北师大版初中数学八年级上册2.2平方根word教案(3)

北师大版初中数学八年级上册2.2平方根word教案(3)
北师大版初中数学八年级上册2.2平方根word教案(3)

第二章实数

2. 平方根(第2课时)

一、学生起点分析

学生在七年级上册学习“棋盘上的故事”就认识了一种运算“乘方”,并能熟练计算任何一个数的平方.知道正数的平方是正数,负数的平方是正数,0的平方是0.在八年级上册第二章《实数》的学习中又认识了算术平方根的概念和表示方法,已能求非负数的算术平方根.那么这一课时进一步学习平方根.本节也为后面学习“立方根”做基础.

二、教学任务分析

《平方根》是义务教育课程标准北师大版实验教科书八年级(上)第二章《实数》的第二节.本节安排了两个课时完成.第一课时是了解数的算术平方根的概念,会用根号表示一个数的算术平方根.在具体的例子中抽象出概念,发展学生的抽象概括能力.本节课是第二课时,继续学习平方根的概念及其运用.并对“平方根”和“算术平方根”,“平方”和“开平方”的概念做辨析,使学生在“引导-探索-类比-发现”中发展学习数学的能力.为此,本节课的教学目标是

①了解平方根、开平方的概念,明确算术平方根与平方根的区别和联系.

②进一步明确平方与开平方是互逆的运算关系.

③经历平方根概念的形成过程,让学生不仅掌握概念,而且提高和巩固所学知识的应用能力.

教学重点是

①了解平方根、开平方的概念.

②了解开方与乘方是互逆的运算,会利用这个互逆运算关系求某些非负数的算术平方根和平方根.

③了解平方根与算术平方根的区别与联系.

教学难点是

①平方根与算术平方根的区别和联系.

②负数没有平方根,即负数不能进行开平方的运算.

三、教学过程设计:

本节课采用引导、探究、类比相结合的教学方法,设计了六个教学环节第一环节复习旧知引入新知;第二环节形成概念,辨析概念;第三环节例题和巩固练习;第四环节课堂小结;第五环节思维拓展;第六环节布置作业.

第一环节复习旧知引入新知

内容:方法一 复习引入

1.什么叫算术平方根?

3的平方等于9,那么9的算术平方根就是 3 .

52的平方等于 254 ,那么25

4 的算术平方根就是_____52

_________.

展厅的地面为正方形,其面积49平方米,则边长_ 7_米.

2.到目前为止,我们已学过哪些运算?这些运算之间的关系如何? 乘方有没有逆运算?

平方与算术平方根之间的关系?

已知折叠着的正方形ABCD 面积为1,则边长为__1___.将它扩展,若面积变为原来的2倍,那么它的边长为___2___;若面积变为原来的3倍,则边长为____3_____;若面积变为原来的n 倍,则边长为____n ____.

方法二 复习引入 问题 平方等于9,

25

4

,49的数还有吗?

目的: 这一环节主要是复习旧知识和提出问题,由上节课的“算术平方根”的求法使学生能明白“平方”和“算术平方根”的关系,让学生在几何图形中认识.熟悉它们的互化关系.并把上节课的思考题制作成Flash 情景引入,增加动画效果.

效果 借助多媒体吸引学生的注意力,激发学生的学习兴趣.

说明 数学知识源于生活,并服务于我们的生活.这两种方法通过生活中的具体问题激发学生的学习兴趣,并让他们产生解决问题的强烈愿望. 第二环节 : 新课学习

内容 (一)探究新知

填空

32

=(9 )

(-3)2

=(9 ) ( )2

=9 02

=0

(12)2

=(14)

()21

4=

(不存在)2=-4

(12-

)2=(1

4)

(二)形成概念(1)

一般地,如果一个数的平方等于a ,那么这个数叫做a 的平方根或二次方根.而把正的平方根叫做a 的算术平方根.

表达式为:若x 2

=a ,那么x 叫做a 的平方根. 记作 a ±

例如:(±4)2

=16,则+4和-4都是16的平方根;即16的平方根是±4;4是16的算术平方根. (三)探索平方与开平方的关系:

给出几组具体的数据,由平方探知开平方与平方的互逆关系. (四)概念辨析

平方根与算术平方根的联系与区别

联系 1.包含关系 平方根包含算术平方根,算术平方根是平方根的一种.

2.只有非负数才有平方根和算术平方根. 3. 0的平方根是0,算术平方根也是0.

区别 1.个数不同:一个正数有两个平方根,但只有一个算术平方根.

2.表示法不同:平方根表示为 a ±

,而算术平方根表示为a .

目的 形成“平方根”的概念.在列举一些具体数据的感性认识基础上,由平方运算反推出平方根的概念和定义,并让学生非常熟练地进行平方和平方根之间的互化并,明白它们之间的互逆关系,辨析概念 “平方根”与 “算术平方根”的区别与联系,使之与上一节课紧密联系.

效果 由于遵循了从具体到抽象的过程,注重学生原有认知基础的回顾,并和原有的概 念进行了比较与辨析,因此,学生对这一抽象的概念掌握得比较牢靠.

说明 平方根与算术平方根的区别是本节课的一大难点,也是学生经常容易出错的地方. 对这两个概念加以比较与区别有利于学生的理解与掌握.

第三环节 例题和新知巩固

(一)例题示范 求下列各数的平方根: (1)64;(2)

49121

;(3) 0.0004;(4)()2

25-;(5) 11

解 (1)()2

648=±Q ,648∴±的平方根是,8±=±即;

(2)()

24949771211211111

,=∴±±Q

的平方根为

,711±=±即;

(3)()2

0.0004,0.00040.020.02=∴±±Q 的平方根是

,0.02±=±即; (4)()()()2

2

,25252525=∴±±--Q 2

的平方根是,

25=±即;

5)11

Q 的平方根是目的 这是书上的例题,要求学生能正确掌握平方根的文字说理及符号化的表达.能熟

练地求出一个数的平方根,然后由题中的数据探索出正数、0、负数的平方根的个数.

