六自由度机器人腕部设计

六自由度机器人腕部设计
六自由度机器人腕部设计

机器人技术是综合了许多学科的知识,例如计算机、控制论、机构学、信息和传感技术、人工智能、仿生学等多学科而形成的高新技术,是当今研究领域十分重视的课题,机器人在很多领域都得到广泛应用。机器人的应用情况,是一个国家工业自动化水平的重要标志,因而受到各先进工业国家的重视,投入大量人力物力加以研究和应用。

本文的主要任务和要解决的问题,是设计一台六自由度的机器人,在已有的技术资料的基础上,通过分析,确定腕部的传动系统,然后假设腕部末端的结构,确定腕部的输出功率,然后计算出腕部所需的电机。在确定电机和传动机构的基础上,对锥齿轮和传动中所需的带轮以及同步齿形带进行设计,并且对它们进行校核,确定所设计的腕部结构能够配合机器人的其他结构进行喷漆动作。并用CAD软件完成从建模到运动学分析、应力分析的全过程。需要全面理解机械原理、机械设计、机械系统设计以及CAD制图标准等相关的知识,并考虑其可靠性、实用性、经济性等性能。

本课设在已有理论基础上,针对以往研究的不足,根据实际使用要求,确定采用六自由度的关节型机器人结构方案;由于机器人结构复杂,构件繁多,需要用高端软件配合进行建模,装配的工作,而我们现有的材料相当有限,所以本课设只是设计了机器人的腕部结构;并采用CAD绘制了其装备和零件图,并对其中某些零件的强度进行了校核,使腕部的整体结构能够满足工作的要求。

关键词:机器人腕部

1绪论 (1)

1.1机器人的组成 (2)

1.1.1驱动装置 (2)

1.1.2控制系统 (2)

1.1.3执行机构 (2)

1.2机器人分类 (4)

1.2.1按用途分类 (4)

1.2.2按控制形式分类 (4)

1.2.3按驱动方式分类 (4)

1.3腕部结构选形 (5)

1.3.1单自由度手腕 (6)

1.3.2两自由度手腕 (7)

1.3.3三自由度手腕 (8)

1.3.4装配机器人腕部结构选型 (9)

1.4机器人设计 (11)

2末端执行器 (12)

2.1夹持器 (12)

2. 2拟手指型执行器 (13)

2. 3吸式执行器 (13)

3腕部设计 (15)

3.1手腕结构的选择 (15)

3.2传动装置的运动和动力参数计算 (17)

3.2.1选择电机 (17)

3.2.2分配系统传动比和动力参数的设计 (19)

4锥齿轮设计 (23)

4.1确定锥齿轮的主要技术参数 (23)

4.2轮齿的受力分析和强度计算 (24)

5.选择带轮和齿形带.............. .. (26)

5.1带轮的选择 (26)

5.2齿形带的设计 (28)

总结 (31)

参考文献 (32)

1绪论

机器人是近代自动控制领域中出现的一项新技术,并已成为现代机械制造中的一个重要组成部分。机器人显著地提高了劳动生产率,加快实现工业生产机械化和自动化的步伐。尤其在高温、高压、粉尘、噪音以及带有放射性和污染的场合,应用得更为广泛。因而受到各先进工业国家的重视,投入大量人力物力加以研究和应用。

机器人一般分为三类。第一类是不需要人工操作的通用机器人。它是一种独立的不附属于某一主机的装置。它可以根据任务的需要编制程序,以完成各项规定操作。它的特点是除了具备普通机械的物理性能之外,还具备通用机械、记忆智能的三元机械。它可以灵活运用在工业上的各个方面,如喷漆、焊接、搬运等。第二类是需要人工操作的,称为机械机。它起源于原子、军事工业,先是通过操作机来完成特定的作业,后来发展到用无线电讯号操作机器人来进行探测月球等。工业中采用的锻造操作机也属于这一范畴。第三类是专用机器人,主要附属于自动机床或自动线上,用以解决机床上下料和工件传送。这种机器人在国外称为“Mechanical Hand ",它是为主机服务的,由主机驱动;除少数外,工作程序一般是固定的,采用机械编程。因此是专用的。

本课题通过对通用机器人smart6.50R 的结构进行分析和研究,完成对其腕部的设计,并借助CAD/CAE软件完成从建模到运动学分析、应力分析的全过程。最终期望腕部与小臂、手部、大臂能够协调工作,能够完成各种现代工业加工过程中所要求的动作。

本课题的设计思路是:借助已有的通用机器人的腕部设计思想和方法,综合考虑腕部机构在机器人运动中所起的作用和机器人的整体技术参数以及结构特点,然后选择合理的机构,确定传动线路,然后对机构进行分析,计算主要参数,并对部分零件进行设计、组装,综合评价腕部系统。

1.1机器人组成

机器人主要由驱动装置、控制系统和执行机构三大部分组成。

1.1.1驱动装置

工业机器人的驱动装置包括驱动器和传动机构两部分,它们通常与执行机构连成一体。传动机构常用的有谐波减速器、滚珠丝杠、链、带以及各种齿轮轮系。驱动器通常有电机(直流伺服电机,步进电机,交流伺服电机),液动和气动装置,目前使用最多的是交流伺服电机。

1.1.2控制系统

控制系统一般由控制计算机和驱动装置伺服控制器组成。后者控制各关节的驱动器,使各杆按一定的速度,加速度和位置要求进行运动。前者则是要根据作业要求完成偏差,并发出指令控制各伺服驱动装置使各杆件协调工作,同时还要完成环境状况,周边设备(如电焊机,工卡具等)之间的信息传递和协调工作。

1.1.3执行机构

执行机构由腰部、基座、手部、腕部和臂部等运动部件组成。

1) 腰部腰部是连接臂和基座的部件,通常是回转部件,腰部的回转运动再加上臂部的平面运动,就能使腕部作空间运动。腰部是执行机构的关键部件,它的制造误差,运动精度和平稳性,对机器人的定位精度有决定性影响。

2) 基座基座是整个机器人的支持部分,有固定式和移动式两种。该部件

必须具有足够的刚度和稳定性。

3)手部手部它具有人手某种单一动作的功能。由于抓取物件的形状不同,手部有夹持式和吸附式等形式。

夹持式手部是由手指和传力机构所组成。

手指是直接与物件接触的机构。常用的手指运动形式有回转型和平移型。

吸附式手部有负压吸盘和电磁吸盘两类。

对于轻小片状零件、光滑薄板材料等,通常用负压吸盘吸料。造成负压的方式有气流负压式和真空泵式。对于导磁性的环类和带孔的盘类零件,以及有网孔状的板料等,通常用电磁吸盘吸料。电磁吸盘的吸力由直流电磁铁和交流电磁铁产生。

4)腕部腕部与手部相连,通常有3个自由度,多为轮系结构,主要功用是带动手部完成预订的姿态,是操作机中结构最为复杂的部分。

5)臂部臂部用以连接腰部和腕部,通常由两个臂杆(小臂和大臂)组成,用以带动腕部作平面运动。

1.2机器人分类

1.2.1按用途分类

1.专用机器人

专用机器人是专为一定设备服务的,简单、实用,目前在生产中运用比较广泛。它一般只能完成一、二种特定的作业,如用来抓取和传送工件。它的工作程序是固定的,也可根据需要编制程序控制,以获得多种工作程序,适应多种作业的需要。

2.通用机器人

通用机器人是在专用机器人的基础上发展起来的。它能对不同的物件完成多种动作,具有相当的通用性。它是一种能独立工作的自动化装置。它的动作程序可以按照工作需要来改变,大都是采用计算机控制系统。

1.2.2按控制形式分类

1.点位控制型机器人

点位控制型机器人的运动轨迹是空间二个点之间的联接。控制点数愈多,性能愈好。它基本能满足于各种要求,结构简单。绝大部分机器人是点位控制型。

2.连续轨迹控制型机器人

这种机器人的运动轨迹是空间的任意连续曲线,它能在三维空间中作极其复杂的动作,工作性能完善,但控制部分比较复杂.

