地下水数值模拟报告

地下水数值模拟报告
地下水数值模拟报告

中国地质大学

研究生课程论文封面地下水数值模拟模型建立的一般步骤

课程名称:地下水数值模拟

教师姓名:

研究生姓名:

研究生学号:

研究生专业:

所在院系:

类别: B.硕士

日期:2014 年12月31日

注:1、无评阅人签名成绩无效;

2、必须用钢笔或圆珠笔批阅,用铅笔阅卷无效;

3、如有平时成绩,必须在上面评分表中标出,并计算入总成绩。

随着工农业生产的发展和人民生活水平的提高,水资源的供需矛盾日渐突出,大量开采地下水,产生了诸多的地质环境问题,如区域水位大幅下降,漏斗不断扩大,产生地面沉降、塌陷、水质恶化、泉水干涸等问题。因此对地下水资源的合理开发利用提出了更高的要求,即要从定量角度对地下水资源进行预测和评价,建立合理的开发利用方案。但水文地质条件客观的复杂性,限制了用地下水动力学中建立的解析法解决问题的广泛性。于是,70年代初以来,随着电子计算机的发展,地下水数值模拟技术逐渐渗透到水文地质学科,开拓了水文地质领域的定量计算。人们通过地下水数值模拟技术,来获得满足一定工程要求的数值解,尤其在水量计算、资源评价、地下水污染预测、地下水的合理开发和地下水资源管理等方面应用更加广泛。经过20年的探索和实践表明,地下水数值模拟对水文地质学科中某些理论和实际问题的解决起了很大作用,构成现代水文地质学科形成和发展的重要推动力之一,己成为人们揭示水文地质规律和资源评价与管理中必不可少的工具。

地下水系统数值模拟是定量分析地下水资源和地下水环境变化的手段。其实现过程为:在给定的地下水系统水文地质条件下,从初始状态开始,根据初始水位及地面标高等确定初始蒸发量、灌溉入渗量及泉水溢出量,再由边界附近的初水力梯度确定边界流量,然后通过上述定解条件对数学模型离散求解,得到下一时刻各点的水位(包括边界水位)。根据求得的水位,确定新的蒸发量、灌溉入渗量、泉水溢出量、边界水力梯度和边界流量,为下一步计算提供依据。不断重复上述过程,就可实现地下水动态数值模拟。此模拟过程避免了定解条件的先验给定,由具体的开采规划和开采后的水文地质环境来确定新的补排关系。

地下水数值模拟广泛应用于地下水位预测、地下水资源开发利用规划、地下水循环机制研究、地下水溶质及热运移研究、地下水资源预报与评价等,并在我国取得了巨大成就。

关键词:地下水数值模拟;溶质运移;模型建立;

目录

摘要 (3)

目录 (4)

第一章绪论 (5)

§1.1 问题的提出 (5)

§1.2 研究现状 (5)

1.2.1 国外研究现状 (5)

1.2.2 国内研究现状 (6)

§1.3 研究目的及意义 (7)

第二章地下水数值模型的过程 (8)

§2.1 水文地质概念模型 (8)

2.1.1水文地质概念模型分析 (8)

2.1.2 MODFLOW模型水文地质资料 (8)

§2.2 MODFLOW数学模型 (10)

2.2.1 方法分类 (10)

2.2.2 MODFLOW模型实例 (11)

§2.3 溶质运移模型 (12)

2.3.1 溶质运移模型的建立 (12)

2.3.2 溶质运移数值模拟-MT3D (12)

2.3.3 溶质运移模型 (13)

第三章模型校验,预测及参数灵敏度分析 (15)

§3.1模型校验 (15)

3.1.1 模型校验 (15)

3.1.2 模型预测 (15)

§3.2 参数灵敏度分析 (15)

第四章结论与建议 (16)

§4.1 结论 (16)

§4.2 建议 (16)

参考文献 (17)

第一章绪论

§1.1 问题的提出

地下水作为中国重要的供水水源,维持着全国近70%人口的饮用,40%的农田灌溉,在保证居民生活用水、社会经济发展和生态环境平衡等方面,起着不可替代的作用。近几十年来日益加剧的人类活动破坏了地下水资源的平衡同时也造成巨大的经济损失,如过量开采引起的水资源枯竭、海水入侵、地面沉降和塌陷、土壤次生盐渍化和次生沼泽化等。当今地下水资源的可持续利用,紧密关系到国民经济的可持续发展。随着计算机技术的飞速发展,数值手段开始引用,各种地下水数值模型和模拟软件被逐渐开发出来。利用地下水数值模型模拟地下水流和溶质运移,用以评价地下水资源的合理开发、预测地下水污染,达到可持续利用地下水资源的目的。这种模拟方法以快捷、有效、灵活、经济等特点逐渐成为地下水研究领域的一种不可或缺的重要方法,受到人们越来越多的关注。在我国,通过数值模拟技术已解决地下水流、水质、污染物在地下水中的运移、淡-咸水分界面移动、地下水热运移及含水介质形变、地下水最优管理等问题。

地下水系统数值模拟是定量分析地下水资源和地下水环境变化的手段。其实现过程为:在给定的地下水系统水文地质条件下,从初始状态开始,根据初始水位及地面标高等确定初始蒸发量、灌溉入渗量及泉水溢出量,再由边界附近的初水力梯度确定边界流量,然后通过上述定解条件对数学模型离散求解,得到下一时刻各点的水位(包括边界水位)。根据求得的水位,确定新的蒸发量、灌溉入渗量、泉水溢出量、边界水力梯度和边界流量,为下一步计算提供依据。不断重复上述过程,就可实现地下水动态数值模拟。此模拟过程避免了定解条件的先验给定,由具体的开采规划和开采后的水文地质环境来确定新的补排关系。

§1.2 研究现状

1.2.1 国外研究现状

最早对地下水进行动态分析,采用的是比较直观也是最为简单的水均衡方法以及水文地质比拟方法。十九世纪中叶,法国人达西在总结前人实践的基础上,通过试验提出了水在孔隙介质中渗透的线性渗透定律,即达西定律;稍后,袭布衣以达西定律为基础,研究了单向和平面径向稳定运动,奠定了地下水稳定流理论的基础。1905年,梅勒第一次用解析法论证了泉水流量的预测方法。

1935年,泰斯提出了地下水向承压水井的非稳定流公式,开创了现代水文地质计算的历史。五十年代,随着深层承压水的开发利用,代雅柯布、汉土什等人研究了有越流补给的情况,接着出现了考虑无压含水层迟后反应、非完整井等情况下的解析解。同时把稳定流计算中己经行之有效的叠加原理、映射法应用到非稳定流计算中来,以解决井群干扰和边界的影响以及抽水流量呈阶梯式变化等非稳定流动问题。20世纪50年代后期,T.H.卡门斯基在解析法分析群孔潜水动态的基础上,系统地研究了存在降水入渗条件下的有限差分法,并用它来预测地下水动态的变化。

六十年代后期随着计算技术的进步,数值模拟方法应用到地下水计算中来,理论和工程上分析地下水的能力都取得了突破性的进展,先后出现了二维流平面(剖面)模型、准三维流模型、三维流模型、藕合模型等。

国外近年来出现的几个主要模型,例如R.Brvao等做的美国休斯敦模型,美国维吉尼亚州的滨海平原下水三维模型,确定了地下水的运动模式,主要的补给和排泄区域以及无约束系统中地下水的循环次数,A.Rivera等做的墨西哥城模型,G.Gambolati做的意大利拉温纳区域地下水模型,K.Daito做的日本大鳄平原模型,ShuGuangLi用概率统计模型求解污染物质随地下水的纯对流运动过程,澳大利亚Queensland大学系统研究了地下水动力学的数值解法和建立模型的方法步骤,在实践中模拟了Collie流域地下水及其与地表水的动态祸合问题;并模拟了海水入侵使海岸含水层污染物迁移的过程,将数值模型应用到含水量计算、开采预测、管理方案及含水层补救等,取得了显著成效。

国外该领域的研究主要是针对数值模拟法的薄弱环节,提出新的思维方法,采用新的数学工具,分析不同尺度下的变化情况,合理描述地下水系统中的不确定性和模糊因素。该领域科学家在地下水系统数值模拟的工作程序% 步骤方面达成了一致,强调水文地质条件合理概化的重要性,并深入探讨尺度转换问题和量化不确定因素问题。研究人员广泛应用地下水系统数值模拟软件和3S技术,不断加强数值模拟法的功能,并通过与其他模型耦合来发挥其独特优势。

1.2.2 国内研究现状

我国地下水数值模拟起步较晚,开始于20世纪70年代,经过20多年来数学工作者(肖树铁、谢春红、孙纳正、陈明佑、杨天行等)和水文地质工作者(林学任、朱学愚、薛禹群、陈崇希等)以及科研院所的共同努力,现己接近或达到国际水平(薛禹群,1997)。

随着地下水数值模拟研究方面的发展,地下水数值模拟的应用己遍及与地下水有关的各个领域和各个产业部门。二十多年来,随着计算机和数值方法的发展,数值模拟逐渐取代传统的模拟技术,成为研究地下水运动规律和定量评价地下水资源的主要手段,而且发展趋势己远远超出作为一种计算手段的原有范畴,成为模拟水文地质过程、发生、发展的演变规律的主要方法。现在我国己经建立了囊括国际地下水模拟中心(IGWMC)P.VenderHeijde分类中所有模型,即预报模型(包括水流模型、热量运移模型、形变模型、多目标模型)、管理模型和识别模型。研究范围涉及到饱和带、非饱和带与饱和一非饱和带,基本满足了我国国民经济建设发展的需要。随着非稳定流理论的发展,以及电子计算机的广泛应用,使得各种复杂条件下的地下水运动都可应用数值法求解。

