(完整word版)齐次和非齐次线性方程组的解法(整理定稿)

(完整word版)齐次和非齐次线性方程组的解法(整理定稿)
(完整word版)齐次和非齐次线性方程组的解法(整理定稿)

线性方程组解的结构(解法)

一、齐次线性方程组的解法

【定义】 r (A )= r

(2) AX = 0 的)任一解都可由这组解线性表示. 则称,,,n r -12L ξξξ为AX = 0的基础解系.

称n r n r k k k --=+++1122L X ξξξ为AX = 0的通解 。其中k 1,k 2,…, k n-r 为任意常数). 齐次线性方程组的关键问题就是求通解, 而求通解的关键问题是求基础解系. 【定理】 若齐次线性方程组AX = 0有解,则

(1) 若齐次线性方程组AX = 0(A 为m n ?矩阵)满足()r A n =,则只有零解; (2) 齐次线性方程组有非零解的充要条件是()r A n <.

(注:当m n =时,齐次线性方程组有非零解的充要条件是它的系数行列式0A =.)

注:1、基础解系不唯一,但是它们所含解向量的个数相同,且基础解系所含解向量的个数等于()n r A -. 2、非齐次线性方程组AX B =的同解方程组的导出方程组(简称“导出组”)为齐次线性方程组

AX O =所对应的同解方程组。

由上述定理可知,若m 是系数矩阵的行数(也即方程的个数),n 是未知量的个数,则有:

(1) 当m n <时,()r A m n ≤<,此时齐次线性方程组一定有非零解,即齐次方程组中未知量的个数

大于方程的个数就一定有非零解;

(2)当m n =时,齐次线性方程组有非零解的充要条件是它的系数行列式0A =; (3)当m n =且()r A n =时,若系数矩阵的行列式0A ≠,则齐次线性方程组只有零解; (4)当m n >时,若()r A n ≤,则存在齐次线性方程组的同解方程组;

若()r A n >,则齐次线性方程组无解。

1、求AX = 0(A 为m n ?矩阵)通解的三步骤

(1)??

→A C 行

(行最简形); 写出同解方程组CX =0. (2) 求出CX =0的基础解系,,,n r -12L ξξξ;

(3) 写出通解n r n r k k k --=+++1122L X ξξξ其中k 1,k 2,…, k n-r 为任意常数.

【例题1】 解线性方程组12

341

23412341

2

3

4

2350,320,4360,2470.

x x x x x x x x x x x x x x x x +-+=??++-=??

+-+=??-+-=?

解法一:将系数矩阵A 化为阶梯形矩阵

显然有()4r A n ==,则方程组仅有零解,即12340x x x x ====.

解法二:由于方程组的个数等于未知量的个数(即m n =)(注意:方程组的个数不等于未知量的个数(即m n ≠)

,不可以用行列式的方法来判断),从而可计算系数矩阵A 的行列式:231531

2132704

13

6

1247

A --=

=≠---,知方程组仅有零解,即12340x x x x ====.

注:此法仅对n 较小时方便

【例题2】 解线性方程组12

3

4512

3452

34512

3

4

5

0,3230,2260,54330.

x x x x x x x x x x x x x x x x x x x ++++=??+++-=??

+++=??+++-=?

解:将系数矩阵A 化为简化阶梯形矩阵

可得()2r A n =<,则方程组有无穷多解,其同解方程组为

134523

4

55,226.

x x x x x x x x =++??

=---?(其中3x ,4x ,5x 为自由未知量)

令31x =,40x =,50x =,得121,2x x ==-; 令30x =,41x =,50x =,得121,2x x ==-; 令30x =,40x =,51x =,得125,6x x ==-, 于是得到原方程组的一个基础解系为

112100ξ????-????=????????,212010ξ????-????=????????,356001ξ????-????=????????

.

所以,原方程组的通解为 112233X k k k ξξξ=++(1k ,2k ,3k R ∈). 二、非齐次线性方程组的解法 求 AX = b 的解(,()m n r r ?=A A ) 用初等行变换求解,不妨设前r 列线性无关

1112111222221()00r n r n rr rn r r c c c c d c c c d c c d d +??

??????

??→?

???????????

L L L L O M M M L M M A b 行

其中 0(1,2,,),ii c i r ≠=L 所以知 1(1)0r d +≠时,原方程组无解.

1(2)0,r d r n +==时,原方程组有唯一解. 1(3)0,r d r n +=<时,原方程组有无穷多解.

其通解为01122n r n r k k k --=++++L X ξξξη,12,,,n r k k k -L 为任意常数。 其中:12,,,n r -L ξξξ为AX = b 导出组AX = 0的基础解系,0η为AX = b 的特解,

【定理1】 如果η是非齐次线性方程组AX=b 的解,α是其导出组AX=0的一个解,则ηα+是非齐次线性方程组AX=b 的解。

【定理2】如果0η是非齐次线性方程组的一个特解,α是其导出组的全部解,则αη+0是非齐次线性方程组的全部解。

由此可知:如果非齐次线性方程组有无穷多解,则其导出组一定有非零解,且非齐次线性方程组的全部解可表示为: r n r n C C C --++++αααηΛ22110

其中:0η是非齐次线性方程组的一个特解,r n -ααα,,,21Λ是导出组的一个基础解系。 【例题3】判断下列命题是否正确, A 为m ?n 矩阵.

(1)若AX =0只有零解,则AX=b 有唯一解. 答:错, 因r (A )=n , r (A )= n = r (A |b ) (2)若AX =0有非零解,则AX=b 有无穷多解. 答:错, 因r (A )

X=0也有非零解.

答:错,A 为m ?n , r (A )=m

)=m , 这时A T

X=0只有零解. 例如A 为3?4, R (A )=3 <4, r (A T

)=3=m . (5)若r (A )=r =m ,则AX=b 必有解. 答:对,r (A )=r =m= r (A |b ) .

(6)若r (A )=r =n , 则AX=b 必有唯一解. 答:错,A 为m ?n ,当m ?n 时, 可以r (A |b ) =n +1. ⑴ 唯一解:()()r A r A n == ?线性方程组有唯一解

【例题4】 解线性方程组1

231

231

2

3

21,224,44 2.

x x x x x x x x x ++=??

-+=-??++=-?

解:2113(2)(4)1121112

1()2124032641420346r r r r A A B ?-++-+????????==--?????→---????

????----???? 可见()()3r A r A ==,则方程组有唯一解,所以方程组的解为123

1,

2,0.x x x =-??

