分数阶微分方程

分数阶微分方程
分数阶微分方程

分数阶微分方程-课件

分数阶微分方程 第三讲分数阶微分方程基本理论 一、分数阶微分方程的出现背景及研究现状 1、出现背景 分数阶微积分是关于任意阶微分和积分的理论,它与整数阶微积分是统一的,是整数阶微积分的推广。 整数阶微积分作为描述经典物理及相关学科理论的解析数学工具已为人们普遍接受,很多问题的数学模型最终都可以归结为整数阶微分方程的定解问题,其无论在理论分析还是数值求解方面都已有较完善的理论。但当人们进入到复杂系统和复杂现象的研究时,经典整数阶微积分方程对这些系统的描述将遇到以下问题: (1)需要构造非线性方程,并引入一些人为的经验参数和与实际不符的假设条件; (2)因材料或外界条件的微小改变就需要构造新的模型; (3)这些非线性模型无论是理论求解还是数值求解都非常繁琐。 基于以上原因,人们迫切期待着有一种可用的数学工具和可依据的基本原理来对这些复杂系统进行建模。分数阶微积分方程非常适合于刻画具有记忆和遗传性质的材料和过程,其对复杂系统的描述具有建模简单、参数物理意义清楚、描述准确等优势,因而成为复杂力学与物理过程数学建模的重要工具之一。 2、研究现状 在近三个世纪里,对分数阶微积分理论的研究主要在数学的纯理论领域里进行,似乎它只对数学家们有用。然而在近几十年来,分数阶微分方程越来越多的被用来描述光学和热学系统、流变学及材料和力学系统、信号处理和系统识别、控制和机器人及其他应用领域中的问题。分数阶微积分理论也受到越来越多的国内外学者的广泛关注,特别是从实际问题抽象出来的分数阶微分方程成为很多数学工作者的研究热点。随着分数阶微分方程在越来越多的科学领域里出现,无论对分数阶微分方程的理论分析还是数值计算的研究都显得尤为迫切。然而由于分数阶微分是拟微分算子,它的保记忆性(非局部性)对现实问题进行了优美刻画的同时,也给我们的分析和计算造成很大困难。 在理论研究方面,几乎所有结果全都假定了满足李氏条件,而且证明方法也和经典微积分方程一样,换句话说,这些工作基本上可以说只是经典微积分方程理论的一个延拓。对分数阶微分方程的定性分析很少有系统性的结果,大多只是给出了一些非常特殊的方程的求解,且常用的求解方法都是具有局限性的。 在数值求解方面,现有分数阶方程数值算法还很不成熟,主要表现为: (1)在数值计算中一些挑战性难题仍未得到彻底解决,如长时间历程的计算和大空间域的计算等; (2)成熟的数值算法比较少,现在研究较多的算法主要集中在有限差分方法与有限单元法; (3)未形成成熟的数值计算软件,严重滞后于应用的需要。

一阶常微分方程的奇解

摘要.................................................... 错误!未定义书签。 1.何谓奇解.............................................. 错误!未定义书签。 2.奇解的产生............................................ 错误!未定义书签。 3.包络跟奇解的关系...................................... 错误!未定义书签。 4.理论上证明C-判别曲线与P-判别曲线方法................. 错误!未定义书签。 克莱罗微分方程 ..................................... 错误!未定义书签。 5.奇解的基本性质........................................ 错误!未定义书签。 定理1 ............................................. 错误!未定义书签。 定理2 ............................................. 错误!未定义书签。 定理3 ............................................. 错误!未定义书签。 6.小结.................................................. 错误!未定义书签。参考文献:.............................................. 错误!未定义书签。