1.2.3按驱动方式分类

1.液压机器人:输出力大,传动平稳。

2.气压机器人:气源方便,输出力小,气压传动速度快,结构简单,成本低。但工作不太平稳,冲击大。

3.电动式机器人:电力驱动是目前机器人使用的最多的一种驱动方式,其特点是电源方便,响应快,驱动力较大,信号检测,传递,处理方便,可以采用多种灵活的控制方案。

4.机械式机器人:工作可靠,动作频率高,结构简单,成本低。但动作固定不可变。

1.3腕部结构选型

手腕是操作机的小臂(上臂)和末端执行器(手爪)之间的连接部件。其功用是利用自身的活动度确定被末端执行器夹持物体的空间姿态,也可以说是确定末端行器的姿态。故手腕也称作机器人的姿态机构。对一般商用机器人,末杆(即与末端执行器相联结的杆)都有独立的自转功能,若该杆再能在空间取任意方位,那么与之相联的末端执行器就可在空间去任意姿态,即达到完全灵活的境地。对于任一杆件的姿态(即方向),可用两个方位确定。如图1.1所示

图1.1 末杆姿态示意图

1.大臂 2.小臂 3.末杆(L)

在图1.1中,末杆L的图示姿态可以看作是由处于x1方向的原始位置先绕z1在x1 o1 y1平面内转α、β角,然后在a o1与z1组成的垂直平面内再向上转β角得到的。可见是由α、β两角决定了末杆(L)的方向(姿态)。从理论上讲,如果0°≤α≤360°,0°≤β≤360°,则L在空间可取任意方向。如果L 的自转角γ也满足0°≤γ≤360°,我们就说该操作机具有最大的灵活度,即可自任意方向抓取物体并可把抓取的物体在空间摆成任意姿态。为了定量的说明操作机抓取和摆放物体的灵活度,我们定义组合灵活度(dex)为:

dex=α/360°+β/360°+γ/360°=xx%+xx%+xx%

上式取“加”的形式,但一般不进行加法运算,因为分开更能表现结构的特点。

腕结构最重要的评价指标就是dex值。若为3个百分之百,该手腕就是最灵活的手腕。一般说来,α、β的最大值取360°,而γ值可取的更大一些,如果拧螺钉,最好γ无上限。

腕结构是操作机中最复杂的结构,而且因转动系统互相干扰,更增加了腕结构的设计难度。腕部的设计要求是:重量轻,dex的组合值必须满足工作要求并留有一定的裕量(约5%—10%,转动系统结构简单并有利于小臂对整机的静力平衡。

1.3.1单自由度手腕

SCARA水平关节装配机器人多采用单自由度手腕,该类机器人操作机的手腕只有绕垂直轴的一个旋转自由度。为了减轻操作机的悬臂的重量,手腕的驱动电机固结在机架上。手腕转动的目的在于调整装配件的方位。由于转动为两级等径轮齿形带,所以大、小臂的转动不影响末端执行器的水平方位,而该方位的调整完全取决于腕传动的驱动电机。这时确定末端执行器方位的角度(以机座坐标系为基准)将是大小臂转角以及腕转角之和。

1.3.2两自由度手腕

两自由度手腕有两种结构:

1)汇交式两自由度手腕两自由度手腕的末杆与小臂中线重合,两个链轮对称分配在两边。β≤200° ,γ≥360°, dex= 0+80%+100%,如图1.3,2)偏置式两自由度手腕手腕的末杆偏置在在小臂中线的一边。

β≥360°,γ≥360,dex=0+100%+100%优点是腕部结构紧凑,小臂横向尺寸较小(薄)。

两自由度的另两种结构。一种是将谐波减速器这置于碗部,驱动器通过齿形带带动谐波,或经锥齿轮再带动谐波使末杆L获得α. γ两自由度运动。另一种则是将驱动电机1和谐波减速器连成一体,放于偏置的壳中直接带动L完成角转动,β角则是由链传动完成。

如图1.3汇交式两自由度

1-法兰 2-锥齿轮组 3-锥齿轮 4-弹簧

5、8-链轮 6-轴承 7-壳体

1.3.3三自由度手腕

三自由度的手腕形式繁多。三自由度手腕是在两自由度的基础上加一个整个手腕相对于小臂的转动自由度(用角度参数α表示)而形成的。当不考虑结构限制,即α、β、γ都能在0°~360°范围取值,末端执行器的灵活度

dex=100%+100%+100%,也就是说具有百分之百的灵活度。这就是说手爪可自任意

方向接进物体,也可将物体转到任意姿势。所以三自由度是“万向”型手腕,可

以完成两自由度手腕很多无法完成的作业。近年来,大多数关节型机器人都采用了三自由度手腕。主要有两类:

1)汇交手腕(或称正交手腕)它是α、β、γ的旋转轴线汇交于一点。

2)偏置式手腕它是α、β、γ的旋转轴线互相垂直,但不汇交于一点。

这两类手腕都是把β、γ运动的减速器安装在手腕上,可简化小臂结构,但却增加了手腕本身的重量和复杂程度。

1.3.4 通用机器人腕部结构选型

如图1.4所示,是汇交式手腕(或正交手腕),即α、β、γ的旋转轴线汇交于一点。可以看出,电机(1)经锥齿轮副((3, 4)和齿型带传动(9, 10, 13), 再经锥齿轮副(5, 6)和谐波减速器(16)带动法兰(17、机械接口)转动,完成末杆(法兰)γ的运动。电机2经锥齿轮副(7, 8)和齿型带传动(11, 12, 14), 通过谐波减速器带动腕壳摆动,完成末杆p的运动。整个手腕又由置于小臂后部的电机(上图未画),经过谐波传动,带动小臂作绕自身轴线的转动,即α运

动。

图1.4 正交式手腕

减速器的配置可以分为前置式和后置式。后置式有利于小臂的平衡。前置式加大了腕部的复杂程度和重量,对小臂乃至整机的平衡不利,但可简化整个小臂的结构,而且当腕部使用同步齿形带时,只能采用这种布置,因为齿形带只能用于高速级。这种布置还可简化后面三个驱动系统的结构。对于平行轴转动,减速器前置可以匹配小臂与手腕的几何尺寸。如图1.4所示,我选用:减速器的配置为前置式是把α、γ两自由度的减速器装在手腕内。

电机配置也可以分为前置式和后置式。前置式有一个电机配置在手腕中,其最大优点是大大简化了小臂的结构和传动过程的轴线干扰,但加重了腕部。这种结构较适合于小负荷操作机。必须指出,这种结构的手腕也属于非汇(正)交式,由它构成的六自由度操作机无解析解。电机后置式的驱动电机都布置在腕的后面。对于中小负载的操作机,电机可布置在臂的空腔中,而对于大负载操作机,由于电机重而且大,电机多布置在臂的后端,以减少臂的尺寸和前部重量,并与减速器一起对小臂起平衡作用。如图1.4所示。

1.4机器人设计

机器人由操作机(机械本体)、控制器、伺服驱动系统和检测传感装置构成,是一种仿人操作、自动控制、可重复编程、能在三维空间完成各种作业的机电一体化自动化生产设备。特别适合于多品种、变批量的柔性生产。它对稳定、提高产品质量,提高生产效率,改善劳动条件和产品的快速更新换代起着十分重要的作用。机器人并不是在简单意义上代替人工的劳动,而是综合了人的特长和机器特长的一种拟人的电子机械装置,既有人对环境状态的快速反应和分析判断能力,又有机器可长时间持续工作、精确度高、抗恶劣环境的能力,从某种意义上说它也是机器的进化过程产物,它是工业以及非产业界的重要生产和服务性设备,也是先进制造技术领域不可缺少的自动化设备。:

在传统的设计与制造过程中,通常要制造样机进行实验,有时这些实验甚至是破坏性的。当通过实验发现缺陷时,就要回头修改设计并再用样机验证。这一过程是冗长的,尤其对于结构复杂的系统,设计周期更加漫长,更不用谈对市场的灵活反应了。于是运动分析—虚拟样机技术便应运而生了。它可以使产品设计人员在虚拟环境中真实地模拟机器人的运动及受力情况,快速分析多种设计方案,进行对物理样机而言难以进行或根本无法进行的实验,直到获得最优化的设计方案。这种方法不但可以缩短开发周期,而且设计质量和效率也得到了很大的提高。

2末端执行器

末端执行器是装在机器人操作机的机械接口上,用于使机器人完成作业任务而专门设计的装置。末端执行器种类繁多,与机器人的用途密切相关,最常见的有用于抓拿物件的夹持器;用于加工工件的铣刀,砂轮和激光切割器:用于焊接,喷涂用的焊枪,喷具;由于质量检测的测量头,传感器。一般说来,一种新的作业需要一种新的末端执行器,而一种新的末端执行器的出现又往往为机器人开辟一种新的应用领域。目前,末端执行器的分析和设计已形成了一个专门领域。这里只简要介绍几种常用的抓拿物件的末端执行器。

2.1夹持器

夹持器通常有两个夹爪。根据不同的运动形式,夹爪又可分为回转式和平移式两种类型。

1)斜楔杠杆式夹持器。当施以力P时,楔角为α的斜楔前进,使夹爪闭合,夹紧物件,且当α小于自锁角时,即使β消失,被夹物件也不会滑脱。当施以相反方向的力时,斜楔后退,夹爪在弹簧的作用下打开。由于夹爪做回转运动,而回转轴又是固定的,故当夹持不同直径的物件时,物件的中心线将沿对称轴线移动,形成定位误差。故使用这种夹持器时,机器人的应用程序必须有补偿功能。

