次线性方程. 下列方程各是什么类型方程? (1)y dx dy x =-) 2(?021=--y x dx dy 是齐次线性方程. (2) 3x 2+5x -5y '=0?y '=3x 2+5x , 是非齐次线性方程. (3) y '+y cos x =e -sin x , 是非齐次线性方程. (4)y x dx dy +=10, 不是线性方程. (5)0)1(32=++x dx dy y ?0)1(23=+-y x dx dy 或3 2)1(x y dy dx +-, 不是线性方程. 齐次线性方程的解法: 齐次线性方程 0)(=+y x P dx dy 是变量可分离方程. 分离变量后得 dx x P y dy )(-=, 两边积分, 得 1)(||ln C dx x P y +-=? , 或 )( 1)(C dx x P e C Ce y ±=?=-, 这就是齐次线性方程的通解(积分中不再加任意常数). 例1 求方程y dx dy x =-)2(的通解. 解 这是齐次线性方程, 分离变量得 2 -=x dx y dy ,

两边积分得 ln|y |=ln|x -2|+lnC , 方程的通解为y =C (x -2). 非齐次线性方程的解法: 将齐次线性方程通解中的常数换成x 的未知函数u (x ), 把 ?=-dx x P e x u y )()( 设想成非齐次线性方程的通解. 代入非齐次线性方程求得 )()()()()()()()()(x Q e x u x P x P e x u e x u dx x P dx x P dx x P =?+?-?'---, 化简得 ?='dx x P e x Q x u )()()(, C dx e x Q x u dx x P +?=?)()()(, 于是非齐次线性方程的通解为 ])([)()(C dx e x Q e y dx x P dx x P +??=? -, 或 dx e x Q e Ce y dx x P dx x P dx x P ? ??+?=--)()()()(. 非齐次线性方程的通解等于对应的齐次线性方程通解与非齐次线性方程的一个特解之和. 例2 求方程25)1(1 2+=+-x x y dx dy 的通解. 解 这是一个非齐次线性方程. 先求对应的齐次线性方程 012=+-x y dx dy 的通解. 分离变量得 1 2+=x dx y dy , 两边积分得 ln y =2ln (x +1)+ln C , 齐次线性方程的通解为 y =C (x +1)2. 用常数变易法. 把C 换成u , 即令y =u ?(x +1)2, 代入所给非齐次线性方程, 得

相关文档
最新文档