高阶线性微分方程常用解法介绍

高阶线性微分方程常用解法简介 关键词:高阶线性微分方程 求解方法 在微分方程的理论中,线性微分方程是非常值得重视的一部分内容,这不仅 因为线性微分方程的一般理论已被研究的十分清楚,而且线性微分方程是研究非线性微分方程的基础,它在物理、力学和工程技术、自然科学中也有着广泛应用。下面对高阶线性微分方程解法做一些简单介绍. 讨论如下n 阶线性微分方程:1111()()()()n n n n n n d x d x dx a t a t a t x f t dt dt dt ---++++= (1),其中()i a t (i=1,2,3,,n )及f(t)都是区间a t b ≤≤上的连续函数,如果 ()0f t ≡,则方程(1)变为 1111()()()0n n n n n n d x d x dx a t a t a t x dt dt dt ---++++= (2),称为n 阶齐次线性微分方程,而称一般方程(1)为n 阶非齐次线性微分方程,简称非齐次线性微分方程,并且把方程(2)叫做对应于方程(1)的齐次线性微分方程. 1.欧拉待定指数函数法 此方法又叫特征根法,用于求常系数齐次线性微分方程的基本解组。形如 111121[]0,(3),n n n n n n n d x d x dx L x a a a x dt dt dt ---≡++++=其中a a a 为常数,称为n 阶常系数齐次线性微分方程。 111111111111[]()()()n t n t t t t n n n n n n n t t n n n n n n n d e d e de L e a a a e dt dt dt a a a e F e F a a a n λλλλλλλλλλλλλλλλ---------≡++++=++++≡≡++++其中=0(4)是的次多项式. ()F λ为特征方程,它的根为特征根. 1.1特征根是单根的情形 设12,,,n λλλ是特征方程111()0n n n n F a a a λλλλ--≡++++=的n 个彼此不相等的根,则应相应地方程(3)有如下n 个解:12,,,.n t t t e e e λλλ(5)我们指出这n 个解在区间a t b ≤≤上线性无关,从而组成方程的基本解组. 如果(1,2,,)i i n λ=均为实数,则(5)是方程(3)的n 个线性无关的实值 解,而方程(3)的通解可表示为1212,n t t t n x c e c e c e λλλ=+++其中12,,,n c c c 为任意常数. 如果特征方程有复根,则因方程的系数是实常数,复根将称对共轭的出现.设1i λαβ=+是一特征根,则2i λαβ=-也是特征根,因而于这对共轭复根

一阶常微分方程解法总结

页脚内容1 第 一 章 一阶微分方程的解法的小结 ⑴、可分离变量的方程: ①、形如 )()(y g x f dx dy = 当0)(≠y g 时,得到 dx x f y g dy )()(=,两边积分即可得到结果; 当0)(0=ηg 时,则0)(η=x y 也是方程的解。 例1.1、xy dx dy = 解:当0≠y 时,有xdx y dy =,两边积分得到)(2ln 2为常数C C x y += 所以)(11212 C x e C C e C y ±==为非零常数且 0=y 显然是原方程的解; 综上所述,原方程的解为)(1212 为常数C e C y x = ②、形如0)()()()(=+dy y Q x P dx y N x M 当0)()(≠y N x P 时,可有dy y N y Q dx x P x M ) ()()()(=,两边积分可得结果; 当0)(0=y N 时,0y y =为原方程的解,当0(0=) x P 时,0x x =为原方程的解。 例1.2、0)1()1(22=-+-dy x y dx y x

页脚内容2 解:当0)1)(1(22≠--y x 时,有dx x x dy y y 1 122-=-两边积分得到 )0(ln 1ln 1ln 22≠=-+-C C y x ,所以有)0()1)(1(22≠=--C C y x ; 当0)1)(1(22=--y x 时,也是原方程的解; 综上所述,原方程的解为)()1)(1(22为常数C C y x =--。 ⑵可化为变量可分离方程的方程: ①、形如)(x y g dx dy = 解法:令x y u = ,则udx xdu dy +=,代入得到)(u g u dx du x =+为变量可分离方程,得到)(0),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x x y f =。 ②、形如)0(),(≠+=ab by ax G dx dy 解法:令by ax u +=,则b du adx dy +=,代入得到)(1u G b a dx du b =+为变量可分离方程,得到)(0),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x by ax f =+。 ③、形如 )(222111c y b x a c y b x a f dx dy ++++= 解法:01、02211 =b a b a ,转化为)(by ax G dx dy +=,下同①; 02、0221 1 ≠b a b a ,???=++=++00222111c y b x a c y b x a 的解为),(00y x ,令???-=-=00y y v x x u