2)有定位补偿的杠杆式夹持器。这种夹持器的夹爪回转销轴可借助左右螺旋副平移其相对位置,所以通过调整螺旋可对不同直径的物体保持中心位置不变。

3)平行移动式夹爪。当施以压力P时,齿轮在下条上滚动,并以两倍的移动速度带动上齿条移动,两个齿条分别与两个夹爪联接。带动夹爪平行地移动,起到夹持物件的作用。

2.2拟手指型执行器

人手是最灵巧的夹持器,如果模拟人手结构,就能制造出结构最优的夹持器。但由于人手自由度较多,驱动和控制都十分复杂,所以到目前为止,只制造出了一些原理样机,离工业应用还有一定差距。下面介绍几种教有特色的拟手指型手抓。

1) UTACH/MIT手抓。它有4个手指,可实现对握,每个手指有3个曲伸关节和一个摆动关节,共16个自由度。各关节采用绳轮驱动,驱动器后置。由于

拇指对置,所以4个手指不能实现并掌操作,即4个手指不能放在一侧实现全握式的抓拿物体。

2) 3指手爪。第一指相当于拇指,只有一个曲伸关节,一个摆动关节和一个开合关节,其他两指都有两个曲伸关节,故共有11个自由度,也是驱动器后置。

3)双拇指手爪。每个手指都有3个曲伸关节。其中,外面两指有摆动和转动自由度,通过转动,可以和中间指对置,也可与中指处于同侧(并掌);中指无转动自由度,故该手共有14个自由度。该手可以抓取或握取物件,由于使用了超小型电机和减速器,实现了驱动器前置配置(即驱动器、减速器与手指配在一起),结构紧凑,可作为一个部件安装于机器人的机械接口上。

2.3吸式执行器

吸式执行器是目前应用较多的一种执行器,特别是用于搬运机器人。该类执行器可分磁吸和气吸两类。

1)磁吸式手爪。它利用电磁场力和袋装可变形式磁粉,可以吸住具有任意表面形状的磁性物件。

2)气吸式手爪。它下端有一个橡胶吸盘,上面有弹簧缓冲压下装置,靠吸盘内腔的真空度吸住物件。形成真空的方法通常有两种。一种靠真空泵,一种靠气流形成负压。前者工作可靠,吸盘结构简单,但成本较高;后者只需压力为0. 4MPa 的普通工业气源,利用伯努利原理(文多利管),在气流高速喷射时即可形成所要求的负压,时吸盘吸住物体,因不需专用真空泵,故成本较低,目前应用较广泛。

本课题所选择的末端执行机构为可以回转的夹持器。通过法兰盘与夹持器固联,利用腕部和小臂的旋转,以及外部的摆动带动末端夹持器在空间做任意的运功。

3腕部设计

3.1手腕结构的选择

Smart 6.50腕部的主要技术参数为:

自由度 3

最大持重10Kg

Ⅰ轴±180°144(°)/s 200N?m

Ⅱ轴±115°136(°)/s 150N?m

Ⅲ轴±180°138(°)/s 100N?m

本课题仿制Smart 6.50R 机器人的腕部进行设计,通用机器人的手腕是三自由度的,图3.1是其传动原理图,关节配置形式为臂转、腕摆、腕转结构。其传动链分成二部分,一部分在机器人小臂壳内,三个电机的输出通过齿形带传动分别传递到同轴传动的心轴、中间套、外套筒上。另一部分传动链安排在手腕部。

(1)臂转运动臂部外套筒与手腕壳体通过端面法兰联结,外套筒直接带动整个手腕旋转完成臂转运动。

(2)腕摆运动臂部输出的空心轴通过一组锥齿轮组(14)和一组同步齿形带(12、13)以及谐波减速器(11)带动固定在套筒上的端盖一起摆动。

(3)手转运动如图3.1,臂部心轴通过键联结带动锥齿轮组(3)转动,然后通过同步齿形带(4、6)带动套筒的内部中心轴,中心轴的另一端通过一对锥齿轮组(9)传动,带动固定套筒(10)内部的中心轴端面的法兰盘(8)转动,实现法兰盘的手转运动。

图3.1腕部系统传动简图

3.2传动装置的运动和动力参数计算

3.2.1.选择电机

假设手部的末端的持重是10Kg,腕心距机械输出借口长度为200mm,腕转的旋转半径为100mm.

Ⅰ轴为腕转运动

错误!未找到引用源。= 2.512rad/s

R=100mm

F = 10x10 =100N

T=F2R

P = F2R2W1=100x2.512x100=25.12W

错误!未找到引用源。=错误!未找到引用源。

=错误!未找到引用源。x0.8x0.95x0.99x0.98

=0.665

错误!未找到引用源。错误!未找到引用源。

错误!未找到引用源。错误!未找到引用源。=错误!未找到引用源。

错误!未找到引用源。0.95

所需电机功率

错误!未找到引用源。=P/错误!未找到引用源。

=25.12 /0.665

= 37.77W

Ⅱ轴为腕摆运动

L=200mm F=100N

T=F2L

=20.0N2m

错误!未找到引用源。

=2.372rad/s

P=T2错误!未找到引用源。

=47.44W

错误!未找到引用源。=错误!未找到引用源。

=错误!未找到引用源。

=0.665

所需电机功率为

错误!未找到引用源。=P/错误!未找到引用源。

=47.44/0.665

=671.33W

考虑到系统传动过程中,同步齿形带传动所需的功率,以及要求腕部的结构要求紧凑,所以Ⅰ轴传动所需电机5和Ⅱ轴传动所需电机6如下:

型号功率

(KW)

转速

(r/min)

转矩

(N2m)

额定电流

(A)

额定电压

(V)

TYSZ-75

-63s

0.75 3000 2.4 3.08 220

TYSZ-55

-63s

0.55 2000 2.3 2.2 220

3.2.2分配系统传动比和动力参数的计算

Ⅰ轴为腕转运动

腕转传动系统的传动比

末端法兰盘的转速错误!未找到引用源。=错误!未找到引用源。=22.67r/min 系统总的传动臂为错误!未找到引用源。=错误!未找到引用源。=88.22

取错误!未找到引用源。=88.22

错误!未找到引用源。=1 错误!未找到引用源。=1错误!未找到引用源。=1

电机6的输出功率错误!未找到引用源。=0.50Kw

带轮5转速错误!未找到引用源。=2000r/min

错误!未找到引用源。=错误!未找到引用源。=104.67rad/s

错误!未找到引用源。=错误!未找到引用源。

=0.50x0.95x0.98x0.99

=0.460Kw

错误!未找到引用源。=错误!未找到引用源。=2.20N2m

带轮6转速错误!未找到引用源。=错误!未找到引用源。=2000r/min

错误!未找到引用源。=错误!未找到引用源。=104.67rad/s

错误!未找到引用源。=错误!未找到引用源。

=0.460x0.95

=0.437 Kw

错误!未找到引用源。=错误!未找到引用源。=2.09N2m

腕转轴Ⅰ轴

错误!未找到引用源。=错误!未找到引用源。

=0.437x0.80x0.95

=0.332Kw

错误!未找到引用源。=22.67r/min

错误!未找到引用源。=1.186rad/s

错误!未找到引用源。=错误!未找到引用源。

=139.85N2m

腕摆传动系统的传动比

末端套筒的转速错误!未找到引用源。=错误!未找到引用源。=24r/min 系统总的传动比为错误!未找到引用源。=错误!未找到引用源。=125 取错误!未找到引用源。=50 错误!未找到引用源。=2.5 错误!未找到引用源。=1错误!未找到引用源。=1