=??=?

⑵ 无解:()()r A r A ≠?线性方程组无解(或若阶梯形方程组出现100r d +=≠,则原方程组无解)

【例题5】解线性方程组1231

231

2

3

21,22,2 4.

x x x x x x x x x -++=??

-+=-??+-=? 解:1212132(1)21111212()1212033311240336r r r r r r A A B ??+?-+---????????==--?????→--????????--????23r r +????→121203330003--??

??--??

????

可见()3()2r A r A =≠=,所以原方程组无解.

⑶ 无穷多解:()()r A r A n =

【例题6】解线性方程组1

2341

2

413

4

23,231,2210 4.

x x x x x x x x

x x +-+=??

+-=??--+=?

解:1213(2)2111231112

3()21031012752021040241410r r r r A A B ?-+?+--????????==-??????→---????

????---????

可见()()24r A r A ==<,则方程组有无穷多解,其同解方程组为

13

423

425,527.

x x x x x x =--+??

=+-? (其中3x ,4x 为自由未知量)

令340,0,x x ==得原方程组的一个特解2500η-????

??=??????

.

又原方程组的导出组的同解方程组为13423

45,27.

x x x x x x =-+??

=-?(其中3x ,4x 为自由未知量)

令31x =,40x =,得121,2x x =-=;令30x =,41x =,得125,7x x ==-,

于是得到导出组的一个基础解系为 11210ξ-??????=??????,25701ξ????

-??=??????

所以,原方程组的通解为 1122X k k ηξξ=++(1k ,2k R ∈).

【例题7】 求线性方程组:1

2341

2341

2

3

4

21,

22,2 3.

x x x x x x x x x x x x +-+=??

++-=??+++=? 的全部解. 解: 21111()1211211213A A B -????==-?????? 12

12

13(2)(1)r r r r r r ??-+?-+????→ 121120333301121-????---??

??-??

可见()()34r A r A ==<,所以方程组有无穷多解,其同解方程组为

1

4243

431,2

3,211.2x x x x x x ?

=-??

?

=

??

?

=-??

(其中4x 为自由未知量) 令40x =,可得原方程组的一个特解1010η??

??

??=??????

.

又原方程组的导出组的同解方程组为1

4243

43,2

3,21.2x x x x x x ?

=-??

?

=??

?

=-??

(其中4x 为自由未知量)

令42x =-(注:这里取-2为了消去分母取单位向量的倍数),得1233,3,1x x x ==-=,

于是得到导出组的一个基础解系为3312ξ??

??

-??=????-??

.

所以,原方程组的通解为 X k ηξ=+ (k R ∈).

【例题8】求非齐次线性方程组???????=+-++-=---+=-++=+-++5

54931232362323354321543214

32154321x x x x x x x x x x x x x x x x x x x 的全部解。

解:

???????

??----------→???????

??-------=421

5

00

421500421500

31

2331515493111231203162312331

A ????

?

?

? ??----→00000000000042150031

2331 因为52)()(<==A r A r ,所以非齐次线性方程组有无穷多组解,取自由未知量为542,,x x x , 原方程组与方程组??

?-=-+-=+-++4

253

23354354321x x x x x x x x 同解

取自由未知量542,,x x x 为?

???

? ??000,得原方程组的一个特解: T ???

??=0,0,54,0,530η

再求其导出组的基础解系,其导出组与方程组?

?

?=-+-=+-++0250

23354354321x x x x x x x x 同解

对自由未知量542,,x x x 分别取???

?

? ??????? ?????

??

??100,010,

001,代入上式得到其导出组的一个基础解系为:???????? ??-=???????

? ??=?

?

?

??

?

?? ??-=100,010,0001352513515721ααα 则原方程组的全部解为:0332211ηααα+++=C C C X 三、证明与判断

【例题9】已知321,,ηηη是齐次线性方程组AX =0的一个基础解系,证明,,211ηηη+321ηηη++也是齐次线性方程组AX =0的一个基础解系。

证:由已知可得:齐次线性方程组AX =0的基础解系含有3个解向量,并且由齐次线性方程组解的性质可

知321211,,ηηηηηη+++都是AX =0的解;因此只要证明321211,,ηηηηηη+++线性无关即可。 设存在数321,,k k k 使

0)()(321321211=+++++ηηηηηηk k k 成立。

整理得: 0)()(332321321=+++++ηηηk k k k k k (1)

已知321,,ηηη是齐次线性方程组AX =0的一个基础解系,即得321,,ηηη线性无关,则由(1)得

??

?

??==+=++000332321k k k k k k ,解得:0321===k k k 所以321211,,ηηηηηη+++线性无关。 即321211,,ηηηηηη+++也是齐次线性方程组AX =0的一个基础解系。 【例题10】已知,,,1234ξξξξ是齐次线性方程组AX =0的一个基础解系,若

,,,t t t =+=+=+112223334ξξξξξξηηη t =+441ξξη。

讨论t 满足什么条件时,,,,1234ηηηη是齐次线性方程组AX =0的一个基础解系

解:首先,,,,1234ηηηη是齐次线性方程组AX =0的解,只须证,,,1234ηηηη线性无关.

由已知有:(,,,)(,,,)t t

t t

?? ?=

? ???

123412341

00100010001ξξξξηηηη 因为:,,,1234ηηηη线性无关0t t

t t

?

≠1001000100

01, 即t t t t

=10

0100

0100

01

t -≠041, 所以当t ? ?1时, ,,,1234ηηηη是齐次线性方程组AX =0的一个基础解系

【例题11】已知n 阶矩阵A 的各行元素之和均为零,且r (A )=n -1,求线性方程组AX =0的通解. 解 :由r (A )=n -1知AX =0的基础解系有一个非零解向量. 又0,

,,,i i in a a a i n +++==1212L L , 即0i i in a a a ?+?++?=12111L

T (,,,),k ∴=111L X (k 为任意常数)为所求通解.

【例题12】设X 1,X 2,…, X t 是非齐次线性方程组 AX =b ?0 的解向量,

证明: 对于X 0=k 1 X 1+k 2 X 2+…+k t X t

当k 1 +k 2+…+k t =1时, X 0是AX =b 的解;当k 1 +k 2+…+k t =0时, X 0是AX =0的解. 证 :AX 0=A (k 1 X 1+k 2 X 2+…+k t X t ) =k 1 AX 1+k 2 AX 2+…+k t AX t =k 1 b +k 2 b +…+k t b =(k 1+k 2+…+k t )b

故:当k 1+k 2 +…+k t =1时, AX 0 =b 当k 1 +k 2+…+k t =0时, AX 0=0

由此可见, 非齐次方程组的解对于线性组合并不一定封闭,只有组合系数的和等于1的时候,解向量组的线性组合才是非齐次方程组的解!