分数阶微积分发展现状及展望教学文稿

分数阶微积分发展现状及展望 在数学领域中,大体分为五种研究方向:基础数学,应用数学,计 算数学,概率论与数理统计,统计学与控制论。这五个方向对数学在当 代的发展都有不可或缺的作用。从研究内容来讲,方程、算子、群论、 图论、代数、几何等等都是数学领域重要的研究对象。作为基础数学专 业分数阶微分方程方向的博士生,本文将从分数阶微分方程的发展的历 史及现状、本人对分数阶微分方程未来发展的看法来介绍分数阶微分的 基本知识。 (一)、发展历史及现状 牛顿和莱布尼兹发明的微积分是现代数学与古典数学的分水岭。分数阶微积分是关于任意阶微分和积分的理论,它与整数阶微积分是统一的,是整数阶微积分的推广。整数阶微积分作为描述经典物理及相关学科理论的解析数学工具已为人们普遍接受,很多问题的数学模型最终都可以归结为整数阶微分方程的定解问题,其无论在理论分析还是数值求解方面都已有了比较完善的理论。但当人们进入到复杂系统和复杂现象的研究时,经典整数阶微积分方程对这些系统的描述将遇到一些问题,如:需要构造非线性方程,并引入一些人为的经验参数和与实际不符的假设条件;因材料或外界条件的微小改变就需要构造新的模型等等。基于以上原因,人们迫切期待着有一种可用的数学工具和可依据的基本原理来对这些复杂系统进行建模。分数阶微积分方程非常适合于刻画具有记忆和遗传性质的材料和过程,其对复杂系统的描述具有建模简单、参数物理意义清楚、描述准确等优势,因而成为复杂力学与物理过程数学建模的重要工具之一。 对大多数研究人员和工程师而言,分数阶微积分也许还是比较陌生的,但它实际上早在300多年前就被提出。1695年9月,洛必达 (L’Hospital)在给莱布尼兹的著名信件中就写到“对于简单的线性函数 f(x)=x,如果函数导数次数为分数而不是整数那会怎样”。这是公认的第一次提及分数阶微分。1832年,刘维尔(Liouville)成功的应用了自己提出的分数阶导数的定义,解决了势理论问题。之后刘维尔发表的一系列文 章使他成为分数阶微积分理论的实际级创始人。1974年,Oldham与Spanier出版了第一本关于分数阶微积分理论的专著。 在近三个世纪里,对分数阶微积分理论的研究主要在数学的纯理论领域里进行,但是从近几十年,分数阶微分方程越来越多的被用来描述光学和热学系统、流变学及材料和力学系统、信号处理和系统识别、控制和机器人及其他应用领域中的问题。分数阶微积分理论也受到越来越多的国内

一阶常微分方程解法总结

第 一 章 一阶微分方程的解法的小结 ⑴、可分离变量的方程: ①、形如 )()(y g x f dx dy = 当0)(≠y g 时,得到 dx x f y g dy )() (=,两边积分即可得到结果; 当0)(0=ηg 时,则0)(η=x y 也是方程的解。 例1.1、 xy dx dy = 解:当0≠y 时,有 xdx y dy =,两边积分得到)(2ln 2为常数C C x y += 所以)(112 12 C x e C C e C y ±==为非零常数且 0=y 显然是原方程的解; 综上所述,原方程的解为)(12 12 为常数C e C y x = ②、形如0)()()()(=+dy y Q x P dx y N x M 当0)()(≠y N x P 时,可有 dy y N y Q dx x P x M ) () ()()(=,两边积分可得结果; 当0)(0=y N 时,0y y =为原方程的解,当0(0=) x P 时,0x x =为原方程的解。 例1.2、0)1()1(2 2 =-+-dy x y dx y x 解:当0)1)(1(2 2 ≠--y x 时,有 dx x x dy y y 1 122-=-两边积分得到 )0(ln 1ln 1ln 22≠=-+-C C y x ,所以有)0()1)(1(22≠=--C C y x ; 当0)1)(1(2 2 =--y x 时,也是原方程的解; 综上所述,原方程的解为)()1)(1(2 2 为常数C C y x =--。 ⑵可化为变量可分离方程的方程: ①、形如 )(x y g dx dy = 解法:令x y u =,则udx xdu dy +=,代入得到)(u g u dx du x =+为变量可分离方程,得到

常微分方程考研讲义 一阶微分方程解的存在定理

第三章一阶微分方程解的存在定理 [教学目标] 1.理解解的存在唯一性定理的条件、结论及证明思路,掌握逐次逼近法,熟练 近似解的误差估计式。 2.了解解的延拓定理及延拓条件。 3.理解解对初值的连续性、可微性定理的条件和结论。 [教学重难点] 解的存在唯一性定理的证明,解对初值的连续性、可微性定理的 证明。 [教学方法] 讲授,实践。 [教学时间] 12学时 [教学内容] 解的存在唯一性定理的条件、结论及证明思路,解的延拓概念及延 拓条件,解对初值的连续性、可微性定理及其证明。 [考核目标] 1.理解解的存在唯一性定理的条件、结论,能用逐次逼近法解简单的问题。 2.熟练近似解的误差估计式,解对初值的连续性及可微性公式。 3.利用解的存在唯一性定理、解的延拓定理及延拓条件能证明有关方程的某些性质。 §1 解的存在性唯一性定理和逐步逼近法 微分方程来源于生产实践际,研究微分方程的目的就在于掌握它所反映的客 观规律,能动解释所出现的各种现象并预测未来的可能情况。在第二章介绍了一 阶微分方程初等解法的几种类型,但是,大量的一阶方程一般是不能用初等解法 求出其通解。而实际问题中所需要的往往是要求满足某种初始条件的解。因此初 值问题的研究就显得十分重要,从前面我们也了解到初值问题的解不一定是唯一的。他必须满足一定的条件才能保证初值问题解的存在性与唯一性,而讨论初值 问题解的存在性与唯一性在常微分方程占有很重要的地位,是近代常微分方程定 性理论,稳定性理论以及其他理论的基础。 例如方程 过点(0,0)的解就是不唯一,易知0 y=是方程过(0,0)的解,此外,容易验证,2 =或更一般地,函数 y x 都是方程过点(0,0)而且定义在区间01 <<的任一数。 c ≤≤上的解,其中c是满足01 x

分数阶微分方程数值解的一种逼近方法.