在国内,由于水文地质观测站始建于1958年,缺乏长期观测资料,在地下水动态预测方面的研究比较薄弱,20世纪70年代中后期才开始这方面的研究工作。1976年,原河北地质局水文地质第四大队、河北大学数学系采用了回归方法对太行山地区大清河流域的地下径流进行了分析、预报。1977年,我国首次由煤炭工业部煤炭科学研究院地质勘察分院、武汉地质学院应用自回归模型进行河北黑龙洞泉的动态预测。

近年来,地下水数值模拟的发展越来越迅速。南京大学地球科学系,合肥工业大学,中国地质科学院水文地质环境地质研究所,中国地质大学,清华大学环境科学与工程系,吉林大学,河海大学,四川大学等,都有相应的研究应用。

地下水数值模拟方法在模拟地下水离散模型、连续性模型、混合模型以及祸合模型方面均具有无可比拟的优越性,同时数值方法在应用过程中也得到了发展,数值解法早期多采用有限差分法(FDM),1965年,Zienkeiwiez将有限元法(FEM)引入地下水渗流领域,Sandhu 和Wilosn提出了地下水渗流运动方程的广义变分原理,随着数值法广泛应用于地下水,形成了有限差分法(FDM)、边界单元法(BEM)和有限分析法(FAM)等多种方法并存的局面。每

一种数值方法在解决地下水问题的过程中被不断地发展和完善,如有限单元法派生出混合有限元法(HFEM)、特征有限元法(CFEM)、以及随机有限元法(SFEM)等,对数值方法的进一步发展起到了推动作用。

§1.3 研究目的及意义

地下水系统数值模拟是基于地下水系统概念模型概化和抽象出的数学模型,用以描述地下水系统各参数、度量之间的数量关系,在对数学模型识别和验证的基础上进一步验证地下水系统的行为和功能的适应性,从而深化对地下水系统特性的认识。人类利用地下水已有几千年的历史,但由于地下水问题本身的复杂性和生产力发展水平的限制,对地下水运动规律的认识却经历了很长的历史过程。

地下水数值模拟在地下水资源评价、地下水污染物运移、地下水资源管理系统,以及地下水与地表水模型联合运用等诸多方面得到广泛应用,已成为解决与地下水有关问题不可或缺的工具。随着计算机技术的不断进步,对地下水系统概念方法的深入研究,将提高模拟结果的精度和模型的仿真性,与其他水文模型的藕合将会成为水资源研究发展的必然需求,以及GIS在水资源领域的广泛应用,地下水软件与之无缝集成将是未来发展的必然趋势,将为地下水模型开拓更广阔的发展空间。

地下水数值模拟具有重要的意义,可以模拟地下水中污染物运移过程,预测地下水污染发展趋势,以便控制地下水污染的重要理论根据;地下水开采,海水入侵:溶质运移的研究有助于解决淡水过渡带的运移规律,特别是在人工开采后的变化状况;中深部埋藏的咸水对上层淡水的影响的问题;水文地球化学找矿;土壤盐渍化改造;石油开采问题。

第二章地下水数值模型的过程

为了使地下水数值模拟建立模型的过程的更明确,详细。本文利用tutor60 vol2文件里介绍的相关模型例子进行概述。

§2.1 水文地质概念模型

2.1.1水文地质概念模型分析

研究和了解计算区域的地质和水文地质条件,是运用数值法进行地下水资源评价的基础。根据评价区的地质、水文地质条件、评价的任务及取水工程的类型、布局等,合理地确定计算区域以及边界的位置和性质。此外,对区域水文地质条件的了解,还有助于下一步进行模型识别。为此,应查明含水介质条件、水的流动条件及边界条件等三方面。

实际的水文地质条件是十分复杂的,要想完善地建立描述计算区地下水系统的数值模型是困难的。因此,应根据水文地质条件和地下水资源评价的目的,对实际的水文地质条件进行简化。这一过程称为水文地质条件的概化,其原则为:根据评价的目的和要求,所概化的水文地质概念模型应反映地下水系统的主要特征;概念模型要简单明了;概念模型要能够被用于进一步的定量描述,以便于建立描述符合研究区地下水运动规律的微分方程的定解问题。

水文地质条件的概化通常包含以下几个方面:计算区域几何形状的概化;含水性质的概化;边界性质的概化;参数性质(均质或非均质,各向同性或各向异性)的概化;地下水流状态(一维、二维或三维)的概化。

对计算区域进行剖分,是数值法的重要工作之一。对不同的计算方法,其剖分形式各不相同。剖分时应考虑各种分区界限,如参数分区,行政分区,地表水体,断层等,以便提高计算精度。剖分的疏密程度好要考虑以下因素:在重点评价区和重要开采地段应加密剖分单元;在地下水水位变化较大地区应适当加密;在水文地质条件变化较大地区也进行加密。此外,剖分时要尽量将主要开采井和拟合水位用的观测井放到节点上。

2.1.2 MODFLOW模型水文地质资料

图2-1 研究区

如图2-1所示,研究区的北面,东面和南面三面环山,其中在东面,南面的山脚下以及西面有河流,其水位与河流的平均水位相对应。此区域下伏基岩为石灰石,在北区丘陵山丘上有露头。具有两个原生沉积层。上层作为无限制含水层,下层作为有限含水层。假设首先进入系统的是降雨入渗,区域内有一些季节性河流也会补给地下水,将采用排水沟的形式来描述这些季节性河流,模型中还包括有两个生产井。概化模型应具有相应的数据资料:1、区域源汇项(图层)

图层定义的边界为被模拟区域,并定义区域源汇项包括井,河流,排水沟和一般的水头边界,研究区划分为两层。

2、边界条件

图2-2 概化后的研究区

北面的黑色线为隔水边界;西面,南面和东面为有河流补给的定水头边界;蓝色线为人工排水沟;黄色点为井;正方形为垃圾填埋场。

注意:虽然模拟区域为一个实际区域,垃圾填埋场和水文地质条件是假设的。用于定义模型的,在模拟中选用的压力以及边界条件是通过大面积取样得到。那么我们把这个水文地质模型概化成:北面边界为隔水边界,西面,南面和东面为以河流为定水头的补给边界。

3、水头数据:

图2-3 研究区水头数据

4、水力传导系数

研究区分为上下两层:

第一层:K h为5.5m/d,Kh/Kv为4;第二层10m/d,Kh/Kv为4;

5、定义补给区

垃圾填埋场:补给速率为0.00006m/d;研究区的其它区域:0.00695m/d。这部分可以理解为降雨入渗补给。

6、源汇项(排水沟和抽水井)

单位长度的传导系数为:555m/d;排水沟仅仅在第一层。井1:抽水流量为680m3/d,仅仅在第一层;井2:抽水流量为-2830m3/d,仅仅在第二层抽水;

7、剖分

图2-4 网格剖分

8、地形数据:每层的terrain数据和elevs数据。这在模型里面是已知的。

§2.2 MODFLOW数学模型

数值模拟法——在计算机上采用离散化的方法求解数学模型,这种方法能模拟复杂地质条件下地下水流和溶质运移,具有较高的仿真度,应用广泛。几种主要的数值方法(有限差分法(FDM)、有限元法(FEM)、边界元法(BEM)、有限分析法(FAM))在国内都有应用和研究,其中有限差分法和有限元法应用较广泛。除了上述主要数值方法外,近年来还出现新的数值方法如混合有限元法、多尺度有限元法等。

2.2.1 方法分类

(1)有限差分法

有限差分法(FDM)是计算机数值模拟最早采用的方法,最早盛行于工程科学中,20 世纪60 年代末期开始大量应用于实际地下水流数值计算中。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。但是目前已经不是主要的发展方向。

(2)有限元法

有限元法(FEM)最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学、土力学的数值模拟。有限元法的基础是变分原理和加权余量法。该方法的特点是适合处理复杂区域,精度可选缺憾在于内存和计算量巨大。近二、三十年来,有限单元法受到越来越多人的注意,被认为是本世纪最有影响的数值方法。

(3)边界元法

边界元法是在有限元法之后发展起来的一种较精确有效的工程数值分析方法。该方法是基于控制微分方程的基本解来建立相应的边界积分方程,再结合边界的剖分而得到的离散算式。它的优点为精确高效,缺点为适用范围远不如有限元法广泛。

(4)有限分析法

有限分析法是在有限元法的基础上的一种改进,该方法将解析法与数值法相结合,是计算流体力学的一个进步。其优点是计算精度较高,并具有自动迎风特性,计算稳定性好,收敛较快,缺点为单元系数中含有较复杂的无穷级数,给实际计算和理论分析都带来了一些困难。

2.2.2 MODFLOW模型实例

根据本章上一节中的研究区水文地质资料建立MODFLOW数学模型并进行模型校准,模型预测,运行得到模拟的地下水流动,如图2-5所示:

图2-5 MODFLOW模型模拟结果第1层

图2-5 MODFLOW模型模拟结果第2层

§2.3 溶质运移模型

2.3.1 溶质运移模型的建立

溶质运移是溶解于地下水中的物质随地下水水流在多孔介质中一起运移的现象。 研究其规律具有重要的意义:

1、地下水中污染物运移过程,预测地下水污染发展趋势,以便控制地下水污染的重要理论根据;

2、地下水开采,海水入侵:溶质运移的研究有助于解决淡水过渡带的运移规律,特别是在人工开采后的变化状况;

3、中深部埋藏的咸水对上层淡水的影响的问题;

4、水文地球化学找矿;

5、土壤盐渍化改造;

6、石油开采问题。

目前研究且应用较多的是对流-弥散方程。在多孔介质中当存在两种或两种以上可溶混的溶体时,在流体运动作用下,其间会出现过渡带,并使不同流体浓度趋于均一化,这种现象称为多孔介质水动力弥散现象。水动力弥散是一种宏观现象,但其根源却在于多孔介质的复杂微观结构与流体的非均一的微观运动。包括分子扩散和机械弥散(或对流扩散);分子扩散是由浓度高向浓度低的方向运动,逐渐趋于均一的过程;机械弥散是由于微观多孔介质中流速分布的不均一而引起的示踪剂(水质点)浓度在地下水含水层中不均匀分布的现象。 水动力弥散方程通常称为对流弥散方程(ADE/CDE ,Advection/Convection Dispersion Equation),这里以饱和渗流为例推导只有一种溶质和溶剂二元体系条件下的ADE 。对流-弥散方程(CDE)是1960年由Nielsen 和Biggar 基于质量守恒原理和连续性原理推导建立的,是土壤溶质运移理论研究的经典方程和基本方程。对流弥散方程的一般形式为: ()()()i k ij k i j i c q c S c D v t t x x x θρθ???????+=-+Φ???????????

