钢筋砼坡屋顶的结构设计

钢筋砼坡屋顶的结构设计
钢筋砼坡屋顶的结构设计

钢筋混凝土坡屋顶的结构设计

摘要:本文对于现浇钢筋混凝土坡屋顶,尤其是常见的住宅结构,指出实际工程中常见的设计错误及问题。本文提出采用折板、拱壳结构布置概念和设计方法,用以减少或取消梁、柱的布置以降低成本并扩大阁楼的用户使用功能。本文还讨论了屋顶需要开洞、开窗,及具有其它复杂形体情况的设计。本文阐述了相应的简易近似计算方法及构造处理。

关键词:坡屋顶折板顺沿平面荷载垂直平面荷载

一.前言

近几年,钢筋混凝土坡屋顶的应用已经十分广泛,其正确设计方法的研究、确立非常迫切。其目标可以是取消或减少屋顶内的梁、柱,实现大空间,让屋顶板下“整洁干净”。这除给结构专业本身带来效益外,还能给建筑专业的设计开拓新余地,最终让广大用户、房地产开发商受益,其意义深远。

目前常见的实际工程,设计者在计算的力学模型中,往往把坡屋顶看成垂直投影下的平面梁板,或把平脊、斜脊轮廓线当成框架盲目地加梁、斜柱。事实上,对于一般方形平面的房屋,双坡、多坡屋顶的受力状态与拱、壳结构类似。平脊、斜脊的横断面都是“人”字型的折板,无论是否布置梁、柱,其脊线的变形形态根本不同于框架。上述做法都会使计算结果与真实的结构内力大相径庭。在施工过程中,屋脊梁、板斜交处模板形体复杂,多种角度的钢筋交错重叠,安装、浇注都很困难。这些在工程中也很常见,是典型的画蛇添足。

有学者运用弹性薄壳理论的数学物理方法,分析折板屋盖的内力、变形,揭示了在底座四周边既无水平外涨、又无竖向沉降位移情况时的竖直荷载效应规律[2][3][4],在一定程度上体现了拱、壳的特点。然而,假定这样的边界条件,与一般工程的实际情况相差甚远,掩盖了屋檐纵向跨中有沉降,底边缘承受拉力的根本特点,所以不能用于一般工程设计。二.本文方法概述

对于一般常见的跨度,本方法取消屋脊梁,基本不加腋。但在周边屋檐下要设框架梁或圈梁兼窗过梁。对于平面为长矩形的多开间、多柱情况,在建筑专业布置有横隔墙的每对中间柱之间在进深方向设置宽度同墙厚,可藏砌在墙里的拉梁。除跨度较小的情况外,拉梁上方有双坡贴板屋面斜梁。对于住宅,如果建筑专业需要,可争取实现在每户范围内顶棚无梁外露,见图1。类似桁架理论,本方法强调利用构件轴向力效应,但与桁架的区别在于内力分布不仅沿杆单根轴线而且还沿板平面。一般每块板都具有折板的受力特征,在承受屋面重力、风力、地震荷载,造成顺沿板平面的内力分量时,每块板都相当于有加强翼缘的薄壁梁。纵向支座之间由拱壳效应产生的板的横推力就是靠薄壁梁的抗弯反力水平分量平衡的。在板承受上述荷载的垂直分量时,每块板就相当于有嵌固边的多边支承板。本方法的设计要点,就是有意识地建立、完善坡屋顶的拱、折板体系,在屋檐标高处用尽可能少的水平拉梁平衡斜板的水平推力。其计算方法可分为手算法和计算机法,本文重点讨论手算法。手算方法取坡屋顶的单坡板作为隔离体,通过近似地整体分析,简化确定板的边界条件,求解顺沿平面、垂直平面两种荷载效应,在直法线假定下对各种内力线性叠加,检验稳定,综合配筋。本方法追求可操作性,用一般工程师相对熟悉的计算步骤解决较复杂的问题。

本文的方法适合于框架结构,稍加变通也适用于砌体结构或框剪、剪力墙结构。一般拱结构具有良好的抗地震性能,只要设计得当,坡屋顶也如此。本文采用伪静力方法分析地震力效应。

三.坡屋面板作为薄壁梁,对顺沿平面荷载的效应进行分析和设计

首先针对图1.的横剖面I-I,即位于一对长向梯形板1、2的等宽度矩形部分进行分析。作为近似计算,假定其顺沿平面荷载沿长向是常数,这正如四面支承的矩形平板可以被简化为单向板的情形一样。我们取沿长向为一单位宽度的窄条结构作为分析对象,采取了图2

的两铰拱模型。

图2右支座处的竖连杆代表屋檐梁的支承作用,而斜连杆则代表板本身的薄壁梁反力效应,是虚拟的,近似等效的(其作用的真实位置应是分布在斜板内),我们在此要求解两个支座反力。因为工程实物的总压力是通过板2及屋檐梁传递到两端柱上的,所以两杆支反力数值可以分别被看作为板2承受的顺沿平面荷载及屋檐梁承受的竖向压力荷载。下面给出各种工况下板2右端两种连杆支反力表达式,因模型取单位宽,所以其结果除屋面有集中质量情况外均为线均分布荷载。它们均由N表示,其英文下脚标s、b分别表示顺沿平面作用于屋顶板、及竖直作用于屋檐梁,g、w、e分别表示重力、风压及水平地震作用,d、c分别表示分布、集中荷载或作用。公式中h表示各板厚度,g为重力加速度,a为屋顶处的水平地震加速度设计值,Wk表示风压的标准值。m加数字下脚标表示各编号斜板的单位面积的分布质量集度,m加英文下脚标表示各位置集中物质量。对于两坡对称的情况,它们的公

式可以更简洁。

图2a表示承受竖向重力荷载情况,各项对应的公式为(1)至(4):

图2b 表示承受风荷载的情况,各项对应的公式为(5)、(6):

图2c表示承受水平地震作用的情况,各项对应的公式为(7)至(10):

当按抗震设计规范要求进行竖向地震力计算时,其计算公式大体同重力作用公式(1)至(4),只要把重力加速度g换成竖向地震加速度av 计算即可。上述公式适用于图2的右支座,当将两板数据对调时也适用于左支座。

对于多坡屋顶的端部三角板,作为简化近似计算,我们假定两种线均分布荷载仅由本板屋面的几种荷载、效应产生。现截取图1的II-II剖面来分析长向梯形板2的端部三角区,

假定结构大致对称,取结构的一半建立模型,见图3。因为与其相连的端部三角形板3平面内抗侧移刚度很大,因此假定模型左支点即构件中央沿左右方向不能移动。板中央竖向刚度小,在一般重力荷载大致对称的情况仅可能发生中点上下移动,因此模型中间采用上下平行的双连杆连接。风荷载、地震作用一般在两坡呈近似反对称,因此在板模型中央采取不动铰支座,允许转动并把侧向力传给板3的边梁。板2三角区下的屋檐梁竖载及板本身顺沿平面荷载分布均是图1所示的以x为自变量的函数,设II剖面位置距端部为x0,则图3中斜坡的水平长度应为y0=x0L2/L3。式(11)至(14)为三角区承受竖向重力情况沿x方向任意位置的两种分布荷载值,其中h3应为板3的竖直剖切厚度。

对于风荷载及地震作用效应,简图可近似取图3b、3c,用结构力学方法求解,但过程繁琐且合理程度有限。与重力荷载效应相比,风、地震效应显然是次要的。加之三角板面积小,作为近似计算,如直接采用双坡矩形板的计算结果,比较方便且不会明显浪费。求解端部三角板3的两种分布荷载,方法与长向梯形板的三角区的解法相同,只要将图1所示的x与y、L2与L3互相颠倒即可,实际剖面为图1中的III-III。

图4为图1所示屋顶斜板的直立展开平面图,及承受组合值荷载(其作用的真实位置应是分布在板内而不是集中在上边缘线上)的简图,用来分析斜板平面内力及柱支座反力。图中斜边恰是斜屋脊,相当于加强边框,类似桁架的上弦斜杆,与下边缘组合,能构成暗桁架体系;而长向梯形板内的矩形部分可以被看成薄壁梁,也可以看成桁架。因此,我们称屋面板在平面内形成了“薄壁梁-桁架”体系,在混凝土理论里,梁与桁架之间并没有天然的鸿沟。对于这样的联合体系,要准确手算内力、支座反力比较烦琐,也没必要。因为一方面,跨数多、抗弯刚度大的结构对于支座不均匀沉降十分敏感,须多留安全储备;另一方面由于它截面很高,通过加大配筋量来提高承载力对成本影响并不大。具体算法就是:单跨斜板按简支计算;多跨连续斜板的弯矩、剪力、支反力用可能的上限数值控制办法取值。各跨正弯矩按简支计算,中间支座处两侧剪力、负弯矩及支反力按在本支座连续、两邻端铰支,左右

两跨长均取两跨中最大跨距计算,边跨边支座剪力即支反力按本跨简支计算。这样各位置的各种内力的安全度得到程度不均匀的扩大,因此在以后步骤中还应适当再调整。

无论是板的三角部分还是矩形部分,薄壁平面内抗弯的受力筋都可以按弯矩对板上、下端距离的合力点取矩的方法计算,配在屋檐或屋脊。笔者认为没必要按受弯构件的最小配筋率来控制配筋量。三角板的上边框相当于斜支杆,能整体抗剪。在认为其端部可能薄弱时,可适当补强其下面的屋檐梁配筋。在薄壁的矩形部分如果抗剪需配箍筋,应迭加到板筋(在后有述)中,一般没必要刻意在假想腹杆位置加强配筋。