分数阶微分方程数值解的一种逼近方法 By:Pankaj Kumar, Om Prakash Agrawal 摘要 本文提出了一类分数阶微分方程(FDEs)的数值解方案.在这种方法中,FDEs 被Caputo型分数阶导数所表现. Caputo型分数阶导数的属性可以让一个分数阶微分方程减弱为一个Volterra型积分方程. 这样做了之后,许多研究Volterra 型积分方程的数值方法也可以应用于寻找FDEs的数值解. 本文总时间被划分为一组小区间,在两个连续区间中,用二次多项式逼近未知函数. 这些近似被替换成转化的Volterra型积分方程由此获得一组方程. 这些方程的解提供了FDE的解. 这种方法被应用于解决两种类型的FDEs,线性和非线性. 用这里给出的方法得到的解能与解析解和其他方法的数值解较好的吻合. 同时结果说明这种数值方法是稳定的. 1.引言 本文讨论分数阶微分方程的数值解. 分数阶导数和分数阶积分近年来收到了广泛的关注. 在许多实际应用中,分数阶导数和分数阶积分为考虑的系统提供了更加精确地模型. 比如,分数阶导数已经被成功地运用到模拟许多粘性材料的依赖频率的阻尼行为.1980年之前,Bagley 和Torvik提出了这个领域已经被研究的工作的一个回顾,并且说明了半阶导数模型可以非常好地描述阻尼材料的频率以来. 另一些学者说明了分数阶导数和分数阶积分在电化学过程,电解质极化,有色噪声,粘性材料和混沌领域的应用. Mainardi,Rossikhin和Shitikova 提出了分数阶导数和分数阶积分在一般固体力学,特定粘弹性阻尼模型中的应用的调查. Magin提出了分数阶微积分在生物工程的三个关键部分的回顾. 分数阶导数和分数阶积分在其他领域的应用以及相关的数学工具和技巧还可以在许多其他文献上找到. 系统模型中分数阶导数的引进大多会导致分数阶微分方程的出现. 对某些特定的分数阶微分方程在通常系统条件下的解,已经有几种方法被找到. 这些方法包括,拉普拉斯变换,傅里叶变换,模态综合法和特征向量展开法,数值法以

分数阶微分方程_课件

分数阶微分方程 一、 预备知识 1、 分数阶微积分经典定义回顾 作为分数阶微积分方程的基础,本书在第二章中对分数阶微积分的定义及性质做了系统的介绍,为了接下来讨论的需要,我们首先对其进行一个简要的回顾。 (1)分数阶微积分的主要思想 如上图所示,分数阶微积分的主要思想是推广经典的整数阶微积分,从而将微积分的概念延拓到整个实数轴,甚至是整个复平面。但由于延拓的方法多种多样,因而根据不同的需求人们给出了分数阶微积分的不同定义方式。然而这些定义方式不仅只能针对某些特定条件下的函数给出,而且只能满足人们的某些特定需求,迄今为止,人们仍然没能给出分数阶微积分的一个统一的定义, 这对分数阶微积分的研究与应用造成了一定的困难。 1、分数阶微分的定义 为了满足实际需要,下面我们试图从形式上对分数阶微积分给出一种统一的表达式。 分数阶微积分的主要思想是推广经典的累次微积分,所有推广方法的共同目标是以非整数参数p 取代经典微积分符号中的整数参数n ,实际上,任意的n 阶微分都可以看成是一列一阶微分的叠加: ()()n n n d f t d d d f t dt dt dt dt = (1) 由此,我们可以给出一种在很多实际应用中十分重要的分数阶微积分的推广方 式。首先,我们假设已有一种合适的推广方式来将一阶微分推广为α(01α≤≤) 阶微分,即d D dt α→是可实现的。那么类似地可得到(1)的推广式为: ()()n n D f t D D D f t αααα= (2) 这种推广方式最初是由..K S Miller 和.B Ross 提出来的,其中D α采用的是R L -分数阶微分定义,他们称之为序列分数阶微分。序列分数阶微分的其他形式可以通过将D α替换为G L -分数阶微分、Caputo 分数阶微分或其他任意形式