效果 通过对例题的详解,学生能准确地书写表达,规范平方根的书写格式,掌握正

确的符号化语言.

(二)思考提升

1.()2

5-

的平方根是 ,_____,

4

9

的平方根是_____;

2.2=

= ,

= ,=_______;

3

= ,2

0a ≥=当 . (三)巩固练习

1

.下列说法正确的是

①3-②25的平方根是5;③-36的平方根是-6;④平方根等于0的数是0;⑤64

的平方根是8.

2.下列说法不正确的是( ) .

(A)0的平方根是0 (B)2

2-的平方根是2±

(C)非负数的平方根是互为相反数 (D)一个正数的算术平方根一定大于这个数的相反数 3.已知一个自然数的算术平方根是a ,则该自然数的下一个自然数的算术平方根是( ).

(A) a (C)

2

a

4

.x 为何值,有意义?

答 因为02

x

-

≥,所以0x ≤ 目的 围绕本节课的重点知识 (平方根)作适当的练习,在不同的变式练习中加深对平方根意义的理解.

效果 学生基本能顺利解决这些问题,并利用探索的规律进行规范的表达.

第四环节 课堂小结

内容 引导学生总结本课时的知识、方法.

目的 让学生对所学的知识进行梳理,使之思路清晰,既巩固了有关知识,又培养了学生良好的学习习惯.

效果 在老师的引导下学生自己总结本节课的知识、方法,如

平方根的概念 若2

x a =,则x 叫a 的平方根,x =平方根的个数 正数有2个平方根,0的平方根是0,负数没有平方根. 平方与开方之间的关系;

求平方根的方法 求一个数的平方根就是转化寻找哪个数平方等于这个数.

第五环节 提高训练

内容 1.5a ,5-b ,求a b +的值.

2.已知实数a ,b 满足2

96b b += ①若a ,b 为ABC ?的两边,求第三边c 的取值范围;

②若a ,b 为ABC ?的两边,第三边c 等于5,求ABC ?的面积.

目的 安排了两道题,其中最后一题是用算术平方根的意义来解决三角形的问题,这一环节主要针对层次较好的学生提供的题.可供老师根据教学的实际情况灵活处理.

第六环节 作业布置

习题2.4

四、教学设计反思

本节课是八年级上册第二章《平方根》的第二课时.主要知识是平方根的学习和运用.教材是教师提供最基本的教学素材,教师完全可以根据学生的实际情况进行适当调整.

(一)注重概念的形成过程,让学生在概念的形成的过程中,逐步理解所学的概念.概念是由具体到抽象、由特殊到一般,经过分析、综合去掉非本质特征,保持本质属性而形成的.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很必要的.所以在学习平方根的概念时,对正数有两个平方根学生不太容易接受,往往丢掉负的平方根,因为这与他们以前的经验不符.对此,在平方根的引入时,可多提一些具体的问题.如“9的算术平方根是3,也就是说,3的平方是9.还有其他

的数,它的平方也是9吗?”等等,旨在引起学生的思考,让学生从具体的例子中抽象出初步的平方根的概念.再让学生去讨论一个正数有几个平方根?0有几个平方根?负数呢?引导学生更深刻地理解平方根的概念,然后通过具体的求平方根的练习,巩固新学的概念.

(二)鼓励学生进行探究和交流本节课为学生提供了有趣而富有数学含义的问题,让学生进行充分的探索和交流.如把正方形的面积不断的扩大为2倍、3倍、n倍,来引导学生充分进行交流、讨论与探索等数学活动,从中感受学习平方根的必要性.

(三)设计之中多处运用类比的方法,使学生清楚新旧知识的区别和联系.类比概念“平方根”和“算术平方根”的区别和联系,“平方”和“开平方”运算.

(四)根据学生实际,灵活使用教材

教材上只安排了一道例题和几个想一想,为了让学生对新知巩固,我增加了部分练习题,围绕“平方根”这一知识点进行各种题型的变式练习.当然,选题要有层次,有梯度.老师们在进行教学时可以根据学生的实际情况作适当的取舍.

(五)建议

根据知识结构的逻辑关系与学生的认知规律,建议教材在内容安排上平方根置于算术平方根之前.

九年级数学上册教案设计(北师大版)

第一章 特殊平行四边形 1.1 菱形的性质与判定(一) 学习目标: ①通过折、剪纸的方法,探索菱形独特的性质。 ②通过学生间的交流、计论、分析、类比、归纳、运用已学过的知识总结菱形的特征。 教学重点:菱形的概念和菱形的性质,菱形的面积公式的推导。 教学难点:菱形的性质的理解及菱形性质的灵活运用。 学习过程: 活动一: 自学课本例题以上的容,完成下列问题: 1. 如何从一个平行四边形中剪出一个菱形来? 的四边形叫做菱形,生活中的菱形有 。 2. 按探究步骤剪下一个四边形。 ①所得四边形为什么一定是菱形? 平行四边形 菱形 ?

