陈小明文献中键长和键角

陈小明文献中键长和键角
陈小明文献中键长和键角

价键理论

价键理论 自1916年路易斯提出经典的共价键理论以来,共价键理论有了很大的发展。现代共价键理论有两种,一是价键理论,二是分子轨道理论。 (一)价键理论的基本要点 价键理论,又称电子配对法,其基本要点如下: 1.具有自旋相反的未成对电子的两个原子相互接近,可以形成稳定的共价键。 如果A、B两个原子各有一个自旋相反的未成对的电子,那么这两个未成对电子可以相互配对形成稳定的共价键,这对电子为A、B两原子所共有(共用)。如果A、B各有两个或三个未成对的电子,则自旋相反的单电子可两两配对形成双键或叁键。 如果A原子有两个未成对电子,B原子有一个未成对电子,那么一个A原子能与两个B原子结合形成AB2型分子,…。 2.原子中未成对的电子数等于原子所能形成的共价键数目(共价键的饱和性)。 共价键是由成键原子中自旋相反的未成对电子配对形成的。一个原子的一个电子和另一个原子的一个电子配对以后,不能再和第二个电子配对。因为这时其中必有两个电子的自旋方向相同而相斥。也就是说一个原子所能形成共价键的数目是一定的。原子中未成对的电子数等于原子所能形成的共价键数目,这就是共键价的饱和性。例如,H原子只有一个未成对电子,它和另一个H原子的未成对电子配对后,就不能再与第二个H原子的电子配对了,……。 3.成键电子的电子云重叠越多,核间电子子云密度就越大,形成的共价键就越牢固(共价健的方向性)。 共价键的生成是由于自旋相反的单电子相互配对,电子云重叠的结果。因此,当两个原子形成分子时,电子云重叠的程度越大,则两原子间的电子云密度越大,生成的共价键就越牢固,所以,在形成共价键时,电子云总是尽可能达到最大程度的重叠。因此,在形成共价键时,原子间总是尽可能沿着电子云最大重叠方向成键。s电子云呈球形对称分布,p、d、f电子云在空间都有一定的伸展方向。在形成共价键时,除了s 电子云和s电子云可以在任何方向上都能达到最大程度的重叠外,p、d电子云的重叠,只有在一定方向上才能使电子云有最大程度的重叠。即共价键是有方向性的。例如,当氢原子1s电子云和氯原子的3p电子云重叠形成HCL分子时,氢原子的1s电子云总是沿着氯原子未成对电子的3p电子云对称轴方向作最大程度的重叠(图4-9(a))。其他方向都不能形成稳定的分子(图4-9(b)(c))。 电子云的三种重叠情况 图4-9 氢原子的1s电子云与氧原子的3P x (二)共价键的类型 共价键有两种成键方式。一种是电子云以:“头碰头”方式相重叠,电子云及重叠部分沿键轴(两核间连线)呈圆柱形对称分布,重叠部分绕轴旋转任何角度形状不会改变,这种键叫σ键。另一种是成键的两个电子云的对称轴相平行,以“肩并肩”方式相重叠,电子云重叠部分对通过键轴的一个平面具有对称性,这种键称为π键。 例如在N2分子中,氮原子的价层电子结构为:2p x12p y12p z1三个未成对的p电子分占三个互相垂直的p轨道。当两个氮原子结合成N2分子时,p x电子云沿x轴方向以“头碰头”方式重叠形成一个σ键,每个原

键参数——键能、键长与键角

§2-2 键参数——键能、键长与键角 【学习目标】1、初步了解键能、键长、键角的概念,能根据其数据认识共价键的强弱; 2、了解键能的应用—与反应热、分子稳定性的关系。 【重、难点】键参数及其应用 一、键参数包括____________、____________、________________ 1.键能 (1)定义:___________原子形成________mol化学键释放的______能量。 (2)单位:_____________ 通常取_________ 如H—H键的键能是436.0kJ·mol-1,表示_______________________________________。 (3)意义 ①表示共价键的强弱:原子形成共价键时,轨道重叠程度______,体系能量降低______,释放出的能量_______,形成的共价键的键能_______,共价键__________。 ②表示分子的稳定性:键能_________,分子越_________。 -1 分解为气态原子时,需要(填)能量; 2 (2)1mol H2在2 mol Cl2中燃烧,放出的热量kJ; (3)由表中所列化学键形成的单质分子中,最稳定的是,最不稳定是,形成的化合物分子中,最稳定的是,最不稳定的是; (4)在一定条件下,1mol H2与足量的Cl2、Br2、I2分别反应,放出热量由多到少的是__________________________________; (5)预测1mol H2在足量F2中燃烧比在Cl2中放热。 【归纳】键能的应用——反应热与键能的关系 由键能求反应热的公式为:△H =____________的键能总和—____________的键能总和2.键长: (1)概念:形成共价键的两个原子之间的________________ 相同原子的共价键键长的一半称为_____________ (2)意义:一般来说,键长______,键能就_______,键就_______,分子就_________,受热时就________,热稳定性_________。 (3)影响因素:影响共价键长短的因素是_________。原子半径越小,键长越短。 【思考】电负性大的双原子分子,键长短的键能一定大吗?__________________ 3.键角 (1)定义:在原子数超过2的分子中,__________________的夹角。 多原子分子的键角一定,表明_______________________。 (2)键角对分子性质的影响:键角是描述__________________的重要参数。 【练习】写出下列分子的键角及空间构型:

价键理论的建立和发展

价键理论的建立和发展 作者沈逸然黄禾琳彭晨张鸿 单位北京大学化学与分子工程学院 内容提要 价键理论是二十世纪化学科学所取得的最重要的成果之一,它第一次向世人揭示了物质结构的微观本质,把化学领向了一个更为壮观的全新领域。而它的主要缔造者Pauling 更是化学史以及科学史上闻名遐迩的一代宗师。本文简明扼要地追述了价键理论的建立与发展,带领读者感受这一段波澜壮阔的历史,领略物质世界的奇妙无穷。当然,限于篇幅,本文一定还有很多细节难以满足您求知的欲望,在此致以诚挚的歉意。 关键词 量子价键杂化 人物 Heitler London Pauling Sidgwick 第一幕量子化学的暴风骤雨 在波动力学没有被发现之前,化学键是化学家和物理学家的一个大问题。大概的说,原子、分子间的吸引,有三种形式的化学力:离子键,共价键,范德华力。关于两异性电荷的离子会吸引,是当然的。范德华力与化学键相比,通常是非常弱的。问题的困难在于,基于古典物理学我们不能了解何以两个中性原子,如两个氢原子,会形成分子。况且共价键有个显著特点,那就是会饱和:一个氢原子可与另外一个氢原子结合,但不能和两个或三个氢原子结合;一个碳原子可与

四个氢原子结合,但不能与四个以上结合。即使在古典物理学中已知道中性粒子间有很强的引力,亦不可能说明为什么第三个原子不能够被已结合的二原子所吸引。饱和的特性对古典物理学家来说是不可理解的。在1927年,Heitler和London用波动力学解决了此问题,波动力学不仅能解释中性原子间的吸引,亦可使我们对饱和性质有完全的了解。 我们先来回顾一下量子化学建立的过程。 1924年,法国物理学家de Broglie针对Bohr原子结构理论所面临的困难,提出了电子等粒子的运动具有波粒二象性的假说,同时提出了物质波的概念和联系波动性和粒子性的de Broglie关系式。 Heisenberg在研究Bohr假设之后于1925 年提出关于原子的理论:矩阵力学。后来德国物理学家Born和Heisenberg等共同完成这个理论,Born称其为量子力学。 1926年,奥地利物理学家Schrodinger建立了类似于波动方程的关于物质波的偏微分方程——即Schrodinger方程,创立了波动力学。他认为波动力学和矩阵力学在数学上是等价的,de Broglie关系式也可以划入这个理论。于是量子力学这个关于微观世界客观运动的最基本的理论诞生了。 量子力学一经问世便引起了化学家的注意,他们很快就将量子力学运用到化学键领域的研究上。 1927年,德国物理学家Heitler和London合作用量子力学的Schrodinger方程来研究最简单的氢分子取得量子化学的最初成绩。他

论述价键理论和分子轨道理论说明O2

1.论述价键理论和分子轨道理论说明O2、N2分子的结构和稳定性的基本思路,两种理论的优点及不足之处。 答:价键理论(简称VB法)认为两个原子相互靠近形成分子时,原子的价层电子轨道发生最大程度的重叠,使体系的能量降低,价层轨道中自旋相反的成单电子相互靠近配对,从而稳定成键。 共价键按原子轨道重叠方式不同,可分为σ键和π键(1分),N2分子中,两个N原子各以一个含有单电子的p轨道以头碰头的方式重叠形成σ键,另外两对含有单电子的p轨道以肩并肩的方式重叠形成π键,所以N2分子中两个氮原子是两个π键和一个σ键连接,非常稳定。 O2分子中,两个O原子各以一个含有单电子的p轨道以头碰头的方式重叠形成σ键,另外一对含有单电子的p轨道以肩并肩的方式重叠形成π键,所以O2分子中两个氧原子原子是一个π键和一个σ键连接,没有N2稳定。 分子轨道理论(简称MO法)着重于分子的整体性,把分子作为一个整体来处理,比较全面地反映了分子内部电子的各种运动状态。描述分子中电子运动状态的函数称为分子轨道。分子轨道有原子轨道先行组合而来。电子属于整个分子,电子在分子轨道填充,能量最低的状态即分子的结构。 O2的分子轨道: (σ1s)2 (σ*1s)2 (σ2s)2 (σ*2s)2 (σ2p x)2 (π2p y)2 (π2p z)2 (π*2p y)1 (π*2p z)1 N2的分子轨道: (σ1s)2 (σ*1s)2 (σ2s)2 (σ*2s)2 (σ2p x)2 (π2p y)2 (π2p z)2 N2分子的键级为3,O2分子的键级为2。所以N2分子比氧气分子要稳定。 价键理论解决结构问题比较直观,计算比较简单,但其只考虑原子价层轨道对成键的影响,不够全面,比如O2分子的磁性用价键理论就难以解释;分子轨道理论能较好地解释分子成键的情况、键的强弱和分子的磁性,但计算难度及工作量太大。

2018届高考化学专项复习共价键键参数——键能、键长与键角(2)练习苏教版解析

键参数——键能、键长与键角 1.下列分子中键角最大的是() A.CH4 B.NH3 C.H2O D.CO2 2. Al和Si、Ge和As在元素周期表中金属和非金属过渡的位置上,其单质和化合物在建筑业、电子工业和石油化工等领域应用广泛.请回答下列问题: (1)As的价电子构型为________. (2)AlCl3是化工生产中的常用催化剂,熔点为192.6℃,熔融状态以二聚体Al2Cl6形式存在,其中铝原子与氯原子的成键类型是________. (3)超高导热绝缘耐高温纳米氮化铝(AlN)在绝缘材料中应用广泛,AlN晶体与金刚石类似,每个Al原子与________个N原子相连,与同一个Al原子相连的N原子构成的空间构型为________.在四大晶体类型中,AlN属于________晶体. (4)Si和C同主族,Si、C和O成键情况如下: 在C和O2 ____________________________________________________. (5)SiCl4(l)常用作烟雾剂,原因是Si存在3d轨道,能同H2O(l)配位而剧烈水解,在潮湿的空气中发烟,试用化学方程式表示其原理______________________. 3.键能的大小可以衡量化学键的强弱,也可以用于估算化学反应的反应热(△H),化学反应的△H等于反应中断裂旧化学键的键能之和与反应中形成新化学键的键能之和的差。参考以下表格的键能数据,回答下列问题: SiC__________Si; SiCl4___________SiO2 (2)工业上高纯硅可通过下列反应制取: SiCl4(g) + 2H2(g)高温 Si(s)+4HCl(g) 计算该反应的反应热△H为___ ___ kJ/mol。4.以下说法中正确的是() A.分子中键能越大,键长越长,则分子越稳定 B.元素周期表中的第ⅠA族(除H外)和第ⅦA族元素的原子间不能形成共价键 C.水分子可表示为HO—H,分子中键角为180° D.H—O键键能为463 kJ·mol-1,即18gH2O分解成H2和O2时,消耗能量为2×463 kJ