电机5的输出功率错误!未找到引用源。=0.75Kw

带轮3转速错误!未找到引用源。=错误!未找到引用源。=1200r/min 错误!未找到引用源。=错误!未找到引用源。=62.8rad/s

错误!未找到引用源。=错误!未找到引用源。

=0.75x0.95x0.98x0.99x0.95

六自由度工业机器人设计

六自由度工业机器人 对于工业机器人的设计与大多数机械设计过程相同;首先要知道为什么要设计机器人机器人能实现哪些功能活动空间(有效工作范围)有多大了解基本的要求后,接下来的工作就好作了。 首先是根据基本要求确定机器人的种类,是行走的提升(举升)机械臂、还是三轴的坐标机器人、还是六轴的机器人等。选定了机器人的种类也就确定了控制方式,也就有了在有限的空间内进行设计的指导方向。 接下来的要做的就是设计任务的确定。这是一个相对复杂的过程,在实现这一复杂过程的第一步是将设计要求明确的规定下来;第二步是按照设计要求制作机械传动简图,分析简图,制定动作流程表(图),初步确定传动功率、控制流程和方式;第三步是明确设计内容,设计步骤、攻克点、设计计算书、草图绘制,材料、加工工艺、控制程序、电路图绘制;第四步是综合审核各方面的内容,确认生产。 下面我将以六轴工业机器人作为设计对象来阐明这一设计过程: 在介绍机器人设计之前我先说一下机器人的应用领域。机器人的应用领域可以说是非常广泛的,在自动化生产线上的就有很多例子,如垛码机器人、包装机器人、转线机器人;在焊接方面也有很例子,如汽车生产线上的焊接机器人等等;现在机器人的发展是非常的迅速,机器人的应用也在民用企业的各个行业得以延伸。机器人的设计人才需求也越来越大。 六轴机器人的应用范筹不同,设计形式也各不相同。现在世界上生产机器人的公司也很多,结构各有特色。在中国应用最多的如:ABB、Panasonic、FANUK、莫托曼等国外进口的机器人。 既然机器人的应用那么广泛,在我国却没有知名的生产公司。对于作为中国机械工程技术人员来说是一个值得思考的问题!有关机器人技术方面探讨太少了从业人员还不能成群体虽然在很多地方可以看到机器的论术,可是却没有真正形成普及的东西。 即然是要说设计,那我就从头一点一点的说起。力求讲的通俗简明一些,讲得不对的地方还请各位指正! 六轴机器人是多关节、多自由度的机器人,动作多,变化灵活;是一种柔性技术较高的工业机器人,应用面也最广泛。那么怎样去从头开始的设计它呢工作范围又怎样去确定动作怎样去编排呢位姿怎样去控制呢各部位的关节又是有怎么样的要求呢等等。。。。。。让我们带着众多的疑问慢慢的往下走吧! 首先我们设定:机器人是六轴多自由度的机器人,手爪夹持二氧气体保护焊标准焊枪;完成点焊、连续焊等不同要求的焊接部件,工艺要求、工艺路线变化快的自动生线上。最大伸长量:1700mm;转动270度;底座与地平线水平固定;全电机驱动。 好了,有了这样的基本要求我们就可以做初步的方案的思考了。 首先是全电机驱动的,那么我们在考虑方案的时候就不要去考虑液压和气压的各种结构了,也就是传动机构只能用齿轮齿条、连杆机构等机械机构了。 机器人是用于焊接方面的,那么我们就去考察有人工行为下的各种焊接手法和方法。这里就有一个很复杂的东西在里面,那就是焊接工艺;即然焊艺定不下来,我们就给它区分一下,在常用焊接里有单点点焊、连续断点点焊、连续平缝焊接、填角焊接、立缝焊接、仰焊、环缝焊等等。。。。。。 搞清了各种焊方法,也就明白了要实现这些复杂的动作就要有一套可行的控制方式才行;在机械没有完全设计出来之前可以不做太多的控制方案思考,有一个大概的轮廓概念就行了,待机械结构做完,各方面的驱动功率确定下来之后再做详细的程序。 焊枪是用常用的标准的焊枪,也就是说焊枪是随时可以更换下来的,也就要求我们要做到对焊枪的夹持部分进行快速锁定与松开。

六自由度运动模拟器

基于模型的阻抗控制六自由度电液斯图尔平台 摘要—本文详细描述了一个以模型为基础的阻抗控制六自由度电液斯图尔平台,刚体和电液伺服阀模型,包括所用伺服阀模型和一套完整的系统方程,也包括摩擦和泄漏液压原件。所设计的控制器是采用系统动力学和液压模型产生伺服阀电流。控制规则包括反馈和前馈两个单独的部分。根据指定的特性阻抗过滤器会修改所需的轨迹,修改后的轨迹被送入系统模型,以减少非线性液压动力的影响。提出了模拟的典型期望轨迹,并得到了拥有良好性能的控制器。 1.导言 最早的6自由度(DOF)斯图尔特高夫平台是在1954年发明的。在1965年,样机的平行机构被用做一个具有六自由度运动平台的飞行模拟器。此后,许多关于这种机构以及相关研究被发表,该机构可以是电动也可以是液动。许多研究人员已经研究了斯图尔特平台的动力学和运动学。然而驱动力却没有被考虑完全。虽然电动斯图尔平台已被广泛运用,但是很少有研究是关于包括驱动和控制的完整动力学。 阻抗控制被认为是一种积极的兼容的运动控制,主要需要行业应用并于周围环境相互作用,例如数控机床,铣床等。这种控制器同时具有安全性和灵活性,相对而言是首选。 液压科学与控制相结合,得到了新的液压系统的应用。这也是为什么液压系统会被作为一些工业和移动式应用机电驱动的首选。包括它们大批量快速生产的能力,它们的耐久性和刚度,还有他们的响应速度,液压体系不同于机电体系,在液压体系中力或例句输出与执行器的电流是不成真比的,因此,液压执行器不能作为力矩的来源模仿,但是可以作为受控阻抗,所以,要设计出了控制机器人的控制器。驱动力/力矩的虚拟设置在这里始终不可行。 控制技术被用来补偿电动液压伺服系统的非线性。研究人员已经提出了关于液压伺服系统的非线性自适应控制技术的假设、反推以及方式。一个强力的控制器是在非线性定量反馈理论的基础上设计的,已被工业液力执行机构所实现,同时考虑了系统和环境的不确定性。一个电动机械手控制的统一方式适用于任何提案。运动学约束议案,以及机机械臂及其环境之间的动态交互研究已经通过审查。制定所需的机械臂阻抗技术和对一个给定应用程序选择适当的阻抗的技术的最优化理论已经被提出。这里有两种控制机电驱动高夫斯图尔特并行平台机械阻抗的空间几何方法,第一种基于球形位置函数,第二种则是利用指数映射关联有限位移与扭转位移平衡的平台。 一个基于模型的高性能的压接头液压伺服系统前馈反馈阻抗控制器已经被提出,在这里,一个阻抗根据在自由空间或空间接触的行为来调整过滤器所需的轨迹,类似已提交的工作,其中基于位置阻抗控制器工业液压机械手已开发。此外,阻抗控制器研究已在遥控轮式液压伺服系统和重型工程中实施。 在这篇论文中,提及了一种基于模型的六自由度电液伺服斯图尔特关节对称平台阻抗控制器,用于描述刚体斯图尔特平台和液压驱动系统,对比其它方法,这里有伺服模型和摩擦模型。先进的控制方案在分析方案时,应用了刚体、驱动力学和伺服阀的输入电流矢量。控制规律包括两个信号,反馈信号和前馈信号。根据指定的行为阻抗过滤器会修改所需的轨迹。修改后的轨迹被送入系统模型,以减少非线性液压动力的影响。现金控制器的性能说明使用了典型的轨迹。拟议的方法可以扩展到串行或闭链机器人和模拟器。 2系统建模 在本节中,研究了六自由度电液伺服斯图尔特平台的动态模型,这是一个由支架和六个线性驱动器组成的闭环运动体系,该体系的原理如图1所示:

六自由度摇摆平台

大黄蜂机器人六自由度摇摆台 大黄蜂机器人有限公司的六自由度平台系统由采用Stewart机构的六自由度运动平台、计算机控制系统、驱动系统等组成。六自由度运动平台(如下图)的下平台安装在地面上,上 平台为运动平台,它由六只电动缸支承,运动平台与电动缸采用六个虎克铰连接,电动缸与固定基座采用六个虎克铰连接,六只电动缸采用伺服电机驱动的电动缸。计算机控制系统通过协调控制电动缸的行程,实现运动平台的六个自由度的运动,即笛卡尔坐标系内的三个平移运动和绕三个坐标轴的转动。

各主要部分简述如下: 本设备主要由以下部分组成:运动上平台、下平台(基座)、电动缸及伺服 电机、驱动器系统、综合控制及监测系统。 各自功能如下: 上平台:是有效载荷的安装基面,提供六自由度的摇摆运动。 下平台:是六自由度摇摆台的安装基面,需要承受足够大的冲击力。 电动缸及伺服电机:通过控制电动缸活塞杆的行程,实现运动平台台体的六自由度运动,共6套。 驱动器系统:接收用户控制指令,通过控制伺服电机的输入,对伺服电机的输出转速和转角进行控制,达到控制电动缸活塞杆出速度和行程的目的,共6套。 综合控制监测系统:硬件为用户计算机,软件为研制方配合开发;同时,它 还对平台的运动过程进行监测,预防和处理系统的异常情况。

平台总体运动能力指标如上表,具体表述如下: a.平台定位精度及重复定位精度为0.5mm及0.1mm; b.平台转动精度及重复转动精度为0.1°及0.05°; c.行程回差小于0.2mm; d.平台X方向运动速度可从0mm/s到250mm/s连续变化;YZ方向运动 速度可从0mm/s到250mm/s连续变化; e.单支杆可承受轴向力不小于700N; f.单支杆的运动速度可从0m/s到250mm/s连续变化; g.平台中位位置固有频率:不小于40Hz; h.机械组件需具有开放性,可拆卸组装; i.机械设计安全系数不小于 2.0,驱动裕度不小于 3.0; j.额定载荷下,全行程往复工作寿命不小于1×104次,存储寿命不小于48月;

六轴运动机器人运动学求解分析_第九讲

六轴联动机械臂运动学及动力学求解分析 V0.9版 随着版本的不断更新,旧版本文档中的一些笔误得到了修正,同时文档内容更丰富,仿真程序更完善。 作者朱森光 Email zsgsoft@https://www.360docs.net/doc/a68542312.html, 完成时间 2016-02-28