四.拉梁与屋檐梁的计算和设计

图1柱处标注了斜板计算得到的支座反力及它们的水平、竖直分量,水平分量为总反力乘以倾角的余弦。以柱A处为例,RA2中第一个下脚标A表示柱编号,第二个下脚标2表示本反力由板2产生。它的水平分量RA2H 要靠三角板3下的屋檐梁平衡。中间支座反力的水平分量,应由进深方向两柱间的水平拉梁来平衡。这时,拉梁与上方的斜梁构成了三角形刚结拱架。因反对称荷载的存在,作用于两侧柱的反力水平分量可能不一致,拉梁拉力应取平均值。考虑支座可能的不均匀沉降影响,拉梁的水平设计拉力值应适当宽裕。

屋檐边梁一般承受四重内力:第一为上述水平拉力,第二是作为斜屋面板的翼缘在板平面内受弯时它产生的轴力,第三是作为承受垂直荷载的屋面板的边梁承受的弯矩、剪力,如板为多面支撑,实际受力就比承受按单向板计算的Nb荷载情况小,第四是框架侧移效应内力。应线性叠加,综合配筋。在荷载重、跨度大、倾角小的场合,应作受拉梁的抗裂验算,适当加大断面,用细钢筋。包括边梁在内的拉梁钢筋端部应采取两段弯折锚固,尤如“L”字的右下端再加一长为10d的弯段,弯折135度角,并把与拉梁相交的柱竖筋兜在弯折阴角内。

本文取图1的模型作为算例,不计老虎窗,四坡屋面倾角均为35 o,屋面板各边长展开尺寸见图4。板单位面积质量集度(包括全部永久荷载)为350 kg/m2,检修活荷载0.50 kN/m2,风压标准值迎风面为0.21 kN/m2,背风面为-0.45 kN/m2,屋顶水平地震加速度设计值为0.1g。按规范对承载能力极限进行计算,分别考虑有、无地震作用情况的荷载效应基本组合设计值,本算例经比较采用无地震力的组合。各位置的计算荷载、内力结果见表1:

五.坡屋面板作为多边支撑板,对垂直屋面的荷载效应进行分析和设计

折板结构具有“板架合一”的特点:一般每对相交的斜板都是互相提供支承的,转折线两侧互相刚结的板可绕转折线微小转动并传递、分配弯矩。在控制荷载即重力作用下,在两坡几何、荷载大致对称的场合,对称轴转折处基本不出现转角,可近似视为板的嵌固边。在屋檐处板如果向梁外悬挑出一定距离,梁内侧的板也会形成负弯矩。加之长屋面板在板下的斜梁处与邻跨板连续,这些都可近似地作为板的嵌固边处理。对于水平地震荷载这样的反对称荷载,平屋脊应按铰对待,但它往往不是控制荷载。板弯矩最后设计值应是各种工况不利组合的线性迭加,从横剖面方向看板应按压弯构件配筋。借鉴、兼顾混凝土深梁对构造的要求,板上皮的负弯矩钢筋应全部或每隔一根整跨拉通,因为它们同时担任着深梁的分布腰筋或箍筋。板内垂直于屋檐的底筋、负筋按各自的计算需要量,再迭加箍筋需要量后仍可能上、下用量不同。这种情况两侧“箍筋”在檐边无法按“U”字型底部连通,可分别向上、下弯折成“L”

形,折段长可同板厚。

阴角不受拉的情况,不加腋。为保证全部钢筋的准确安装就位,可在图示的加强钢筋处加少

量的带支架的菱形箍筋与加强筋先形成定位骨架,让后装的两坡板钢筋绑扎其上。设计者应该用立体几何的方法准确计算菱形箍筋各肢边长度,给出成型大样施工图。

六.坡屋面开窗、开洞的计算、处理

设图6中的板开有宽b,高h0的方洞,假定总体计算得到洞中心处的顺沿平面弯矩、剪力分别为M、V,按空腹桁架计算方法,洞中部可有:

其中I1、I2 、I分别表示上、下板肢的截面惯性矩和双肢截面惯性矩。而洞口边缘弯矩为:

在洞口不太大、靠近总体的中性轴的大多数情况,按无洞情况设计的配筋在开洞后仍能满足平面内的受力计算要求。

一般老虎窗窗体突出屋面,其中一立面有开洞立窗,在其它立面有混凝土板封闭。在分析屋面板垂直板面荷载效应时,与无窗、洞的屋面板相比,窗立板增加了荷重。窗体立剖面的折板形态使其较无洞屋面板减小了抗弯刚度,但洞边与剖面平行的竖板又局部地增加了抗弯刚度。在无竖板的立窗下边应有上翻梁,以增大求得洞口周边刚度接近。这样,可以暂时忽略板刚度的变异,根据实际荷载、尺寸、边界条件按实体板计算正、负弯矩,再处理节点。应指出,在板的反弯线附近是布置屋面斜板洞边的最理想位置,尤其在开立窗的一面,因为它垂直方向的弯矩传递路线被切断。如果在屋檐梁处屋面板无向外的悬挑部分,板实际受力反弯线就靠近屋檐梁,逆之亦真,为此应争取建筑师在确定老虎窗位置时适当关照。在洞边远离反弯线时,窗侧壁与屋面板的相交折板就要承受和传递弯矩,但与无洞板相比,其能力总会削弱,其节点就成了薄弱部位。为了祢补判断、计算的偏差,两种板均可双面配筋。当

洞口小于反弯线范围时,应加大周围负筋以保障板总的承载能力。为保证板内钢筋准确就位,也应采取类似图5那样的定位箍筋和纵筋构成骨架。箍内底纵筋应为加强钢筋,端部伸过洞口拐角应超过一个锚固长度,以克服洞口四角底边的拉应力集中。

七.屋面斜板的稳定

在我国的V形折板结构设计规范[8]中,防止两侧翼板发生局部失稳的方法是限制其宽厚比值,这个规定来自运用各向同性薄板的屈曲理论的分析。在研究翼板外边失稳临界状态时,翼板的支承条件设定为外边自由、内边固定,前、后两边铰接,在板承受弯曲应力的情况,求解与受压边的临界压应力相对应的宽厚比。当混凝土等级为C30时,宽厚比b/t的理论限值应为47,对非予应力情况规范取值为35。混凝土的弹性模量和其强度等级并不是线性关系,如用高强混凝土需另行研究。在实际坡屋盖中,只有长向连续板的中间支座处外板边才可能受压。而这里恰恰与贴板屋面斜梁、水平拉梁浇注在一起,没有侧翻、外涨位移的可能。折板规范限定的跨度为21m,而屋顶下的纵向柱间距一般远小于此。与板成为一体的屋檐梁改变了板的边界条件,抗失稳作用也很大。对于其它位置的斜板纵向受压边缘,也可适当设置扶板边梁,这些都可获得超出规范规定的富余安全度。考虑到板在平面内还有剪力,同时垂直方向的荷载造成了出平面效应,所以对于稳定安全度的掌握还应谨慎。本文建议斜板厚度不要小于短向跨度的1/35,这也正符合一般承压双向板设计经验。混凝土等级应在C25至C35之间,钢材应为I或II级。

八.形体复杂的坡屋顶

遇到由更复杂的空间几何板件组合成的坡屋顶时,要完成从局部到整体,再回到局部的归纳、分析过程。要把一些相邻但可能是零碎的小板件合并成周边基本在一个平面上的复合大板,参与整体的拱、折板分析,再利用整体分析结果作为边界条件来计算它所包含的小板件和它们的相互连接节点。每块复合大板自身必须稳定,有足够的刚度和强度。在某些不便布置水平拉梁、或者两坡边柱不对位的场合,也可以利用升到屋檐标高、与其方向垂直的剪力墙,或者侧刚度足够的框架柱来平衡屋盖推力。

九.坡屋顶局部结构的计算机计算方法及全结构总体电算

任何具有斜板薄壳单元和杆件单元的有限元结构计算软件,均可以胜任坡屋顶的计算。壳单元的每个节点具有三个膜自由度和三个板自由度,可以同时分析板平面内及出平面内力效应。然而目前某些流行的空间结构有限元电算程序,虽然有壳元模型,但某些不能处理斜板,某些不能对同时存在的平面内、外两种应力状态综合配筋,都不够完善。随着建筑构造日趋多样、复杂,空间斜板问题会经常遇到。这类软件应该再扩充其前、后处理功能,对壳单元刚度矩阵及荷载向量进行自由度的方向转换,进而能分析空间斜板,针对砼的空间应力状态综合配筋。在根本的意义上讲手算方法与有限元方法是相通的,但结果一粗一细可能相差较远。只要按照本文概念布置屋顶构件,再使用这样的软件计算,就可快捷、高精度地实现完成本文目标。

从屋檐到屋脊的标高范围,整个屋顶层的抗侧移刚度较下层突变,集中质量比下层小,这种情况在整个房屋的整体计算中用一般的框架模型不易模拟。在高层结构的地震情况,由于高振型反应即鞭梢效应的影响,本层地震侧向力可能异常,对以下几层也有影响。因此,在屋顶局部手算的场合,在对整体结构进行电算分析时,建议屋顶层采用斜杆斜支模型,以减少对总体结果的失真影响。如果采用有空间斜板处理功能的软件,坡屋顶用壳单元建模,就可以从上到下一气呵成。顶部结果可直接用,对总体的失真影响也不复存在。