现代价键理论基础

现代价键理论基础 分子是由原子组合而成的。是保持物质基本化学性质的最小微粒,并且又是参与化学反应的基本单元,分子的性质除取决于分子的化学组成外,还取决于分子的结构。分子的结构通常包括两方面内容:一是分子中直接相邻的原子间的强相互作用即化学键(chemical bond),化学键的成键能量约为几十到几百千焦每摩;二是分子中的原子在空间的排列,即空间构型(geometry configuration)。此外,在相邻的分子间还存在一种较弱的相互作用,其作用能约比化学键小一、二个数量级。物质的性质决定于分子的性质及分子间的作用力,而分子的性质又是由分子的内部结构决定的,因此研究分子中的化学键及分子间的作用力对于了解物质的性质和变化规律具有重要意义。 化学键按成键时电子运动状态的不同,可分为离子键、共价键(包括配位键)和金属键三种基本类型。在这三种类型化学键中,以共价键相结合的化合物占已知化合物的90%以上,本章将在原子结构的基础上着重讨论形成化学键的有关理论和对分子构型的初步认识,同时对分子间的作用力作适当介绍。 第一节现代价键理论 现代价键理论的基础 现代价键理论(valence bond theory,简称VB法,又称为电子配对法) 量子力学对氢分子系统的处理表明,氢分子的形成是两个氢原1s轨道重叠的结果 氢分子的形成曲线示意图 只有两个氢原子的单电子自旋方向相反时,两个1s轨道才会有效重叠,形成共价键。氢原子间形成的稳定共价键,是氢分子的基态。共价键的本质是电性的,但因这种结合力是两核间的电子云密集区对两核的吸引力,成键的这对电子是围绕两个原子核运动的,出现在两核间的概率较大,而且不是正、负离子间的库仑引力,所以它不同于一般的静电作用。 现代价键理论的要点: 1.两个原子接近时,只有自旋方向相反的单电子可以相互配对(两原子轨道重

现代价键理论

现代价键理论 1.共价键的形成及其本质 海特勒和伦敦研究了两个氢原 子结合成为氢分子时所形成共价键 的本质。他们将两个氢原子相互作用 时的能量(E )当作两个氢原子核间 距(R )的函数进行计算,得到了如 图1.1所示的两条曲线。 当1s 电子运动状态完全相同 (即自旋方向相同)的两个氢原子相距很远时,它们之间基本上不存在相互作用力。但当它们互相趋近时,逐渐产生了排斥作用,能量曲线E 2随核间距减小而急剧上升(图9.1),系 统能量始终高于两个氢原子单独存在时的能量,故不能形成稳定的分子。这种状态称为氢分子的排斥态(exclusion state )。 如果两个氢原子的1s 电子运动状态不同(即自旋方向相反),当它们相互趋近时,两原子产生了吸引作用,整个系统的能量降低(图9.1E 1曲线)。当两个氢原子的核间距为74pm 时,系统能量达到最低,表明两个氢原子在此平衡距离R 0处成键,形成了稳定的氢分子。这种状态称为氢分子的基态(ground state )。如果两个氢原子继续接近,则原子间的排斥力将迅速增加,能量曲线E 1急剧上升,排斥作用又将氢原子推回平衡位置。因此氢分子中的两个氢原子在平衡距离R 0附近振动。R 0即为氢分子单键的键长。氢分子在平衡距离R 0时与两个氢原子相比能量降低的数 值近似等于氢分子的键能436 kJ·mol -1。因此,两个1s 电子 之所以能配对成键形成稳定的 氢分子,其关键在于两个氢原子参与配对的1s 电子的自旋方向相反。 由量子力学的原理可以知 道,当1s 电子自旋方向相反的 两个氢原子相互靠近时,随着核间距R 的减小,两个1s 原子轨道发生重叠,按照波的叠加 原理可以发生同相位重叠(即同号重叠),使两核间形成了一个电子概率密度增大的区域,从而削弱了两核间的正电排斥力,系统能量降低,达到稳定状态——基态。实验测知氢分子中的核间距为74pm ,而氢原子的玻尔半径为53pm ,可见氢分子中两个氢原子的1s 轨道必然发生了重叠。若1s 电子自旋方向相同的两个氢原子相互靠近时,两个1s 原子轨道发生不同相位重叠(即异号重叠),使两核间电子概率密度减少,增大了两核间的排斥力,系统能量升高,即为不稳定状态——排斥态(图1.2)。 2.现代价健理论的基本要点 核间距R/pm E 1:基态的能量曲线 E 2:排斥态的能量曲线 图1.1氢分子形成过程中能量与核间距的关系示意图 (1) (2) (1) 基态 (2) 激发态 图1.2 氢分子的两种状态的?ψ?2和原子轨道重叠示意图