1引言 笔者研究六轴联动机械臂源于当前的机器人产业热,平时比较关注当前热门产业的发展方向。笔者从事的工作是软件开发,工作内容跟机器人无关,但不妨碍研究机器人运动学及动力学,因为机器人运动学及动力学用到的纯粹是数学和计算机编程知识,学过线性代数和计算机编程技术的人都能研究它。利用业余时间翻阅了机器人运动学相关资料后撰写此文,希望能够起到抛砖引玉的作用引发更多的人发表有关机器人技术的原创性技术文章。本文内容的正确性经过笔者编程仿真验证可以信赖。 2机器建模 既然要研究机器人,那么首先要建立一个机械模型,本文将以典型的六轴联动机器臂为例进行介绍,图2-1为笔者使用3D技术建立的一个简单模型。首先建立一个大地坐标系,一般教科书上都是以大地为XY平面,垂直于大地向上方向为Z轴,本文为了跟教科书上有所区别同时不失一般性,将以水平向右方向为X轴,垂直于大地向上方向为Y轴,背离机器人面向人眼的方向为Z轴,移到电脑屏幕上那就是屏幕水平向右方向为X轴,屏幕竖直向上方向为Y轴,垂直于屏幕向外为Z轴,之所以建立这样不合常规的坐标系是希望能够突破常规的思维定势训练在任意空间建立任意坐标系的能力。 图2-1 图2-1中的机械臂,底部灰色立方体示意机械臂底座,定义为关节1,它能绕图中Y轴旋转;青色长方体示意关节2,它能绕图中的Z1轴旋转;蓝色长方体示意关节3,它能绕图中的Z2轴旋转;绿色长方体示意关节4,它能绕图中的X3轴旋转;深灰色长方体示意关节5,它能绕图中的Z4轴旋转;末端浅灰色机构示意关节6即最终要控制的机械手,机器人代替人的工作就是通过这只手完成的,它能绕图中的X5轴旋转。这儿采用关节这个词可能有点不够精确,先这么意会着理解吧。 3运动学分析 3.1齐次变换矩阵 齐次变换矩阵是机器人技术里最重要的数学分析工具之一,关于齐次变换矩阵的原理很多教科书中已经描述在此不再详述,这里仅针对图2-1的机械臂写出齐次变换矩阵的生成过程。首先定义一些变量符号,关节1绕图中Y轴旋转的角度定义为θ0,当θ0=0时,O1点在OXYZ坐标系内的坐标是(x0,y0,0);关节2绕图中的Z1轴旋转的角度定义为θ1,图中的θ1当前位置值为+90度;定义O1O2两点距离为x1,关节3绕图中的Z2轴旋转的角度定义为θ2,图中的θ2当前位置值为-90度;O2O3两点距离为x2,关节4绕图中的X3轴旋转的角度定义为θ3, 图中的θ3当前位置值为0度;O3O4两点距离为x3,关节5绕图中的Z4轴旋转的角度定义为θ4, 图中的θ4当前位置值为-60度;O4O5两点距离为x4,关节6绕图中的X5轴旋转的角度定义为θ5, 图中的θ5当前位置值为0度。以上定义中角度正负值定义符合右手法则,所有角度定义值均为本关节坐标系相对前一关节坐标系的相对旋转角度值(一些资料上将O4O5两点重合在一起即O4O5两点的距离x4退化为零,本文定义x4大于零使得讨论时更加不失一般性)。符号定义好了,接下来描述齐次变换矩阵。 定义R0为关节1绕Y轴的旋转矩阵 =cosθ0 s0 = sinθ0 //c0 R0 =[c0 0 s0 0 0 1 0 0 0 c0 0 -s0 0 0 0 1] 定义T0为坐标系O1X1Y1Z1相对坐标系OXYZ的平移矩阵 T0=[1 0 0 x0 0 1 0 y0 00 1 0 0 0 0 1] 定义R1为关节2绕Z1轴的旋转矩阵 R1=[c1 –s1 0 0 s1 c1 0 0

六自由度机械手重载搬运机器人本体结构设计(全套CAD图纸)

全套设计通过答辩优秀CAD图纸QQ 36396305 XX学院 毕业设计说明书(论文) 作者: 学号: 学院(系): 专业: 题目: 重载搬运机器人本体结构设计【六自由 度机械手】 2015 年5月

全套设计通过答辩优秀CAD图纸QQ 36396305 毕业设计说明书(论文)中文摘要 机械手是一种典型的机电一体化产品,搬运机械手是机械手研究领域的热点。研究搬运机械手需要结合机械、电子、信息论、人工智能、生物学以及计算机等诸多学科知识,同时其自身的发展也促进了这些学科的发展。 本文对一种使用在搬运机械手的结构进行设计,并完成总装配图和零件图的绘制。要求对机械手模型进行力学分析,估算各关节所需转矩和功率,完成电机和减速器的选型。其次从电机和减速器的连接和固定出发,设计关节结构,并对机构中的重要连接件进行强度校核。 关键词:结构设计,机器臂,关节型机械手,结构分析

毕业设计说明书(论文)外文摘要

目录 1 绪论 (1) 1.1 引言 (2) 1.2 搬运机械手研究概况 (3) 1.2.1 国外研究现状 (3) 1.2.2 国内研究现状 (4) 1.4 搬运机械手的总体结构 (5) 1.5 主要内容 (5) 2 总体方案设计 (6) 2.1 机械手工程概述 (6) 2.2 工业机械手总体设计方案论述 (7) 2.3 机械手机械传动原理 (8) 2.4 机械手总体方案设计 (8) 2.5 本章小结 (10) 3 机械手大臂结构设计 (1) 3.1 大臂部结构设计的基本要求 (1) 3.2 大臂部结构设计 (2) 3.3 大臂电机及减速器选型 (2) 3.4 减速器参数的计算 (3) 3.5承载能力的计算 (7) 3.5.1 柔轮齿面的接触强度的计算 (7) 3.5.2 柔轮疲劳强度的计算 (7) 3.6 轴的计算校核 (8) 3.7 大臂的平衡设计 (11) 3.7.1 弹簧的受力分析 (11) 3.7.2 弹簧的设计计算 (14) 4机械手小臂结构设计 (18) 4.1 腕部设计 (18) 4.2 小臂部结构设计 (31)

六自由度运动平台方案设计报告

编号 密级内部阶段标记 C 会签 校对 审核 批准六自由度运动平台 方案设计 名称

内容摘要: 针对YYPT项目在原理样机出现的问题,对YYPT原理样机从结构设计、伺服系统等方面进行优化设计,以满足设计及使用要求。 主 YYPT 优化 题 词 更改单号更改日期更改人更改办法 更 改 栏

1概述 YYPT原理样机用原库房留存的345厂的直流电机作为动力源,直流驱动器及工控机作为控制系统元件,采用VB软件进行控制软件的编制,因设计及器件选型的原因,导致YYPT原理样机,在速度、精度、运动规律上等几个技术指标无法满足原规定的指标要求,现在此基础上进行优化方案的设计。 2 原理样机技术状态 2.1 原理样机方案 2.1.1 组成 原理样机采用工控机作为系统的控制单元,工控机内配有研华PCI1716和PCI1723作为A/D和D/A模拟量卡,驱动器采用AMC公司的型号为12A8的伺服驱动器,并配有直流可调电源其输出电流可达到150A,采用KH08XX(3)电动缸作为运动平台的六条支腿,电动缸上安装有电阻尺作为位置反馈器件,上平台与电动缸连接采用球笼联轴器,下平台与电动缸连接采用虎克铰链方式。具体产品组成表见表2.1。 序号产品名称型号厂家数量备注 1 电动缸KH08XX(3)西安方元明 6 安装345厂电机 2 电阻尺LTS-V1-375 上海徳测 6 3 驱动器50A8 AMC 6 3 A/D卡PCI1716 研华 1 4 D/A卡PCI1723 研华 1 5 工控机610H 研华 1 6 直流电源 1 2.1.2 结构方案 六自由度运动平台是由六条电动缸通过虎克铰链和球笼万向节联轴器将上、下两个平台连接而成,下平台固定在基础上,借助六条电动缸的伸缩运动,完成上平台在三维空间六个自由度(X,Y,Z,α,β,γ)的运动,从而可以模拟出各种空间运动姿态。

六自由度机器人说明书

六自由度机器人说明书 专业:机械制造与自动化 班级: 成员:

目录 一、打开气源 二、机器人的快速操作入门 1、坐标系的选择 2、手动速度调整 3、伺服电源接通 4、接通主电源 5、接通伺服电源 三、伺服电源切断 1、切断伺服电源 2、切断主电源 四、轴操作

一、打开气源 请确认系统进气气源已进行供气,未供气或气压不足将会导致系统无法正常工作,系统运行中如断开气源,可能导致设备损坏,甚至造成人员伤害。 打开下图气泵,将开关拨到“I”,再打开气阀