②菱形为什么是轴对称图形? 有对称轴。 图中相等的线段有: 图中相等的角有: ③你能从菱形的轴对称性中得到菱形所具有的特有的性质吗?自己完成证明。 性质: 证明: 活动二:对比菱形与平行四边形的对角线 菱形的对角线: 平行四边的对角线: 活动三:菱形性质的应用 1.菱形的两条对角线的长分别是6cm和8cm,求菱形的周长和面积。

2.如图,菱形花坛ABCD的边长为20cm,∠ABC=60° 沿菱形的两条对角线修建了两条小路AC和BD, 求两条小路的长和花坛的面积。 课效检测: 一、填空 (1)菱形的两条对角线长分别是12cm,16cm,它的周长等于,面积等于。 (2)菱形的一条边与它的两条对角线所夹的角比是3:2,菱形的四个角是。 (3)已知:菱形的周长是20cm,两个相邻的角的度数比为1:2,则较短的对角线

长是 。 (4)已知:菱形的周长是52 cm ,一条对角线长是24 cm ,则它的面积是 。 二、解答题 已知:如图,在菱形ABCD 中,周长为8cm ,∠BAD=1200 对角线AC ,BD 交于点O ,求这个菱形的对角线长和面积。 教学设计反思 本节课的主要教学容为菱形的定义和性质。学生已经学习了平行四边形的性质,这是本节的知识基础。关于菱形的定义和性质,就是在平行四边形的基础上,进一步强化条件得到的。A B C D O

春新北师大版八年级数学下册 全册教案

第一章三角形的证明 【单元分析】 本章是八年级上册第七章《平行线的证明》的继续,在“平等线的证明”一章中,我们给出了8 条基本事实,并从其中的几条基本事实出发证明了有关平行线的一些结论。运用这些基本事实和已经学习过的定理,我们还可以证明有关三角形的一些结论。 在这之前,学生已经对图形的性质及其相互关系进行了大量的探索,探索的同时也经历过一些简单的推理过程,已经具备了一定的推理能力,树立了初步的推理意识,从而为本章进一步严格证明三角形有关定理打下了基础。 【单元目标】 1.知识与技能 (1)等腰三角形的性质和判定定理; (2)直角三角形的性质定理和判定定理; 2.过程与方法 (1)会运用等腰三角形的性质和判定定理解决相关问题; (2)直角三角形的性质定理和判定定理解决简单的实际问题; 3.情感态度与价值观 (1)经历由情景引出问题,探索掌握有关数学知识,再运用于实践的过程,培养学数学、用数学的意识与能力; (2)感受数学文化的价值和中国传统数学的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情。 【单元重点】 在证明过程中,进一步感受证明过程,掌握推理证明的基本要求,明确条件和结论,能够借助数学符号语言利用综合法证明等腰三角形的性质定理和判定定理。 【单元难点】 明确推理证明的基本要求如明确条件和结论,能否用数学语言正确表达等。 【教学思路】 1.对于已有命题的证明,教学过程中要注意引导学生回忆过去的探索、说理过程,从中获取严格证明的思路;对于新增命题,教学过程中要重视学生的探索、证明过程,关注该命题与其他已有命题之间的关系;对于整章的命题,注意关注将这些命题纳入一个命题系统,关注命题之间的关系,从而形成对相关图形整体的认识。 2.对于证明的方法,除了注重启发和回忆,还应注意关注证明方法的多样性,力图通过学生的自主探索,获得多样的证明方法,并在比较中选择适当的方法。 3.证明过程中注意揭示蕴含其中的数学思想方法,如转化、归纳、类比等。 4.作为初中阶段几何证明的最后阶段,教学中应要求学生掌握综合法和分析法证明命题的基本要求,掌握规范的证明表述过程,达成课程标准对证明表述的要求。

(完整word)初中数学各章节目录(北师大新版)

初中数学各章节目录(北师大新版) 七年级(上) 第1章丰富的图形世界 1.1 生活中的立体图形 1.2 展开与折叠 1.3 截一个几何体 1.4 从三个方向看物体大的形状第2章有理数及其运算 2.1 有理数 2.2 数轴 2.3 绝对值 2.4 有理数的加法 2.5 有理数的减法 2.6 有理数的加减混合运算 2.7 有理数的乘法 2.8 有理数的除法 2.9 有理数的乘方 2.10 科学技数法 2.11 有理数的混合运算 2.12 用计算器进行运算 第3章整式及其加减 3.1 字母表示数 3.2 代数式 3.3 整式 3.4 整式的加减 3.5 探索与表达规律 第4章基本平面图形 4.1 线段、射线、直线 4.2 比较线段的长短 4.3 角 4.4 角的比较 4.5 多边形和圆的初步认识 第5章一元一次方程 5.1 认识一元一次方程 5.2 求解一元一次方程 5.3 应用--水箱变高了 5.4 应用--打折销售 5.5 应用--“希望工程”义演5.6 应用--追赶小明 第6章数据的收集与整理 6.1 数据的收集 6.2 普查与抽样调查6.3 数据的表示 6.4 统计图的选择 七年级(下) 第1章整式的乘除 1.1 同底数幂的乘法 1.2 幂的乘方与积的乘方 1.3 同底数幂的除法 1.4 整式的乘法 1.5 平方差公式 1.6 完全平方公式 1.7 整式的除法 第2章相交线与平行线 2.1 两条直线的位置关系 2.2 探索直线平行的条件 2.3 平行线的性质 2.4 用尺规作角 第3章变量之间的关系 3.1 用表格表示的变量间关系3.2 用关系式表示的变量间关系3.3 用图像表示的变量间关系第4章三角形 4.1 认识三角形 4.2 图形的全等 4.3 探索三角形全等的条件 4.4 用尺规作三角形 4.5 利用三角形全等测距离 第5章生活中的轴对称 5.1 轴对称现象 5.2 探索轴对称的性质 5.3 简单的轴对称图形 5.4 利用轴对称进行设计 第6章概率初步 6.1 感受可能性 6.2 频率的稳定性 6.3 等可能事件的概率 八年级(上) 第1章勾股定理 1.1 探索勾股定理 1.2 一定是直角三角形吗