2.1 第二课时 键参数——键能、键长与键角 课后习题-【新教材】人教版(2019)高中化学选择性必修2

第二课时键参数——键能、键长与键角 课后篇素养形成 夯实基础轻松达标 1.能说明BF3分子中的4个原子在同一平面的理由是() A.B—F键之间夹角为120° B.B—F键为非极性共价键 C.3个B—F键的键能相同 D.3个B—F键的键长相等 分子中键角均为120°时,BF3分子中的4个原子共面且构成平面三角形。 3 2.下列说法正确的是() A.键角决定了分子的结构 B.共价键的键能越大,共价键越牢固,含有该键的分子越稳定 C.CH4、CCl4分子中键长相等,键角不同 D.C C键的键能是C—C键能的两倍 解析分子结构是由键角、键长及共价键个数共同决定的,A项错误;CH4、CCl4分子均为正四面体形,它们的键角相同,键长不等,C错误;C C键中的双键由一个σ键和一个π键构成,σ键键能一般大于π键键能,因此C C键的键能应小于C—C键键能的两倍,D错误。 3.下列说法正确的是() A.双原子分子中化学键键能越大,分子越稳定

B.双原子分子中化学键键长越大,分子越稳定 C.双原子分子中化学键键角越大,分子越稳定 D.在双键中,σ键的键能要小于π键的键能 ,键长越小时,分子越稳定,故A对,B错;双原子分子中的共价键不存在键角,故C错;两原子之间σ键的重叠程度要大于π键,故σ键的键能一般要大于π键,D项说法错误。 4.下列说法正确的是() A.分子中键能越大,键长越小,则分子越稳定 B.只有非金属原子之间才能形成共价键 C.水分子可表示为H—O—H,分子中键角为180° D.H—O键键能为462.8 kJ·mol-1,即18 g水分解生成H2和O2时,放出能量为(2×462.8) kJ ,键长越小,分子越稳定,A项正确;AlCl3中含有共价键,B项错误;水分子中两个O—H键的键角小于180°,C项错误;H—O键的键能是破坏1 mol H—O键所吸收的能量,在1 mol H2O分子中有2 mol H—O键,故18 g水蒸气中的H—O键断裂应吸收能量2×462.8 kJ,而当H、O形成H2和O2时需放出能量,故应根据公式“ΔH=反应物的总键能-生成物的总键能”计算18 g水蒸气分解生成H2和O2时吸收的能量,D项错误。 5.下列分子最难分裂成原子的是() A.HF B.HCl C.HBr D.HI ,原子半径越小,其原子形成的共价键键长越小,键能越大,越难断键。原子半 径:FE(H—Cl)>E(H—Br)>E(H—I),即HF最难分裂成氟原子和氢原子。 6.已知N2(g)+O2(g)2NO(g)为吸热反应,ΔH=+180 kJ·mol-1,其中N≡N、O O键的键能分别为946 kJ·mol-1、498 kJ·mol-1,则NO分子中N、O之间共价键的键能为()

高考化学第一轮复习:共价键-键参数——键能、键长与键角-练习(2)

键参数——键能、键长与键角课后练习(2) 1.下列分子中键角最大的是() A.CH 4B.NH 3 C.H 2 O D.CO 2 2.Al 和 Si、Ge 和 As 在元素周期表中金属和非金属过渡的位置上,其单质和化合物在建筑业、电子工业和石油化工等领域应用广泛.请回答下列问题: (1)As 的价电子构型为. (2)AlCl3是化工生产中的常用催化剂,熔点为192.6℃,熔融状态以二聚体Al2Cl6形式存在,其中铝原子与氯原子的成键类型是_ . (3)超高导热绝缘耐高温纳米氮化铝(AlN)在绝缘材料中应用广泛,AlN 晶体与金刚石类似,每个Al 原子与 个N 原子相连,与同一个Al 原子相连的N 原子构成的空间构型为_ .在四大晶体类型中,AlN 属于晶体. (4)Si 和C 同主族,Si、C 和O 成键情况如下: 在C和O之间可以双键形成 2 _ . (5)SiCl4(l)常用作烟雾剂,原因是Si存在3d轨道,能同H2O(l)配位而剧烈水解,在潮湿的空气中发烟,试用化学方程式表示其原理. 3.键能的大小可以衡量化学键的强弱,也可以用于估算化学反应的反应热(△H),化学反应的△H等于反应中断裂旧化学键的键能之和与反应中形成新化学键的键能之和的差。参考以下表格的键能数据,回答下列问题: (1) SiC Si;SiCl 4_SiO 2 (2)工业上高纯硅可通过下列反应制取: SiCl 4(g)+2H 2 (g)高温Si(s)+4HCl(g)计算该反应的反应热△H为_kJ/mol。 4.以下说法中正确的是() A.分子中键能越大,键长越长,则分子越稳定 B.元素周期表中的第ⅠA族(除 H 外)和第ⅦA 族元素的原子间不能形成共价键C.水分子可表示为 HO—H,分子中键角为180° D.H—O键键能为463kJ·mol-1,即18gH 2O分解成H 2 和O 2 时,消耗能量为2×463kJ 5.根据π键的特征判断C=C 键的键能与C—C 键的键能的关系正确的是()