【例题13】已知,12ηη为=AX β的两个不同解,12,ξξ是0AX =的一个基础解系.12,k k 为任意常数.

则=AX β的通解为( ) 答案B 【例题14】设321,,ηηη是四元非齐次线性方程组AX =b 的三个解向量,且矩阵A 的秩为3,

()()T T 3,2,1,0,4,3,2,1321=+=ηηη,求AX =b 的通解。

解:因为A 的秩为3,则AX =0的基础解系含有4-3=1个解向量。

由线性方程组解的性质得:)()(21312132ηηηηηηη-+-=-+是AX =0的解, 则解得AX =0的一个非零解为:()T

5,4,3,22132----=-+ηηη。

由此可得AX =b 的通解为:()()T

T

c 5,4,3,24,3,2,

1+。

【例题15】设A 是4阶方阵, β(≠0)是4×1矩阵, 1234()2,,,,=r A ηηηη是AX =β的解,

且满足 122334232401,2,3030831????????????

+=+=+=??????????????????

ηηηηηη

试求方程组AX =β的通解.

解:先求AX =β的一个特解12112()02

4*

??

??=+=??????

ηηη

再求AX =β的一个基础解系

112230112()(2)123

3????=+-+=??-????ξηηηη,21234272()(3)015??

??=+-+=??????

ξηηηη

因为124()2,

,R -=A ξξ线性无关,所以12,ξξ是0AX =的一个基础解系.

故方程组AX =β的通解是

1122k k *=++=X ξξη121022*********k k ??????

??????

++??????-????????????

, 12,k k 为任意常数.

【例题16】设矩阵A =()

()s n ij n

m ij

b B a ??=,。

证明:AB =0的充分必要条件是矩阵B 的每一列向量都是齐次方程组AX=0的解。

证:把矩阵B 按列分块:()s B B B B ,,,21Λ=,其中i B 是矩阵B 的第i 列向量),2,1(s i Λ=,

零矩阵也按列分块()s s m O O O O ,,,21Λ=?

则()s AB AB AB AB ,,,21Λ=

必要性:AB =0可得: 精品文档,你值得期待

),,2,1(,

s i O AB i i Λ==,即i B 是齐次方程组AX=0的解。

充分性:矩阵B 的每一列向量都是齐次方程组AX=0的解,

即有 ),,2,1(,

s i O AB i i Λ==

得:()s AB AB AB AB ,,,21Λ=()s O O O ,,,21Λ=,即证。

第二章 线性方程组的数值解法

第二章 线性方程组的数值解法 在科技、工程技术、社会经济等各个领域中很多问题常常归结到求解线性方程组。例如电学中的网络问题,样条函数问题,构造求解微分方程的差分格式和工程力学中用有限元方法解连续介质力学问题,以及经济学中求解投入产出模型等都导致求解线性方程组。 n 阶线性方程组的一般形式为 ?? ???? ?=+++=+++=+++n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a L K K K K L L 22112 222212********* (1.1) 其矩阵形式为 b Ax = (1.2) 其中 ????? ???????=??? ?????????=? ? ????? ?????= n n nn n n n n b b b b x x x x a a a a a a a a a A M M L K K K K L L 2121212222111211 ),,2,1,(n j i a ij L =,),,2,1(n i b i L =均为实数,i b 不全为0,且A 为非奇异。 关于线性方程组的数值解法一般分为两类: 1.直接法 就是不考虑计算机过程中的舍入误差时,经有限次的四则运算得到方程组准确解的方法。 而实际中由于计算机字长的限制,舍入误差的存在和影响,这种算法也只能求得线性方程组的近似解。本章将阐述这类算法中最基本的消去法及其某些变形。这些方法主要用于求解低阶稠密系数矩阵方程组。 2.迭代法 从某个解的近似值出发,通过构造一个无穷序列,用某种极限过程去逐步逼近线性方程组的精确解的方法。本章主要介绍迭代法与迭代法。迭代法是解大型稀疏矩阵(矩阵阶数高而且零元素较多)的线性方程组的重要方法。 §1 高斯)(Gauss 消去法 1.1 Gauss 消去法 Gauss 消去法是将线性方程组化成等价的三角形方程组求解。首先举例说明Gauss

第三章 线性方程组

第三章 线性方程组 §3.1 线性方程组的矩阵消元解法 例3.1 求解线性方程组 ??? ??=+-=+-=-+4 5342622321 321321x x x x x x x x x 解方程组通常采用消元法,比如将第2个方程乘2-加到第1个方程,可消去1x 得到09632=-x x ,将此方程两边除以3,约简可得03232=-x x 。 除了消元和约简,有时还要交换两个方程的位置。这些变形运算实际上仅在变量的系数之间进行,所以只需将所有的系数和常数项列成一个矩阵,做初等行变换即可。显然消元、约简和交换方程位置分别相当于矩阵的消去变换、倍缩变换和换行变换。比如上面对本例的两个具体变形相当于以下矩阵初等行变换: ????? ??---411534216122→????? ??---411534210960→???? ? ??---411534210320 其中第一个变换是第2行乘2-加到第1行,第二个变换是以31乘第1行。矩阵的初等变换可以使解方程组的过程显得紧凑、快捷、简洁。 下面我们运用初等变换的标准程序(参看§2.4)来解例3.1的线性方程组: ????? ??---4115342]1[6122 →? ?? ?? ??----111990342 109]6[0 ?→?* ????? ??---11]5.5[0005 .110310 1→? ???? ? ?210030101001 其中,主元都用“[ ]”号作了标记。消元与换行可同步进行(如带“*”号的第二 步),换行的目的是为了使主元呈左上到右下排列。最后一个矩阵对应方程组 ?? ? ??=++=++=++2 003001 00321x x x 实际上已得到方程组的解是11=x ,32=x ,23=x 。写成列向量 ()T x 2,3,1=,叫做解向量。显然解向量可以从最后一个矩阵右侧的常数列 直接读出,无需写出对应的方程组。 第二章曾经把一般的线性方程组(2.2)写成矩阵形式b Ax =,比如例 3.1 的线性方程组,写成矩阵形式是??? ? ? ??=????? ??---436115421122x 。