十.结语

1)与本项研究有关,混凝土斜板、边梁不同方向的内力叠加、配筋,及斜板稳定、对开洞的限制等都有待深入研究。类似的典型问题有高层结构转换层楼板、箱型基础中的箱侧面壁板,它们的研究成果都可以用来借鉴。对工程实物进行应变观测是一种重要的研究方法;

有限元电算分析将更会因经济实用而流行。目前社会上现存竣工的坡屋顶,无论设计者主观采用的是什么样的假定和分析方法,配筋是否合理,只要在总体结构布局的客观现实上形成了空间折板、拱体系,它们目前的工作状态都可以用来总结、借鉴。

2)这种结构形式给建筑师对楼顶层利用的设计构思开辟了新天地,并影响着人们的生活习惯。它带来的经济、社会效益会逐渐显露,但需要建筑、结构专业人员密切配合,需要人们认识和宣传,甚至需要房地产管理政策等多方面的支持。对于结构专业,本方法难度较大,某些具体细节目前无规范可依,需设计者对知识的综合运用能力。这是结构人遇到的挑战,也正是快乐所在。

参考文献

[1]Francis D.K.ChingA Visual Dictionary of Architecture, International Thomson Publishing Inc. 1997.

[2]江清风:四边简支方形双向折板的内力,土木工程学报,1987年第2期。

[3]赖远明、张肇新:周边简支组合折板屋盖的挠度和内力,土木工程学报,1992年2期。

[4]赖远明:简支平顶四坡折板屋盖的内力和挠度,土木工程学报,1995(1)。

[5]李开禧、崔佳等:关于雁形截面梁的局部稳定问题,建筑结构,1996年第1期。

[6]中国建筑科学研究院PKPM CAD工程部:多层及高层建筑结构空间有限元分析与设计软件SATWE用户手册及技术条件。

[7]陈醒辉、林元坤等:V形折板屋盖设计中的几个计算问题,空间结构论文选集,中国土木工程学会桥梁及结构工程学会空间结构委员会编,科学出版社,1985

[8]现行建筑结构规范大全(3),中国建筑工业出版社,2002。

混凝土结构设计原理复习重点(非常好) 期末复习资料汇总

1.混凝土结构:以混凝土为主要材料制作的结构。包括: 素混凝土结构、钢筋混凝土结构、预应力混凝土结构。 钢筋混凝土结构优点:就地取材,节约钢材,耐久、耐火,可模性好,整体性好,刚度大,变形小。缺点:自重大,抗裂性差,性质较脆。 2.钢筋塑性性能:伸长率,冷弯性能。伸长率越 大,塑性越好。 3.规定以边长为150mm的立方体在(20+-3)度的温度 和相对湿度在90%以上的潮湿空气中养护28d,依照标准试验方法测得的具有95%保证率的抗压强度(以N/mm2计)作为混凝土的强度等级。 4.收缩:混凝土在空气中结硬时体积减小的现象。 膨胀:混凝土在水中或处于饱和和湿度情况下结硬时体积增大的现象。 水泥用量越多、水灰比越大,收缩越大。骨料的级配好、弹性模量大,收缩小。构件的体积与表面积比值大,收缩小。 5.钢筋混凝土结构的混凝土强度等级不应低于C20。采 用400MPa以上钢筋,不应低于C25。预应力混凝土结构,不宜低于C40,不应低于C30。承受重复荷载的,不应低于C30。 6.粘结力的影响因素:化学胶结力(钢筋与混凝土接触面 上的化学吸附作用力),摩擦力(混凝土收缩后将钢筋紧紧地握裹住而产生的力),机械咬合力(钢筋表面凹凸不平与混凝土产生的机械咬合作用而产生的力),钢筋端部的锚固力(一般是用在钢筋端部弯钩、弯折,在锚固区焊短钢筋、短角钢等方法来提供锚固力)。 7.结构的作用是指施加在结构上的集中力或分布力,以 及引起结构外加变形或约束变形的各种因素。按时间的变异分:永久作用,可变作用,偶然作用。8.结构抗力R是指整个结构或结构构件承受作用效应 (即内力和变形)的能力,如构件的承承载能力、刚度等。 9.设计使用年限:是指设计规定的结构或结构构件不需 进行大修即可按齐预定目的使用的时期,即结构在规定的条件下所达到呃使用年限。 10.轴心受拉(压)构件:纵向拉(压)力作用线与构件 截面形心线重合的构件。 轴心受力构件中配有纵向钢筋和箍筋,纵向钢筋的作用是承受轴向拉力或压力,箍筋的主要作用是固定纵向钢筋,使其在构件制作的过程中不发生变形和错位。 11.受弯构件的破坏特征:少筋破坏(当构件的配筋率低 于某一定值时,构件不但承载能力很低,而且只要其一开裂,裂缝便急速开展,裂缝截面处的拉力全部由钢筋承受,钢筋由于突然增大的应力而屈服,构件立即发生破坏),适筋破坏(当构件的配筋率不是太低也不是太高时,构件的破坏首先是由于受拉区纵向受力钢筋屈服,然后受压区混凝土呗压碎,钢筋和混凝土的强度都得到充分利用),超筋破坏(当构件的配筋率超过某一特定的值时,构件的破坏特征又发生质的变化构件的破坏是由于受压区的混凝土呗压碎而引起,受拉区纵向受力钢筋不屈服)。 12.基本假定:截面应变保持平面。不考虑混凝土的抗拉 强度。混凝土的受压的应力应变关系曲线按下列规定 取用。 13.双筋矩形截面适用情况:1.结构或构件承受某种交变 的作用,使截面上的弯矩改变方向。2.截面承受的弯矩设计值大于单筋截面所能承受的最大弯矩设计值,而截面尺寸的材料品种等由于某些原因又不能改变。 3.结构或构件的截面由于某种原因,在截面的受压区 预先已经布置了一定数量的受力钢筋。 14.T形截面受弯构件按受压区的高度不同分:第一类T 形截面,中和轴在翼缘内。第二类T形截面,中和轴在梁肋内。 15.剪切破坏的形态:斜拉破坏(整个破坏过程急速而突 然,破坏荷载与出现斜裂缝时的荷载相当接近,破坏前梁的变形很少,并且往往只有一条斜裂缝。破坏具有明显的脆性),剪压破坏(这种破坏有一定的预兆,破坏荷载较出现斜裂缝时的荷载过高。但与适筋梁的正截面破坏相比,减压破坏仍属于脆性破坏),斜压破坏(破坏荷载很高,但变形很小,亦属于脆性破坏)。 16.平衡扭转:若结构的扭矩是由荷载产生的,其扭矩课 根据平衡条件求得,与构件的抗扭刚度无关。 协调扭矩:另一类是超静定结构中由于变形的协调使截面产生的扭转。 17.偏心受压构件分为:单向偏心受压构件,双向偏心受 压构件。 当ξ<=ξb,受拉钢筋先屈服,然后混凝土压碎,肯定为受拉破坏—大偏心受压破坏,反之为小偏心受压破坏。 18.结构的可靠性:安全性(结构构件能承受在正常施工 和正常使用时可能出现的各种作用,以及在偶然事件发生时及大盛后,仍能保持必需的整体稳定性),适用性(在正常使用时,结构构件具有良好的工作性能,不出现过大的变形和过宽的裂缝),耐久性(在正常的维护下,结构构件具有足够的耐久性能,不发生锈蚀和风化现象)。 19.裂缝的控制等级分为三级::正常使用阶段严格要求 不出现裂缝的构件。正常使用阶段一般要求不出现裂缝的构件。正常使用阶段允许出现裂缝的构件。 混凝土结构设计基本原理复习重点 第 1 章绪论 1.钢筋与混凝土为什么能共同工作: (1)钢筋与混凝土间有着良好的粘结力,使两者能可靠地结合成一个整体,在荷载作用下能够很好地共同变形,完成其结构 功能。 (2)钢筋与混凝土的温度线膨胀系数也较为接近,因此,当温度变化时,不致产生较大的温度应力而破坏两者之间的粘结。(3)包围在钢筋外面的混凝土,起着保护钢筋免遭锈蚀的作用,保证了钢筋与混凝土的共同作用。 1、混凝土的主要优点:1)材料利用合理2 )可模性好3)耐久性和耐火性较好4)现浇混凝土结构的整体性好5)刚度大、阻尼大6)易于就地取材 2、混凝土的主要缺点:1)自重大2)抗裂性差3 )承载力有限4)施工复杂、施工周期较长5 )修复、加固、补强较困难 建筑结构的功能包括安全性、适用性和耐久性三个方面 作用的分类:按时间的变异,分为永久作用、可变作用、偶然作用结构的极限状态:承载力极限状态和正常使用极限状态 结构的目标可靠度指标与结构的安全等级和破坏形式有关。 荷载的标准值小于荷载设计值;材料强度的标准值大于材料强度的设计值 第2章钢筋与混凝土材料物理力学性能 一、混凝土