∑, i ,j=1,2,3或x ,y ,z 式中:θ是土壤体积含水量;C 是土壤溶质浓度;ρ是土壤容重;S 是溶质在土壤基模上的吸附量;D(θ,v)是土壤水动力弥散系数;q 是土壤水流通量;t 是时间;x i 是空间坐标;Φk 为源汇项,包括生物吸收、化学反应、衰变、降解、沉淀等其它过程。

水动力弥散方程的另一种形式:

()()()C + + -xx xy xz yy yx yz zz zx zy x y z C C C C C C D D D D D D t x x x y x z y y y y y y C C C D D D Cv Cv Cv z z z z y z x y z ?????????????????????????=++++ ? ? ? ? ? ???????????????????????????????????????????++++ ? ? ????????????????????

简写形式: ()C =t i ij i

j i Cv C D x x x ??????- ? ??????? i ,j=1,2,3 2.3.2 溶质运移数值模拟-MT3D

MT3D----Modular 3-Dimesion Transport Model 是通用的三维地下水污染物运移数值模型。MT3D 比较全面地考虑了污染物在地下水中的对流、弥散和化学反应等过程,可以灵活处理各种复杂的源汇项和边界条件,能够准确模拟承压、无压和越流含水层中的污染物运移

过程。MT3D 具有模块化的程序结构、灵活的求解方法以及全面的模拟功能,非常适合实际问题的研究,值得在国内推广使用。

MT3D 与MODFLOW 一样,有两种建模方法,

(1)Grid Approach

采用该方法建立模型时,单元格的参数需要人工给定,适合于研究区域比较规则,模型比较简单的情况。

(2)Conceptual Model Approach

该模型可以采用GIS 的数据,适合于比较复杂的情况。两种方法的只是操作不同,本质是一样的。

GMS 软件里的MT3D 模块是我们建立溶质运移数值模型常用的板块。MT3D 是模拟地下水中单项溶解组分对流、弥散和化学反应的三维溶质运移模型。MT3D 所模拟的化学反应包括平衡控制的线性和非线性吸附、一级不可逆衰变及生物降解。模拟计算时,MT3D 需和MODFLOW 一起使用。

MT3D 数学模型:

()R C ii ij i ii i i i q C C C q D v C C C t x x x λθθ????????=-+-+ ? ??????

??? MODFLOW 数学模型: V ii i i K h x θ?=-

? ii ii i i h h K q S x x t ???

??+= ??????

2.3.3 溶质运移模型

根据tutor60 vol2-9文件里面提供的研究区垃圾填埋场的水文地质数据,利用MODFLOW 和MT3D 模拟垃圾渗滤液运移情况,下图2-6是没有运行MODFLOW 和MT3D 模型的情况:

图2-6

运行MODFLOW和MT3D模型并校验都得到如下图所示:

图2-7 a为第300天时第1层溶质运移情况b为第300天时第2层溶质运移情况

图2-8 a为第300天时溶质运移情况b为第900天时溶质运移情况

c为第1800天时溶质运移情况d为第3000天时溶质运移情况上面两张图MT3D模型预测的溶质运移,在GMS软件里可以以动画的形式显示。从模拟结果可知,垃圾填埋场对南面河流造成了污染,模拟结果对修复污染地下水有很大的帮助。

图2-9 a为run1第3000天时溶质运移情况run2第3000天时溶质运移情况从图2-9可知,为run1第3000天时溶质运移情况要比run2的范围大些。模拟参数设置的不同,模拟预测的结果就会有差异。因此,在进行模型设计时就需要模型校正,检验,预测及参数灵敏度分析,这些将在下一章介绍。

第三章模型校验,预测及参数灵敏度分析

§3.1模型校验

3.1.1 模型校验

将模拟结果与实测结果比较,进行参数调整,使模拟结果在给定的误差范围内与实测结果吻合。调参过程是一个复杂而辛苦的工作,所调整的参数必须符合模拟区的具体情况。所幸的是,最近国外已花费巨力开发研究了自动调参程序(如PEST),大大提高了模拟者的工作效率。

校正后的模型受参数值的时空分布、边界条件、水流状态等不确定度的影响。灵敏度分析就是为了确定不确定度对校正模型的影响程度。

模型验证是在模型校正的基础上,进一步调整参数,使模拟结果与第二次实测结果吻合,以进一步提高模型的置信度。

3.1.2 模型预测

用校正的参数值进行预测,预测时需估算未来的水流状态,预测结果受参数和未来水流状态的不确定度的影响。灵敏度分析就是定量给出这些不确定度对预测的影响。

§3.2 参数灵敏度分析

灵敏度分析是模型参数识别过程的重要步骤之一,对于深入认识研究区的水文地质条件,验证及改进地下水数值模型有重要的作用.通过对模型灵敏度的分析,可使模型更加完善,结果更趋于实际,并有助于决策者根据模型结果做出正确的决策,使与地下水有关的决策失误降到最低。灵敏度分析的主要作用包括:

1、灵敏度分析不仅可以确定参数不确定性对地下水数值模型产生的影响,还能判断因参数变化造成的模型结果的变化趋势。这样在参数识别时,可重点考虑对结果影响较大的参数,在很大程度上减少了模型参数识别的工作量,提高了模型识别的效率;

2、因资料有限、地下水系统的复杂性、人类认识的局限性等原因使模型中的参数(如渗透系数、给水度等)存在不确定性.根据灵敏度分析的结果,将参数对地下水数值模型的影响程度进行排序,可得到对模型结果影响较大的参数.在改进和完善模型时,可以有针对性地补充有关的勘探和试验工作,提高灵敏度较高参数的精度;

3、灵敏度分析可以确定地下水数值模型受参数不确定性影响的程度,计算出模拟结果的误差,并将误差加入到预报中,提高了模型预报的精度。

第四章结论与建议

§4.1 结论

我国地下水数值模拟的研究从无到有,再到今天这种情况,确实令人鼓舞。但面临21世纪下一个十年(2011~2020年)发展战略的时候,还应从更高的角度冷静地检查存在的问题,以便通过解决这些问题攀上新的高度,把中国地下水模拟事业推向国际前沿。存在的问题主要可归纳如下:

1、不够重视基础理论研究,过多的依赖模型与软件。模拟范围选择过小,边界和边界条件处理不当,轻视具体地质条件研究,过分追求模拟结果的可视化程度;

2、计算能力远远超过搜集计算模型所需野外资料的能力。这一问题国外也存在,而且比我们更严重。最明显的例子是很多模型只停留在理论探讨上,用于解决实际问题的不多。众多的三维模型,缺少相应的三维的水头或溶质浓度数据;

3、模型的建立、运行处于分散状态。一些通用、相对简单的模型缺少通用软件。各单位一旦需要时还得从头编起,不仅重复劳动,还影响这些新编软件的质量和效率。为了提高整个国家的模拟水平和效率,有关部门收集、整理、出版一些通用软件以极低的价格出售或免费赠送看来应提到议事日程上来了。

4、强烈非均质多孔介质、裂隙介质、裂隙-喀斯特介质的模拟理论和方法的研究急需加强,尤其需要开拓新思路、探索新方法。

5、由于多孔介质分布的随机性,单纯使用确定性方法来研究问题往往得不到很好解决。因此,把动力学方法和随机方法相结合得到地下水的随机水流方程和随机溶质运移方程以及与之相应的数值方法也要引起我们的充分注意,应积极引导人们开展这方面的研究。

§4.2 建议

随着经济建设的发展,对今后地下水数值模拟会提出大量需要解决的问题。研究解决这些问题,将促使我国地下水数值模拟发展到一个新的水平。根据我国实际,结合国际研究动向,当今我国地下水数值模拟的主要任务是:

1、实现地下水数值模拟模型与GIS和RS的集成。随着计算机的发展和GIS技术的进步,高密度电阻率探查法、地质雷达技术、电阻率层析成像技术等先进技术被广泛应用到水文地质勘查过程中,提升地下水系统数值模拟方法功能;

2、软件的前后处理功能越来越强。目前地下水模拟软件的数据前后处理功能、简便性和灵活性有了很大程度的提高,但是前后处理仍然占据过多的时间和精力,因此,前后处理功能的提高将是今后若干年内这类软件开发的主攻方向之一;

3、研究与开发地下水与地表水、土壤水、气象等的耦合模型,将能更全面、准确地模拟各部分水体间的关系,是今后地下水流及溶质运移模拟软件研发的一个重要方向;

4、由于多孔介质分布的随机性,单纯使用确定性方法来研究问题往往得不到很好解决。因此,把动力学方法和随机方法相结合得到地下水的随机水流方程和随机溶质运移方程以及与之相应的数值方法也要引起我们的充分注意,应积极引导人们开展这方面的研究。

参考文献

[1]. 贾洪玮, 白城地区地下水数值模拟模型的替代模型研究, 2011, 吉林大学.

[2]. 郑佳, 白城市地下水数值模拟与评价, 2006, 吉林大学.

[3]. 薛红琴, 地下水溶质运移模型应用研究现状与发展. 勘察科学技术, 2008(6): 第17-22页.

[4]. 梅一与吴吉春, 地下水溶质运移数值模拟中减少误差的新方法. 水科学进展, 2009(05): 第639-645页.

[5]. 陆乐与吴吉春, 地下水数值模拟不确定性的贝叶斯分析. 水利学报, 2010(03): 第264-271页.

[6]. 魏文清, 马长明与魏文炳, 地下水数值模拟的建模方法及应用. 东北水利水电, 2006(03): 第25-28+71页.