拨到“开”,即 “Ⅰ” 往上拨,打开气阀

二、机器人的快速操作入门 1、坐标系的选择 在示教模式下,选择机器人运动坐标系:按手持操作示教器上的【坐标系】键,每按一次此键,坐标系按以下顺序变化,通过状态区的显示来确认。 2、手动速度调整 示教模式下,选择机器人运动速度:按手持操作示教器上【高速】键或【低速】键,每按一次,手动速度按以下顺序变化,通过状态区的速度显示来确认。 ?按手动速度【高速】键,每按一次,手动速度按以下顺序变化:微动1%→微动2%→低5%→低10%→中25%→中50%→高75%→高100%。 ?按手动速度【低速】键,每按一次,手动速度按以下顺序变化:高100%→高75%→中50%→中25%→低10%→低5%→微动2%→微动1%。 3、伺服电源接通 打开上电控柜上的主电源开关时,应确认在机器人动作 范围内无任何人员。

忽视此提示可能会发生与机器人的意外接触而造成人身伤害。如有任何问题发生,应立即按动急停键,急停键位于 电控柜前门的右上方。 4、接通主电源 ●把电控柜侧板上的主电源开关扳转到接通(ON) 的位置,此 时主电源接通。 ●按下电控柜面板上的绿色伺服启动按钮。

(完整版)六自由度机器人结构设计

六自由度机器人结构设计、 运动学分析及仿真 学科:机电一体化 姓名:袁杰 指导老师:鹿毅 答辩日期: 2012.6 摘要 近二十年来,机器人技术发展非常迅速,各种用途的机器人在各个领域广泛获 得应用。我国在机器人的研究和应用方面与工业化国家相比还有一定的差距,因此 研究和设计各种用途的机器人特别是工业机器人、推广机器人的应用是有现实意义 的。 典型的工业机器人例如焊接机器人、喷漆机器人、装配机器人等大多是固定在 生产线或加工设备旁边作业的,本论文作者在参考大量文献资料的基础上,结合项 目的要求,设计了一种小型的、固定在AGV 上以实现移动的六自由度串联机器人。 首先,作者针对机器人的设计要求提出了多个方案,对其进行分析比较,选择

其中最优的方案进行了结构设计;同时进行了运动学分析,用D-H 方法建立了坐标变换矩阵,推算了运动方程的正、逆解;用矢量积法推导了速度雅可比矩阵,并计算了包括腕点在内的一些点的位移和速度;然后借助坐标变换矩阵进行工作空间分析,作出了实际工作空间的轴剖面。这些工作为移动式机器人的结构设计、动力学分析和运动控制提供了依据。最后用ADAMS 软件进行了机器人手臂的运动学仿真,并对其结果进行了分析,对在机械设计中使用虚拟样机技术做了尝试,积累了 经验。 第1 章绪论 1.1 我国机器人研究现状 机器人是一种能够进行编程,并在自动控制下执行某种操作或移动 作业任务的机械装置。 机器人技术综合了机械工程、电子工程、计算机技术、自动控制及 人工智能等多种科学的最新研究成果,是机电一体化技术的典型代表,是当代科技发展最活跃的领域。机器人的研究、制造和应用正受到越来越多的国家的重视。近十几年来,机器人技术发展非常迅速,各种用途的机器人在各个领域广泛获得应用。 我国是从 20 世纪80 年代开始涉足机器人领域的研究和应用的。1986年,我国开展了“七五”机器人攻关计划。1987 年,我国的“863”计划将机器人方面的研究列入其中。目前,我国从事机器人的应用开发的主要是高校和有关科研院所。最初我国在机器人技术方面的主要

六自由度机械手设计说明书

六自由度机械手设计说明书

设计参数

摘要 随着现代科技和现代工业的发展,工业的自动化程度越来越高。工业的自动化中机械手发挥了相当大的作用,小到机床的自动换刀机械手,大到整个的全自动无人值守工厂,无一不能看到机械手的身影。 机械手在工业中的应用可以确保运转周期的连贯,提高品质。另外,由于机械手的控制精确,还可以提高零件的精度。机械手在工业中的应用十分广泛,如:一、以提高生产过程中的自动化程度 应用机械手有利于实现材料的传送、工件的装卸、刀具的更换以及机器的装配等的自动化的程度,从而可以提高劳动生产率和降低生产成本。 二、以改善劳动条件,避免人身事故 在高温、高压、低温、低压、有灰尘、噪声、臭味、有放射性或有其他毒性污染以及工作空间狭窄的场合中,用人手直接操作是有危险或根本不可能的,而应用机械手即可部分或全部代替人安全的完成作业,使劳动条件得以改善。 在一些简单、重复,特别是较笨重的操作中,以机械手代替人进行工作,可以避免由于操作疲劳或疏忽而造成的人身事故。 三、可以减轻人力,并便于有节奏的生产 应用机械手代替人进行工作,这是直接减少人力的一个侧面,同时由于应用机械手可以连续的工作,这是减少人力的另一个侧面。因此,在自动化机床的综合加工自动线上,目前几乎都设有机械手,以减少人力和更准确的控制生产的节拍,便于有节奏的进行工作生产。 应用前景 工业机械手是近几十年发展起来的一种高科技自动化生产设备。工业机械手的是工业机器人的一个重要分支。它的特点是可通过编程来完成各种预期的作业任务,在构造和性能上兼有人和机器各自的优点,尤其体现了人的智能和适应性。机械手作业的准确性和各种环境中完成作业的能力,在国民经济各领域有着广阔的发展前景。 机械手是在机械化,自动化生产过程中发展起来的一种新型装置。在现代生产过程中,机械手被广泛的运用于自动生产线中,机械人的研制和生产已成为高技术邻域内,迅速发殿起来的一门新兴的技术,它更加促进了机械手的发展,使得机械手能更好地实现与机械化和自动化的有机结合。机械手虽然目前还不如人手那样灵活,但它具有能不断重复工作和劳动,不知疲劳,不怕危险,抓举重物的力量比人手力大的特点,因此,机械手已受到许多部门的重视,并越来越广泛地得到了应用

六自由度

物体在空间具有六个自由度,即沿X、Y、Z三个直角坐标轴方向的移动自由度和绕这三个坐标轴的转动自由度。因此,要完全确定物体的位置,就必须清楚这六个自由度。 六自由度运动平台是由六支作动筒,上、下各六只万向铰链和上、下两个平台组成,下平台固定在基础上,借助六支作动筒的伸缩运动,完成上平台在空间六个自由度(X,Y,Z,α,β,γ)的运动,从而可以模拟出各种空间运动姿态。可广泛应用到各种训练模拟器如飞行模拟器、舰艇模拟器、海军直升机起降模拟平台、坦克模拟器、汽车驾驶模拟器、火车驾驶模拟器、地震模拟器以及动感电影、娱乐设备等领域,甚至可用到空间宇宙飞船的对接,空中加油机的加油对接中。在加工业可制成六轴联动机床、灵巧机器人等。由于六自由度运动平台的研制,涉及机械、液压、电气、控制、计算机、传感器,空间运动数学模型、实时信号传输处理、图形显示、动态仿真等等一系列高科技领域,因而六自由度运动平台的研制变成了高等院校、研究院所在液压和控制领域水平的标志性象征。 空间运动的目标是实现平台在空间运动的三个姿态角度和三个平动位移,即俯仰、滚转、偏航、上下垂直运动、前后平移和左右平移,及六个姿态的复合运动姿态。而空间目标是通过六个液压缸的行程实现的,这就需要一个空间的运动模型完成空间运动的转换,假设空间运动的目标俯仰、滚转、偏航、上下垂直位移、前后平移和左右平移用α,β,γ,X,Y,Z表示,六个油缸的行程用 L(i), (i=1、2、3、4、5、6)表示。整个运动模型如下: L(i)=TT(α,β,γ,X,Y,Z) 其中,TT是一个空间转换矩阵模型。由此实时算出每一运动时刻液压油缸的行程。液压油缸的理论行程再通过D/A接口的转换,给出实际行程值。 多自由度运动控制 多自由度控制系统中,自由度最多为六自由度,并且六自由度运动控制难度最大,设备及系统最复杂,下面主要介绍我公司设计、生产的六自由度运动台。 六自由度运动平台是由六支直线伺服电动缸,上、下各六只万向铰链和上、下两个平台组成,下平台固定在基础上,借助六只伺服电动缸)执行器)的伸缩运动,完成上平台在空间六个自由度(X,Y,Z,α,β,γ)的运动,从而可以模拟出