北师大版数学中考专题复习几何专题

北师大版数学中考专题复习——几何专题 【题型一】考察概念基础知识点型 例1如图1,等腰△ABC 的周长为21,底边BC = 5,AB 的垂直平分线是DE ,则△BEC 的周长为 。 例2 如图2,菱形ABCD 中,60A ∠=°,E 、F 是AB 、AD 的中点,若2EF =,菱形边长是______. 图 1 图 2 图3 例3 (切线)已知AB 是⊙O 的直径,PB 是⊙O 的切线,AB =3cm ,PB =4cm ,则BC = . 【题型二】折叠题型:折叠题要从中找到对就相等的关系,然后利用勾股定理即可求解。 例4(09绍兴)D E ,分别为AC ,BC 边的中点,沿DE 折叠,若48CDE ∠=°,则APD ∠等于 。 例5如图4.矩形纸片ABCD 的边长AB =4,AD =2.将矩形纸片沿 EF 折叠, 使点A 与点C 重合,折叠后在其 一面着色(图),则着色部分的面积为( ) A . 8 B . 11 2 C . 4 D .52 图4 图5 图6 【题型三】涉及计算题型:常见的有应用勾股定理求线段长度,求弧长,扇形面积及圆锥体积,侧面积,三角函数计算等。 例6如图3,P 为⊙O 外一点,PA 切⊙O 于A ,AB 是⊙O 的直径,PB 交⊙O 于C , PA =2cm ,PC =1cm,则图中阴影部分的面积S 是 ( ) A. 2235cm π- B 2435cm π- C 24235cm π- D 22 32cm π - 图3 【题型四】证明题型: (一)三角形全等 【判定方法1:SAS 】 例 1 (2011广州)如图,AC 是菱形ABCD 的对角线,点E 、F 分别在边 AB 、AD 上,且 AE=AF 。 求证:△ACE ≌△ACF A D F E

北师大版初中数学七下教案

北师大版实验教科书七年级下册 1、1整式 教学目标:1、在现实情景中进一步理解用字母表示数的意义,发展符号感。 2、了解整式产生的背景与整式的概念,能求出整式的次数。 教学重点:整式的概念与整式的次数。 教学难点:整式的次数。 教学方法:尝试练习法,讨论法,归纳法。 教学用具:投影仪、常用的教学教具 活动准备:1、分别求出下列图形的面积: 三角形的面积为_________; 长方形的面积为______ 正方形的面积为________;圆的面积为____________、 2、代数式的系数、项的回顾: (1)代数式b a 23 1的系数就是 代数式-24mn 的系数就是 (2)代数式4 2b a -的系数就是 代数式543 st 的系数就是 (3)代数式c b a ab 423-共有 项,它们的系数分别就是 、 , 项就是________________、 (4)代数式z x xy y x 23274 1-+-共有 项,它们的系数分别就是 、 、 教学过程: 1. 课前复习1的基础上求下列图形的面积: 一个塑料三角尺如图所示,阴影部分所占的面积就是_______ 2.小红、小兰与小明的房间的窗户从左到右如下图所示, 其上方的装饰(它们的半径相同) (1) 装饰物所占的面积分别就是_____ ______ _______ (2) 窗户中能射进阳光的部分的面积分别就是__________ _____ a a 二、单项式、多项式的概念与其次数 注意:(1)区分判别字母在分子中与字母在分母中的式子就是否整式。 (2)多项式就是“几个单项式的与”中的与如何理解。

(3)单独一个数或一个字母也就是单项式,而单独一个非零的次数就是0。 (4)单独一个字母的次数就是1。 (5)常见错误多项式的次数就就是把多项式的所有字母的指数相加。 与单项式的次数混淆。 三、巩固练习: 1、计算: 1.在代数式-231a ,52243b a -,ab,)(1y x a +,)(2 1b a +,712+x 中,其中单项式有____________它们各自的系数分别为___________多项式有________________ 2.单项式的次数: 3x 225ab - bc a 2- rr 22π- 3、多项式的次数: 16b ab π - bc a 32- 22 12++y y x b a c ab -+2223 三、整式的名称: 根据单项式、多项式的次数与项数而命名。(其中数字一定要大写) 例:216 b ab π - 就是二次二项式 巩固练习: 1、单项式、多项式的名称: bc a 32- 就是____次_____项式 122 12++y y x 就是____次_____项式 abc b a c ab -+2223 就是____次_____项式 小 结:(1)这节课,您学到了什么?

新版北师大版八年级上册数学全册教案教学设计最新精编版)

北师大版八年级上册教学案 同庆初中教学设计 (导学模式) 学科:; 任课班级:; 任课教师:; 年月日 第一章勾股定理 §1.1 探索勾股定理(一) 教学目标: 1、经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。 2、探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。 重点难点: 重点:了解勾股定理的由来,并能用它来解决一些简单的问题。 难点:勾股定理的发现 教学过程 一、创设问题的情境,激发学生的学习热情,导入课题 出示投影1 (章前的图文 p1)教师道白:介绍我国古代在勾股定理研究方面的贡献,并结合课本p5谈一谈,讲述我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。 出示投影2 (书中的P2 图1—2)并回答: 1、观察图1-2,正方形A中有_______个小方格,即A的面积为______个单位。正方形B中有_______个小方格,即A的面积为______个单位。 正方形C中有_______个小方格,即A的面积为______个单位。 2、你是怎样得出上面的结果的?在学生交流回答的基础上教师直接发问: 3、图1—2中,A,B,C 之间的面积之间有什么关系? 学生交流后形成共识,教师板书,A+B=C,接着提出图1—1中的A.B,C 的关系呢? 二、做一做 出示投影3(书中P3图1—4)提问: 1、图1—3中,A,B,C 之间有什么关系? 2、图1—4中,A,B,C 之间有什么关系?