[7]. 张洪霞与宋文, 地下水数值模拟的研究现状与展望. 水利科技与经济, 2007(11): 第794-796页.

[8]. 孙从军等, 地下水数值模拟的研究与应用进展. 环境工程, 2013(05): 第9-13+17页.

[9]. 赵春虎等, 地下水数值模拟过程中的误差分析. 地下水, 2011(03): 第3-4+79页.

[10]. 田亮, 地下水数值模拟技术发展现状. 科技与企业, 2012(17): 第117页.

[11]. 伊燕平, 地下水数值模拟模型的替代模型研究, 2011, 吉林大学.

[12]. 潘国营, 地下水数值模拟模型拟合效果的评价. 焦作矿业学院学报, 1994(02): 第52-56页.

[13]. 张永, 何宏谋与侯红雨, 地下水数值模拟模型应用实例分析. 人民珠江, 2006(01): 第50-52页.

[14]. 童彦钊, 吴平与韩强强, 地下水数值模拟软件简述. 科技信息, 2011(29): 第480+459页.

[15]. 冯利军等, 地下水数值模拟系统的设计与实现. 煤田地质与勘探, 2004(03): 第33-35页.

[16]. 徐娟花, 地下水数值模拟现状. 工程地质计算机应用, 2012(04): 第10-14页.

[17]. 许江涛, 地下水数值模拟研究. 山东工业技术, 2014(16): 第68页.

[18]. 孙放, 地下水数值模拟研究现状及发展趋势. 农业科技与装备, 2013(01): 第55-56页.

[19]. 流沙, 地下水数值模拟又添新法. 地球科学与环境学报, 1997(02): 第20页.

[20].束龙仓等, 地下水数值模拟中的参数灵敏度分析. 河海大学学报(自然科学版), 2007(05): 第491-495页.

[21]. 翟远征等, 地下水数值模拟中的参数敏感性分析. 人民黄河, 2010(12): 第99-101页.

[22].刘猛, 束龙仓与刘波, 地下水数值模拟中的参数随机模拟. 水利水电科技进展, 2005(06): 第25-27页.

[23]. 董少刚等, 地下水数值模拟中河流的处理方法及存在的问题. 安徽农业科学, 2008(23): 第10168-10169+10174页.

[24]. 胡立堂, 仪彪奇与杨旭辉, 地下水数值模拟中入渗补给滞后的处理方法. 水文地质工程地质, 2009(03): 第16-20页.

[25]. 陈建平等, 非点源污染地下水数值模拟进展. 水资源与水工程学报, 2013(02): 第67-71页.

[26]. 王荣, 华北平原地下水数值模拟研究, 2006, 中国地质大学(北京).

[27]. 杨旭, 杨树才与黄家柱, 基于GIS的地下水数值模拟模型拟合方法. 计算机工程, 2004(11): 第50-51页.

[28]. 王晓明等, 可视化的地下水数值模拟. 西安科技学院学报, 2004(02): 第184-186页.

[29]. 赵杨帆, 李金山与关君, 浅析地下水数值模拟的建模方法及应用. 才智, 2013(02): 第153页.

[30]. 于峰, 区域地下水数值模拟, 2005, 山东大学.

[31]. 郑红梅, 天津市平原区地下水数值模拟研究, 2007, 中国地质大学(北京).

[32]. 张德生, 土壤溶质运移数学模型研究, 2004, 西安理工大学.

[33]. 李茜等, 土壤水与地下水溶质运移联合模型. 干旱区资源与环境, 2005(02): 第97-100页.

[34]. 郭晓东等, 我国地下水数值模拟软件应用进展. 地下水, 2010(04): 第5-7页.

[35]. 薛禹群, 中国地下水数值模拟的现状与展望. 高校地质学报, 2010(01): 第1-6页.

中国地下水数值模拟的现状与展望_薛禹群

高 校 地 质 学 报 Geological Journal of China Universities 2010 年 3 月,第 16 卷,第 1 期,1-6页March 2010,Vol. 16, No.1, p. 1-6中国地下水数值模拟的现状与展望 薛禹群 (南京大学 地球科学与工程学院 水科学系, 南京 210093) 摘要:回顾了中国地下水数值模拟的发展历程,指出了当前地下水模拟研究领域中存在的问题:基础理论的实验研究重视不够;过多依赖模拟技术,盲目追求软件的版本和模拟结果的可视化程度;轻视水文地质问题和条件的研究;以致于取得的成果跟踪性的占多数,原始创新的很少等。因此作出地下水数值模拟的展望,并指出该领域今后十年(2011~2020年)优先发展的8个研究方向。 关键词:地下水;数值模拟;优先发展方向 中图分类号:P641 文献标识码:A 文章编号:1006 -7493(2010) 01-0001-06 Abstract: The present situation of research on groundwater numerical simulation in China is briefly reviewed and analyzed. Problems existing in the development process are summarized. The prospect of the groundwater numerical simulation and some preferential development orientations of this field in the coming decade (2011~2020) is put forward.Key words: groundwater; numerical simulation; preferential development orientation XUE Yu -qun Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210093, China Present Situation and Prospect of Groundwater Numerical Simulation in China 收稿日期:2009-11-20;修回日期:2010-02-05 作者简介:薛禹群,男,1931年生,教授,中国科学院院士,主要从事水文地质和地下水模拟的教学和科研工作;E -mail: yuqunx@https://www.360docs.net/doc/a615677648.html, 经过三十五、六年的发展,地下水模拟在中国经历了从无到有、从简单的水流模型到比较复杂的物质和热量运移模型;从仿制到独立研制,最后走向世界的艰难发展历程。现在可以说中国已经差不多建立了国际上讨论的各类模型:预报模型、管理模型和识别模型。研究范围涉及饱和带、非饱和带和饱和-非饱和带。基本满足了国民经济发展建设的需要。但还应从更高的角度冷静地查看我们发展中存在的问题,还应从国际上地下水模拟的发展趋势和国民经济发展对地下水的要求来制订发展规划,把我国地下水模拟事业推向一个新的、更高的高度,做出与中国作为世界大国相匹配的贡献。 1 研究现状 近几十年来,随着地下水科学和计算机科学的发展,地下水数值模拟也得到了快速发展,主要体现在:加拿大Borden基地、美国Cape Cod基地与Columbus基地开展的大型野外试验场研究,大大丰富了地下水溶质运移的理论和方法,取得不少新的认识,并为发展和检验溶质运移理论和相应数学模型提供了大量数据(MacKay et al,1986; LeBlanc et al,1991; Bogga et al,1992;Zheng and Gorelick,2003);随机方法在非均质介质渗流和溶质运移的模拟中得到比较多的应用,从而加深、甚至改变了人们对此类介质中流体运 DOI:10.16108/j.issn1006-7493.2010.01.005

当前应用于地下水模拟领域内的常用软件

当前应用于地下水模拟领域内的常用软件: 1、MODFLOW (The modular finite –difference groundwater flow model)是由美国地质调查局(USGS)开发的用来模拟地下水流动和污染物迁移等特性的计算机程序,MODFLOW使用有限差分方法。其局限是仅在DOS模式下运行。在MODFLOW的基础上,各国研究人员又开发了可视化的扩展型软件Visual MODFLOW。Visual MODFLOW是由加拿大waterloo hydrogeologic Inc.在MODFLOW 软件基础上,应用现代可视化技术开发研制的,1994年8月首次在国际上公开发行,该系统目前国际上流行且被各国同行一致认可的三维地下水流和溶质运移模拟的标准可视化专业软件系统。可应用于评价地下水安全供水量、评价地下水修复系统、优化灌溉抽水量等方面。 Visual MODFLOW 的最大特点是功能强大同时易学易用,合理的菜单结构,友好的可视化交互界面和强大的模型输入输出支持,使之成为许多地下水模拟专业人员的选择对象。 2、MT3D99是郑春苗博士设计开发的模拟三维地下水溶质运移程序 MT3D(1990)的升级版,MT3D99的易于使用、精确、快速的优良性能使得它获得了政府有关部门、地下水研究咨询公司以及用户的广泛认可,成为目前世界上首屈一指的溶质运移模拟软件。 MT3D99能够模拟地下水系统中的平流、扩散、衰减、溶质化学反应、线性与非线性吸附作用等现象,能够对承压含水层,不承压含水层,承压与不承压交替的含水层以及倾斜的和单元厚度变化的含水层进行空间离散。 MT3D99提供了丰富的求解方法。一个隐含求解方法是基于带高效 Lanczos/ORTHOMIN加速格式的广义共轭梯度法的迭代求解方法,能够花费比传统方法少得多的机时来求解范围广泛的问题。MT3D99采用了三阶 TVD(total-variation-diminishing)格式用于求解对流项,具有保持质量守恒和使数值弥散和人为振动最小化的特点,在其它求解技术失败时,此格式往往是有效的。MT3D99还将三种常用的运移求解技术结合在统一的代码中,这三种求解方法是:标准有限差分法、基于Eulerian-Lagrangian的粒子跟踪方法和高阶有