价键理论

价键理论 价键理论valence-bond theory,一种获得分子薛定谔方程近似解的处理方法。又称电子配对法。历史上最早发展起来的化学键理论。主要描述分子中的共价键和共价结合,其核心思想是电子配对形成定域化学键。 1产生 1927年W.H.海特勒和F.W.伦敦首次完成了氢分子中电子对键的量子力学近似处理,这是近代价键理论的基础。L.C.鲍林等加以发展,引入杂化轨道概念,综合成价键理论,成功地应用于双原子分子和多原子分子的结构。 价键理论与化学家所熟悉的经典电子对键概念相吻合,一出现就得到迅速发展。但价键理论计算比较复杂,使得后来发展缓慢。随着计算技术日益提高,该理论还会有新发展。1927年,Heitler 和London 用量子力学处理氢气分子H2,解决了两个氢原子之间化学键的本质问题,使共价键理论从典型的Lewis理论发展到今天的现代共价键理论。 海特勒-伦敦方法处理氢分子氢分子的哈密顿算符是: 式中rA1、rB1为核A、B与电子1之间的距离;r12为两个电子之间的距离;RAB为两个原子核之间的距离……(图1);1/RAB表示两个原子核之间的势能(氢核和电子电荷皆为1基本电荷单位);1/rA1、1/rB1、…也是势能;墷是拉普拉斯算符。 海特勒-伦敦方法的要点在于如何恰当地选取基态H2的近似波函数Ψ(1,2)(或称尝试波函数),然后用变分公式使氢分子能量E为最低(假定Ψ是归一化的): 式中*表示复数共轭。考虑两个氢原子组成的体系,若两个氢原子A(有电子1)和B(有电子2)的基态波函数为: φA⑴=πexp(-rA1) φB⑵=πexp(-rB2) 假如两个氢原子相距很远,那么体系波函数是: Φ1(1,2)=φA⑴φB⑵ 实际上两个电子是不可区分的。同样合适的函数是: Φ2(1,2)=φB⑴φA⑵ 两个函数Φ1和Φ2都对应相同的能量。海特勒和伦敦就取两个函数的等权线性组合作为H2的变分函数: Ψ(1,2)=c1Φ1+c2Φ2 解久期方程得c1=±c2,波函数和能量是: 式中 s称原子轨道的重叠积分。算出能量公式中各项,积分得: 式中Q、J、s都是R的函数。若用ΔE±表示分子能量与两个分离原子能量之差(图2):ΔE±就是分子相对于分离原子能量为零时的能量。因为H11和H12都是负量,Ψ+态比Ψ-态能量更低,图2 中ΔE+曲线总处于ΔE-曲线的下面。图中虚线表示实验势能曲线。ΔE+曲线有极小值,表示形成了稳定的H2。在平衡核间距Re=0.87埃,计算得到离解能De=3.14电子伏(或称结合能)。与实验值Re=0.742埃,De=4.75电子伏略有差异,这反映了海特勒-伦敦法的近似程度。ΔE-在R 减小时一直升高。Ψ+称海特勒-伦敦函数,描述H2基态,Ψ-描述排斥态。 若考虑自旋,按照泡利原理,必须使分子波函数对电子交换是反对称的。则Ψ+必须乘以反对称自旋函数而给出自旋单重态: Ψ-必须与对称自旋函数相乘得到自旋三重态: Ψ+态描述了H2的共价键,其中电子自旋是配对的,故称共价键为电子对键。 电子密度分布可以帮助理解共价键的本质。从波函数Ψ±出发可以计算总电子密度为两个

高中化学《键参数——键能、键长与键角》教案

第一节共价键 第二课时 一、教学目标 1. 认识键能、键长、键角等键参数的概念 2. 能用键参数――键能、键长、键角说明简单分子的某些性质 3. 知道等电子原理,结合实例说明“等电子原理的应用” 二、教学难点、重点 键参数的概念,等电子原理 三、教学过程 【引入】方向性决定了分子的空间构型,我们通过下面知识的学习,更好的理解共价键的方向性。下面我们主要研究共价键的参数。 【学生活动】引导学生利用表格与数据学习键能与键长,理解它们的含义。 阅读与思考:认真阅读教科书中的表2—1,2-2了解一些共价键的键能、键长,并思考下列问题: 【提出问题】 (1)键能是共价键强度的一种标度,键能的大小与键的强度有什么关系? (2)键能与化学反应的能量变化有什么联系?怎样利用键能的数据计算反应的热效应? 【归纳总结】:在上述学习活动的基础上,归纳 1.键能的概念及其与分子性质的关系,即键能是气态基态原子形成1mol共价键释放的最低能量。键能通常取正值键能越大,化学键越稳定。 2.分子内的核间距称为键长,它是衡量共价键稳定性的另一个参数,键长越短,往往键能越大,共价键越稳定。 知识应用: 【学生活动】完成“思考与交流”中的第1、2、3题。 1.试利用表2—1局数据进行计算,l mol H2分别跟1 molC12、1molBr2 (蒸气)反应,分别形成2mo1HCl分子和2molHBr分子,哪一个反应释放的能量更多?如何用计算的结果说明氯化氢分子和溴化氢分子哪个更容易发生热分解生成相应的单质?

2.N2、02、F2与H2的反应能力依次增强,从键能的角度应如何理解这一化学事实? 3.通过上述例子,你认为键长、键能对分子的化学性质有什么影响? 【学生活动】思考,然后教师点评 1.经过计算可知:1molH2与1 molCl2反应生成2molHCl放热184.9kJ,而1molH2与1molBr2:反应生成2molHBr放热102.3kJ。显然生成氯化氢放热多,或者说溴化氢分子更容易发生热分解。 2.从表2—1的数据可知,N—H键、O—H键与H—F键的键能依次増大;意味着形成这些键时放出的能量依次增大,化学键越来越稳定。所以N2、02、F2与H2的反应能力依次增强。 3.简言之,分子的键长越短,键能越大,该分子越稳定。 【思维拓展】N2与H2在常温下很难发生化学反应,必须在高温下才能发生化学反应,而F2与H2在冷暗处就能发生化学反应,为什么? 讨论与启示:学生就上述问题展开讨论,认识到化学反应是一个旧键断裂、新键生成的过程,N2与H2在常温下很难发生化学反应,而F2与H2在冷暗处就能反应,说明断开N三N键比断开F—F键困难。 【过渡】 【提出问题】:怎样知道多原子分子的形状? 讨论与启示:要想知道分子在空间的形状,就必须知道多原子分子中两个共价键之间的夹角,即键角。 【学生活动】制作模型学习键角 制作模型:利用泡沫塑料、彩泥、牙签等材料制作CO2、H20和CH4的分子模型,体会键角在决定分子空间形状中的作用。 【归纳总结】:键角:多原子分子中,两个化学键之间的夹角,键角是描述分子空间立体结构的重要参数。例如,在C02中,∠OCO为180°,所以C02为直线形分子;而在H20中,∠HOH为105°,故H20为角形分子。多原子分子的键角一定,表明共价键具有方向性。键角是描述分子立体结构的重要参数,分子的许多性质都与键角有关。 【归纳整理】 二、键参数——键能、键长与键角