以三角形两直角边为边的正方形的面积和,等于以斜边的正方形面积。 三、议一议 1、图1—1、1— 2、1— 3、1—4中,你能用三角形的边长表示正方形的面积吗? 2、你能发现直角三角形三边长度之间的关系吗? 在同学的交流基础上,老师板书: 直角三角形边的两直角边的平方和等于斜边的平方。这就是著名的“勾股定理” 也就是说:如果直角三角形的两直角边为a,b,斜边为c 那么2 2c 2 a= + b 我国古代称直角三角形的较短的直角边为勾,较长的为股,斜边为弦,这就是勾股定理的由来。 3、分别以5厘米和12厘米为直角边做出一个直角三角形,并测量斜边的长度(学生测量后回答斜边长为13)请大家想一想(2)中的规律,对这个三角形仍然成立吗?(回答是肯定的:成立) 四、想一想 这里的29英寸(74厘米)的电视机,指的是屏幕的长吗?只的是屏幕的款吗?那他指什么呢? 五、巩固练习 1、错例辨析: △ABC的两边为3和4,求第三边 解:由于三角形的两边为3、4 所以它的第三边的c应满足2 24 2 c=25 = 3+ 即:c=5 辨析:(1)要用勾股定理解题,首先应具备直角三角形这个必不可少的条件,可本题 △ABC并未说明它是否是直角三角形,所以用勾股定理就没有依据。 (2)若告诉△ABC是直角三角形,第三边C也不一定是满足2 2 2c a= +,题目中并为 b 交待C 是斜边 综上所述这个题目条件不足,第三边无法求得。 2、练习P7 §1.1 1 六、作业 课本P7 §1.1 2、3、4 §1.1 探索勾股定理(二) 教学目标: 1.经历运用拼图的方法说明勾股定理是正确的过程,在数学活动中发展学生的探究意识和合作交流的习惯。 2.掌握勾股定理和他的简单应用 重点难点: 重点:能熟练运用拼图的方法证明勾股定理 难点:用面积证勾股定理 教学过程

北师大版初二数学知识点总结(2018最新教材版)

初二数学 知 识 点

初二数学(上册)知识点总结 第一章勾股定理 1、勾股定理 直角三角形两直角边a,b 的平方和等于斜边 c 的平方,即 a 2 b2 c2 2、勾股定理的逆定理(直角三角形的判定条件) 如果三角形的三边长a,b,c 有关系 2 b2 c 2 a ,那么这个三角形是直角三角形,且最长边所对的角是 直角。 2 b c 2 2 3、勾股数:满足 a 的三个正整数,称为勾股数。 第二章实数 一、实数的概念及分 类 1、实数的分类 正有理数 有理数零有限小数和无限循环小数 实数负有理数 正无理数 无理数无限不循环小数 负无理数 2、无理数:无限不循环小数叫做无理数。 在理解无理数时,要抓住“无限不循环”这一时之,归纳起来 有四 类 : (1)开方开不尽的数,如7,3 2 等; (2)有特定意义的数,如圆周率π,或化简后含有π的数,如(3)有特定结构的数,如0.1010010001?等; (4)某些三角函数值,如sin60 o 等 o 等π 3 +8 等; 二、实数的倒数、相反数和绝对值 1、相反数 实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b 互为相反数,则有a+b=0,a=—b,反之亦成立。 2、绝对值 在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。(|a|≥0)。零的绝对值是它本身,也可看成它的相反数,若|a|=a,则 a≥0;若|a|=-a,则 a≤0。 3、倒数 如果a 与b 互为倒数,则 有ab=1,反之亦成立。倒数等于本身的数是 1 和-1。零没有倒数。 4、数轴 规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。 解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵 活运 用 。 5、估算 三、平方根、算术平方根和立方根 2 1、算术平方根:一般地,如果一个正数x 的平方等于a,即x =a,那么这个正数x 就叫做 a 的算术平方根。 特别地,0 的算术平方根是0。

北师大版九年级数学下册全套教案1

第一章直角三角形的边角关系 §1.1 从梯子的倾斜程度谈起(第一课时) 学习目标: 1.经历探索直角三角形中边角关系的过程.理解正切的意义和与现实生活的联系. 2.能够用tanA表示直角三角形中两边的比,表示生活中物体的倾斜程度、坡度等,外能够用正切进行简单的计算. 学习重点: 1.从现实情境中探索直角三角形的边角关系. 2.理解正切、倾斜程度、坡度的数学意义,密切数学与生活的联系. 学习难点: 理解正切的意义,并用它来表示两边的比. 学习方法: 引导—探索法. 学习过程: 一、生活中的数学问题: 1、你能比较两个梯子哪个更陡吗?你有哪些办法? 2、生活问题数学化: ⑴如图:梯子AB和EF哪个更陡?你是怎样判断的? ⑵以下三组中,梯子AB和EF哪个更陡?你是怎样判断的? 二、直角三角形的边与角的关系(如图,回答下列问题)

⑴Rt △A B1C 1和Rt△AB 2C 2有什么关系? ⑵222111B AC C B AC C 和有什么关系? ⑶如果改变B 2在梯子上的位置(如B3C 3)呢? ⑷由此你得出什么结论? 三、例题: 例1、如图是甲,乙两个自动扶梯,哪一个自动 扶梯比较陡? 例2、在△ABC 中,∠C=90°,BC=12cm ,AB=20cm ,求tan A和tanB 的值. 四、随堂练习: 1、如图,△ABC 是等腰直角三角形,你能根据图中所给数据求出tanC 吗? 2、如图,某人从山脚下的点A 走了200m后到达山顶的点B,已知点B到山脚的垂直距离为55m ,求山的坡度.(结果精确到0.001)