一阶常微分方程的解法

一阶常微分方程的解法 摘要:常微分方程是微积分学的重要组成部分,广泛用于具体问题的研究中,在整个数学中占有重要的地位。本文对一阶常微分方程的解法作了简要的总结,并举例加以分析了变量可分离方程,线性微分方程,积分因子,恰当微分方程,主要归纳了一阶微分方程的初等解法,并以典型例题加以说明。 关键词:变量分离;积分因子;非齐次微分方程;常数变易法 Solution of first-order differential equation Abstract: Differential equations, important parts of calculus, are widely used in the research of practical problems, which also play important role in mathematics. The solution of a differential equation is summarized briefly, and illustrates the analysis of variable separable equation, linear differential equation, integral factor, exact differential equation, mainly summarizes the elementary solution of first order differential equations, and the typical examples to illustrate. Keywords: variable separation; integral factor; non-homogeneous differential equation; constant variation method 1. 引言 一阶常微分方程初等解法,就是把常微分方程的求解问题转化为积分问题, 能用这种方法求解的微分方程称为可积方程. 本文通过对一阶微分方程的初等解法的归纳与总结,以及对变量分离,积分因子,微分方程等各类初等解法的简要分析,同时结合例题把常微分方程的求解问题化为积分问题,进行求解. 2. 一般变量分离 2.1 变量可分离方程 形如 ()()dy f x g y dx = (1.1) 或 1122()()()()M x N y dx M x N y dy = (1.2) 的方程,称为变量可分离方程。分别称(1.1)、(1.2)为显式变量可分离方程和 微分形式变量可分离方程[1] . (1) 显式变量可分离方程的解法 在方程(1.1)中, 若()0g y ≠,(1.1)变形为 ()() dy f x dx g y =

一阶常微分方程的奇解

摘要 (2) 1.何谓奇解 (2) 2.奇解的产生 (3) 3.包络跟奇解的关系 (4) 4.理论上证明C-判别曲线与P-判别曲线方法 (5) 4.1 克莱罗微分方程 (9) 5.奇解的基本性质 (12) 5.1 定理1 (12) 5.2 定理2 (14) 5.3 定理3 (14) 6.小结 (14) 参考文献: (15)

一阶常微分方程的奇解 摘要 在常微分方程中,我们知道方程的解可以有多种,现在我们来讨论求奇解的方法。我们看到某些微分方程,会存在一些特殊的积分曲线,他并不属于这方程的积分曲线族,但是,在这些特殊的积分曲线上的每一点处,都有积分曲线族中的一条曲线和他在此处相切。从而我们引出了积分曲线族的包络,而为了求微分方程的奇解,,我们应先求出他的通解,然后求通解的包络。 关键词:奇解,包络,C-判别式,P-判别式 1.何谓奇解 设一阶隐式方程),,(,y y x F =0有一特解

)(:x y ψ=Γ,j x ∈ 如果对每一点Γ∈P ,在P 点的任何一个领域,方程),,(,y y x F =0都有一个不同于Γ的解在P 点与Γ相切,则称Γ是微分方程的),,(,y y x F =0的奇解 定义:如果一个一阶微分方程的一个特解的积分曲线上的每一点都至少和这个微分方程的不同的积分曲线相切,并且这相切的积分曲线在切点的任何邻域都不重合,则称这个特解为这个微分方程的奇解 2.奇解的产生 先看一个例子,求方程 033=-?? ? ??y dx dy (1) 或与它等价的方程 3y dx dy = 的解。 经分离变量后,可得(1)的通解 3)(27 1c x y += 容易看出,y=0也是原方程的一个解。现在来研究这个解y=0有什么特殊的地方。由图我们看到,在解y=0上的每一 点)0,(0x 处相切,这种特殊的积分曲线y=0 称为奇积分曲线,他所对应的解就是奇 解,这就是奇解的产生。 我们现在给出曲线族包络的定义 某些微分方程,存在一些特殊的积分 曲线,会存在一些特殊的积分曲线,他并 不属于这方程的积分曲线族,但是,在这些特殊的积分曲线上的每一点处,都有积分曲线族中的一条曲线和他在此处相切。在几何学里,这些特殊的积分曲线称为上述积分曲线族的包络,在微分方程里,这些特殊的积分曲线所对应的解酒称为方程的奇解。

(整理)二阶常系数线性微分方程的解法word版.