第二章 第一节 第2课时 键参数——键能、键长与键角

第2课时键参数——键能、键长与键角 [核心素养发展目标] 1.了解共价键键参数的含义,能用键能、键长、键角说明简单分子的某些性质。2.通过认识共价键的键参数对物质性质的影响,探析微观结构对宏观性质的影响。 一、键能 1.概念 气态分子中1_mol化学键解离成气态原子所吸收的能量。它通常是298.15 K、100 kPa条件下的标准值,单位是kJ·mol-1。 2.应用 (1)判断共价键的稳定性 原子间形成共价键时,原子轨道重叠程度越大,释放能量越多,所形成的共价键键能越大,共价键越稳定。 (2)判断分子的稳定性 一般来说,结构相似的分子,共价键的键能越大,分子越稳定。 (3)利用键能计算反应热 ΔH=反应物总键能-生成物总键能 (1)共价键的键能越大,共价键越牢固,由该键形成的分子越稳定() (2)N—H键能是很多分子中的N—H键能的平均值() (3)O—H键能是指在298.15 K、100 kPa下,1 mol气态分子中1 mol O—H键解离成气态原子所吸收的能量() (4)C==C键能等于C—C键能的2倍() 答案(1)√(2)√(3)√(4)× 1.根据价键理论分析氮气分子中的成键情况,并解释N2通常很稳定的原因。 提示两个氮原子各自用三个p轨道分别形成一个σ键和两个π键。N2分子中存在N≡N,键能大,破坏它需要消耗较高的能量,因而N2通常很稳定。 2.N2、O2、F2与H2的反应能力依次增强,从键能的角度如何理解这一化学事实。(利用课本表2-1的相应数据分析) 提示从表2-1的数据可知,N—H、O—H与H—F的键能依次增大,意味着形成这些键时

放出的能量依次增大,化学键越来越稳定。所以N2、O2、F2与H2的反应能力依次增强。3.某些化学键的键能(kJ·mol-1)如下表所示。 (1)1 mol H2在2 mol Cl2中燃烧,放出热量________ kJ。 (2)在一定条件下,1 mol H2与足量的Cl2、Br2、I2分别反应,放出热量由多到少的顺序是________(填字母)。 a.Cl2>Br2>I2b.I2>Br2>Cl2 c.Br2>I2>Cl2 预测1 mol H2在足量F2中燃烧比在Cl2中燃烧放热________(填“多”或“少”)。 答案(1)184.9(2)a多 解析(1)根据键能数据可得,H2(g)+Cl2(g)===2HCl(g)ΔH=436 kJ·mol-1+242.7 kJ·mol-1-431.8 kJ·mol-1×2=-184.9 kJ·mol-1,1 mol H2在2 mol Cl2中燃烧,参加反应的H2和Cl2都是1 mol,生成2 mol HCl,故放出的热量为184.9 kJ。 (2)由表中数据计算知1 mol H2在Cl2中燃烧放热最多,在I2中燃烧放热最少;由以上结果分析,生成物越稳定,放出热量越多。因稳定性:HF>HCl,故1 mol H2在F2中燃烧比在Cl2中燃烧放热多。 二、键长和键角 1.键长 (1)概念:构成化学键的两个原子的核间距,因此原子半径决定共价键的键长,原子半径越小,共价键的键长越短。 (2)应用:共价键的键长越短,往往键能越大,表明共价键越稳定,反之亦然。 2.键角 (1)概念:在多原子分子中,两个相邻共价键之间的夹角。 (2)应用:在多原子分子中键角是一定的,这表明共价键具有方向性,因此键角影响着共价分子的空间结构。 (3)试根据空间结构填写下列分子的键角

2020高中化学第二章分子结构与性质1_2键参数——键能、键长和键角等电教学案新人教版选修3

第二课时键参数——键能、键长和键角等电子原理 学习目标:1. 认识键能、键长、键角等键参数的概念。2.能用键参数——键能、键长、键角说明简单分子的某些性质。3.知道等电子原理,结合实例说明“等电子原理的应用”。 [知识回顾] 1.相邻原子间通过共用电子对所形成的相互作用,叫做共价键。成键粒子一般为非金属元素原子(相同或不相同)或金属元素原子与非金属元素原子。 2.共价键的形成条件:非金属元素的原子之间形成共价键,大多数电负性之差小于1.7的金属元素与非金属元素的原子之间形成共价键。 3.共价键的特征:饱和性和方向性。 4.σ键特征:以形成化学键的两原子核的连线为轴作旋转操作,共价键电子云的图形不变,这种特征称为轴对称;强度较大。 π键特征:π键的电子云具有镜像对称性,即每个π键的电子云由两块组成,分别位于由两原子核构成平面的两侧,如果以它们之间包含原子核的平面为镜面,它们互为镜像;π键不能旋转;不如σ键牢固,较易断裂。 [要点梳理] 1.键参数——键能、键长与键角 (1)键能是指气态基态原子形成1_mol化学键释放的最低能量。单位是kJ·mol-1,键能越大,形成化学键时释放的能量越多,化学键越稳定。 (2)键长是衡量共价键稳定性的另一个参数,是形成共价键的两原子之间的核间距。键长越短,往往键能越大,表明共价键越稳定。 (3)键角 ①概念:多原子分子中,两个共价键之间的夹角叫键角。 ②写出下列分子的键角:CO2180°;H2O105°。多原子分子的键角一定,表明共价键具有方向性。