地下水数值模拟在我国_回顾与展望_为_水文地质工程地质_创刊40年而作

地下水数值模拟在我国——回顾与展望——为《水文地质工程地质》创刊40年而作 薛禹群 吴吉春(南京大学地球科学系,南京 210093) 今年《水文地质工程地质》将迎来它创刊40周年。40年来,它为发展我国的水文地质工程地质事业,提高我国水文地质学和工程地质学的整体水平作出了不可磨灭的贡献。回顾过去,成绩斐然;展望未来,前景灿烂。仅以此文纪念《水文地质工程地质》双月刊创刊40周年。 1 概貌 我国自1973年以来在地下水的数值模拟方面发展很快,它的应用已遍及与地下水有关的各个领域和各个产业部门。高校、科研院所与生产部门相结合,已运用数值模拟解决了很多国民经济建设中急需解决的各类问题,其中包括: 水资源评价问题(包括供水、排水、水利等各类问题中的地下水水位或压强预报和水量计算等);地下水污染问题,水2岩作用和生物降解作用的模拟;非饱和带水分和盐分运移问题;海水入侵、高浓度咸水 卤水入侵问题;热量运移和含水层贮能问题;地下水管理与合理开发、井渠合理布局和渠道渗漏问题;地下水2地面水联合评价调度问题;地面沉降问题;参数的确定问题。它所涉及的地质情况多种多样,有潜水,也有承压水;有单个含水层的情况,也有多个含水层存在越流的情况,以及种种复杂的地质构造和岩相变化情况。由此,探讨了相应的模型概化与边界条件的处理。模型有二维的(平面的、剖面的),也有三维的,但以二维为主。虽然国内一共建立了多少个模型无法精确统计,但从有限的资料可以看出,从模型类型上看,按国际地下水模拟中心(IG WM C)的分类,几种类型的模型我们都有了,即: (1)预报模型包括水流模型 物质运移模型(溶质运移模型);热量运移模型;形变模型;多目标模型。 (2)管理模型; (3)识别模型其中大部分(估计在90%左右,甚至有可能超过)是预报模型,用来预测水流、污染物、热量、地面变化的时空变化,包括水资源(水量)评价、矿山涌水量、渠系及水库渗漏量预测等。在这些模型中以水流模型为主(80年代早期以前基本上是清一色的水流模型),溶质运移模型次之,其它几类模型占的比例很少。水流模型有饱和的、非饱和的、饱和2非饱和的、地下水2地表水联合的几类,以饱和带模型为主。同时考虑地下水2地表水的模型只是个别的、探讨性的。水流模型一般只考虑均质流体,非均质流体的水流模型则是作为子模型和盐分运移子模型同时处理的。溶质运移模型在我国多数是处理低浓度的水质(地下水污染)问题。因此,由水流方程和对流2弥散方程分别组成的两个子模型可以独立求解,运动方程也以传统的达西定律为基础。只有少数研究海水入侵、卤水 咸水入侵和污水中高浓度污染物运移问题中,密度、粘度要由状态方程决定。此时,上述两个子模型要耦合起来求解。迭代法是解这类问题常用的解法。我国最早的三维可混溶海水入侵模型,是在80年代末期建立的。根据《W ater R esou rces R esearch》的评审意见,该模型发展了潜水含水层条件下的海水入侵模型。在此以前,国际上一直把潜水含水层简化作承压含水层处理,以回避处理降水入渗、潜水面波动对溶质运移的影响。在我国这些海水入侵、卤水 咸水入侵模型以及以后将要谈到的热量运移模型、运动方程中,除了根据传统的达西定律考虑以水头梯度为基础的强迫对流外,还考虑了自然对流。卤水 咸水入侵由于浓度高还考虑了由于粘滞性产生的切应力对水流运动的阻滞。溶质运移模型中,只考虑污染物运移的模型在我国粗略看来略多于同时考虑吸附、解吸等的模型。少数模型已深入探讨了海水入侵过程中,水2土间发生的N a+2Ca2+、M g2+2Ca2+阳离子交换。但,处理更为复杂的如氮素生物化学转换的模型尚未见报导。我国研究热量运移、形变的模型不多,且都和一些大城市的地面沉降及为控制地面沉降进行的回灌联系在一起。热量运移模型,已考虑了与热量运移有关的各种主要因素(对流、传导、热机械弥散、自然对流、水

数值模拟报告(DOC)

第一部分:数值模拟技术研究文献综述 浅析数值模拟技术 1.引言 近年来,随着我国大规模地进行“西部大开发”和“南水北调”等巨型工程,越来越多的岩土工程难题摆在我们面前,单纯依靠经验、解析法显然已不能有效指导工程问题的解决,迫切需要更强有力的分析手段来进行这些问题的研究和分析。自R.W. Clough 上世纪60年代末首次将有限元引入某土石坝的稳定性分析以来,数值模拟技术在岩土工程领域取得了巨大的进步,并成功解决了许多重大工程问题。特别是个人电脑的普及及计算性能的不断提高,使得分析人员在室内进行岩土工程数值模拟成为可能。在这样的背景下,数值模拟特别是三维数值模拟技术逐渐成为当前中国岩土工程研究和设计的主流方法之一,也使得岩土工程数值模拟技术成为当今高校和科研院所岩土工程专业学生学习的一个热点。 采用大型通用软件对岩土工程进行数值模拟计算,在目前已成为项目科研、工程设计、风险评估等岩土类项目的必须,学习和掌握Ansys、FLAC3D、UDEC 等数值计算软件已成为学校、科研院所对工程从业人员的基本要求。 数值模拟方法主要有限元法、边界元法、加权余量法、半解析元法、刚体元法、非连续变形分析法、离散元法、无界元法和流形元法等,各种方法都有其对应的软件。 2.数值模拟的发展趋势 可以说, 继理论分析和科学试验之后, 数值模拟已成为科学技术发展的主要手段之一。随着软件技术和计算机技术的发展, 目前国际上数值模拟软件发展呈现出以下一些趋势: (1). 由二维扩展为三维。早期计算机的能力十分有限,受计算费用和计算机储存能力的限制,数值模拟程序大多是一维或二维的,只能计算垂直碰撞或球形爆炸等特定问题。随着第三代、第四代计算机的出现, 才开始研制和发展更多的三维计算程序。现在,计算程序一般都由二维扩展到了三维,如LS-DYNA2D 和LS - DYNA3D、AUTODYN2D 和AUTO-DYN3D。 (2).从单纯的结构力学计算发展到求解许多物理场问题。数值模拟分析方法最早是从结构化矩阵分析发展而来,逐步推广到板、壳和实体等连续体固体力学分析,实践证明这是一种非常有效的数值模拟方法。近年来数值模拟方法已发展到流体力学、温度场、电传导、磁场、渗流等求解计算,最近又发展到求解几个交叉学科的问题。例如内爆炸时,空气冲击波使墙、板、柱产生变形,而墙、板、柱的变形又反过来影响到空气冲击波的传播,这就需要用固体力学和流体动力学的数值模拟结果交叉迭代求解。 (3).由求解线性问题进展到分析非线性问题。随着科学技术的发展,线性理论已经远远不能满足设计的要求。诸如岩石、土壤、混凝土等,仅靠线性计算理论就不足以解决遇到的问题,只有采用非线性数值算法才能解决。众所周知,非线性的数值模拟是很复杂的,它涉及到很多专门的数学问题和运算技巧,很难为一般工程技术人员所掌握。为此,近年来国外一些公司花费了大量的人力和资金,开发了诸如LS- DYNA3D、ABAQUS和AU-TODYN等专长求解非线性问题的有限元分析软件,并广泛应用于工程实践。这些软件的共同特点是具有高效

地下水模拟软件

国外地下水模拟软件的发展现状与趋势 丁继红 (吉林大学数学科学学院) 周德亮, 马生忠 (吉林大学综合信息矿产预测研究所) 通过对目前国际上最有影响的几个地下水模拟软件的分析,概述了地下水模拟软件的发展现状,指出组件化、与GIS 集成、前后处理功能强化、科学可视化的深入应用将是未来地下水模拟软件发展的主要趋势。 一、引言 利用数值模型对地下水流和溶质运移问题进行模拟的方法以其有效性、灵活性和相对廉价性逐渐成为地下水研究领域的一种不可或缺的重要方法,并受到越来越大的重视和广泛的应用。一个完整的地下水模拟过程包含3个部分:前处理、模型计算和后处理。前处理是指在进行模拟计算之前对计算过程中所需数据的整理、组织、输入及计算网格的编号与生成。模型计算是进行地下水流动或水质运移正反演计算,常用的方法主要有:有限差分法、有限元法、边界元法等。后处理是将计算所产生的结果数据,用图形或表格显示或存放起来,以供研究人员方便地进行分析和使用。传统的地下水模拟过程复杂繁琐,前后处理所花费的时间往往是计算时间的几倍,甚至是几十倍。如何获取、组织和输入模拟计算所必备的含水层复杂结构、庞大的数据与参数,如何分析和理解模拟计算过程中所产生的庞大的结果数据,如何减轻研究人员的劳动强度,缩短研究工作时间,成为传统地下水模拟研究工作面临的突出问题和困难。计算机技术的快速发展,在不断驱使研究人员对更为复杂的含水层系统中的地下水运动及溶质运移进行数值模拟的同时,又不断为解决问题提供新的技术和手段。近年来,在人机交互、计算机图形学和科学可视化等技术的推动下,国外地下水模拟软件不论是在数量还是质量上都有了巨大的发展和提高,前后处理的可视化功能日益强大。 二、最有影响的几个传统地下水模拟软件 通过近二十年的研究与发展,国际上已经形成了一批非常有影响的地下水模拟DOS版本的软件,它们今天在国际地下水模拟研究领域依旧非常活跃,如MODFLOW、MT3DMS、MT3D99、PEST、MODPATH、UCODE等。 1、MODFLOW MODFLOW是由美国地质调查局(USGS)的McDonald和Harbaugh于80年代开发出来的一套专门用于孔隙介质中三维有限差分地下水流数值模拟的软件。自从它问世以来,MODFLOW已经在全世界范围内,在科研、生产、环境保护、水资源利用等许多行业和部门得到了广泛的应用,成为最为普及的地下水运动数值模拟的计算软件。这种普及性是由其如下的特点决定的。 程序结构的模块化。MODFLOW包括一主程序和若干个相对独立的子程序包(Package)。每个子程序中有数个模块,每个模块用以完成数值模拟的一部分。例如河流子程序包用来模拟河流与含水层之间水力联系;井流子程序包用来模拟抽水井和注水井对含水层的影响。MDFLOW的这种模块化结构使得其程序易于理解、操作、修改和添加。MODFLOW问世以来,不断有新的子程序包被开发出来,例如用来模拟抽水引起地面沉降的子程序包(Leake和Prudic,1998),用来模拟水平流动障碍(Horizontal flow-barrier)的子程序包(Hsieh和Freckleton,1993)等。新子程序的加入,使MODFLOW的应用范围不断扩大。 离散方法的简单化。MODFLOW采用有限差分法对地下水流进行数值模拟。差分法易于程序的普及和数据文件的规范。其主要缺点是当对某些单元网格加密时,会增加许多额外不必要的计算单元,延长程序的运行时间,随着计算机速度的迅速提高,计算机受网格数量的限制越来越小,差分法的优势越来越大,MODFLOW解决地下水流运动问题已经将含水层剖分到多达360×360×18个网格单元。 MODFLOW引进了应力期(Stress Period)概念,它将整个模拟时间分为若干个应力期,每个应力期又可再分为若干个时间段。在同一应力期,各时间段既可以按等步长,也可以按一个规定的几何序列逐渐增长。而在每个应力期内,所有的外部源汇项的强度应保持不变。这样就简化、规范了数据文件的输入,而且使得物理概念更为明确。 求解方法的多样化。迄今为止,MODFLOW已经含有强隐式法、逐次超松弛迭代法、预调共轭梯度法等子程序包。可以预见,MODFLOW的求解子程序包必将更加多样化,应用范围也更为广泛。大量实际工作表明,只要恰当使用,MODFLOW也可以用来解决裂隙介质中的地下水流动问题。不仅如此,经过合理的概化,MODFLOW还可以用来解决空气在土壤中的流动