坡屋顶文化等级及内涵

坡屋顶的社会等级及文化内涵·涨姿势 中国文化博大精深,仅是小小的屋顶就蕴藏了社会等级、历史变迁、民族文化等内容,一起来领略古建筑的坡屋顶之美及其丰富内涵。 坡屋顶的形式和坡度主要取决于:建筑平面、结构形式、屋面材料、气候环境、风俗习惯、建筑造型等因素。 坡屋顶在建筑中应用较广,主要有: ·单坡式、双坡式、四坡式和折腰式等,·以双坡式和四坡式采用较多。

屋顶样式 坡屋顶在古代也是一种身份的象征。古代社会有严格的等级制度,古建筑中的坡屋顶形式是一种重要的表现。 (屋顶)社会等级分类: ·第一位:重檐庑殿顶。重要的佛殿、皇宫的主殿,象征尊贵。 ·第二位:重檐歇山顶。常见于宫殿、园林、坛庙式建筑。

·第三位:单檐庑殿顶。重要的建筑。 ·第四位:单檐歇山顶。重要的建筑。 ·第五位:悬山顶。民居、神橱、神库。·第六位:硬山顶。民居。 ·第七位:卷棚顶。民间建筑。 ·无等级:攒尖顶,盝顶,盔顶。亭台楼阁。第一位:重檐庑殿顶

·佛殿、皇宫的主殿等重要的建筑是采用重檐庑殿顶,是最尊贵的形式。 ·由于屋顶有四面斜坡,又略微向内凹陷形成弧度,故又常称为“四阿顶”,宋朝称“庑殿”,清朝称“庑殿”或“五脊殿”,日语称寄栋造(假名:よせむねづくり)是中国、日本、韩国等中华文化圈国家古代建筑的一种屋顶样式。在中国是各屋顶样式中等级最高的,高于歇山式。明清时只有皇家和孔子殿堂才可以使用。 第二位:重檐歇山顶

歇山的出现要晚于庑殿及悬山,学者们基本认定歇山是在汉代以后南方地区形成的屋顶形式,并在南北朝时传至北方地区。 隋唐统一是以北方兼并南方,虽然隋唐制度吸收了很多南朝的因素,但在名义上仍以北方为正统,庑殿作为北方地区的传统屋顶形式也取得相应的正统地位,所谓庑殿高于歇山的规定应该即在这一时期形成(唐令:宫殿皆四阿)。 注:“阿”是建筑屋顶的曲檐,“四阿”就是四面坡式的曲檐屋顶。 中国古建筑屋顶的与众不同 中国古建筑凹曲屋面坡度大致相同,一般斜度都为26度~30度,这个角度非常接近太阳黄道与地球赤道所形成的23度27分夹角,这也是古建筑屋顶象征天的文化内涵。 第三位:单檐庑殿顶

坡屋面砼专项施工方案

一、工程概况 某地块1~151#楼工程,地下1层,地上3层,总建筑面积102218平方米。本工程屋面结构为全现浇钢筋砼坡屋面,以屋脊为最高点,其标高为15.18m;檐口为最低点,标高为10.51m,脊梁顶标高根据屋面坡度而变化,屋面板的厚度120mm。 本工程屋面坡度较大,约45度左右,部分坡屋面坡度达到75°。此外斜板顶面设有老虎窗,结构较复杂,细部节点较多,施工难度较大。为了保证屋面造型与设计效果一致,屋面的施工必须严格控制其屋面板、梁等各个细部的标高。施工中特别要注意梁、板节点的平面位置及标高的处理,以及对现浇坡屋面砼浇筑质量的控制。此外,由于屋面板坡度较大,混凝土浇筑质量不易保证,也是本工程坡屋顶的特点。 因此施工过程中必须做到施工安全及按图施工,提高工程质量,保障屋面工程的使用功能性良好的原则,依照国家现行施工质量验收规范的标准,进行斜屋面的施工;每道施工工序,严格在管理人员、监理单位的监督下进行,并对每道工序进行检查验收、评审,作出检验记录,并由监理人员签认备案。 二、屋面工程控制要点 1、由于屋面坡度较大而且转折较多,在施工过程中对屋脊梁、檐口、老虎窗、汇(分)水线起止点等部位的标高必须精确控制;对于、坡度阴角线、坡度阳角线、檐口线、转角点、汇(分)水线起止点的定位必须精确。 2、坡屋面模板支撑体系的稳固性必须加以控制。 3、屋面混凝土浇筑方法和浇筑顺序,必需保证屋面板内部密实,表面平整。 4、加强屋面工程安全管理工作。 三、混凝土工程 本屋面工程结构砼的施工重点在于对砼的坍落度、砼的浇捣方法、平整度控制。根据本工程实际情况和特点,砼的配制严格按照配合比要求进行,

混凝土结构设计原理复习重点(非常好)

混凝土结构设计基本原理复习重点(总结很好) 第 1 章绪论 1.钢筋与混凝土为什么能共同工作: (1)钢筋与混凝土间有着良好的粘结力,使两者能可靠地结合成一个整体,在荷载作用下能够很好地共同变形,完成其结构功能。 (2)钢筋与混凝土的温度线膨胀系数也较为接近,因此,当温度变化时,不致产生较大的温度应力而破坏两者之间的粘结。 (3)包围在钢筋外面的混凝土,起着保护钢筋免遭锈蚀的作用,保证了钢筋与混凝土的共同作用。 1、混凝土的主要优点:1)材料利用合理2 )可模性好3)耐久性和耐火性较好4)现浇混凝土结构的整体性好5)刚度大、阻尼大6)易于就地取材 2、混凝土的主要缺点:1)自重大2)抗裂性差3 )承载力有限4)施工复杂、施工周期较长5 )修复、加固、补强较困难 建筑结构的功能包括安全性、适用性和耐久性三个方面 作用的分类:按时间的变异,分为永久作用、可变作用、偶然作用 结构的极限状态:承载力极限状态和正常使用极限状态 结构的目标可靠度指标与结构的安全等级和破坏形式有关。 荷载的标准值小于荷载设计值;材料强度的标准值大于材料强度的设计值 第2章钢筋与混凝土材料物理力学性能 一、混凝土 立方体抗压强度(f cu,k):用150mm×150mm×150mm的立方体试件作为标准试件,在温度为(20±3)℃,相对湿度在90%以上的潮湿空气中养护28d,按照标准试验方法加压到破坏,所测得的具有95%保证率的抗压强度。(f cu,k为确定混凝土强度等级的依据) 1.强度轴心抗压强度(f c):由150mm×150mm×300mm的棱柱体标准试件经标准养护后用标准试验方法测得的。(f ck=0.67 f cu,k) 轴心抗拉强度(f t):相当于f cu,k的1/8~1/17, f cu,k越大,这个比值越低。 复合应力下的强度:三向受压时,可以使轴心抗压强度与轴心受压变形能力都得到提高。 双向受力时,(双向受压:一向抗压强度随另一向压应力的增加而增加;双向受拉:混凝土的抗拉强度与单向受拉的基本一样; 一向受拉一向受压:混凝土的抗拉强度随另一向压应力的增加而降低,混凝土的抗压强度随另一向拉应力的增加而降低) 受力变形:(弹性模量:通过曲线上的原点O引切线,此切线的斜率即为弹性模量。反映材料抵2.变形抗弹性变形的能力) 体积变形(温度和干湿变化引起的):收缩和徐变等。 混凝土单轴向受压应力-应变曲线数学模型 1、美国E.Hognestad建议的模型 2、德国Rusch建议的模型 混凝土的弹性模量、变形模量和剪变模量 弹性模量 变形模量 切线模量 3、(1)徐变:混凝土的应力不变,应变随时间而增长的现象。 混凝土产生徐变的原因: 1、填充在结晶体间尚未水化的凝胶体具有粘性流动性质 2、混凝土内部的微裂缝在载荷长期作用下不断发展和增加的结果 线性徐变:当应力较小时,徐变变形与应力成正比;非线性徐变:当混凝土应力较大时,徐变变形与应力不成正比,徐变比应力增长更快。影响因素:应力越大,徐变越大;初始加载时混凝土的龄期愈小,徐变愈大;混凝土组成成分水灰比大、水泥用量大,徐变大;骨料愈坚硬、弹性模量高,徐变小;温度愈高、湿度愈低,徐变愈大;尺寸大小,尺寸大的构件,徐变减小。养护和使用条件 对结构的影响:受弯构件的长期挠度为短期挠度的两倍或更多;长细比较大的偏心受压构件,侧向挠度增大,承载力下降;由于徐变产生预应力损失。(不利)截面应力重分布或结构内力重分布,使构件截面应力分布或结构内力分布趋于均匀。(有利) (2)收缩:混凝土在空气中结硬时体积减小的现象,在水中体积膨胀。 影响因素:1、水泥的品种:水泥强度等级越高,则混凝土的收缩量越大; 2、水泥的用量:水泥越多,收缩越大;水灰比越大,收缩也越大; 3、骨料的性质:骨料的弹性模量大,则收缩小; 4、养护条件:在结硬过程中,周围的温、湿度越大,收缩越小; 5、混凝土制作方法:混凝土越密实,收缩越小; 6、使用环境:使用环境的温度、湿度大时,收缩小; 7、构件的体积与表面积比值:比值大时,收缩小。 对结构的影响:会使构件产生表面的或内部的收缩裂缝,会导致预应力混凝土的预应力损失等。 措施:加强养护,减少水灰比,减少水泥用量,采用弹性模量大的骨料,加强振捣等。 混凝土的疲劳是荷载重复作用下产生的。(200万次及其以上) 二、钢筋 光圆钢筋:HPB235 表面形状 带肋钢筋:HRB335、HRB400、RRB400 有明显屈服点的钢筋:四个阶段(弹性阶段、屈服阶段、强化阶段、破坏阶段),屈服强度力学性能是主要的强度指标。 (软钢)