线性方程组的数值解法实验

线性方程组的数值解法 实验 题目 用Gauss消元法和Seidel迭代法求线性方程组的解。 实验目的 通过本次实验了解Gauss消元法和Seidel迭代法的基本原理,掌握其算法,学会用Matlab编程进行计算,并能用这些方法解决实际问题。 Gauss 顺序消元法的基本原理算法: (1)输入:,. A b (2)对1,2,,1 k n =???-做 1)if0 kk a=then输出算法失败信息,停机; 2)对1,, i k n =+???做 1/; ik ik ik kk a l a a ←= 2; i i ik k b b l b =- 3对1,, j k n =+???做; ij ij ik kj a a l a =- (3)if0 nn a=then输出算法失败信息,并停机else做 1)/; n n n nn b x b a ←= 2)对1,,2,1 i n =-???做 1 ()/; n i i i ij j ii j i b x b a x a =+ ←=-∑ (4)输出方程组的解.X

流程图见附页 Seidel 迭代法的基本原理算法: (1)输入:,; A b (2)输入:初始解向量 ;x (3)对1,2,, i n =???做 1) 1 ()/; n i i ij j ii j j i y b a x a = ≠ =-∑ 2); i i i e y x =- 3); i i x y = (4)if 1 {||} max i i n eε ≤≤ 时方程组无解,当RB RA n ==时方程组有唯一解,当RB RA n =<时,方程组有无穷多解; ②根据公式 (1)()() (1)()() (,1,,) (1,,) k k k ij ij ik kj k k k i i ik k a a l a i j k n b b l b i k n + + =-=+??? =-=+??? 将增广矩阵[,] B A b =化为上三角形矩阵; (2)建立. backsub m文件; (3)调用. backsub m文件,在Matlab命令窗口输入,A b矩阵,再输入[,,,](,) RA RB n X gaus A b =,进行Matlab实现得出方程的解。

线性代数第3章_线性方程组习题解答

习题3 3-1.求下列齐次线性方程组的通解: (1)?? ? ??=--=--=+-087305302z y x z y x z y x . 解 对系数矩阵施行行初等变换,得 ???? ? ??-----?→?????? ??-----=144072021 1873153211A )(000720211阶梯形矩阵B =???? ? ??-?→? ??? ?? ??-?→?0002720211)(000271021101行最简形矩阵C =????? ? ???→? , 与原方程组同解的齐次线性方程组为 ??? ??? ?=+=+02702 11 z y z x , 即 ??? ??? ?-=-=z y z x 272 11(其中z 是自由未知量), 令1=z ,得到方程组的一个基础解系 T )1,2 7,211(-- =ξ, 所以,方程组的通解为

,)1,2 7,211(T k k -- =ξk 为任意常数. (2)??? ??=+++=+++=++++0 86530543207224321 432154321x x x x x x x x x x x x x . 解 对系数矩阵施行行初等变换,得 ???? ? ??--?→?????? ??=21202014101072211086530543272211A )(7000014101072211阶梯形矩阵B =????? ??-?→? ???? ? ??-?→?70000141010211201 )(100000101001201行最简形矩阵C =???? ? ???→?, 与原方程组同解的齐次线性方程组为 ??? ??==+=++00 025 42431x x x x x x , 即 ??? ??=-=--=025 4 2431x x x x x x (其中43,x x 是自由未知量), 令34(,)T x x =(1,0)T ,(0,1)T ,得到方程组的一个基础解系 T )0,0,1,0,2(1-=ξ,T )0,1,0,1,1(2--=ξ, 所以,方程组的通解为

线性方程组的解法

线性方程组的解法 1 引言 在科学研究和大型工程设计中出现了越来越多的数学问题,而这些问题往往需要求数值解。在进行数值求解时,经离散后,常常归结为求解形如Ax= b的大型线性方程组。而如插值公式,拟合公式等的建立,微分方程差分格式的构造等,均可归结为求解线性方程组的问题.在工程技术的科学计算中,线性方程组的求解也是最基本的工作之一.因此,线性方程组的解法一直是科学和工程计算中研究最为普遍的问题,它在数值分析中占有极其重要的地位。20世纪50年代至70年代,由于电子计算机的发展,人们开始考虑和研究在计算机上用迭代法求线性方程组Ax =b的近似解,用某种极限过程去逐渐逼近精确解,并发展了许多非常有效的迭代方法,迭代法具有需要计算机存储单元少、程序设计简单、原始系数矩阵在计算过程中始终不变等优点。例如Jacobi方法、Gauss—Seidel 方法、SOR方法、SSOR 方法,这几种迭代方法是最常用的一阶线性定常迭代法。 2 主要算法 20世纪50年代至70年代,人们开始考虑和研究用迭代法求解线性方程组。 Ax = b (1) 的近似解,发展了许多有效的方法,其中有Jacobi方法、Gauss—Seidel方法,SOR方法、SSOR方法,这几种迭代方法均属一阶线性定常迭代法,即若系数矩阵A的一个分裂:A =M-N ;M 为可逆矩阵,线性方程组(1)化为: (M-N)X =b; →M X = NX + b; →X= M -1NX+ M-1b 得到迭代方法的一般公式: X(k+1)=HX(k)+d (2) 其中:H =MN-1,d=M-1b,对任意初始向量X(0) 一阶定常迭代法收敛的充分必要条件是: 迭代矩H的谱半径小于1,即ρ(H) < 1;又因为对于任何矩阵范数恒有ρ(H)≤‖H‖,故又可得到收敛的一个充分条件为:‖H‖< 1。 2.1 Jacobi迭代法 若D为A的对角素构成的对角矩阵,且对角线元素全不为零。系数矩阵A的一个分解:A =