3、若某人沿坡度i=3:4的斜坡前进10米,则他所在的位置 比原来的位置升高________米. 4、菱形的两条对角线分别是16和12.较长的一条对角线与菱形的一边 的夹角为θ,则tanθ=______. 5、如图,Rt△ABC是一防洪堤背水坡的横截面图,斜坡AB的 长为12 m,它的坡角为45°,为了提高该堤的防洪能力,现将背 水坡改造成坡比为1:1.5的斜坡AD,求DB的长.(结果保留根号) 五、课后练习: 1、在Rt△ABC中,∠C=90°,AB=3,BC=1,则tanA= _______. 2、在△ABC中,AB=10,AC=8,BC=6,则tanA=_______. 3、在△ABC中,AB=AC=3,BC=4,则tanC=______. 4、在Rt△ABC中,∠C是直角,∠A、∠B、∠C的对边分别是a、b、c,且a=24,c= 25,求tanA、tanB的值. 5、若三角形三边的比是25:24:7,求最小角的正切值.

北师大版八年级数学下册全套教案(精华版)

1.1 不等关系 教学目的和要求: 理解不等式的概念,感受生活中存在的不等关系 教学重点和难点: 重点: 对不等式概念的理解 难点: 怎样建立量与量之间的不等关系。 从问题中来,到问题中去。 1. 如图1-1,用用根长度均为l ㎝的绳子,分别围成一个正方形和圆。 (1)如果要使正方形的面积不大于25㎝2,那么绳长l 应满足怎样的关系式? (2)如果要使圆的面积大于100㎝2,那么绳长l 应满足怎样的关系式? (3)当l =8时,正方形和圆的面积哪个大?l =12呢? (4)改变l 的取值再试一试,在这个过程中你能得到什么启发? 分析解答:在上面的问题中,所围成的正方形的面积可以表示为2 )4 (l ,圆的面积可以表示 为2 2?? ? ??ππl 。 (1) 要使正方形的面积不大于25㎝2,就是 25)4 (2 ≤l ,即25162≤l 。 (2) 要使圆的面积大于100㎝2,就是 2 2?? ? ??ππl >100, 即 π 42 l >100 (3) 当l =8时,正方形的面积为)(41682 2cm =,圆的面积为)(1.54822cm ≈π ,

4<5.1,此时圆的面积大。 当l =12时,正方形的面积为)(916122 2cm =,圆的面积为)(5.1141222cm ≈π , 9<11.5,此时还是圆的面积大。 (4) 不论怎样改变l 的取值,通过计算发现:总是圆的面积大,因此,我们可以猜想, 用长度增色为l ㎝的两根绳子分别围成一个正方形和圆,无论l 取何值,圆的面积总大于正方形的面积,即 π42l >16 2 l 2. (1)通过测量一棵树的树围(树干的周长)可能计算出它的树龄,通常规定以树干 离地面1.5m 的地方作为测量部位。某树栽种时的树围为5㎝,以后树围每年增加约3㎝,这棵树至少要生长多少年其树围才能超过2.4m ?(只列关系式) (2)燃放某种礼花弹时,为了确保安全,人在点燃导火线后要在燃放前转移到10m 以外的安全区域。已知导火线的燃烧速度为0.2m/s ,人离开的速度为4m/s ,导火线的长度x (m )应满足怎样的关系式? 答案:(1)设这棵树生长x 年其树围才能超过2.4m ,则5+3x >240。 (2)人离开10m 以外的地方需要的时间,应小于导火线燃烧的时间,只有这样才能保证人的安全: 410<2 .0x 分析巩固练习: 用不等式表示: (1) a 的相反数是正数; (2) m 与2的差小于3 2; (3) x 的 3 1 与4的和不是正数; (4) y 的一半与x 的2倍的和不小于3。 解答:(1)a 的相反数是-a ,正数是比零大的数,所以“a 的相反数是正数”就是-a >0; (2)“m 与2的差”就是m-2,“ 差小于 32”即是m-2<3 2 ; (3)“x 的31”就是31x ,“x 的31与4的和不是正数”就是3 1 x+4≤0; (4)“y 的一半”不是2 1 y,“x 的2倍”就是2x ,“不小于3”即指大于或等于3,故 “y 的一半与x 的2倍的和不小于”就是2 1 y+2x ≥3。

新北师大版初中数学教材目录之欧阳家百创编

七年级数学上册目 录 欧阳家百(2021.03.07)第一章丰富的图形世界 §1.生活中的立体图形 §2.展开与折叠 §3.截一个几何体§4.从三个方向看物体的形状回顾与思考 复习题 第二章有理数及 其运算 §1.有理数 §2.数轴 §3.绝对值 §4.有理数的加法 §5.有理数的减法 §6.有理数的加减 混合运算 §7.有理数的乘法 §8.有理数的除法 §9.有理数的乘方 §10.科学记数法 §11.有理数的混合 运算 §12.用计算器进行 运算 回顾与思考 复习题 第三章整式及其加 减 §1.字母表示数 §2.代数式 §3.整式 §4.整式的加减 §5.探索规律 回顾与思考 复习题 综合与实践 探询神奇的幻方 第四章基本平面图 形 §1.线段、射线、 直线 §2.比较线段的长 短 §3.角 §4.角的比较 §5.多边形和圆的 初步认识 回顾与思考 复习题 第五章一元一次 方程 §1.认识一元一次 方程 §2.求解一元一次 方程 §3.应用一元一次 方程我变高了 §4.应用一元一次 方程打折销售 §5.应用一元一次 方程希望工程义演 §6.应用一元一次 方程能追上小明吗 回顾与思考 复习题 欧阳家百创编