③键角、键长、键的极性决定着分子的空间构型。 2.等电子原理 等电子原理是指原子总数相同,价电子总数相同的分子具有相似的化学键特征,它们的许多性质相近。满足等电子原理的分子称为等电子体。 知识点一键参数与分子性质 1.一般来讲,形成共价键的两原子半径之和越小,共用电子对数越多,则共价键越牢固,含有该共价键的分子越稳定。如HF、HCl、HBr、HI中,分子的共用电子对数相同,因F、Cl、Br、I的原子半径依次增大,故共价键牢固程度H-F>H-Cl>H-Br>H-I,因此,稳定性HF>HCl>HBr>HI。 2.键长越短,往往键能越大,共价键越稳定。 3.键能与键长是衡量共价键稳定性的参数,键角是描述分子立体结构的参数。一般来说,如果知道分子中的键长和键角,这个分子的空间结构就确定了。如NH3分子的H-N-H 键角是107°,N-H键的键长是101×10-12m,就可以断定NH3分子是三角锥形分子,如图。 4.F-F键键长短,键能小的解释 F原子的半径很小,因此其键长短,而由于键长短,两F原子形成共价键时,原子核之间的距离很近,排斥力很大,因此键能小,F2的稳定性差,很容易与其他物质反应。 [问题探究] 1.氮气为什么能在空气中稳定存在。

2.1.2键能键长键角

第二单元第一节共价键模型 第1课时共价键模型 【复习回顾】 1.共价键的分类 【练习1】 下列关于乙醇分子的说法正确的是()(提示乙醇的结构式) A.分子中共含有8个极性共价键B.分子中不含有非极性共价键 C.分子中只含有σ键D.分子中含有1个π键 【认识新知】 二、键参数——键能、键长与键角 1.键能(课本P36) (1)概念:在101.3kPa,298K条件下,断开1molAB(g)分子中的化学键,使其分别生成气态A原子和气态B原子所吸收地能量,叫A--B键的键能, (2)表示方式为E A-B ,单位是kJ/mol (3)意义:表示共价键强弱的强度。键能越大,键越牢固,含有该键的分子越稳定。 (注意:稳定性指的是物质的化学性质。) 应用: (1)判断键的稳定性。键能越大,键越______,物质本身具有的能量________。 (2)判断反应的热效应。因为化学变化的本质为________的断裂和________的形成,所以可以利用键能判断反应为放热或吸热反应,如果断开键需要的能量大于形成键放出的能量,则反应为________反应,否则为________反应。 【练习2】下列分子中键能最大的是( ),最小的是()。 A.HF B.HCl C.HBr D.HI 【练习3】下列事实不能用键能的大小解释的是()

A.氮元素的电负性较强,但N2的化学性质很稳定 B.稀有气体一般很难发生反应 C.HF、HCl、HBr、HI的稳定性逐渐减弱D.F2比O2更易与H2反应 2.键长 (1)概念:两个成键原子之间地原子核间间隔叫键长. 问题:HCl种H-Cl键的键长完全等于H、Cl两原子半径之和? (2)意义:键长越短,化学键越强,键越牢固,含有该键的分子越稳定 小结:键能和键长共同决定共价键的稳定性。 【练习4】从键长的角度来判断下列共价键中最稳定的是( ) A.H?F B.H?N C.H?C D.H?S 【练习5】从实验测得不同物质中O—O之间的键长和键能的数据如下表: 其中x、w>z>y>x,该规律性是( ) A.成键时电子数越多,键能越大 B.键长越长,键能越小 C.成键所用的电子数越少,键能越大 D.成键时电子对越偏移,键能越大3.键角 (1)概念:多原子分子中,两个化学键的夹角。 (2)常见物质的键角及分子构型(记忆) ①CO2键角:________,分子构型:____________。 ②H2O 键角:________,分子构型:____________。 ③NH3键角:________,分子构型:____________。 应用:主要用来描述多原子分子的空间构型。键长和键角共同决定了分子的结构 【练习6】下列分子中键角最大的是( ) A. CH4 B. CO2 C. H2O D. NH3 【练习7】下列说法中正确的是( ) A.分子中键的极性越强,分子越稳定 B.在分子中,化学键可能只有π键而没有σ键 C.分子中共价键的键能越大,键长越长,则分子越不稳定 D.若把H2S写成H3S,违背了共价键的饱和性

保定高中化学知识点跟踪训练7键参数__键能键长和键角等电含解析

课时跟踪训练(七) [基础巩固] 1.N-H键键能的含义是( ) A.由N和H形成1 mol NH3所放出的能量 B.把1 mol NH3中的共价键全部拆开所吸收的能量 C.拆开约6.02×1023个N-H键所吸收的能量 D.形成1个N-H键所放出的能量 [解析]N-H键的键能是指形成1 mol N-H键放出的能量或拆开1 mol N-H键所吸收的能量,不是指形成1个N-H键释放的能量。1 mol NH3中含有3 mol N-H键,拆开1 mol NH3或形成1 mol NH3吸收或放出的能量应是1 mol N-H键键能的3倍。 [答案] C 2.在白磷(P4)分子中,4个P原子分别处在正四面体的四个顶点,结合有关P原子的成键特点,下列有关白磷的说法正确的是( ) A.白磷分子的键角为109°28′ B.分子中共有4对共用电子对 C.白磷分子的键角为60° D.分子中有6对孤电子对 [解析]白磷的空间结构为,键角为60°,分子中共有6对共用电子对,有4对孤电子对。 [答案] C 3.下列说法正确的是( ) A.键能越大,表示该分子越容易受热分解 B.共价键都具有方向性 C.在分子中,两个成键的原子间的距离叫键长 D.H-Cl的键能为431.8 kJ·mol-1,H-Br的键能为366 kJ·mol-1,说明HCl比HBr 分子稳定 [解析]键能越大,分子越稳定,A项错,D项正确。H-H键没有方向性,B项错。形成共价键的两个原子之间的核间距叫做键长,C项错。 [答案] D 4.下列说法中正确的是( ) A.分子中键能越大,键长越短,则分子越稳定 B.只有非金属原子之间才能形成共价键 C.水分子可表示为H-O-H,分子中键角为180°