求解线性方程组的直接解法

求解线性方程组的直接解法 5.2LU分解 ① Gauss消去法实现了LU分解 顺序消元结束时的上三角矩阵U和所用的乘数,严格下三角矩阵。 将下三角矩阵的对角元改成1,记为L,则有A=LU, 这事实是一般的,我们不难从消去的第k个元素时的矩阵k行及k列元素的 历史得到这一点.因为从消元的历史有 u kj=a kj-m k1u1j- m k2u2j -…- m k,k-1u k-1,j, j=k,k+1,…,n m ik=(a ik-m i1u1k- m i2u2k -…-m i,k-1u k-1,k>/u kk i=k+1,k+2,…,n 于是a kj=m k1u1j+m k2u2j+…+m k,k-1u k-1,j+u kj, j=k,k+1,…,n a ik=m i1u1k+m i2u2k+…+m i,k-1u k-1,k+m ik u kk i=k+1,k+2,…,n 从前面两个式子我们可以直接计算L和U(见下段>.将矩阵分解为单位下 三角矩阵和上三角矩阵之积称为矩阵的LU分解.顺序消元实现了LU分 解,同时还求出了g, Lg=b的解. ②直接LU分解 上段我们得到(l ij=m ij> u kj=a kj-l k1u1j-l k2u2j -…- l k,k-1u k-1,j, j=k,k+1,…,n l ik=(a ik-l i1u1k-l i2u2k -…-l i,k-1u k-1,k>/u kk i=k+1,k+2,…,n 2 诸元素对应乘积,只不过算L的元素时还要除以同列对角元.这一规律很 容易记住.可写成算法(L和U可存放于A>: for k=1:n-1 for j=k:n u kj=a kj-l k1u1j-l k2u2j -…- l k,k-1u k-1,j end for i=k+1:n l ik=(a ik-l i1u1k-l i2u2k -…-l i,k-1u k-1,k>/u kk end end 这一算法也叫Gauss消去法的紧凑格式,可一次算得L,U的元素,不需逐步 计算存储.

线性方程组的解法及其应用

线性方程组的解法及其应用 The solution of linear equation and its application 专业:测控技术与仪器 班级: 2010-1班 作者:刘颖 学号: 20100310110105

摘要 线性方程组是线性代数的一个重要组成部分,也在现实生产生活中有着广泛的运用,在电子工程、软件开发、人员管理、交通运输等领域都起着重要的作用。在一些学科领域的研究中,线性方程组也有着不可撼动的辅助性作用,在实验和调查后期利用线性方程组对大量的数据进行处理是很方便简捷的选择。本文主要围绕如何解线性方程组来进行讲解,对于不同类型的线性方程组的不同方法,并简述线性方程组的一些实际应用。 关键词: 齐次线性方程组,非齐次线性方程组,克莱姆法则,消元法,矩阵,矩阵的秩,特解,通解。

Abstract Linear equations linear algebra is one of the important component parts, and in real life has extensive production use,and it plays an important role in electronic engineering, software development, personnel management, transportation, etc. In some discipline study, it also has the reigns of linear equations of the auxiliary function.In experiment and survey using the linear equations of the late on the data processing is very convenient simple choice. This article, focusing on how to solve linear equations to explain, for different types of linear equations of different methods, and briefly introduces some of the practical application of linear equations. Keywords: Homogeneous linear equations, Non homogeneous linear equation,Clem’s law,Elimination method,Matrix,Rank of matrix,Special solution,General solution.

线性方程组的直接解法及matlab的实现

本科毕业论文 ( 2010 届) 题目线性方程组的直接解法及matlab的实现 学院数学与信息工程学院 专业数学与应用数学 班级2006级数学1 班 学号0604010127 学生姓名胡婷婷 指导教师王洁 完成日期2010年5月

摘要 随着科技技术的发展及人类对自然界的不断探索模拟.在自然科学和工程问题中的很多问题的解决常常归结为线性代数问题! 本文的主要内容是对线性方程组求解方法的探讨,主要介绍了四种求解线性方程组的方法,第一种是教科书上常见的消元法,我们称之为基本法.第二种方法是标准上三角形求解法,即将增广矩阵经过初等变换后化成标准上三角形,然后求解.它改进了一般教科书上的常见方法,与常见方法比较有如下优点:1)规范了自由未知量的选取;2)只用矩阵运算;3)减少了计算量.第三种方法是对特定的方程组(系数矩阵A为n阶对称正定矩阵,且A的顺序主子式均不为零.)的求解方法进行描述,并且为这种线性方程的求解提供了固定的公式化的方法.第四种方法是对现在实际问题中常常会遇到的系数矩阵为三对角矩阵的方程组的求解方法.同时给出这几种方法的数值解法(matlab程序),由于运用电脑软件求解,所以必须考虑计算方法的时间、空间上的效率以及算法的数值稳定性问题,所以针对不同类型的线性方程组有不同的解法.但是,基本的方法可以归结为两大类,即直接法和迭代法. 关键词 高斯消去法;三角分解法;乔莱斯基分解法;追赶法

Abstract Systems of linear equations are associated with many problems in engineering and scinence ,as well as with applications of mathematics to the social sciences and the quantitative study of business and economic problems. The main content of this article is the method for solving linear equations, we introduce four methods for solving linear equations in this paper. The first is the elimination method which is commonly found in textbooks, and we call the Basic Law. The second method is Standard on the triangle Solution, that first change Augmented matrix into standards in primary triangle, and then solving. It improves the general textbook on common methods, compared with the common method has the following advantages:1) Specification of the free choice of unknowns; 2)Only matrix operations;3) Reduce the computation. The third method describes a way to solve a Specific equations(N coefficient matrix A is symmetric positive definite matrix, and A are not zero-order principal minor), And for this linear equation provides a fixed formulaic approach. The fourth method is to present practical problems often encountered in the coefficient matrix is tridiagonal matrix method for solving the equations. These methods are given numerical solution of (matlab program), As the use of computer software to solve, it is necessary to consider ways of computing time and space efficiency and numerical stability of algorithms, Therefore, different types of linear equations have a different solution. However, the basic method can be classified into two categories, namely direct methods and iterative methods. Key words Gaussian elimination; Triangular decomposition; Cholesky decomposition method; Thomas algorithm

线性方程组数值解法

. 计算法实验 题目:

班级:学号::

目录 计算法实验 (1) 1 实验目的 (3) 2 实验步骤 (3) 2.1环境配置: (3) 2.2添加头文件 (3) 2.3主要模块 (3) 3 代码 (3) 3.1主程序部分 (3) 3.2多项式程部分 (3) 3.3核心算法部分 (3) 3.4数据结构部分 (3) 4运行结果 (3) 4.1列主元高斯消去法运行结果 (3) 4.2LU三角分解法运行结果 (3) 4.3雅克比迭代法运行结果 (3) 边界情况调试 (3) 5总结 (3) 输入输出 (3) 列主元高斯消元法 (3) 雅克比迭代法 (3) 6参考资料 (3)