钢筋混凝土坡屋顶结构设计

钢筋混凝土坡屋顶的结构设计 近几年,钢筋混凝土坡屋顶的应用已经十分广泛,其正确设计方法的研究确立非常迫切其目标可以是取消或减少屋顶内的梁柱,实现大空间,让屋顶板下整洁干净除给结构专业本身带来效益外,还能给建筑专业的设计开拓新余地,最终让广大用户房地产开发商受益,其意义深远 常见的实际工程,设计者在计算的力学模型中,往往把坡屋顶看成垂直投影下的平面梁板,或把平脊斜脊轮廓线当成框架盲目地加梁斜柱事实上,对于一般方形平面的房屋,双坡多坡屋顶的受力状态与拱壳结构类似平脊斜脊的横断面都是人字型的折板,无论是否布置梁柱,其脊线的变形形态根本不同于框架上述做法都会使计算结果与真实的结构内力大相径庭在施工过程中,屋脊梁板斜交处模板形体复杂,多种角度的钢筋交错重叠,安装浇注都很困难这些在工程中也很常见,是典型的画蛇添足 有学者运用弹性薄壳理论的数学物理方法,分析折板屋盖的内力变形,揭示了在底座四周边既无水平外涨又无竖向沉降位移情况时的竖直荷载效应规律[2][3][4],在一定程度上体现了拱壳的特点然而,假定这样的边界条件,与一般工程的实际情况相差甚远,掩盖了屋檐纵向跨中有沉降,底边缘承受拉力的根本特点,所以不能用于一般工程设计 二.本文方法概述 对于一般常见的跨度,本方法取消屋脊梁,基本不加腋但在周边屋檐下要设框架梁或圈梁兼窗过梁对于平面为长矩形的多开间多柱情况,在建筑专业布置有横隔墙的每对中间柱之间在进深方向设置宽度同墙厚,可藏砌在墙里的拉梁除跨度较小的情况外,拉梁上方有双坡贴板屋面斜梁对于住宅,如果建筑专业需要,可争取实现在每户范围内顶棚无梁外露,见图1类似桁架理论,本方法强调利用构件轴向力效应,但与桁架的区别在于内力分布不仅沿杆单根轴线而且还沿板平面一般每块板都具有折板的受力特征,在承受屋面重力风力地震荷载,造成顺沿板平面的内力分量时,每块板都相当于有加强翼缘的薄壁梁纵向支座之间由拱壳效应产生的板的横推力就是靠薄壁梁的抗弯反力水平分量平衡的在板承受上述荷载的垂直分量时,每块板就相当于有嵌固边的多边支承板本方法的设计要点,就是有意识地建立完善坡屋顶的拱折板体系,在屋檐标高处用尽可能少的水平拉梁平衡斜板的水平推力其计算方法可分为手算法和计算机法,本文重点讨论手算法手算方法取坡屋顶的单坡板作为隔离体,通过近似地整体分析,简化确定板的边界条件,求解顺沿平面垂直平面两种荷载效应,在直法线假定下对各种内力线性叠加,检验稳定,综合配筋本方法追求可操作性,用一般工程师相对熟悉的计算步骤解决较复杂的问题

钢筋混凝土结构设计范本

同济大学浙江学院
2008- 2008-2009 第二学期 《混凝土结构设计》课程设计
专业 班级 学号 姓名
土木工程
教师签名:
批阅日期:

目录
一.工程概况及设计资料 工程概况及设计资料 二.现浇钢筋混凝土主次梁单向板楼盖及柱设计 现浇钢筋混凝土主次梁单向板楼盖及柱设计 三.现浇钢筋混凝土双向板楼盖结构设计 现浇钢筋混凝土双向板楼盖结构设计 四.混合结构建筑物墙体设计 五.现浇钢筋混凝土板式楼梯设计 现浇钢筋混凝土板式楼梯设计 钢筋混凝土板 六.混合结构建筑物墙下条形基础与柱下单独基础

《钢筋混凝土结构》课 程 设 计 计 算 书 钢筋混凝土结构》 ( 2009-7) )
一.工程概况及设计资料 工程概况及设计资料
1.1 结构形式
采用混合结构,楼屋盖为钢筋混凝土单向板主次梁,竖向承重结构为内框架,基础为钢筋 混凝土柱下独立基础和墙下条形基础。楼梯为现浇钢筋混凝土板式楼梯。
1.2
水文地质
地基土层自上而下为:人工填土,层厚 0.6~1.0m;褐黄色粘土,层厚 4.0~4.5m,fa=80kN/m2, γ=19 kN/m3;灰色淤泥质粉土,层厚 20~22m, fa=70 kN/m2, γ=18 kN/m3;暗绿色粘质粉土,未穿, fa=160kN/m2,γ=20kN/m3。 地下水位在自然地表以下 0.8 m,水质对结构无侵蚀作用。 基础持力层为褐黄色粘土层。
1.3
设计荷载
基本风压及基本雪压按上海地区采用。 常用建筑材料和构件自重参照荷载规范确定。 屋面使用荷载按不上人屋面设计。 楼面使用荷载值根据荷载规范确定(本设计按 4.6 表规定取值)。
1.4
楼屋面做法
屋面: 细砂面层, 二布三油 PVC 防水层, 40 厚 C20 细石混凝土找平层 (双向配筋 ?4@200) , 最薄处 60 厚挤塑板保温层,,油膏胶泥一度隔气层,现浇钢筋混凝土屋面板,板下 20 厚纸筋灰粉底。 楼面:30 厚水泥砂浆面层,现浇钢筋混凝土梁板,板底梁面 20 厚纸筋灰粉面。
1.5
材料
混凝土:基础用 C20,上部结构用 C25。 墙体:±0.000 以下采用 MU10 标准砖,M5 水泥砂浆;±0.000 以上采用 MU10 多孔砖,M5 混合 砂浆。
1.6
平面尺寸与使用荷载
数据序号 51
荷载数据 (kN/m) 6
柱网尺寸 ( m 2 ) 4×6 - 2 × 6

钢筋混凝土结构设计要点

浅述钢筋混凝土结构抗震延性设计摘要:抗震设计是结构总体设计的重要部分,是结构选型优化的重要依据。本文阐述了钢筋混凝土结构的部分抗震设计要点,重点探讨了增加结构局部延性的设计构造措施。 关键词:抗震;延性;构造 一、结构抗震延性设计概述及要点 结构延性是指钢筋混凝土构件和结构在屈服开始到达最大承载力或者承载能力还没有明显下降期间的塑性变形能力。提高延性可以增加结构抗震潜力,增强结构抗倒塌能力。抗震结构的延性计算复杂,一般实际工程不会具体计算,但是会通过一些加强措施保证结构的延性。 抗震延性设计要点主要包括:保证结构体系受力明确,地震作用传递途径合理;结构布置时应尽量避免部分结构或构件破坏而导致整个结构丧失抗震能力或对使用荷载的承载能力;结构应具备必要的抗震承载力(如抗剪、压、扭能力)、良好的变形能力(如塑性)和消耗地震能量的能力(具有好的延性及阻尼);对于结构的薄弱部位应采取有效的措施予以加强;具有多道抗震防线;结构平面上两个主轴方向的动力特性宜相近具有合理的刚度和强度分布,避免因局部削弱或突变形成薄弱部位,产生过大的应力集中或塑形变形集中。 抗震结构的各类构件之间应具有可靠的连接。抗震结构的支撑系统应能保证地震时结构稳定。非结构构件(维护墙、隔墙、填充墙等)要采取合理的抗震构造措施。 二、增加钢筋混凝土结构延性的设计措施 (一)梁柱框架截面设计 在地震作用下,梁端塑性铰区混凝土保护层容易剥落,故梁截面宽度过小则截面损失比例较大,所以一般框架梁宽度不宜小于200mm;同时为了提高节点剪力、避免梁侧向失稳及确定梁塑性铰区发展范围,分别要求梁宽不宜小于柱宽的1/2、梁的高宽比不宜大于4、梁的跨高比不宜小于4,以确保框架梁中箍筋对混凝土的有效约束。为保证框架柱有足够的延性,框架柱的截面尺寸在两个主轴方向刚度相差不宜太大,长宽比不宜大于3;应避免过早出现斜裂缝导致剪切破坏,剪跨比宜大于2;柱截面的宽度和高度,四级或不超过2层时不

钢筋混凝土结构设计第三章单项选择

一、单项选择: 1. 关于变形缝,下列不正确 ...的说法是() A.伸缩缝应从基础顶面以上将缝两侧结构构件完全分开 B.沉降缝应从基础底面以上将缝两侧结构构件完全分开 C.伸缩缝可兼作沉降缝 D.地震区的伸缩缝和沉降缝均应符合防震缝的要求 2. 水平荷载作用下的多层框架结构,当某层其他条件不变,仅 其柱上端梁刚度降低,该层柱的反弯点位置() 2层高处 A.向上移动B.向下移动至 5 1层高处 C.不变D.向下移动至 3 3. 在进行框架梁端截面配筋计算时,下列说法正确的是 () A.弯矩和剪力均采用柱边的值 B.弯矩和剪力均采用柱轴线处的值 C.弯矩采用柱轴线处的值,剪力采用柱边值 D.弯矩采用柱边值,剪力采用柱轴线处的值