第八章 8.4讲 第四节 二阶常系数线性微分方程 一、二阶常系数线形微分方程的概念 形如 )(x f qy y p y =+'+'' (1) 的方程称为二阶常系数线性微分方程.其中p 、q 均为实数,)(x f 为已知的连续函数. 如果0)(≡x f ,则方程式 (1)变成 0=+'+''qy y p y (2) 我们把方程(2)叫做二阶常系数齐次线性方程,把方程式(1)叫做二阶常系数非齐次线性方程. 本节我们将讨论其解法. 二、二阶常系数齐次线性微分方程 1.解的叠加性 定理1 如果函数1y 与2y 是式(2)的两个解, 则2211y C y C y +=也是式(2)的解,其中21,C C 是任意常数. 证明 因为1y 与2y 是方程(2)的解,所以有 0111 =+'+''qy y p y 0222 =+'+''qy y p y 将2211y C y C y +=代入方程(2)的左边,得 )()()(22112211221 1y C y C q y C y C p y C y C ++'+'+''+'' =0)()(2222111 1=+'+''++'+''qy y p y C qy y p y C 所以2211y C y C y +=是方程(2)的解. 定理1说明齐次线性方程的解具有叠加性. 叠加起来的解从形式看含有21,C C 两个任意常数,但它不一定是方程式(2)

的通解. 2.线性相关、线性无关的概念 设,,,,21n y y y 为定义在区间I 内的n 个函数,若存在不全为零的常数 ,,,,21n k k k 使得当在该区间内有02211≡+++n n y k y k y k , 则称这n 个函数在区间I 内线性相关,否则称线性无关. 例如 x x 2 2 sin ,cos ,1在实数范围内是线性相关的,因为 0sin cos 12 2≡--x x 又如2,,1x x 在任何区间(a,b)内是线性无关的,因为在该区间内要使 02321≡++x k x k k 必须0321===k k k . 对两个函数的情形,若 =21y y 常数, 则1y ,2y 线性相关,若≠2 1y y 常数, 则1y ,2y 线性无关. 3.二阶常系数齐次微分方程的解法 定理 2 如果1y 与2y 是方程式(2)的两个线性无关的特解,则 212211,(C C y C y C y +=为任意常数)是方程式(2)的通解. 例如, 0=+''y y 是二阶齐次线性方程,x y x y cos ,sin 21==是它的两个解,且 ≠=x y y tan 2 1 常数,即1y ,2y 线性无关, 所以 x C x C y C y C y cos sin 212211+=+= ( 21,C C 是任意常数)是方程0=+''y y 的通解. 由于指数函数rx e y =(r 为常数)和它的各阶导数都只差一个常数因子,

稳定性分析与分数阶微分方程

东华大学 2013~ 2014学年第II 学期研究生期末考试试题 考试学院:理学院 考试专业:基础数学应用数学 考试课程名称:稳定性分析与分数阶微分方程 学号姓名得分 (考生注意:答案必须写在答题上,写在本试题纸上一律不给分)[试题部分] 一、根据所学知识,概述Lyapunov第二方法的核心思想和基本理 论。 二、针对某一类问题或某个模型,运用Lyapunov第二方法进行 稳定性分析。 三、综述分数阶微积分的三种定义方式及其性质和联系。 四、谈谈你对分数阶微分方程研究的认识和看法。 要求:1. 第二题结合每人曾经报告过的文献来完成; 2. 用电子文档打印,并提交电子文件。

一、根据所学知识,概述Lyapunov 第二方法的核心思想和基本理论 李雅普诺夫(Lyapunov )提出了两种方法,分析运动的稳定性: 第一方法包含许多步骤,包括最终用微分方程的显式解来对稳定性近行分析,是一个间接的方法。 第二方法不是求解微分方程组,而是通过构造李雅普诺夫函数(标量函数)来直接判断运动的稳定性,因此又称为直接法。 李雅普诺夫直接法(也称第二方法)是整个稳定性理论的核心方法,李雅普诺夫1892年提出的稳定性理论、渐近稳定性定理及两个不稳定性定理,奠定了运动稳定性的基础,被誉为稳定性的基本定理。目前仍是研究非线性、时变系统最有效的方法,是许多系统控制律设计的基本工具。 李雅普诺夫第二方法的核心思想: 以二维自治系统为例,李雅普诺夫直接法借助于一个V 函数,利用方程右端的信息来探测解的稳定性的原始几何思想。 考虑方程 ?????==),(),(21222111 x x f dt dx x x f dt dx 0)0,0()0,0(21==f f 其中21,f f 连续,保证解的唯一性. 设),()(21x x V x V =是K 类函数,且],[)(1 21+∈R R C x V ,此方程的解 T t x t x t x ))(),(()(21=的信息是未知的,但它的导数满足 )),(),,((),(2122112. 1. x x f x x f x x =的信息是已知的,因为21,f f 是已知函数. 姑且把任意解)(t x 代入)(x V 得到))((:)(t x V t V =. 粗略的说,平凡解的稳定性(包括渐近稳定性、稳定、不稳定)是由解)(t x “走近”原点,“不远离”原点,“远离”原点来决定的,而这些信息分别等价于 ))((t x V 是t 的下降、不增、上升函数。由于],[)(121+∈R R C x V ,后者又分别等价于 0)) ((,0))((,0))((>≤