地下水数值模拟任务、步骤及常用软件.doc

地下水数值模拟任务、步骤及常用软件 1地下水模拟任务 大多数地下水模拟主要用于预测,其模拟任务主要有 4 种: 1)水流模拟 主要模拟地下水的流向及地下水水头与时间的关系。 2)地下水运移模拟 主要模拟地下水、热和溶质组分的运移速率。这种模拟要特别考虑到“优先流”。所谓“优先流”就是局部具有高和连通性的渗透性,使得水、热、溶质组分在该处的运移速率快于周围地区,即水、热、溶质组分优先在该处流动。 3)反应模拟 模拟水中、气 -水界面、水 -岩界面所发生的物理、化学、生物反应。 4)反应运移模拟 模拟地下水运移过程中所发生的各种反应,如溶解与沉淀、吸附与解吸、 氧化与还原、配合、中和、生物降解等。这种模拟将地球化学模拟 (包括动力学模拟 )和溶质运移模拟 (包括非饱和介质二维、三维流 )有机结合,是地下水模拟的发展趋势。要成功地进行这种模拟,还需要研究许多水 -岩相互作用的化学机制和动力学模型。 2模拟步骤 对于某一模拟目标而言,模拟一般分为以下步骤: 1)建立概念模型 根据详细的地形地貌、地质、水文地质、构造地质、水文地球化学、岩石 矿物、水文、气象、工农业利用情况等,确定所模拟的区域大小,含水层层 数,维数(一维、二维、三维),水流状态(稳定流和非稳定流、饱和流和非饱和流),介质状况 (均质和非均质、各向同性和各向异性、孔隙、裂隙和双重介质、

流体的密度差 ),边界条件和初始条件等。必要时需进行一系列的室内试验与野 外试验,以获取有关参数,如渗透系数、弥散系数、分配系数、反应速率常数等。 2)选择数学模型 根据概念模型进行选择。如一维、二维、三维数学模型,水流模型,溶质 运移模型,反应模型,水动力 -水质耦合模型,水动力 -反应耦合模型,水动力 - 弥散 -反应耦合模型。 3)将数学模型进行数值化 绝大部分数学模型是无法用解析法求解的。数值化就是将数学模型转化为 可解的数值模型。常用数值化有有限单元法和有限差分法。 4)模型校正 将模拟结果与实测结果比较,进行参数调整,使模拟结果在给定的误差范 围内与实测结果吻合。调参过程是一个复杂而辛苦的工作,所调整的参数必须 符合模拟区的具体情况。所幸的是,最近国外已花费巨力开发研究了自动调参 程序 (如 PEST),大大提高了模拟者的工作效率。 5)校正灵敏度分析 校正后的模型受参数值的时空分布、边界条件、水流状态等不确定度的影响。 灵敏度分析就是为了确定不确定度对校正模型的影响程度。 6)模型验证 模型验证是在模型校正的基础上,进一步调整参数,使模拟结果与第二次 实测结果吻合,以进一步提高模型的置信度。 7)预测 用校正的参数值进行预测,预测时需估算未来的水流状态。

地下水数值模拟报告

中国地质大学 研究生课程论文封面地下水数值模拟模型建立的一般步骤 课程名称:地下水数值模拟 教师: 研究生: 研究生学号: 研究生专业: 所在院系: 类别: B.硕士 日期:2014 年12月31日

注:1、无评阅人签名成绩无效; 2、必须用钢笔或圆珠笔批阅,用铅笔阅卷无效; 3、如有平时成绩,必须在上面评分表中标出,并计算入总成绩。

随着工农业生产的发展和人民生活水平的提高,水资源的供需矛盾日渐突出,大量开采地下水,产生了诸多的地质环境问题,如区域水位大幅下降,漏斗不断扩大,产生地面沉降、塌陷、水质恶化、泉水干涸等问题。因此对地下水资源的合理开发利用提出了更高的要求,即要从定量角度对地下水资源进行预测和评价,建立合理的开发利用方案。但水文地质条件客观的复杂性,限制了用地下水动力学中建立的解析法解决问题的广泛性。于是,70年代初以来,随着电子计算机的发展,地下水数值模拟技术逐渐渗透到水文地质学科,开拓了水文地质领域的定量计算。人们通过地下水数值模拟技术,来获得满足一定工程要求的数值解,尤其在水量计算、资源评价、地下水污染预测、地下水的合理开发和地下水资源管理等方面应用更加广泛。经过20年的探索和实践表明,地下水数值模拟对水文地质学科中某些理论和实际问题的解决起了很大作用,构成现代水文地质学科形成和发展的重要推动力之一,己成为人们揭示水文地质规律和资源评价与管理中必不可少的工具。 地下水系统数值模拟是定量分析地下水资源和地下水环境变化的手段。其实现过程为:在给定的地下水系统水文地质条件下,从初始状态开始,根据初始水位及地面标高等确定初始蒸发量、灌溉入渗量及泉水溢出量,再由边界附近的初水力梯度确定边界流量,然后通过上述定解条件对数学模型离散求解,得到下一时刻各点的水位(包括边界水位)。根据求得的水位,确定新的蒸发量、灌溉入渗量、泉水溢出量、边界水力梯度和边界流量,为下一步计算提供依据。不断重复上述过程,就可实现地下水动态数值模拟。此模拟过程避免了定解条件的先验给定,由具体的开采规划和开采后的水文地质环境来确定新的补排关系。 地下水数值模拟广泛应用于地下水位预测、地下水资源开发利用规划、地下水循环机制研究、地下水溶质及热运移研究、地下水资源预报与评价等,并在我国取得了巨大成就。 关键词:地下水数值模拟;溶质运移;模型建立;

读地下水数值模拟论文总结

地下水系统数值模拟的研究现状和发展趋势 郝治福,康绍忠 (中国农业大学中国农业水问题研究中心) 目前地下水系统数值模拟方法主要有有限差分法(FDM)、有限单元法(FEM)、边界元法(BEM)和有限分析法(FAM)等。20世纪60年代中期以来,随着快速大容量电子计算机的出现和广泛应用,数值计算方法在地下水资源分析评价中得到逐步推广,具有明显的通用性和广泛的适用性。尤其近十几年,地下水系统数值模拟取得了长足进步。 一、国外地下水系统数值模拟研究现状 目前,国外该领域的研究主要针对数值模拟法的薄弱环节,提出新的思维方法,采用新的数学工具,分析不同尺度下的变化情况,合理地描述地下水系统中大量的不确定性和模糊因素。 1、该领域科学家在地下水系统数值模拟的工作程序、步骤方面达成了一 致,强调对水文地质条件合理概化的重要性,并深入探讨尺度转换问题和量化不确定因素问题。 根据Anderson等提出的工作程序,要建立一个正确且有意义的地下水系统数值模型,应进行以下工作:确定模型目标,建立水文地质概念模型,建立数学模型,模型设计及模型求解,模型校正,校正灵敏度分析,模型验证和预 报,预报灵敏度分析,模型设计与模型结果的给出,模型后续检查以及模型的再设计。Ewing提出地下水污染流模拟和建模需要强调3个方面的问题:①有效地模拟复杂的流体之间以及流体与岩石之间的相互作用;②必须发展准确的离散技术,保留模型重要的物理特性;③发挥计算机技术体系的潜力,提供有效的数值求解算法。针对Newman等的推测,Wood提出了二维地下水运动有限元计算的时间步长条件。Kim等对抽取地下水造成的noordbergum effect(reverse water level fluctuation)现象进行数值模拟,阐述了其机理性原 因。Scheibe等分析了在不同尺度下的地下水流及其运移行为。Ghassemi指出三维模型可以详细说明含水层系统的三维边界条件以及抽水应力情况,而二维模型就不能恰当处理。Porter等指出DFM(data fusion modeling)可以量化各种各样的水文学、地质学和地球物理学的数据及模型的不确定性,可以用于地下水系统数值模拟的数据整合和模型校准。Mazzia等提出特别的数值方法用于求解重盐地下水运移模拟的二维非线性动力学控制方程,效果很好。Li Shu-guang 等指出数值模型还不能解决预报的不确定性因素问题,并开创性地提出一种随