4. 在其他条件相同的情况下,有侧移多层多跨框架柱的计算长度l 0最小的是( ) A .采用现浇楼盖的边柱 B .采用现浇楼盖的中柱 C .采用装配式楼盖的边柱 D .采用装配式楼盖的中柱 5. 反弯点法可用在( ) A .竖向荷载作用下,梁柱线刚度比小的框架 B .竖向荷载作用下,梁柱线刚度比大的框架 C .水平荷载作用下,梁柱线刚度比小的框架 D .水平荷载作用下,梁柱线刚度比大的框架 6. 框架柱的侧移刚度212h i D c α=,其中α是考虑( ) A .梁柱线刚度比值对柱侧移刚度的影响系数 B .上下层梁刚度比值对柱侧移刚度的影响系数 C .上层层高变化对本层柱侧移刚度的影响系数 D .下层层高变化对本层柱侧移刚度的影响系数 7. 对于多层多跨规则框架,下列说法中不正确...的是( ) A .在风荷载作用下,边柱的轴力较大,中柱的轴力较小 B .在风荷载作用下,迎风面的柱子受拉,背风面柱子受压 C .在楼面均布恒载作用下,边柱的弯矩较大,中柱的弯矩较小 D .在楼面均布恒载作用下,边柱的轴力较大,中柱的轴力较小

坡屋顶画法1

软件画坡屋顶、处理斜梁(墙)、压斜柱的详细方法如下: 1.先将墙体或梁布置好以形成封闭空间 2.画平板,并将最外的一个开间的板偏移至和外墙皮齐 3.将平板按照图纸的脊线位置、坡度来画线分隔板 4.检查一下墙体和梁是否在坡度变化处是打断的,如果没有打断将其在正确的位置打断 5.将平板修改为斜板,将分割好的板分别定义 6.再将打断的(墙)梁合并,如果不合并钢筋会计算不准确 7.保存文件,到三维显示中查看是否有未压下来的墙体或柱等构件,如果有,可能是板没有延伸好,修改一下即可。 总结斜(墙)梁总体处理思路如下:画(墙)梁—打断(墙)梁—定义斜板—梁原位标注—合并(墙)梁—三维检查—汇总计算—核对结果。关键是如何利用好斜板的定义来自动压斜柱、墙、梁等构件。 1、斜板可以采用输入“坡度系数”定义斜板,也可以采用输入“基准边起点高度、终点高度”定义斜板。 2、定义斜板后,柱、墙、梁等构件就会随斜板自动倾斜,自然而然就是斜梁了,但要注意,线性构件如梁、墙等要在定义斜板的脊线位置提前打断。

举例: 1、复杂坡屋面处理 完成上图的坡屋面绘制。 该案例并不算复杂,但我们可以从中学会处理复杂屋面的思路 该图的难点在于两个屋面的相交如右图:相交点的水平标注尺寸可以通过内插法计算。公式如下: 0.48/0.56×2.7=2.314 换算为毫米为 2314.有了这个尺寸就可以很快的分割板了,具体的分割方式可以用辅助轴线,也可以用SHIFT+左键。 处理思路是:先画平板,然后分割,分割完成后定义斜板。如下图: (2)折梁处理思路 1、先根据平面图标注的平面尺寸画梁 2、分割完斜板后先沿屋脊处打断梁 3、定义斜板→合并梁→原位标注→三维检查→汇总出量。 以上是折梁处理的全过程,屋面的情况通常比较复杂,在操作结束后一定要用三维进行检查。看是否所有的梁板都已经压到位。局部的地方有时时候还要进行标高调整。直到三维无问题。

钢筋混凝土结构设计

辽宁省高等教育自学考试土木工程专业 实验报告书 课程名称钢筋混凝土结构设计 助学单位 姓名李文博 准考证号 2 成绩 二O一七年四月

一、实验目的和要求 1、掌握制定结构构件试验方案的原则及试验的加荷方案和测试方案。 2、观察钢筋混凝土试件从开裂、受拉钢筋屈服、直至受压区混凝土被压碎这三个阶段的受 力与破坏的过程。 3、能够对使用使用荷载作用下受弯构件的强度、刚度以及裂缝宽度等进行正确计算。 4、进一步学习常用仪表的选择和使用操作方法。 5、掌握测量数据的整理、分析和表达。 6、学会电测法检测混凝土构件中钢筋的锈蚀情况; 7、学会使用钢筋锈蚀检测仪、钢筋探测仪; 8、增强团队协作完成实验的能力,锻炼学生动手能力。 二、实验内容 1、试件的安装:由四人把电阻应变片粘贴好的砼试件抬到结构试验室安装地,另外四 人把反力架的螺帽旋开把钢横梁(每两人抬一边),再把试件搁置到横梁上。量取距离做好记号,安装分配梁并固定好;同时,另外同学把电阻应变片导线与静态电阻应变仪连接好,并做好记录进行编号一一对应检查,确保准确无误。取分配梁的中间点位置安装液压千斤顶(在其上面有机械式传感器)。最后再次检查各螺帽是否拧紧,检查导线是否一一对应,检查仪器是否正常工作。 2、试验过程:第一步,预先加荷载,以确保仪器能正常工作和各接触点接触是否 到位。第二步,开始按照预先设定的荷载进行加载。在加载的同时,我们在观察构件表面的和仪器数据。第三步,在加载到我们预先计算好开裂荷载前时,我们特别的慢慢的加载防止因为加载过快而导致不能看得到开裂的准确荷载。在这一步,看到在荷载作用下,梁上部受拉混凝土开始出现裂缝,随着荷载加大,裂缝不断延伸,宽度不断扩大。 第四步,当构件出现裂缝后,就一直加载到受压区混凝土被压碎。在这过程中看见混凝土被慢慢的压碎。混凝土中钢筋的锈蚀,采用电位差法进行检测。基本原理是钢筋锈蚀将引起腐蚀电流,使电位发生变化。检测时采用铜-硫酸铜作为参考电极,另一端与被测钢筋连接,中间连接一毫伏表,测量钢筋与参考电极之间的电位差,利用钢筋锈蚀程度与测量电位间建立的一定关系,可以判断钢筋锈蚀的可能性及其锈蚀程度。实验证明:电位差为正值,钢筋无锈蚀;电位差为负值,钢筋有锈蚀可能;负值越大,表明钢筋锈蚀程度愈严。双向连续平板中,无粘结筋大都是沿两个方向曲线布置,互相穿插,施工操作较困难,铺设前根据双向钢绞线各交点的标高,编出无粘结筋的铺设顺序图,标高低的先放,高的后放。板内无粘结筋用φl2钢筋制成各种标高的支架固定,在反弯点位置及中间每隔1.5m设1个支架。 梁内无粘结筋在支座处可直接用铅丝绑在非预应力筋骨架上,在中点及反弯点位置沿梁宽方向每隔1m用φ12钢筋焊在梁箍筋上,无粘结筋从此筋上通过并绑扎牢固。 预应力筋的净保护层在梁中为40mm,在板中为20mm。水电预埋管铺设时要避免移动预应力筋的垂直位置。的和仪器数据。第三步,在加载到我们预先计算好开裂荷载前时,

第四版混凝土结构设计原理试题库及其参考答案

第四版混凝土结构设计原理试题库及其参考答案 一、判断题(请在你认为正确陈述的各题干后的括号内打“√”,否则打“×”。每小题1分。) 第1章钢筋和混凝土的力学性能 1.混凝土立方体试块的尺寸越大,强度越高。() 2.混凝土在三向压力作用下的强度可以提高。() 3.普通热轧钢筋受压时的屈服强度与受拉时基本相同。 () 4.钢筋经冷拉后,强度和塑性均可提高。() 5.冷拉钢筋不宜用作受压钢筋。() 6.C20表示f cu=20N/mm。() 7.混凝土受压破坏是由于内部微裂缝扩展的结果。()8.混凝土抗拉强度随着混凝土强度等级提高而增大。 () 9.混凝土在剪应力和法向应力双向作用下,抗剪强度随拉应力的增大而增大。() 10.混凝土受拉时的弹性模量与受压时相同。() 11.线性徐变是指压应力较小时,徐变与应力成正比,而非线性徐变是指混凝土应力较大时,徐变增长与应力不成正比。 () 12.混凝土强度等级愈高,胶结力也愈大() 13.混凝土收缩、徐变与时间有关,且互相影响。() 第1章钢筋和混凝土的力学性能判断题答案 1. 错;对;对;错;对; 2. 错;对;对;错;对;对;对;对; 第3章轴心受力构件承载力