高三化学 键能键长键角三者的关系

键能键长键角三者的关系 共价键的键参数: (1)键能:指气态基态原子形成1mol化学键释放的最低能量。键能越大,化学键越稳定。 (2)键长:指成键原子的核间距。键长越短,共价键越稳定。 注意:我们通常通过比较两原子的共价半径来比较共价单键键长的大小,但共价键的键长并不等于两原子的共价半径之和。 (3)键角:在多原子分子内,两个共价键之间的夹角。 键角是描述分子立体结构的重要参数。多原子分子的键角是一定的,表明共价键具有方向性。 化学键分为离子键、共价键和金属键三种,共价键可以进一步分成共价键和配位键。化学键是纯净物分子内或晶体内相邻两个或多个原子或离子间强烈的相互作用力的统称,使离子相结合或原子相结合的作用力通称为化学键。 一、离子键 离子键是由电子转移失去电子者为阳离子,获得电子者为阴离子形成的。即正离子和负离子之间由于静电引力所形成的化学键。离子既可以是单离子,如Na+、CL-;也可以由原子团形成;如SO4 2-,NO3-等。 离子键的作用力强,无饱和性,无方向性。离子键形成的矿物总是以离子晶体的形式存在。 二、共价键

共价键的形成是相邻两个原子之间自旋方向相反的电子相互配对,此时原子轨道相互重叠,两核间的电子云密度相对地增大,从而增加对两核的引力。共价键的作用力很强,有饱和性与方向性。因为只有自旋方向相反的电子才能配对成键,所以共价键有饱和性;另外,原子轨道互相重叠时,必须满足对称条件和最大重叠条件,所以共价键有方向性。 三、金属键 由于金属晶体中存在着自由电子,整个金属晶体的原子或离子与自由电子形成化学键。这种键可以看成由多个原子共用这些自由电子所组成,所以有人把它叫做改性的共价键。金属键没有方向性与饱和性。 说明:键长、键能决定共价键的强弱和分子的稳定性。原子半径越小,键长越短,键能越大,分子越稳定。例如,分子中: X原子半径:

价键理论概述

价键理论概述 摘要:价键理论是指固体或分子中原子的价电子结构和原子与原子之间形成的 键以及两者关系的理论。它是从原子和原子结构层次, 深入了解材料一种重要理论, 能帮助人们设计满足需要的新材料。根据收集到的资料, 对价键理论及其应用进行扼要地归纳与阐述。 关键词:价键理论共价键键参数金属应用 价键理论起源于1916 年美国科学家G1 N1Lew is[1]提出的电子配对理论。1927 年德国科学家W1 He itler与F1 L London[2]第一个用量子力学处理H2分子, 揭示了共价键的本质。1930 年前后Pauling[3]和S later[4]等把这个理论发展成为一种全面的键理论, 称为价键理论。金属的价键理论实质就是用电子配对法来处理金属键。这一理论在金属材料中有着重要的指导作用, 它能帮助人们从电子结构和原子结构层次了解晶体结构, 并以此寻找需要的金属新材料。因此, 国内外科学家, 在这方面做了大量的工作, 鉴于价键理论的重要性, 对其发展与应用做扼要的归纳与阐述。 一、键价理论的基本知识 1.基本概念 价键理论是在Pauling 离子晶体电价规则基础上发展起来的, 它继承了电价规则中/原子的价分配在原子所连诸键上0的基本概念, 同时允许原子所连诸键的键价做不均匀的分配。价鍵的主要内容包括以下几个方面: (1)在价键理论或价键法则中, 将在反应中保持不变的最基本的实体称作原子。在由广义( Lewis)酸(阳离子)与广义碱(阴离子)组成的离子性化合物中, 荷正电者为正价, 荷负电者为负价。 (2)化学计量要求离子性(或酸碱)化合物中的总正价与总负价的绝对值相等。即化合物整体保持电中性的原理。 (3)原子以化学键与其近邻原子键合, 其键连原子数称为该原子的配位数, 此数 亦为该原子参与化学键的成键数。 (4)价键理论认为, 原子的价将分配在它所参与的诸键上, 使每个键均有一定的 键价, 并符合价和规则。这一概念是价键理论最核心的内容。 (5)价键与键长等各种键的性质密切相关。其中最重要者乃是价键与键长间的指数关系。 2.价键理论的要点 (1)两个原子的价层轨道上,为了增加体系的稳定性,不成对电子可以通过自旋反平行的方式配对成键,形成最多数目的化学键(为何自旋反平行:由泡利不相容原理,在同一体系中不可能有两个状态完全相同的电子)例如氮原子外层有3 个2p 电子分别占据2px,2py,2pz,它可以和另一个氮原子的3 个自旋相反的成 单电子配对,形成共价三键而成N2 对于水分子,氧原子外层有两个成单的2p 电子而氢原子只有一个成单的1s 电子,因此,一个O 与两个H形成H2O。且在成键过程中,两单原子以自旋相反形成稳定化学键,释放能量,这是共价键形成的能量依据,也就是说符合能量最低原理。又对于CO,C 中成单的2p 电子与O 两个成单的2p 电子形成共价键,而C 中有空的2pz 轨道,2pz 中两电子可被两个2pz 共用形成共价配位键,常用→。注意正常共价键与配位键差别仅为形成过程,

相关文档
最新文档