六自由度工业机器人实验指导书

六自由度工业机器人实验指导书 前言 机器人已广泛应用于汽车与汽车零部件制造业、机械加工行业、电子电器行业、橡胶及塑料工业、食品工业、木材与家具制造业等领域。在工业生产中,弧焊机器人,点焊机器人,喷涂机器人及装配机器人等都被大量使用。 机器人系统由机器人和作业对象及环境共同组成的,其中包括机器人机械系统、驱动系统、控制系统和感知系统四部分组成,其实际上是一个典型的机电一体化系统,其工作原理为:控制系统发出动作指令,控制驱动器动作,驱动器带动机械系统运动,使末端操作器到达空间某一位置和实现某一姿态,实施一定的作业任务。末端操作器在空间的实时位姿由感知系统反馈给控制系统,控制系统把实际位姿与目标位姿相比较,发出下一个动作指令,如此循环,直到完成作业任务为止。 首钢莫托曼机器人有限公司生产的SG—MOTOMAN—UP6工业机器人,为6轴垂直多关节型,具有节省空间、高速动作时的轨迹精度高、轨迹流畅、动作速度高、动作范围广、安全可靠等特点,在工业上可进行弧焊、点焊、切割、搬运等。 实验项目机器人示教编程与再现控制 一、实验目的 通过本次试验,掌握六自由度工业机器人的工具坐标系及工件坐标系的标定方法、示教编程与再现控制。 二、实验内容 实验前请仔细阅读MOTOMAN-UP6机器人使用说明书、Y ASNAC XRC使用说明书及操作要领书相关内容。 2.1 示教的基本步骤 开始示教前,请做以下准备: 1.开启电源,接通XRC控制柜的控制按钮; 2.确认急停键是否可以正常工作; 3.设置示教锁定: 按下再现操作盒的[TEACH]按钮(指示灯点亮),使机器人工作在示教模式。

● 2.2 输入程序名 ●在示教编程器显示画面中下拉菜单选择【程序】→选择【新建程序】→输入程序名 →按【回车】键→选择【执行】。 2.3 示教 2.3.1 示教任务 机器人卸料作业如下图所示,当自动输送线的卸料工位有工件且运料小车到位时,机器人从卸料工位上抓取工件,堆放到运料箱中(运料箱中可存储工件4×6个),当工件堆满后,机器人停止作业,直到下一个空运料箱到位,重复堆垛工作。 机器人卸料作业示意图 2.3.2 示教要求 1. 画出机器人工作流程图; 2. 完成工具坐标系、工件坐标系的标定 3. 完成机器人卸料作业的示教程序的编写,要求对通用I/O地址、变量进行定义, 实现卸料工位是否有工件、运料小车是否到位等状态检测、堆料工件的计数、启动平移功能时移动量的设定、夹爪的夹紧/松开等等功能。 4. 在再现模式下验证所编写程序的正确性。 2.4 实验报告要求 1. 以小论文的形式完成书面实验报告。 2. 对卸料作业任务要求进行分析,提出机器人卸料的解决方案,并画出机器人的 工作流程。 3. 完成机器人卸料作业所必需的参数设定及坐标系的标定、程序设计等。

六自由度机器人

本科毕业设计(论文) FINAL PROJECT/THESIS OF UNDERGRADUATE (2014届) 六自由度机器人机械机构设计 学院机械工程学院 专业机械设计制造及其自动化学生姓名** 学号 指导教师*** 完成日期2014年5月

承诺书 本人郑重承诺:所呈交的毕业论文“六自由度机器人机械结构设计”是在导师的指导下,严格按照学校和学院的有关规定由本人独立完成。文中所引用的观点和参考资料均已标注并加以注释。论文研究过程中不存在抄袭他人研究成果和伪造相关数据等行为。如若出现任何侵犯他人知识产权等问题,本人愿意承担相关法律责任。 承诺人(签名):______________________ 日期:年月日

六自由度机器人机械结构设计 摘要 机械手是模仿人手的部分动作,按给定程序、轨迹和要求实现自动抓取、搬运或操作的自动机械装置,其主要由执行机构、驱动机构、控制机构以及位置检测装置等所组成。本论文围绕机器人本体结构设计,进行机器人静力学分析及研究极限位置下关节力矩情况,并以此为依据为机器人机构改进奠定理论基础,主要设计内容如下:(1)阐述六自由度工业机器人当前发展现状,对比现有机械手传动方式及空间布局,分析其技术特点。 (2)根据预期假定机器人工作运动范围及有效负载,参考目前应用较广泛的本体结构,在solidworks环境下先设计简单机器人初期模型。通过静力学分析得出关节所受负载,进行伺服电机、减速机选型以及确定同步齿形带相关参数,完成机械手内部空间整体布局,确定传动方式并能达到相关目标要求完成理论作业。 (3)建立考虑约束及质量等效转换的机械手模型,分析典型工况下各关节的运动情况。对关键零件及手部轴承通过施加约束、负载完成相应应力分析,验证不同电机、减速机选型的合理性,完成机器人结构校核与优化。 关键词:六自由度传动方式静力学分析 i

并联六自由度运动平台

并联六自由度运动平台 1.概述 并联六自由度运动平台通过六个驱动缸(伺服缸或电动缸)的协调伸缩来实现平台在空间六个自由度的运动,即平台沿x、y、z向的平移和绕x、y、z轴的旋转运动(包括垂直、水平、横向、俯仰、侧倾和旋转六个自由度的运动),以及这些自由度的复合运动。并联六自由度运动平台可用于机器人、飞行模拟器、车辆驾驶模拟器、新型加工机床、及卫星、导弹等飞行器、娱乐业的运动模拟(动感电影摇摆台)、多自由度振动摇摆台的精确运动仿真等。 图0-1:六自由度及其坐标系定义图 我公司通过自行设计、安装调试,并开发控制软件,同时采用进口关键件对并联六自由度运动平台进行研究开发,目前已完成多套六自由度运动平台应用,典型应用有列车风档液压仿真试验台、F1国际赛车运动仿真台、汽车驾驶模拟器、飞机和飞碟运动模拟器、振动谱试验、海浪模拟试验等。 六自由度运动平台的研制,涉及机械、液压、电气、控制、计算机、传感器,空间运动数学模型、实时信号传输处理、图形显示、动态仿真等一系列高科技领域,是液压及控制技术领域的顶级产品。 2.系统组成 2.1液压伺服类 典型的液压式并联六自由度运动平台主要由机械系统、液压系统、控制系统硬件和控制系统软件四部分组成。

机械系统主要包括:承载平台、上下连接铰链、固定座。 液压系统主要包括:泵站系统、伺服阀、驱动器、伺服油缸和阀块管路。 控制系统硬件主要包括:实时处理器、伺服控制单元、信号调理单元、监控单元和泵站控制单元。 控制系统软件包括:实时信号处理单元、实时运算单元、伺服控制和特殊要求处理单元。 2.2 电动伺服类 电动式并联六自由度运动平台则将伺服油缸用电动缸代替,而伺服阀、泵站系统及阀块管路等则相应取消,增 加运动控制单元。具有系统简洁、响应速度快等优点,是多自由度平台今后重点发展的方向。 3.主要技术参数 以下参数为液压类平台典型值,具体可按用户要求设计制造。 3.1平台主要参数 平台最大负载:静态≥2000KG,动态≥3000KG。 上平台球铰分布园直径1400mm,相邻球心距离157mm; 下平台球铰分布园直径1600mm,相邻球心距离167mm; 伺服缸最小球铰球心距离800mm,最大长度1200mm;(采用Φ63/45~400缸体)。 平台初始高度约700mm。 3.2 泵站技术指标 额定流量:90L/min 最大系统压力:12Mpa; 泵站电机功率:22KW; 空间尺寸:1400×1200×1320 3.3 运动参数 伺服缸运动速度≥200mm/S;有效行程≥400mm。 主要运动参数如下表:

六自由度机器人运动分析及优化

本科毕业论文(设计) 题目(中文)六自由度机器人运动分析及优化 (英文) Motionanalysis and optimization of 6-DOF robot 学院信息与机电工程学院院 年级专业 2013级汽车服务工程(中德)) 学生姓名吴子璇正 学号 130154494 7 指导教师安康安 完成日期 2017 年 3 月

摘要 当今世界,工业化日趋成熟,机器人被广泛的应用于各行各业,最常用到的有四自由度,六自由度机器人。其中,自动化水平较高的汽车制造业和电子装配业经常常常要使用到六自由度机器人。因此对其实施运动学分析,是进行科学设计的基础,也是降低机器人生产成本,优化机器人运动轨迹的前提。此外,运动分析过程有效的模拟了机器人运动的真实情况,有助于提供有效可行的优化方案。本文主要探讨六自由度机器人的运动分析,基于经典运动学以及动力学的研究方法概念,首先通过solidworks做出机械臂各部分零件的三维图,然后通过SolidWorks装配出六自由度机器人机械臂的三维模型。通过该模型,选取其中一个关节和底座,并用SolidWorks进行运动学分析,对六自由度机器人的运动学和动力学计算方法进行了仿真验证。最后得到六自由度机器人的其中一个自由度的运动仿真实例。通过对该运动仿真实例的分析,得出最佳优化方案,优化机器人的运动轨迹提高机器人的工作效率,降低机器人生产成本。 关键词:六自由度机器人;运动分析;运动学;动力学;