1. 轴心受压构件纵向受压钢筋配置越多越好。( ) 2. 轴心受压构件中的箍筋应作成封闭式的。( ) 3. 实际工程中没有真正的轴心受压构件。( ) 4. 轴心受压构件的长细比越大,稳定系数值越高。( ) 5. 轴心受压构件计算中,考虑受压时纵筋容易压曲,所以钢筋的抗压强度设计值最大取为 2/400mm N 。( ) 6.螺旋箍筋柱既能提高轴心受压构件的承载力,又能提高柱的稳定性。( ) 第3章 轴心受力构件承载力判断题答案 1. 错;对;对;错;错;错; 第4章 受弯构件正截面承载力 1. 混凝土保护层厚度越大越好。( ) 2. 对于'f h x ≤的T 形截面梁,因为其正截面受弯承载力相当于宽度为' f b 的矩形截面梁,所以其 配筋率应按0 'h b A f s = ρ来计算。( ) 3. 板中的分布钢筋布置在受力钢筋的下面。( ) 4. 在截面的受压区配置一定数量的钢筋对于改善梁截面的延性是有作用的。( ) 5. 双筋截面比单筋截面更经济适用。( ) 6. 截面复核中,如果ε>εb b ξξ >,说明梁发生破坏,承载力为0。 ( ) 7. 适筋破坏的特征是破坏始自于受拉钢筋的屈服,然后混凝土受压破坏。( ) 8. 正常使用条件下的钢筋混凝土梁处于梁工作的第Ⅲ阶段。( ) 9. 适筋破坏与超筋破坏的界限相对受压区高度b ξ的确定依据是平截面假定。( ) 第4章 受弯构件正截面承载力判断题答案 1. 错;错;错;对;错; 2. 错;对;错;对; 第5章 受弯构件斜截面承载力 1. 梁截面两侧边缘的纵向受拉钢筋是不可以弯起的。( ) 2. 梁剪弯段区段内,如果剪力的作用比较明显,将会出现弯剪斜裂缝。( ) 3. 截面尺寸对于无腹筋梁和有腹筋梁的影响都很大。( ) 4. 在集中荷载作用下,连续梁的抗剪承载力略高于相同条件下简支梁的抗剪承载力。( ) 5. 钢筋混凝土梁中纵筋的截断位置,在钢筋的理论不需要点处截断。( ) 第5章 受弯构件斜截面承载力判断题答案 1. 对;错;错;错;错 第6章 受扭构件承载力 1.钢筋混凝土构件在弯矩、剪力和扭矩共同作用下的承载力计算时,其所需要的箍筋由受弯构件斜截面承载力计算所得的箍筋与纯剪构件承载力计算所得箍筋叠加,且两种公式中均不考虑剪扭的相互影响。( )

坡屋顶设计基础知识(技术详解)

坡屋顶设计基础知识(技术详解) 坡屋顶的形式与组成 排水坡度一般大于10%的屋顶叫做坡屋顶或斜屋顶。坡屋 顶的形式和坡度主要取决于:建筑平面、结构形式、屋面材料、气候环境、风俗习惯、建筑造型等因素。屋顶在建筑 中应用较广,主要有单坡式、双坡式、四坡式和折腰式等。以双坡式和四坡式采用较多。中国古代建筑里的屋顶样式丰富,含义也与传统哲学思想、社会等级制度息息相关,在造型、对称、排列上具有独特的意味。中国古建筑凹曲屋面坡度大致相同,一般斜度都为26度~30度,这个角度非常接近太 阳黄道与地球赤道所形成的23度27分夹角,这也是古建筑屋顶象征天的文化内涵。双坡屋顶尽端屋面出挑在山墙外的称悬山;山墙与屋面砌平的称硬山。中国传统的四坡顶四角起翘的称庑殿;正脊延长,两侧形成两个山花面的称歇山。瓦线交汇在一点坡屋顶形式为攒尖顶,常在此点布置宝顶。顶双坡或多坡屋顶的倾斜面相互交接,顶部的水平交线称正脊;斜面相交成为凸角的斜交线称斜脊;斜面相交成为凹角的斜交线称斜天沟。没有正脊的坡屋顶,则称为卷棚顶。硬山顶、悬山顶、歇山顶均可做成卷棚顶形式。外,歇山顶、庑殿顶和攒尖顶也可根据需要布置成重檐的形式。 ·现代平屋顶:屋面排水坡度小于或等于10%的屋顶,常用

的坡度为2%~3%。平屋顶:屋面排水坡度小于或等于10%的屋顶,常用的坡度为2%~3%。 ·现代坡屋顶:指屋面排水坡度在10%以上的屋顶。 ·现代曲面屋顶:一般适用于大跨度的公共建筑中。坡屋顶屋面组成名称 坡屋顶由于屋顶坡面交接的部位不同形成屋脊(正脊)、斜脊、斜沟、檐口、内天沟和泛水等不同部位和名称(坡屋顶屋面组成名称如图1所示)。图1 坡屋顶屋面组成名称a)四坡屋顶b)并立双坡屋顶1—斜脊2—正脊3—斜天沟4—檐口5—屋脊6—山墙7—泛水8—天沟坡屋顶的屋面组成构造 坡屋顶一般由承重结构和屋面两部分组成,必要时加设保温层、隔热层及顶棚等。a)承重结构承重结构主要承受屋面荷载并把荷载传递到墙或柱上,一般有椽子、檩条、屋架或大梁等。b)屋面屋面是屋顶上的覆盖层,直接承受风、雪、雨和太阳辐射等大自然气候的作用。包括屋面盖料和基层,如挂瓦条、顺水条、屋面板等。 c)顶棚顶棚是指屋顶下面的遮挡部分,可使室内上部平整、美观、并起到反射光线和装饰的作用。 d)保温层或隔热层保温层或隔热层可设在屋面层或顶棚曾,由具体情况而定。坡屋顶的屋面组成材料坡屋顶的屋面防水材料种类很多,有小青瓦、平瓦、波形瓦、平板金属皮、构

钢筋混凝土坡屋顶的结构设计

钢筋混凝土坡屋顶的结构设计 本文对于现浇钢筋商品混凝土坡屋顶,尤其是常见的住宅结构,指出实际工程中常见的设计错误及问题。本文提出采用折板、拱壳结构布置概念和设计方法,用以减少或取消梁、柱的布置以降低成本并扩大阁楼的用户使用功能。本文还讨论了屋顶需要开洞、开窗,及具有其它复杂形体情况的设计。本文阐述了相应的简易近似计算方法及构造处理。 关键字:坡屋顶折板顺沿平面荷载垂直平面荷载 一.前言 近几年,钢筋商品混凝土坡屋顶的应用已经十分广泛,其正确设计方法的研究、确立非常迫切。其目标可以是取消或减少屋顶内的梁、柱,实现大空间,让屋顶板下“整洁干净”。这除给结构专业本身带来效益外,还能给建筑专业的设计开拓新余地,最终让广大用户、房地产开发商受益,其意义深远。 目前常见的实际工程,设计者在计算的力学模型中,往往把坡屋顶看成垂直投影下的平面梁板,或把平脊、斜脊轮廓线当成框架盲目地加梁、斜柱。事实上,对于一般方形平面的房屋,双坡、多坡屋顶的受力状态与拱、壳结构类似。平脊、斜脊的横断面都是“人”字型的折板,无论是否布置梁、柱,其脊线的变形形态根本不同于框架。上述做法都会使计算结果与真实的结构内力大相径庭。在施工过程中,屋脊梁、板斜交处模板形体复杂,多种角度的钢筋交错重叠,安装、浇注都很困难。这些在工程中也很常见,是典型的画蛇添足。 有学者运用弹性薄壳理论的数学物理方法,分析折板屋盖的内力、变形,揭示了在底座四周边既无水平外涨、又无竖向沉降位移情况时的竖直荷载效应规律[2][3][4],在一定程度上体现了拱、壳的特点。然而,假定这样的边界条件,与一般工程的实际情况相差甚远,掩盖了屋檐纵向跨中有沉降,底边缘承受拉力的根本特点,所以不能用于一般工程设计。 二.本文方法概述

混凝土结构设计规范

《混凝土结构设计规范》GB50010-2002 3基本设计和规定 1.1.8未经技术鉴定或设计许可,不得改变结构的用途和使用环境。 1.2..1根据建筑结构破坏后果的严重程度,建筑结构划分为三个安全等级。 设计时应根据具体情况,按照表3.2.1的规定选用相应的安全等级。 表3.2.1 建筑结构的安全等级 1.1.3混凝土轴心抗压、轴心抗拉强度标准值? ck 、? tk 应按表4.1.3采用。 表4.1.3 混凝土强度标准值(N/mm2) c t 表4.1.4 混凝土强度设计值(N/mm2) 的强度设计值应乘以系数0.8;当构件质量(如混凝土成型、截面和轴线尺寸等)确有保证时,可不受此限制; 2.离心混凝土的强度设计值应按专门标准取用。 1.2.2钢筋的强度标准值应具有不小于95%的保证率。热轧钢筋的强度标准值系 根据屈服强度确定,用? yk 表示。预应力钢绞线、钢丝和热处理钢筋的强度标 准值系根据极限抗拉强度确定,用? ptk 表示。 普通钢筋的强度标准值应按表4.2.2-1采用;预应力钢筋的强度标准值应按

表4.2.2-2采用。 各种直径钢筋、钢绞线和钢丝的公称截面面积、计算截面面积及理论重量应按附录B 采用。 表4.2.2-1 普通钢筋强度标准值(N/mm 2 ) 2 当采用直径大于40mm 的钢筋时,应有可靠的工程经验。 表4.2.2-2 预应力钢筋强度标准值(N/mm 2 ) 称直径Dg ,钢丝和热处理钢筋的直径d 均指公称直径; 2 消除应力光面钢丝直径d 为4~9mm ,消除应力螺旋肋钢丝直径d 为4~8mm 。 4.2.3普通钢筋的抗拉强度设计值?y 及抗压强度设计值?′y 应按表4.2.3-1采用;预应力钢筋的抗拉强度设计值?py 及抗压强度设计值?′py 应按表4.2.3-2采用。 当构件中配有不同种类的钢筋时,每种钢筋应采用各自的强度设计值。 表4.2.3-1 普通钢筋强度设计值(N/mm 2 ) 300 N/mm 2 取用。 表4.2.3-2 预应力钢筋强度设计值(N/mm 2 )