1 实验目的 1.通过编程加深对列主元高斯消去法、LU三角分解法和雅克比迭代法等求解多 项式程法的理解 2.观察上述三种法的计算稳定性和求解精度并比较各种法利弊 2 实验步骤 2.1环境配置: VS2013,C++控制台程序 2.2添加头文件 #include "stdio.h" #include "stdlib.h" #include "stdafx.h" #include 2.3主要模块 程序一共分成三层,最底层是数据结构部分,负责存储数据,第二层是交互部分,即多项式程部分,负责输入输出获得数据,最上层是核心的算法部分,负责处理已获得的数据。具体功能如下: ●数据结构部分 数据结构部分是整个程序的最底层,负责存储部分。因数组作为数据元素插入和删除操作较少,而顺序表空间利用率大且查看便,故此程序选用二维顺序表保存系数。数据结构文件中写的是有关其的所有基本操作以供其他文件调用。 ●多项式程部分

解线性方程组的直接解法

解线性方程组的直接解法 一、实验目的及要求 关于线性方程组的数值解法一般分为两大类:直接法与迭代法。直接法是在没有舍入误差的情况下,通过有限步运算来求方程组解的方法。通过本次试验的学习,应该掌握各种直接法,如:高斯列主元消去法,LU分解法和平方根法等算法的基本思想和原理,了解它们各自的优缺点及适用范围。 二、相关理论知识 求解线性方程组的直接方法有以下几种: 1、利用左除运算符直接求解 线性方程组为b x\ =即可。 A Ax=,则输入b 2、列主元的高斯消元法 程序流程图: 输入系数矩阵A,向量b,输出线性方程组的解x。 根据矩阵的秩判断是否有解,若无解停止;否则,顺序进行; 对于1 p :1- =n 选择第p列中最大元,并且交换行; 消元计算; 回代求解。(此部分可以参看课本第150页相关算法) 3、利用矩阵的分解求解线性方程组 (1)LU分解 调用matlab中的函数lu即可,调用格式如下: [L,U]=lu(A) 注意:L往往不是一个下三角,但是可以经过行的变换化为单位下三角。 (2)平方根法

调用matlab 中的函数chol 即可,调用格式如下: R=chol (A ) 输出的是一个上三角矩阵R ,使得R R A T =。 三、研究、解答以下问题 问题1、先将矩阵A 进行楚列斯基分解,然后解方程组b Ax =(即利用平方根法求解线性方程组,直接调用函数): ??????? ??--------=19631699723723312312A ,?????? ? ??-=71636b 解答: 程序: A=[12 -3 2 1;-3 23 -7 -3;2 -7 99 -6;1 -3 -6 19]; R=chol(A) b=[6 3 -16 7]'; y=inv(R')*b %y=R'\b x=inv(R)*y %x=R\y 结果: R =3.4641 -0.8660 0.5774 0.2887 0 4.7170 -1.3780 -0.5830 0 0 9.8371 -0.7085 0 0 0 4.2514 y =1.7321 0.9540 -1.5945 1.3940 x =0.5463 0.2023 -0.1385 0.3279 问题 2、先将矩阵A 进行LU 分解,然后解方程组b Ax =(直接调用函数): ?????????? ??----=8162517623158765211331056897031354376231A ,????????? ? ??-=715513252b

线性方程组数值解法总结

好久没来论坛,刚刚发现以前的帖子现在那么火很欣慰,谢谢大家支持! 今天趁着不想做其他事情,把线性方程组的数值解法总结下,有不足的地方希望大神指教!数学建模中也会用到线性方程组的解法,你会发现上10个的方程手动解得话把你累个半死,而且不一定有结果,直接用matlab的函数,可以,关键是你不理解用着你安心吗?你怎么知道解得对不对? 我打算开个长久帖子,直到讲完为止!这是第一讲,如有纰漏请多多直接,大家一起交流!线性方程组解法有两大类:直接法和迭代法 直接法是解精确解,这里主要讲一下Gauss消去法,目前求解中小型线性方程组(阶数不超过1000),它是常用的方法,一般用于系数矩阵稠密,而有没有特殊结构的线性方程组。 首先,有三角形方程组的解法引入Gauss消去法,下三角方程组用前代法求解, 这个很简单,就是通过第一个解第二个,然后一直这样直到解出最后一个未知数,代码如下:前代法: function [b]= qiandai_method(L,b) n=size(L,1); %n 矩阵L的行数 for j=1:n-1 %前代法求解结果存放在b中 b(j)=b(j)/L(j,j); b(j+1:n)=b(j+1:n)-b(j)*L(j+1:n,j); end b(n)=b(n)/L(n,n); 上三角方程组用回代法,和前面一样就是从下面开始解x,代码: 后代法: function [y]=houdai_method(U,y) n=size(U,1); %n 矩阵L的行数 for j=n:-1:2 %后代法求解结果存放在y中 y(j)=y(j)/U(j,j); y(1:j-1)=y(1:j-1)-y(j)*U(1:j-1,j); end y(1)=y(1)/U(1,1); Gauss消去的前提就是这两个算法: 具体思想是把任何一个线性方程组的系数矩阵A,分解为一个上三角和一个下三角的乘积,即A=LU,其中L为下三角,U为上三角。 那么具体怎么做呢? 有高斯变换,什么是高斯变换?由于时间有限我不可能去输入公式,所以我用最平白的话把它描述出来。 你先想一下怎么把一个矩阵的某一列的从第j个分量后全部变0? 高斯变换就是通过每次一个矩阵Li把A的第i列对角线元素以下的都变为0,最后把这么多Li一次左乘起来就是一个矩阵L’=L(n-1)L(n-2)…L2L1,而L’A=U, 那么L=L’的转置,这样就得到了A得分解。 我们要求Ax=b A=LU

浅析线性方程组的解法

目录 摘要................................................................................... I Abstract. ............................................................................. II 第一章绪论............................................................................ I 1.1引言 (1) 1.2线性方程组解的求解方法的研究现状 (1) 1.3本文对线性方程组解法的研究结构 (1) 第二章线性方程组理论基础 (2) 2.1 线性方程组概念 (2) 2.2 线性方程组的解的情况分析 (2) 2.3 齐次线性方程组解的结构 (4) 2.4非齐次线性方程组解的结构 (4) 第三章线性方程组的数值解 (5) 3.1 迭代法 (5) 3.1.1 Jacobi方法 (6) 3.2.2 高斯-赛德尔方法 (8) 第四章全文总结和展望 (10) 4.1 全文总结 (10) 4.2 未来展望 (10) 参考文献 (11) 致谢................................................................. 错误!未定义书签。