地下水数值模拟研究进展和发展趋势

地下水数值模拟研究进展与发展趋势 摘要:地下水数值模拟的应用研究进展国外对地下水数值模拟的研究和应用较早,且理论、技术等各方面相对成熟,目前已经从“水量问题”的应用研究逐步过渡到“水质问题”的应用研究上,以解决各种更复杂的地下水问题。国内相关研究起步较晚、同国外存在一定的差距,主要应用研究在地下水位预测、地下水资源开发利用、地下水循环机制研究、地下水资源预报评价等水量、水位问题方面,但在加油站渗漏场、石油渗漏场、垃圾填埋场、工业废料填埋场、矿区、核废料处置场等污染场地污染物的迁移问题方面的应用研究逐渐增多,并已取得了一定的成果。 关键词:数值模拟、进展、发展趋势 随着计算机技术的快速发展,科学有效的数值计算方法在处理地下水污染、分析地下水资源评估等问题中的应用越来越广泛; 利用数值模拟软件对地下水流等问题进行模拟,以其有效性、灵活性和相对廉价性逐渐成为地下水研究领域的一种不可缺少的重要方法[1]。尤其针对加油站渗漏场、石油渗漏场、垃圾填埋场、工业废料填埋场、矿区、核废料处置场等污染场地污染物的迁移问题,建立准确的数值模型进行预测是查明污染物污染潜水范围、程度及其分布特征最有效最直观的方法之一,同时还可以为污染区实施污染防治与修复等优化配置提供科学技术支持[2]。 地下水数值模拟的应用研究进展国外对地下水数值模拟的研究和应用较早,且理论、技术等各方面相对成熟,目前已经从“水量问题”的应用研究逐步过渡到“水质问题”的应用研究上,以解决各种更复杂的地下水问题。国内相关研究起步较晚、同国外存在一定的差距,主要应用研究在地下水位预测、地下水资源开发利用、地下水循环机制研究、地下水资源预报评价等水量、水位问题方面,但在加油站渗漏场、石油渗漏场、垃圾填埋场、工业废料填埋场、矿区、核废料处置场等污染场地污染物的迁移问题方面的应用研究逐渐增多,并已取得了一定的成果[4]。 近几十年来,随着地下水科学和计算机科学的发展,地下水数值模拟也得到了快速发展,主要体现在:加拿大Borden基地、美国Cape Cod基地与Columbus基地开展的大型野外试验场研究,大大丰富了地下水溶质运移的理论和方法,取得不少新的认识,并为发展和检验溶质运移理论和相应数学模型提供了大量数据(MacKay et al,1986; LeBlanc et al,1991;Bogga et al,1992;Zheng and Gorelick,2003);随机方法在非均质介质渗流和溶质运移的模拟中得到比较多的应用,从而加深、甚至改变了人们对此类介质中流体运动和溶质运移的认识(Dagan and Neuman,1997; Zhang D,2002);通过多孔介质中水流运动、溶质运移和化学反应,甚至生物过程的耦合建立模型来集成地研究这些过程也取得很多进展(van Genuchten and Sudicky,1999; Yeh and Tripathi,1989; Barry et al,2002)。此外,计算方法也取得不少进展,但溶质运移模拟中数值弥散和振荡问题的解决和地下水模拟逆问题的求解进展比较缓慢(Sun and Yeh,2007)。 由于种种原因,国内地下水数值模拟开展得比较晚,始于20世纪70年代初,当时文化大革命还没有结束,所以从事这项工作困难重重,而且人也不多,主要来自高等学校和研究部门,以后才逐步扩展到产业部门。为了加快我国地下水数值模拟的发展,深切感到有必要

地下水数值模拟任务、步骤及常用软件

地下水数值模拟任务、步骤及常用软件1地下水模拟任务 大多数地下水模拟主要用于预测,其模拟任务主要有4种: 1)水流模拟 主要模拟地下水的流向及地下水水头与时间的关系。 2)地下水运移模拟 主要模拟地下水、热和溶质组分的运移速率。这种模拟要特别考虑到“优先流”。所谓“优先流”就是局部具有高和连通性的渗透性,使得水、热、溶质组分在该处的运移速率快于周围地区,即水、热、溶质组分优先在该处流动。 3)反应模拟 模拟水中、气-水界面、水-岩界面所发生的物理、化学、生物反应。 4)反应运移模拟 模拟地下水运移过程中所发生的各种反应,如溶解与沉淀、吸附与解吸、氧化与还原、配合、中和、生物降解等。这种模拟将地球化学模拟(包括动力学模拟)和溶质运移模拟(包括非饱和介质二维、三维流)有机结合,是地下水模拟的发展趋势。要成功地进行这种模拟,还需要研究许多水-岩相互作用的化学机制和动力学模型。 2模拟步骤 对于某一模拟目标而言,模拟一般分为以下步骤: 1)建立概念模型 根据详细的地形地貌、地质、水文地质、构造地质、水文地球化学、岩石矿物、水文、气象、工农业利用情况等,确定所模拟的区域大小,含水层层数,维数(一维、二维、三维),水流状态(稳定流和非稳定流、饱和流和非饱和流),介质状况(均质和非均质、各向同性和各向异性、孔隙、裂隙和双重介质、

流体的密度差),边界条件和初始条件等。必要时需进行一系列的室内试验与野外试验,以获取有关参数,如渗透系数、弥散系数、分配系数、反应速率常数等。 2)选择数学模型 根据概念模型进行选择。如一维、二维、三维数学模型,水流模型,溶质运移模型,反应模型,水动力-水质耦合模型,水动力-反应耦合模型,水动力-弥散-反应耦合模型。 3)将数学模型进行数值化 绝大部分数学模型是无法用解析法求解的。数值化就是将数学模型转化为可解的数值模型。常用数值化有有限单元法和有限差分法。 4)模型校正 将模拟结果与实测结果比较,进行参数调整,使模拟结果在给定的误差范围内与实测结果吻合。调参过程是一个复杂而辛苦的工作,所调整的参数必须符合模拟区的具体情况。所幸的是,最近国外已花费巨力开发研究了自动调参程序(如PEST),大大提高了模拟者的工作效率。 5)校正灵敏度分析 校正后的模型受参数值的时空分布、边界条件、水流状态等不确定度的影响。 灵敏度分析就是为了确定不确定度对校正模型的影响程度。 6)模型验证 模型验证是在模型校正的基础上,进一步调整参数,使模拟结果与第二次实测结果吻合,以进一步提高模型的置信度。 7)预测 用校正的参数值进行预测,预测时需估算未来的水流状态。

地下水系统数值模拟

目前地下水系统数值模拟方法主要有有限差分法(FDM)、有限单元法(FEM)、边界元法(BEM)和有限分析法(FAM)等。20世纪60年代中期以来,随着快速大容量电子计算机的出现和广泛应用,数值计算方法在地下水资源分析评价中得到逐步推广,具有明显的通用性和广泛的适用性。尤其近十几年,地下水系统数值模拟取得了长足进步。 一、国外地下水系统数值模拟研究现状 目前,国外该领域的研究主要针对数值模拟法的薄弱环节,提出新的思维方法,采用新的数学工具,分析不同尺度下的变化情况,合理地描述地下水系统中大量的不确定性和模糊因素。 1、该领域科学家在地下水系统数值模拟的工作程序、步骤方面达成了一致,强调对水文地质条件合理概化的重要性,并深入探讨尺度转换问题和量化不确定因素问题。 根据Anderson等提出的工作程序,要建立一个正确且有意义的地下水系统数值模型,应进行以下工作:确定模型目标,建立水文地质概念模型,建立数学模型,模型设计及模型求解,模型校正,校正灵敏度分析,模型验证和预报,预报灵敏度分析,模型设计与模型结果的给出,模型后续检查以及模型的再设计。Ewing提出地下水污染流模拟和建模需要强调3个方面的问题:①有效地模拟复杂的流体之间以及流体与岩石之间的相互作用;②必须发展准确的离散技术,保留模型重要的物理特性;③发挥计算机技术体系的潜力,提供有效的数值求解算法。针对Newman等的推测,Wood提出了二维地下水运动有限元计算的时间步长条件。Kim等对抽取地下水造成的noordbergum effect (reverse water level fluctuation)现象进行数值模拟,阐述了其机理性原因。Scheibe等分析了在不同尺度下的地下水流及其运移行为。Ghassemi指出三维模型可以详细说明含水层系统的三维边界条件以及抽水应力情况,而二维模型就不能恰当处理。Porter等指出DFM (data fusion modeling)可以量化各种各样的水文学、地质学和地球物理学的数据及模型的不确定性,可以用于地下水系统数值模拟的数据整合和模型校准。Mazzia等提出特别的数值方法用于求解重盐地下水运移模拟的二维非线性动力学控制方程,效果很好。Li Shu-guang等指出数值模型还不能解决预报的不确定性因素问题,并开创性地提出一种随机地下水模型,可以解决均值分布和小尺度过程的不同尺度问题。Mehl等提出二维局部网格细分法的有限差分地下水模型,提供了新的插值和错误分析的方法。模拟结果的可靠性得到了提高。 2、国外开发了许多功能多样的地下水系统数值模拟软件,以其模块化、可视化、交互性、求解方法多样化等特点得到广泛的使用,尤其MODFLOW,据美国地质调查局统计,MODFLOW几乎占地下水系统数值模拟软件总应用次数的一半,这些年其功能更是不断完善。地理信息系统(GIS)与地下水模型的整合强化了数据的输入、传递、方案调整和空间分析等。遥感(RS)提供了判断地质边界、地貌单元和估算地表蒸发等的工具。地