一阶常微分方程的解法

一阶常微分方程的解法

一阶常微分方程的解法 摘要:常微分方程是微积分学的重要组成部分,广泛用于具体问题的研究中,在整个数学中占有重要的地位。本文对一阶常微分方程的解法作了简要的总结,并举例加以分析了变量可分离方程,线性微分方程,积分因子,恰当微分方程,主要归纳了一阶微分方程的初等解法,并以典型例题加以说明。 关键词:变量分离;积分因子;非齐次微分方程;常数变易法 Solution of first-order differential equation Abstract: Differential equations, important parts of calculus, are widely used in the research of practical problems, which also play important role in mathematics. The solution of a differential equation is summarized briefly, and illustrates the analysis of variable separable equation, linear differential equation, integral factor, exact differential equation, mainly summarizes the elementary solution of first

例1:求解方程2211y dy dx x -=-. 解:当1y ≠±时,方程的通积分为 2 2 11C y x =+--,即 arcsin arcsin y x C =+ 即 sin(arcsin )y x C =+. 另外,方程还有解1y =±,不包含在通解中. (2) 微分形式变量可分离方程的解法 方程 1122()()()()M x N y dx M x N y dy = (1.2) 是变量可分离方程的微分形式表达式.这时,x 和y 在方程中的地位是“平等”的,即x 和y 都可以被认为是自变量或函数[1]. 在求常数解时,若10()0N y =,则0y y =为方程(1.2)的解.同样,若 20()0M x =,则0x x =也是方程(1.2)的解. 当()()120N y M x ≠时,用它除方程(1.2)两端,分离变量,得 ()() ()() 2112N y M x dy dx N y M x = 上式两端同时积分,得到方程(1.2)的通积分 () () ()() 211 2N y M x dy dx C N y M x =+?? 例2:求解方程 ()() 22110x y dx y x dy -+-= 解:首先,易见1,1y x =±=±为方程的解.其次,当() 22(1)10x y --≠时,分离变量得 221 1 0ydy xdx x y --+ =

二阶常微分方程的降阶解法

郑州航空工业管理学院 毕业论文(设计) 2015届数学与应用数学专业1111062班级 题目二阶常微分方程的降阶解法 姓名贾静静学号111106213 指导教师程春蕊职称讲师 2015年4月5号

二阶常微分方程的降阶解法 摘要 常微分方程是数学领域的一个非常重要的课题,并在实践中广泛于解决问题,分析模型。常微分方程在微分理论中占据首要位置,普遍应用在工程应用、科学研究以及物理学方面,不少应用范例都归结为二阶线性常微分方程的求解问题。而正常情况下,常系数微分方程依据线性常微分方程的日常理论是可以求解的.不过对于变系数二阶线性常微分方程的求解却有一定程度的困难,迄今为止还没有一个行之有效的普遍方法。 本文主要考虑了二阶常系数线性微分方程的降阶法。关于二阶常系数线性微分方程的求解问题,首先,我们给出二阶齐次常系数线性微分方程的特征方程,并求解出特征方程的两个特征根;其次,利用积分因子乘以微分方程和导数的运算,将二阶常系数线性微分方程化为一阶微分形式;最后,将一阶微分形式两边同时积分,求解一阶线性微分方程,可求得二阶常系数线性微分方程的一个特解或通解。关于二阶变系数齐次线性微分方程的求解问题,化为恰当方程通过降阶法求解二阶齐次变系数微分方程的通解。对于非齐次线性微分方程,只需再运用常数变易法求出它的一个特解,问题也就相应地解决了。 关键词 二阶常微分方程;降阶法;特征根;常数变易法;一阶微分形式

Order reduction method of second order ordinary differential equations Jingjing Jia Chunrui Cheng 111106213 Abstract Ordinary differential equation is a very important topic in the field of mathematics, it has been widely used in solving the problem and analyzing model in practice . Ordinary differential equations in the theory of differential occupied first place, it has been widely used in engineering application and scientific research as well as physics, many application examples are attributed to second order linear ordinary differential equation solving problem. And under normal circumstances,ordinary coefficient differential equation on the basis of the linear often daily theory of differential equations is can be solved. But for the solution for variable coefficient second order linear ordinary differential equations have a certain degree of difficulty, so far we haven't a well-established general method. This paper mainly introduces the method of reduction of order two order linear differential equation with constant coefficients.On the problem of solving the linear differential equation with two order constant coefficients,first, we give homogeneous ordinary coefficient linear differential equation of the characteristic equation and solve the two characteristic roots of characteristic equation;secondly,we should use the integral factor times differential equation and derivative operation and turn two order constant