目录 摘要................................................. I Abstract ............................... 错误!未定义书签。 1 绪论 (1) 1.1 课题背景及研究的目的和意义 (1) 1.2机器人国内外发展现状及前景展望--------------------------1 2 六自由度机器人运动学分析 (4) 2.1六自由度机器人的结构-------------------------------------1 2.2运动学分析----------------------------------------------1 3 六自由度机器人动力学分析 (6) 3.1综述----------------------------------------------------3 3.2机器人动力学研究方法------------------------------------3 3.2.1几项假设-------------------------------------------3 3.2.2目标-----------------------------------------------4 3.2.3数学工具-------------------------------------------5 3.3动力学原理----------------------------------------------3

六自由度机器人控制系统设计

1前言 1.1 焊接机器人的发展历史与现状 现代机器人的研究始于20世纪中期,其技术背景是计算机和自动化的发展,以及原子能的开发利用。美国原子能委员会下属的阿尔贡研究所为解决可代替人进行放射性物质的处理问题,在1947年研制了遥控式机械手臂;1948年又相继开发了电气驱动式的主从机械手臂,从而解决了对放射性物质的进行远距离操作的问题。1954年,美国科学家戴沃尔最先提出工业机器人的概念,并申请了新的专利。其主要特点是借助伺服技术来控制机器人的关节,并利用人手对机械手臂进行动作示教,机械手臂能实现人物动作的记录和再现。这就是示教再现机械臂,现在所用的机械手臂差不多都采用这种控制方式。伴随着现代社会的发展,为了提高生产效率,稳定和提高产品的质量,加快实现工业生产机械化,改善工人劳动条件,已经大大改进了机械手臂的性能,并大量应用于实际生产中,尤其是在高压、高温、多粉尘、高噪音和重度污染的场合。焊接机器人的诞生可以追溯到上世纪70年代,是由日本发那科(FANUC)公司生产的小型机器人改进的,受限于当时的技术手段以及高昂的造价,使得当时的焊接机器人不能得到很好的应用。机械手臂是一种工业机器人,它由控制器、操作机、检测传感装置和伺服驱动系统组成,是一种可以自动控制、仿人手操作、可以重复编程、可以在三维空间进行各种动作的自动化生产设备。机械手臂首先是在汽车制造工业中使用的,它一般可进行焊接、上下料、喷漆以及搬运。它可代替人们进行从事繁重、单调的重复劳动作业,并且能够大大改善劳动生产率,提高产品的质量[1]。 到了90年代初,随着计算机技术、微电子技术、网络技术等的快速发展,机器人技术也得到了飞速发展。工业机器人的制造水平、控制速度和控制精度、可靠性等不断提高,而机器人的制造成本和价格却不断下降。在西方国家,由于劳动力成本的提高为企业带来了不小的压力,而机器人价格指数的降低又恰巧为其进一步推广应用带来了契机,采用机器人的利润显然要比采用人工所带来的利大,使得焊机机器人得到了推广,同时技术的进步也使得焊机机器人技术得到很大提高。 进入新世纪之后,由于各国对焊接机器人的不断重视,使得焊接机器人技术取得了很大的进步。同时由于其焊机精度及更低的生产成本,也使得它得到了越来越多的应用。目前,焊接机器人主要用于装卸、搬运、焊接、铸锻以及热处理等方面,无论数量、品种和性能方面都还不能满足工业生产发展需要。在一些特殊的行业,使用它来代替人工操作的,主要是在危险作业、多粉尘、高温、噪声、工作空间小等的不适于人工作业的环境。 1.2 焊接机器人发展趋势

六自由度运动平台设计方案

六自由度运动平台设计 方案 1概述 YYPT原理样机用原库房留存的345厂的直流电机作为动力源,直流驱动器及工控机作为控制系统元件,采用VB软件进行控制软件的编制,因设计及器件选型的原因,导致YYPT原理样机,在速度、精度、运动规律上等几个技术指标无法满足原规定的指标要求,现在此基础上进行优化方案的设计。 2 原理样机技术状态 2.1 原理样机方案 2.1.1 组成 原理样机采用工控机作为系统的控制单元,工控机内配有研华PCI1716和PCI1723作为A/D和D/A模拟量卡,驱动器采用AMC公司的型号为12A8的伺服驱动器,并配有直流可调电源其输出电流可达到150A,采用KH08XX(3)电动缸作为运动平台的六条支腿,电动缸上安装有电阻尺作为位置反馈器件,上平台与电动缸连接采用球笼联轴器,下平台与电动缸连接采用虎克铰链方式。具体产品组成表见表2.1。 序号产品名称型号厂家数量备注 1 电动缸KH08XX(3)西安方元明 6 安装345厂电机 2 电阻尺LTS-V1-375 上海徳测 6 3 驱动器50A8 AMC 6 3 A/D卡PCI1716 研华 1 4 D/A卡PCI1723 研华 1 5 工控机610H 研华 1

6 直流电源 1 2.1.2 结构方案 六自由度运动平台是由六条电动缸通过虎克铰链和球笼万向节联轴器将上、下两个平台连接而成,下平台固定在基础上,借助六条电动缸的伸缩运动,完成上平台在三维空间六个自由度(X ,Y ,Z ,α,β,γ)的运动,从而可以模拟出各种空间运动姿态。 图1 六自由度平台外形图 a )球笼联轴器(如图2所示) 采用球笼铰链与上平面连接。球笼铰链结构简单、体积小、运转灵活、易于维护。 初选球笼铰链型号BJB (JB/T6139-1992),公称转矩Tn=2000N/m ,工作角度40度,外径D=68mm ,轴孔选用圆柱孔d=24mm ,总长度L1=148mm ,转动惯量为0.00008kg.m 2,重量5kg 。 球笼联轴器 电动缸 虎克铰链 上动平台 下静平台

六轴运动机器人运动学求解分析_第一讲

六轴联动机械臂运动学求解分析 第一讲 作者朱森光 Email zsgsoft@https://www.360docs.net/doc/a68542312.html,

1引言 笔者研究六轴联动机械臂源于当前的机器人产业热,平时比较关注当前热门产业的发展方向。笔者工作主要从事软件开发跟机器人毫无关系,利用业余时间研究整理机器人技术相关的文章,希望能够起到抛砖引玉的作用引发更多的人发表有关机器人技术的原创性技术资料。本系列文章的所有文字、图片及相关资料均为原创,内容正确性经过笔者亲自编程仿真验证可以信赖。 2机器建模 2.1坐标系 既然要研究机器人,那么首先要建立一个机械模型,本文将以典型的六轴联动机器臂为例进行介绍,图2-1为笔者使用3D技术建立的一个简单模型。首先建立一个大地坐标系,一般教科书上都是以大地为XY平面,垂直于大地向上方向为Z轴,本文为了跟教科书上有所区别同时不失一般性,将以水平向右方向为X轴,垂直于大地向上方向为Y轴,背离机器人面向人眼的方向为Z轴,移到电脑屏幕上那就是屏幕水平向右为X轴,屏幕水平向上为Y轴,垂直于屏幕向外为Z轴,之所以建立这样不合常规的坐标系是希望能够突破常规的思维定势训练在任意空间建立任意坐标系的能力。 图2-1 图2-1中的机械臂,灰色立方体为机械臂底座,定义为关节1,它能绕图中Y轴旋转;青色为关节2,它能绕图中的Z1轴旋转;蓝色为关节3,它能绕图中的Z2轴旋转;绿色为关节4,它能绕图中的X3轴旋转;红色为关节5,它能绕图中的Z4轴旋转;黄色为关节6,它能绕图中的X5轴旋转。 2.2齐次变换矩阵 齐次变换矩阵是机器人技术里最重要的数学分析工具之一,关于齐次变换矩阵的原理很多教科书中已经描述在此不再详述,这里仅针对图2-1的机械臂写出齐次变换矩阵的生成过程。首先定义一些变量符号,关节1绕图中Y轴旋转的角度定义为θ0,当θ0=0时,O1点在OXYZ坐标系内的坐标是(x0,y0,0);关节2绕图中的Z1轴旋转的角度定义为θ1,图中的θ1当前位置值为+90度;定义O1O2两点距离为x1,关节3绕图中的Z2轴旋转的角度定义为θ2,图中的θ2当前位置值为-90度;O2O3两点距离为x2,关节4绕图中的X3轴旋转的角度定义为θ3, 图中的θ3当前位置值为-60度;O3O4两点距离为x3,关节5绕图中的Z4轴旋转的角度定义为θ4, 图中的θ4当前位置值为-60度;O4O5两点距离为x4,关节6绕图中的X5轴旋转的角度定义为θ5, 图中的θ5当前位置值为+60度。以上定义中角度正负值定义符合右手法则。符号定义好了,接下来描述齐次变换矩阵。 定义R0为关节1绕Y轴的旋转矩阵 cosθ0 s0 = sinθ0 = //c0 R0=[c0 0 s0 0 0 1 0 0 0 c0 0 -s0 0 0 0 1] 定义T0为坐标系O1X1Y1Z1相对坐标系OXYZ的平移矩阵 T0=[1 0 0 x0 0 1 0 y0 00 1 0 0 0 0 1] 定义R1为关节2绕Z1轴的旋转矩阵 R1=[c1 –s1 0 0

相关文档
最新文档