地下水模拟系统_GMS_软件

地下水模拟系统(G MS )软件 祝晓彬 (南京大学地球科学系,南京 210093) 摘要:国外在应用通用标准软件进行地下水数值模拟时,G MS 软件以其友好的使用界面,强大的前处理、后处理功能及其优良的三维可视效果正受到人们越来越广泛的应用。本文在对G MS 软件各模块进行简单介绍的基础上,对其优缺点进行了分析。并结合实际应用经验,列举了该软件在使用过程中常遇到的一些典型问题,以供使用G MS 软件的工作人员借鉴。 关键词:G MS 软件;地下水;数值模拟 中图分类号:P64112 文献标识码:A 文章编号:100023665(2003)0520053203 收稿日期:2003204209;修订日期:2003205230 作者简介:祝晓彬(19802),男,博士研究生,研究方向为地下水 数值模拟。E 2mail :jcwu @https://www.360docs.net/doc/a615677648.html, 地下水模拟系统(G roundwater M odeling System ),简称G MS ,是美国Brigham Y oung University 的环境模型研究实验室和美国军队排水工程试验工作站在综合M ODF LOW 、FE MW ATER 、MT3DMS 、RT3D 、SE AM3D 、M ODPATH 、SEEP2D 、NUFT 、UTCHE M 等已有地下水模 型的基础上开发的一个综合性的、用于地下水模拟的图形界面软件。其图形界面由下拉菜单、编辑条、常用模块、工具栏、快捷键和帮助条6部分组成,使用起来非常便捷。 由于G MS 软件具有良好的使用界面,强大的前处理、后处理功能及优良的三维可视效果,目前已成为国际上最受欢迎的地下水模拟软件。 1 G MS 各模块简介 功能十分齐全的G MS 除了包含上述M ODF LOW 、FE M W A TER 、MT 3D MS 、RT 3D 、SE A M3D 、M ODP A TH 、SEEP 2D 、NUFT 、UT CHE M 等主要计算模块外,还包含PEST 、UC ODE 、M AP 、B oreh ole Data 、TI Ns 、S olid 等辅助模块。 M ODF LOW 是美国地质调查局于80年代开发出的一套专门用于孔隙介质中地下水流动的三维有限差 分数值模拟软件[1] 。M ODF LOW 自从问世以来,由于其程序结构的模块化、离散方法的简单化和求解方法 的多样化等优点[2] ,已被广泛用来模拟井流、河流、排泄、蒸发和补给对非均质和复杂边界条件的水流系统的影响。 FE MW ATER 是用来模拟饱和流和非饱和流环境 下的水流和溶质运移的三维有限元耦合模型,还可用 于模拟咸水入侵等密度变化的水流和运移问题。 MT3DMS 是模拟地下水系统中对流、弥散和化学反应的三维溶质运移模型。模拟计算时,MT3DMS 需和M ODF LOW 一起使用。 RT3D 是处理多组分反应的三维运移模型,适合于模拟自然衰减和生物恢复。 SE AM3D 是用于模拟复杂生物降解问题(包括多酶,多电子接收器)的模型。它包含有NAP L 溶解包和多种生物降解包,NAP L 溶解包用于准确地模拟作为污染源的飘羽状NAP L ,生物降解包用于模拟包含碳氢化合物酶的复杂降解反应。 M ODPATH 是确定给定时间内稳定或非稳定流中质点运移路径的三维示踪模型。它和M ODF LOW 一起使用,根据M ODF LOW 计算出来的流场,M ODPATH 可以追踪一系列虚拟的粒子来模拟从用户指定地点溢出污染物的运动。这种追溯跟踪方法可以用来描述给定时间内井的截获区。 SEEP2D 是用来计算坝堤剖面渗漏的二维有限元稳定流模型。它可以用于模拟承压和无压流问题,也可以模拟饱和和非饱和带的水流;对无压流问题,模型可以只局限于饱和带。根据SEEP2D 的结果可以作出完整的流网。 NUFT 是三维多相不等温水流和运移模型,它非常适合用来解决包气带中的一些问题。 UTCHE M 是模拟多相流和运移的模型,它对抽水和恢复的模拟很理想,是一个已经被广泛运用的成熟模型。 PEST 和UC ODE 是用于自动调参的两个模块。在自动进行参数估计时,交替运用PEST 或UC ODE 来调 ? 35? 2003年第5期水文地质工程地质

浅谈地下水数值模拟

浅谈地下水数值模拟 在地下水资源评价中,需要通过求解相应的数学模型得到地下水位的变化过程与水文地质参数等。数学模型是用来描述一个系统的结构、空间形式、边界条件和系统内部运动状态等的一组数学关系式。许多描述实际问题的数学模型往往归结为求解一些很复杂的非线性偏微分方程,通常用经典的解析法处理是很困难的。一般的处理办法是把偏微分方程转化为线性代数方程组,然后求解,这属于离散近似的计算方法,所要寻求的不是域内的连续函数而是域内各结点上函数的近似值。 自从地下水非稳定运动理论问世以来,对求解地下水运动的解析方法有了很大的发展。解析方法是用数学上的积分方法或积分变换等方法直接求得数学模型的解,解是某计算点的精确解。计算公式的物理概念清楚,且将表征地下水运动规律的各因素都包含在一个表达式之内,有利于分析各有关因素之间相互联系与相互制约的内在规律及对地下水运动的影响,其计算步骤比较简便,计算工作量相对较少,因此在生产实践中得到广范应用。 地下水非稳定运动理论是以质量守恒性(连续性原理)与能量转换性(达西定律)为基础,对任何复杂的地下水流系统都可以建立其相应的数学模型,即支配地下水运动的偏微分方程及决定其解的初始条件与边界条件。

但数学模型的求解常取决于地下水流系统中水文地质条件能够概化的程度。一般来说,只有当渗流区域的几何形状比较简单,其含水层是均质、各向同性的情况下才能获得其解析解。但在实际应用中,所遇到的水文地质条件往往是比较复杂的,如渗流区域形状不规则;含水层是非均质的,含水层的厚度随时间、空间而变化,隔水底板起伏不平;地下水的补给源中包含有线性补给或局部的面状(小区域)补给;排泄条件的复杂性与变化;含水层不同地段的各向异性;由于抽水而使含水层中部分区域由承压水变成无压水等等。对于这样的区域,采用解析法从理论上求解地下水流运动规律就十分困难,以至无法求解,或者即使得到解析表达式,也仍难于用常规的数学方法求解。如果不顾具体水文地质条件,而一味套用地下水流运动的解析公式必定会因实际问题的过度简化而使所得的计算结果与实际不符,从而失去了实用价值。由于地下水流系统的复杂性,极大地制约了解析解的应用。对于复杂条件下的地下水运动问题,当前最有效的方法是采用数值计算方法。 20世纪60年代以来,随着计算机技术的迅速发展,数值方法作为一种求解近似解的方法被广泛用于地下水水位预报和资源评价中。数值方法是采用离散化的方法来求解数学模型,从而得到研究区域内有限个离散点上的未知函数值。离散化的方法是将研究区域划分成为若干个较小的子区域或称为单元,即化整为零,这些单元的集合体代表的研究区域,即又积零为整。虽然所得解为数值解(即是数值的集合,是数学模型的近似解),但是只要将单元大小和时段长短划分得当,即对空间步长和时间步长取值合适,计算所得的数值解便可较好的逼近实际情况而满足

地下水系统数值模拟的研究现状和发展趋势

地下水系统数值模拟的研究现状和发展趋势

地下水系统数值模拟的研究现状和发展趋势 郝治福,康绍忠 (中国农业大学中国农业水问题研究中心) 目前地下水系统数值模拟方法主要有有限差分法(FDM)、有限单元法(FEM)、边界元法(BEM)和有限分析法(FAM)等。20世纪60年代中期以来,随着快速大容量电子计算机的出现和广泛应用,数值计算方法在地下水资源分析评价中得到逐步推广,具有明显的通用性和广泛的适用性。尤其近十几年,地下水系统数值模拟取得了长足进步。 一、国外地下水系统数值模拟研究现状 目前,国外该领域的研究主要针对数值模拟法的薄弱环节,提出新的思维方法,采用新的数学工具,分析不同尺度下的变化情况,合理地描述地下水系统中大量的不确定性和模糊因素。 1、该领域科学家在地下水系统数值模拟的工作程序、步骤方面达成了一致,强调对水文地质条件合理概化的重要性,并深入探讨尺度转换问题和量化不确定因素问题。 根据Anderson等提出的工作程序,要建立一个正确且有意义的地下水系统数值模型,应进行以下工作:确定模型目标,建立水文地质概念模型,建立数学模型,模型设计及模型求解,模型校正,校正灵敏度分析,模型验证和预报,预报灵敏度分析,模型设计与模型结果的给出,模型后续检查以及模型的再设计。Ewing提出地下水污染流模拟和建模需要强调3个方面的问题:①有效地模拟复杂的流体之间以及流体与岩石之间的相互作用;②必须发展准确的离散技术,保留模型重要的物理特性;

③发挥计算机技术体系的潜力,提供有效的数值求解算法。针对Newman等的推测,Wood 提出了二维地下水运动有限元计算的时间步长条件。Kim等对抽取地下水造成的noordbergum effect (reverse water level fluctuation)现象进行数值模拟,阐述了其机理性原因。Scheibe等分析了在不同尺度下的地下水流及其运移行为。Ghassemi指出三维模型可以详细说明含水层系统的三维边界条件以及抽水应力情况,而二维模型就不能恰当处理。Porter等指出DFM (data fusion modeling)可以量化各种各样的水文学、地质学和地球物理学的数据及模型的不确定性,可以用于地下水系统数值模拟的数据整合和模型校准。Mazzia等提出特别的数值方法用于求解重盐地下水运移模拟的二维非线性动力学控制方程,效果很好。Li Shu-guang等指出数值模型还不能解决预报的不确定性因素问题,并开创性地提出一种随机地下水模型,可以解决均值分布和小尺度过程的不同尺度问题。Mehl等提出二维局部网格细分法的有限差分地下水模型,提供了新的插值和错误分析的方法。模拟结果的可靠性得到了提高。 2、国外开发了许多功能多样的地下水系统数值模拟软件,以其模块化、可视化、交互性、求解方法多样化等特点得到广泛的使用,尤其MODFLOW,据美国地质调查局统计,MODFLOW几乎占地下水系统数值模拟软件总应用次数的一半,这些年其功能更是不断完善。地理信息系统(GIS)与地下水模型的整合强化了数据的输入、传递、方案调整和空间分析等。遥感(RS)提供了判断地质边界、地貌单元和估算地表蒸发等的工具。地下水系统数值模拟模型与相关领域模型的耦合更扩展了其发展

相关文档
最新文档