坡屋顶

一.前言 近几年,钢筋混凝土坡屋顶的应用已经十分广泛,其正确设计方法的研究、确立非常迫切。其目标可以是取消或减少屋顶内的梁、柱,实现大空间,让屋顶板下“整洁干净”。这除给结构专业本身带来效益外,还能给建筑专业的设计开拓新余地,最终让广大用户、房地产开发商受益,其意义深远。 目前常见的实际工程,设计者在计算的力学模型中,往往把坡屋顶看成垂直投影下的平面梁板,或把平脊、斜脊轮廓线当成框架盲目地加梁、斜柱。事实上,对于一般方形平面的房屋,双坡、多坡屋顶的受力状态与拱、壳结构类似。平脊、斜脊的横断面都是“人”字型的折板,无论是否布置梁、柱,其脊线的变形形态根本不同于框架。上述做法都会使计算结果与真实的结构内力大相径庭。在施工过程中,屋脊梁、板斜交处模板形体复杂,多种角度的钢筋交错重叠,安装、浇注都很困难。这些在工程中也很常见,是典型的画蛇添足。 有学者运用弹性薄壳理论的数学物理方法,分析折板屋盖的内力、变形,揭示了在底座四周边既无水平外涨、又无竖向沉降位移情况时的竖直荷载效应规律[2][3][4],在一定程度上体现了拱、壳的特点。然而,假定这样的边界条件,与一般工程的实际情况相差甚远,掩盖了屋檐纵向跨中有沉降,底边缘承受拉力的根本特点,所以不能用于一般工程设计。 二.本文方法概述 对于一般常见的跨度,本方法取消屋脊梁,基本不加腋。但在周边屋檐下要设框架梁或圈梁兼窗过梁。对于平面为长矩形的多开间、多柱情况,在建筑专业布置有横隔墙的每对中间柱之间在进深方向设置宽度同墙厚,可藏砌在墙里的拉梁。除跨度较小的情况外,拉梁上方有双坡贴板屋面斜梁。对于住宅,如果建筑专业需要,可争取实现在每户范围内顶棚无梁外露,见图1。类似桁架理论,本方法强调利用构件轴向力效应,但与桁架的区别在于内力分布不仅沿杆单根轴线而且还沿板平面。一般每块板都具有折板的受力特征,在承受屋面重力、风力、地震荷载,造成顺沿板平面的内力分量时,每块板都相当于有加强翼缘的薄壁梁。纵向支座之间由拱壳效应产生的板的横推力就是靠薄壁梁的抗弯反力水平分量平衡的。在板承受上述荷载的垂直分量时,每块板就相当于有嵌固边的多边支承板。本方法的设计要点,就是有意识地建立、完善坡屋顶的拱、折板体系,在屋檐标高处用尽可能少的水平拉梁平衡斜板的水平推力。其计算方法可分为手算法和计算机法,本文重点讨论手算法。手算方法取坡屋顶的单坡板作为隔离体,通过近似地整体分析,简化确定板的边界条件,求解顺沿平面、垂直平面两种荷载效应,在直法线假定下对各种内力线性叠加,检验稳定,综合配筋。本方法追求可操作性,用一般工程师相对熟悉的计算步骤解决较复杂的问题。

钢筋混凝土结构设计2

《混凝土结构设计原理》模拟试题2 1.选择题(1分×10=10分) 1.对于有流幅的钢筋,《混凝土结构设计规范》取()作为钢筋设计强度的取值 A.弹性极限; B.屈服强度; C.极限强度; D.条件屈服强度; 2.受弯构件在正截面工作的第一阶段末期,即将开裂的Ⅰa状态时,钢筋的应力大约为() A.5~~10MPa ; B.20~~30 MPa ; C.60~~70 MPa ; D.100~~110 MPa ; 3.()作为受弯构件正截面承载力计算的依据。 A.Ⅰa状态; B.Ⅱa状态; C.Ⅲa状态; D.第Ⅱ阶段; 4.《规范》规定,对于梁类、板类及墙类构件,位于同一连接区域内的受拉钢筋搭接接头 面积百分率不宜大于()。 A.25% ; B.50% ; C.75% ; D.100%; 5.《混凝土结构设计规范》规定,预应力混凝土构件的混凝土强度等级不应低于()。 A.C20 ; B.C30 ; C.C35 ;

D.C40 ; 6.预混凝土后张法构件中,混凝土预压前第一批预应力损失应为()。 A.? ; B.? ; C.; D.; 7.指的是混凝土的()。 A.弹性模量; B.割线模量; C.切线模量; D.原点切线模量应力; 8.下列哪种方法可以减少预应力直线钢筋由于锚具变形和钢筋内缩引起的预应力损失?()。 A.两次升温法; B.采用超张拉; C.增加台座长度; D.采用两端张拉; 9.受弯构件挠度验算不满足要求时,调整下列哪个因素对增加构件刚度最为有效()。A.?; B.?; C.?; D. 10.轴压构件按螺旋箍筋柱计算的受压承载力设计值,不应大于按普通箍筋柱计算的受压承载力设计值的1.5倍,是因为()。 A.保证间接钢筋的屈服;

钢筋砼坡屋顶的结构设计

钢筋混凝土坡屋顶的结构设计 摘要:本文对于现浇钢筋混凝土坡屋顶,尤其是常见的住宅结构,指出实际工程中常见的设计错误及问题。本文提出采用折板、拱壳结构布置概念和设计方法,用以减少或取消梁、柱的布置以降低成本并扩大阁楼的用户使用功能。本文还讨论了屋顶需要开洞、开窗,及具有其它复杂形体情况的设计。本文阐述了相应的简易近似计算方法及构造处理。 关键词:坡屋顶折板顺沿平面荷载垂直平面荷载 一.前言 近几年,钢筋混凝土坡屋顶的应用已经十分广泛,其正确设计方法的研究、确立非常迫切。其目标可以是取消或减少屋顶内的梁、柱,实现大空间,让屋顶板下“整洁干净”。这除给结构专业本身带来效益外,还能给建筑专业的设计开拓新余地,最终让广大用户、房地产开发商受益,其意义深远。 目前常见的实际工程,设计者在计算的力学模型中,往往把坡屋顶看成垂直投影下的平面梁板,或把平脊、斜脊轮廓线当成框架盲目地加梁、斜柱。事实上,对于一般方形平面的房屋,双坡、多坡屋顶的受力状态与拱、壳结构类似。平脊、斜脊的横断面都是“人”字型的折板,无论是否布置梁、柱,其脊线的变形形态根本不同于框架。上述做法都会使计算结果与真实的结构内力大相径庭。在施工过程中,屋脊梁、板斜交处模板形体复杂,多种角度的钢筋交错重叠,安装、浇注都很困难。这些在工程中也很常见,是典型的画蛇添足。 有学者运用弹性薄壳理论的数学物理方法,分析折板屋盖的内力、变形,揭示了在底座四周边既无水平外涨、又无竖向沉降位移情况时的竖直荷载效应规律[2][3][4],在一定程度上体现了拱、壳的特点。然而,假定这样的边界条件,与一般工程的实际情况相差甚远,掩盖了屋檐纵向跨中有沉降,底边缘承受拉力的根本特点,所以不能用于一般工程设计。二.本文方法概述 对于一般常见的跨度,本方法取消屋脊梁,基本不加腋。但在周边屋檐下要设框架梁或圈梁兼窗过梁。对于平面为长矩形的多开间、多柱情况,在建筑专业布置有横隔墙的每对中间柱之间在进深方向设置宽度同墙厚,可藏砌在墙里的拉梁。除跨度较小的情况外,拉梁上方有双坡贴板屋面斜梁。对于住宅,如果建筑专业需要,可争取实现在每户范围内顶棚无梁外露,见图1。类似桁架理论,本方法强调利用构件轴向力效应,但与桁架的区别在于内力分布不仅沿杆单根轴线而且还沿板平面。一般每块板都具有折板的受力特征,在承受屋面重力、风力、地震荷载,造成顺沿板平面的内力分量时,每块板都相当于有加强翼缘的薄壁梁。纵向支座之间由拱壳效应产生的板的横推力就是靠薄壁梁的抗弯反力水平分量平衡的。在板承受上述荷载的垂直分量时,每块板就相当于有嵌固边的多边支承板。本方法的设计要点,就是有意识地建立、完善坡屋顶的拱、折板体系,在屋檐标高处用尽可能少的水平拉梁平衡斜板的水平推力。其计算方法可分为手算法和计算机法,本文重点讨论手算法。手算方法取坡屋顶的单坡板作为隔离体,通过近似地整体分析,简化确定板的边界条件,求解顺沿平面、垂直平面两种荷载效应,在直法线假定下对各种内力线性叠加,检验稳定,综合配筋。本方法追求可操作性,用一般工程师相对熟悉的计算步骤解决较复杂的问题。

相关文档
最新文档