第六章数据的收集与整理 §1.数据的收集 §2.普查和抽样调查 §3.数据的表示 §4.统计图的选择回顾与思考 复习题 七年级数学下册目 录 第一章整式的乘除 §1.同底数幂的乘法§2.幂的乘方与积 的乘方 §3.同底数幂的除 法 §4.整式的乘法 §5.平方差公式 §6.完全平方公式 §7.整式的除法 回顾与思考 复习题 第二章相交线与平 行线 §1、两条直线的位 置关系 §2、探索直线平行 的条件 §3、平行线的特征 §4、用尺规作角 回顾与思考 复习题 第三章三角形 § 1、认识三角形 § 2、图形的全等 § 3、探索三角形 全等的条件 § 4、用尺规作三 角形 § 5、利用三角形 全等测距离 回顾与思考 复习题 第四章---变量之间 的关系 §1.用表格表示的 变量间关系 §2.用关系式表示 的变量间关系 §3.用图象表示的 变量间关系 回顾与思考 复习题 第五章轴对称 §1.轴对称现象 §2.探索轴对称的 性质 §3.简单的轴对称 图形 §4.利用轴对称进 行设计 回顾与思考 复习题 第六章频率与概率 §1. 感受可能性 §2. 频率的稳定性 §3. 摸到红球的概 率 §4. 停留在黑砖上 的概率 回顾与思考 复习题 欧阳家百创编

(完整)北师大版初中数学八年级上册教材分析

北师大版初中数学八年级上册教材分析 摘自:《慈利县教师进修学校》 一、教材总体思路分析 1.本册书的主要内容有:实数、一次函数、二元一次方程组;勾股定理、图形的平移与旋转、四边形、位置的确定;数据的代表。 其中无理数的发现、实数系统的建立和函数概念是本学段知识的重点也是和难点,实数是进一步学习的基础;而函数以及函数思想与其他知识的广泛联系也是重心之一。 勾股定理及其逆定理是初等几何中最基本、最重要的定理之一。通过拼、摆或图形的割、补,使得这一重要几何事实得以确认。由于发现及证实它成立的方式非常多且富于变化,因此对学生有很大的吸引力。《图形的平移与旋转》是新增加的内容,通过学习,可以把静止的图形看成是基本图形经过位移而得到,提供了对复杂图形进行分析的新视角,还可以对“几何变换”有直观的感受。《位置的确定》从源头上突出了坐标法产生的思想,直角坐标系是实现坐标法的一种选择,建立坐标系把数轴拓展到平面,是数形结合与转化的桥梁。“变化的鱼”以直观生动的形式加强了几何变换与坐标表示及坐标变化联系起来,从数与形两个方面感受图形变化的数学内涵。 在统计与概率领域,本册提供了刻画数据平均水平的三种量度,力图让学生掌握一定的数据分析的方法,更好地处理数据。 2.教材设计与内容的组织有如下考虑。 (1)无理数的发现可以从理论的角度引发,出现在勾股定理之前。教科书遵循了人类认识数学的历史顺序,把勾股定理放在实数学习的前面,成为发现无理数的直观背景,自然地表明无理数存在的客观性,同时对无理数研究的必要性作出合理的解释。实数集中的实数与数轴上的点一一对应并不像想像的那样容易被学生接受,说服的办法也是借助几何解释和理性思考。这样处理须注意在学习勾股定理时,边长的数据应暂时在有理数范围内选取,在此两章学完之后,可以回过头来在实数范围内重新讨论勾股定理及其应用。在我们讨论一个平方等于2的数时,发现它是一个无限不循环小数,进一步引出无理数的定义。无理数概念的产生,同时也是对有理数概念的强调,应重视在现实背景中对实数运算意义的理解和应用,加强对估算的要求。 (2)先研究图形的平移和旋转,再进行四边形性质的探索,这样几何变换就不仅仅是一个具体的知识点,而且作为一个工具去研究几何图形(如平行四边形)的性质,增加了一个考察问题的视角。在《图形的平移与旋转》一章中,通过观察和归纳,概括出变换的概念;通过操作和思考,探索出变换的相关性质;通过作图和图案设计体察复杂图形中部分与整体之间的关系;在下一章中通过探索四边形的性质加深对变换自身的理解,逐步形成结构性认识。教学中突出其方法特性,充分发挥其数学教育价值。 (3)一次函数的学习放在二元一次方程组的前面,有两个好处:首先,可以使得学生有机会尝试借助图象研究函数特征的过程,以加深对函数意义的理解;其次,用函数的观点来认识和考察二元一次方程(方程组),给出方程的一种直观解释,而且从方法的角度更具有一般性和启发性,也体现了函数的运用。教材中介绍了二元一次方

3、北师大版初三数学几何压轴题专项训练(旋转、平移、折叠)

压轴题几何专项训练(三) ——有关旋转、平移、折叠问题 (旋转)1、如图,点O 是等边ABC △内一点,110AOB BOC α∠=∠=,.将 BOC △绕点C 按顺时针方向旋转60得ADC △,连接OD . (1)求证:COD △是等边三角形; (2)当150α=时,试判断AOD △的形状,并说明理由; (3)探究:当α为多少度时,AOD △是等腰三角形? A B C D O 110 α

(旋转)2、如图1,将两个完全相同的三角形纸片ABC 和DEC 重合放置,其中∠C =90°, ∠B =∠E =30°. (1)操作发现 如图2,固定△ABC ,使△DEC 绕点C 旋转,当点D 恰好落在AB 边上时,填空: ①线段DE 与AC 的位置关系是_________; ②设△BDC 的面积为S 1,△AEC 的面积为S 2,则S 1与S 2的数量关系是________. (2)猜想论证 当△DEC 绕点C 旋转到图3所示的位置时,小明猜想(1)中S 1与S 2的数量关系仍 然成立,并尝试分别作出了△BDC 和△AEC 中BC 、CE 边上的高,请你证明小明的 猜想. (3)拓展探究 已知∠ABC =60°,点D 是其角平分线上一点,BD =CD =4,DE //AB 交BC 于点E (如 图4).若在射线BA 上存在点F ,使BDE DCF S S ??=,请直接写出....相应的BF 的长. A (D ) B (E ) C 图 1 图 2 图3 图4