线性方程组的求解方法 学生:指导教师: 摘要:本文在对线性方程组解的结构的研究背景与意义分析的基础上,对线性方程组的求解方法的研究现状进行了介绍,之后针对线性方程组展开了研究,包括线性方程组的概念、线性方程组的求解方法以及线性方程组的作用等,在对线性方程组有了全面的认识后,基于线性方程组解的结构展开了研究,包括线性方程组解的基本定理,齐次和非齐次线性方程组解的结构形式,以及齐次和非齐次线性方程组解的结构,我们用迭代法中最常用的Jacobi方法中的相似上三角矩阵定理和迭代法中的收敛性讨论线性方程组的数值解法,并用高斯-赛德尔方法进行验证。得到线性方程组的数值解的一般方法。最后,对全文进行了总结和展望。 关键词:线性方程组;数值解;迭代法;Jacobi方法;高斯-赛德尔方法

线性方程组的直接解法 实验报告

本科实验报告 课程名称:数值计算方法B 实验项目:线性方程组的直接解法 最小二乘拟合多项式 实验地点:ZSA401 专业班级:学号:201000 学生姓名: 指导教师:李志 2012年4月13日

线性方程组的直接解法 一、实验目的和要求 实验目的:合理利用Gauss 消元法、LU 分解法或追赶法求解方程组。 实验要求:利用高斯消元法,LU 分解法或追赶法进行编程,求解题中所给的方程组。 二、实验内容和原理 实验内容:合理利用Gauss 消元法、LU 分解法或追赶法求解下列方程组: ① ?? ?? ? ?????=????????????????????13814142210321321x x x ②??? ? ?? ??????=????????????????????? ?? ? ??--?-2178.4617.5911212592.1121130.6291.513 14 .59103.043 2115x x x x ③?? ??? ??? ? ???????----=????????????????????????????????-55572112112112121 n n x x x x (n=5,10,100,…) 实验原理:这个实验我选用的是高斯消元法。高斯消元法:先按照 L ik =a ik^(k-1)/a kk^(k-1) , a ij^(k)=a ij^(k-1)-l ik a kj^(k-1) [其中k=1,2,…,n-1;i=k+1,k+2,…,n;j=k+1,k+2,…,n+1] 将方程组变为上三角矩阵,再经过回代,即可求解出方程组的解。 三.计算公式 通过消元、再回代的求解方法称为高斯消元法。特点是始终消去主对角线 下方的元素。 四、操作方法与实验步骤 #include "Stdio.h" #define N 3 main() { double a[N][N+1],b[N]; int i,j,k,x=0; for(i=0;i

线性方程组的直接解法

第2章线性方程组的直接解法 2.1实验目的 理解线性方程组计算机解法中的直接解法的求解过程和特点,学习科学计算的方法和简单的编程技术。 2.2概念与结论 1. n阶线性方程组 如果未知量的个数为 n ,而且关于这些未知量x1,x2, …,x n的幂次都是一次的(线性的)那末, n 个方程 a11x1+a12x2+ … +a1n x n=b1 ┆┆┆ (1) a n1x1+a n2x2+ … +a nn x n= b n 构成一个含n个未知量的线性方程组,称为n阶线性方程组。其中,系数a11,…,a1n,a21, …,a2n, …,a n1, …,a nn 和b1, …,b n都是给定的常数。 方程组(1)也常用矩阵的形式表示,写为 Ax=b 其中,A是由系数按次序排列构成的一个n阶矩阵,称为方程组的系数矩阵,x和b都是n维向量,b称为方程组的右端向量。 2. n阶线性方程组的解 使方程组(1)中每一个方程都成立的一组数x1*,x2*, …,x n*称为式(1)的解,把它记为向量的形式,称为解向量. 3.一些特殊的线性方程组 1) 上三角方程组 2) 三对角方程组 ? ? ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - - - - - n n nn n n n n n n n n b b b x x x a a a a a a a a a a a a 2 1 2 1 1 1 1 2 1 2 23 22 1 1 1 13 12 11

4.矩阵的Doolittle 分解 5.Doolittle 分解的紧凑格式 6.矩阵的Crout 分解 ????????? ? ??=?????????? ???????????? ? ?--n n n n n n d d d x x x b a c b c b a c b a c b 21 2111333 22211???? ?? ? ? ???????? ??=??????? ??nn n n n n nn n n n n u u u u u u l l l a a a a a a a a a 222 11211 2 1 21 2 1 2222111211111 ???? ?? ? ? ???????? ??=??????? ??11 1 21122 1 2221 11 2 1 2222111211 n n nn n n nn n n n n u u u l l l l l l a a a a a a a a a ????? ?? ? ??nn n n n n n n u l l l u u l l u u u l u u u u 3 2 1 333323122322211131211

线性方程组的数值解法

第三章线性方程组地数值解法 范数 (1> 常用范数 ① 向量 1- 范数: ② 向量 2- 范数: ③ 向量∞- 范数: ④ 向量 p- 范数: 向量1- 范数,向量2- 范数,向量∞- 范数实际上为任意 p- 范数地特例. (2> 矩阵范数 设,则 (1>,A地行范数 (2>,A地列范数 (3>,A地 2- 范数,也称谱范数 (4>, F- 范数 其中指矩阵地最大特征值 (3>谱半径(用于判断迭代法地收敛值> 设为矩阵A地特征值,则

称为A地谱半径 谱半径小于任何半径,若,则 (4>设A为非奇异矩阵,称 为A地条件数 矩阵地条件数与范数选取有关,通常有 显然当A对称时 直接法 Gauss消去法 ①Gauss顺序消去法 对线性方程组Ax=b,设,按顺序消元法,写出增广矩阵(A┆b>第一步,写出,将2~n行中地变为0 第k步,写出,将k+1~n行中地变为0 具体步骤可参照下面地例题 例5:用Gauss消去法解方程组

解: Guass列主元消去法 消去过程与Guass消元法基本相同,不同地是每一步消元时,都要将所选到地绝对值最大元素作为主元. 具体分析参见习题详解1 ②矩阵三角(LU>分解法 基本思想:将Ax=b化为LUx=b,令Ux=y 可得Ly=b,Ux=y,相当于先求出y,再求出x 其中,L,U分别为下三角矩阵和上三角矩阵 若L为单位下三角矩阵,则称为Doolittle分解。若U为单位上三角矩阵,则称为Crout分解. ③矩阵Doolittle分解法