解一阶常微分方程范文

解一阶常微分方程 1.知识准备 1. 1 变量分离方程 形如 ()()dy f x y dx ?= (1) 的方程,称为变量分离方程,()f x ,()y ?分别是x ,y 的连续函数.这是一类最简单的一阶函数. 如果()0y ?≠,我们可将(1)改写成 ()() dy f x dx y ?=,这样变量就分离开来了.两边积分,得到 ()()dy f x dx c y ?=+??, c 为任意常数.由该式所确定的函数关系式(,)y y x c =就是常微分方程(1)的解. 1. 2 积分因子 恰当微分方程可以通过积分求出它的通解.因此能否将一个非恰当微分方程化为恰当微分方程就有很大的意义.积分因子就是为了解决这个问题引进的概念. 如果存在连续可微函数(),0x y μμ=≠,使得 ()()()(),,,,0x y M x y dx x y N x y dy μμ+= 为一恰当微分方程,即存在函数u ,使 Mdx Ndy du μμ+=, 则称(),x y μ为方程()(),,0M x y dx N x y dy +=的积分因子. 函数(),x y μ为()(),,0M x y dx N x y dy +=积分因子的充要条件是 ()() M N y x μμ??=??, 即

()M N N M x y y x μμμ????-=-????. 假设原方程存在只与x 有关的积分因子()x μμ=,则 0x μ ?=?,则μ为原方程的积分因子的充要条件是()M N x y x μμ???=-???,即()( ) M N y x x N φ??-??= 仅是关于x 的函数.此时可求得原方程的一个积分因子为()x dx e φμ? =.同样有只与y 有关的积分 因子的充要条件是()( )M N y x y M ???-??=-是仅为y 的函数,此时可求得方程(11)的一 个积分因子为()y dy e ?μ? = 1. 3恰当微分方程 考虑微分形式的一阶微分方程()(),,0M x y dx N x y dy +=(11),如果该式的左端恰好是某个二元函数(),u x y 的全微分,即 ()()(),,,u u M x y dx N x y dy du x y dx dy x y ??+== +?? 则称(11)为恰当微分方程. 对于一阶微分方程 ()(),,0M x y dx N x y dy +=, 若有 M N y x ??=??,则该方程必为恰当微分方程.我们接着讨论如何求得该恰当微分方程的解.我们可以把 (),u M x y x ?=?看作只关于自变量x 的函数,对它积分可得()(),u M x y dx y ?=+?,由此式可得 ()(),d y u M x y dx x x dy ??? =+ ???, 又因为有 (),u N x y x ?=?,故

分数阶微积分理论

分数阶微积分理论 2.1 引言 一般我们熟知的微积分理论都是整数阶的,比如一阶微分方程,二阶微分方程,一重积分、二重积分等等,而分数阶微积分,指的是微积分的阶次可以为包括整数以内的其它任意数,比如小数、有理数、无理数等,可以说分数阶微积分可以描述任何对象,它的作用要远超常规整数阶微积分。虽然在无数的学者前赴后继地努力下,分数阶微积分理论方面的研究成果丰硕,而关于分数阶微积分的定义,不同的学者表述上有所区别,综合各个理论层面的评估,同时具有实际工程上的应用可行性的分数阶微积分定义只剩下三种,分别是Grünwald -Letnikov 定义,Caputo 定义,Riemann -Liouville 定义[64]。 2.2 分数阶微积分的定义 分数阶微积分的研究对象是分数阶微分和分数阶积分,分数阶微积分定义是整合和统一分数阶微分和分数阶积分得到的。首先介绍常用的三种分数阶微分定义,具体为: (1)Grünwald -Letnikov 分数阶微分定义 若()f t 函数在区间[,]a t 存在1m +阶连续导数,当0α>时, m 至少取到[]α,则其次数为(1)m m αα≤<+的分数阶微分定义为: [()/] ()lim ()t a h a t i h i D f t h f t ih αα αω--→==-∑ (2.1) 其中,α表示阶次,h 为采样步长,a 表示初始时间,[]表示取整, = (-1)i i i ααω?? ??? 是多项式系数,(1)(2)(1) = ! i i i ααααα??---+ ??? ,我们可以用以下 递推公式直接求出该系数: 01+11,1,1,2,...,i i i n i α αααωωω-??==-= ??? (2.2) 进一步对式(2.1)求极限,可得到其详细定义:

相关文档
最新文档