计算公式 具体解题见习题详解2 注意计算顺序,先行再列,用简图表示为 虚线上地元素为对角元,划为行元. ④ 分解法 计算公式

线性方程组的直接解法

第4章 线性方程组的直接解法 本章主要内容 线性方程组的直接解法——消元法(高斯消元法、主元消元法). 矩阵的三角分解法( Doolittle 分解、Crout 分解、 LDU 分解) 紧凑格式 改进平方根法. 本章重点、难点 一、消元法(高斯消元法、列主元消元法) 本章求解的是n 阶线性方程组Ax=b 的(即方程的个数和未知量的个数相等的线性方程组) ?????????=+???++????????????? ??=+???++=+???++n n nn n n n n n b x a x a x a b x a x a x a b x a x a x a 22112 3222212111212111 1. 高斯消元法 ①高斯消元法的基本思想:通过对线性方程组Ax=b 的进行同解消元变换(也可以用矩阵的初等行变换法进行线性方程组的消元变换),将线性方程组化为上三角形方程组,然后用回代法求出此线性方程组的解。 ②高斯消元法计算公式: ????? ? ? ????????--=-=--==? ????? ????? ???? +=-=-=====-+=------------∑)1,..., 2,1()1,..., 2,1(,...,1,,,,...,2,1) ,...,2,1,(,) 1(1)1()1()1() 1() 1()1() 1()1()() 1()1()1()1()(,)0()0(n n i a x a b x n n i a b x n k j i b a a b b a a a a a n k n j i b b a a i ii n i j j i ij i i i n nn n n n k k k kk k ik k i k i k kj k kk k ik k ij k ij i i ij ij 对回代公式: 消元公式:

线性方程组的几种求解方法

线性方程组的几种解法 线性方程组形式如下: 常记为矩阵形式 其中 一、高斯消元法 高斯(Gauss)消元法的基本思想是:通过一系列的加减消元运算,也就是代数中的加减消去法,将方程组化为上三角矩阵;然后,再逐一回代求解出x 向量。现举例说明如下: (一)消元过程 第一步:将(1)/3使x 1的系数化为1 得 再将(2)、(3)式中x 1的系数都化为零,即由(2)-2×(1)(1) 得 )1(32)2( (03) 4 32=+x x )1(321)1(......23132=++ x x x

由(3)-4×(1)(1) 得 第二步:将(2)(1) 除以2/3,使x 2系数化为1,得 再将(3)(1) 式中x 2系数化为零,即 由(3)(1) -(-14/3)*(2)(2) ,得 第三步:将(3)(2) 除以18/3,使x 3系数化为1,得 经消元后,得到如下三角代数方程组: (二)回代过程 由(3)(3) 得 x 3=1, 将x 3代入(2)(2) 得x 2=-2, 将x 2 、x 3代入(1)(1) 得x 2=1 所以,本题解为[x]=[1,2,-1]T (三)、用矩阵演示进行消元过程 第一步: 先将方程写成增广矩阵的形式 第二步:然后对矩阵进行初等行变换 初等行变换包含如下操作 (1) 将某行同乘或同除一个非零实数 ) 3(3)3(......1-=x )2(3)3( (63) 18-=x ) 2(32) 2(......02=+x x ) 1(32)3( (63) 10 314-=-- x x

(2)将某行加入到另一行 (3)将任意两行互换 第三步:将增广矩阵变换成上三角矩阵,即主对角线全为1,左下三角矩阵全为0,形式如下: 示例: (四)高斯消元的公式 综合以上讨论,不难看出,高斯消元法解方程组的公式为 1.消元 (1)令 a ij(1) = a ij , (i,j=1,2,3,…,n) b i(1) =b i , (i=1,2,3,…,n) (2)对k=1到n-1,若a kk(k)≠0,进行 l ik = a ik(k) / a kk(k) , (i=k+1,k+2,…,n) a ij(k+1) = a ij(k) - l ik * a kj(k), (i,j= k+1,k+2,…,n) b i(k+1) = b i(k) - l ik * b k(k), (i= k+1,k+2,…,n) 2.回代 若a nn(n) ≠0 x n = b n(n) / a nn(n) x i = (b i(i) – sgm(a ij(i) * x j)/- a ii(i),(i = n-1,n-2,…,1),( j = i+1,i+2,…,n ) (五)高斯消元法的条件 消元过程要求a ii(i) ≠0 (i=1,2,…,n),回代过程则进一步要求a nn(n) ≠0,但就方程组Ax=b 讲,a ii(i)是否等于0时无法事先看出来的。 注意A的顺序主子式D i(i=1,2,…,n),在消元的过程中不变,这是因为消元所作的变换是“将某行的若干倍加到另一行”。若高斯消元法的过程进行了k-1步(a ii(i) ≠0,i

计算方法实验报告-线性方程组的数值解法

重庆大学 学生实验报告实验课程名称计算方法 开课实验室DS1421 学院年级专业 学生姓名学号 开课时间至学年第学期

1.实验目的 (1)高斯列主元消去法求解线性方程组的过程 (2)熟悉用迭代法求解线性方程组的过程 (3)设计出相应的算法,编制相应的函数子程序 2.实验内容 分别用高斯列主元消去法 ,Jacobi 迭代法,Gauss--Saidel 迭代法,超松弛迭代法求解线性方程组 ????? ???????-=????????????????????????------725101391444321131243301024321x x x x 3.实验过程 解:(1)高斯列主元消去法 编制高斯列主元消去法的M 文件程序如下: %高斯列主元消元法求解线性方程组Ax=b %A 为输入矩阵系数,b 为方程组右端系数 %方程组的解保存在x 变量中 format long;%设置为长格式显示,显示15位小数 A=[2,10,0,-3;-3,-4,-12,13;1,2,3,-4;4,14,9,-13] b=[10,5,-2,7]' [m,n]=size(A); %先检查系数正确性 if m~=n error('矩阵A 的行数和列数必须相同'); return; end if m~=size(b) error('b 的大小必须和A 的行数或A 的列数相同'); return; end %再检查方程是否存在唯一解 if rank(A)~=rank([A,b]) error('A 矩阵的秩和增广矩阵的秩不相同,方程不存在唯一解'); return; end c=n+1; A(:,c)=b; %(增广) for k=1:n-1

相关文档
最新文档