(平移)3、如图(1)所示,一张三角形纸片ABC , ACB =90o,AC =8,BC =6.沿斜边AB 的中线CD 把这张纸片剪成△AC 1D 1和△BC 2D 2两个三角形,如图(2)所示.将纸片△AC 1D 1沿直线D 2B (AB )方向平移(点A 、D 1、D 2、B 始终在同一条直线上),当点D 1与点B 重合时,停止平移.在平移的过程中,C 1D 1与BC 2交于点E ,AC 1与C 2D 2、BC 2分别交于点F 、P . (1)当△AC 1D 1平移到如图(3)所示的位置时,猜想图中D 1E 与D 2F 的数量关系,并证明你的猜想; (2)设平移距离D 2D 1为x ,△AC 1D 1和△BC 2D 2重叠部分的面积为y ,请写出y 与x 的函数关系式,以及自变量x 的取值范围; (3)对于(2)中的结论是否存在这样的x ,使得重叠部分的面积等于原△ABC 纸片面积的1 4 ?若存在,请求出x 的值;若不存在,请说明理由.

北师大版初一数学上册全册教案

1.1 生活中的立体图形(一) 教学目标 1、知识:认识简单的空间几何棱柱、圆柱、圆锥、球等,掌握其中的相同之处和不同之处 2、能力:通过比较,学会观察物体间的特征,体会几何体间的联系和区别,并能根据几何体的特征,对其进行简单分类。 3、情感:有意识地引导学生积极参与到数学活动过程中,培养与他人合作交流的能力。 教学重点:认识一些基本的几何体,并能描述这些几何体的特征 教学难点:描述几何体的特征,对几何体进行分类。 教学过程: 一、设疑自探 1.创设情景,导入新课 在小学的时候学习了那些平面图形和几何图形,在生活你还见到那些几何体? 2.学生设疑 让学生自己先思考再提问 3.教师整理并出示自探题目 ①生活常见的几何体有那些? ②这些几何体有什么特征 ③圆柱体与棱柱体有什么的相同之处和不同之处 ④圆柱体与圆锥体有什么的相同之处和不同之处 ⑤棱柱的分类 ⑥几何体的分类 4.学生自探(并有简明的自学方法指导) 举例说说生活中的物体那些类似圆柱、圆锥、正方体、长方体、棱柱、球体? 说说它们的区别 二.解疑合探 1.针对圆柱、圆锥、正方体、长方体、棱柱、球体特征的认识不彻底进行再探 2、对这些类似圆柱、圆锥、正方体、长方体、棱柱、球体的分类 2.活动原则:学困生回答,中等生补充、优等生评价,教师引领点拨提升总结。 三.质疑再探: 说说你还有什么疑惑或问题(由学生或老师来解答所提出的问题) 四.运用拓展: 1.引导学生自编习题。 请结合本节所学的知识举例说明生活简单基本的几何体,并说说其特征 2.教师出示运用拓展题。 (要根据教材内容尽可能要试题类型全面且有代表性) 3.课堂小结 4.作业布置 五、教后反思 1.1 生活中的立体图形(二) 教学目标 1、知识:认识点、线、面的运动后会产生什么的几何体 2、能力:通过点、线、面的运动的认识几何体的产生什么 3、情感:有意识地引导学生积极参与到数学活动过程中,培养与他人合作交流的能力。

北师大版八年级上册数学教案

北师大版八年级上册数学教案 北师大版八年级上册数学教案分享,一起来看看吧。 八年级学生已经具备一定的观察、归纳、探索和推理的能力.在小学,他们已学习了一些几何图形面积的计算方法,但运用面积法和割补思想解决问题的意识和能力还远远不够.部分学生听说过“勾三股四弦五”,但并没有真正认识什么是“勾股定理”.此外,学生普遍学习积极性较高,探究意识较强,课堂活动参与较主动,但合作交流能力和探究能力有待加强. 本节课是义务教育课程标准实验教科书北师大版八年级(上)第一章《勾股定理》第一节第1课时. 勾股定理揭示了直角三角形三边之间的一种美妙关系,将形与数密切联系起来,在数学的发展和现实世界中有着广泛的作用.本节是直角三角形相关知识的延续,同时也是学生认识无理数的基础,充分体现了数学知识承前启后的紧密相关性、连续性.此外,历史上勾股定理的发现反映了人类杰出的智慧,其中蕴涵着丰富的科学与人文价值. 为此本节课的教学目标是: 1.用数格子的办法体验勾股定理的探索过程并理解勾股定理反映的直角三角形的三边之间的数量关系,会初步运用勾股定理进行简单的计算和实际运用. 2.让学生经历“观察—猜想—归纳—验证”的数学思

想,并体会数形结合和特殊到一般的思想方法. 3.进一步发展学生的说理和简单推理的意识及能力;进一步体会数学与现实生活的紧密联系. 4.在探索勾股定理的过程中,体验获得成功的快乐;通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化历史,激励学生发奋学习. 本节课设计了五个教学环节:第一环节:创设情境,引入新课;第二环节:探索发现勾股定理;第三环节:勾股定理的简单应用;第四环节:课堂小结;第五环节:布置作业.第一环节:创设情境,引入新课 内容:2002年世界数学家大会在我国北京召开,投影显示本届世界数学家大会的会标: 会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号.今天我们就来一同探索勾股定理. 意图:紧扣课题,自然引入,同时渗透爱国主义教育. 效果:激发起学生的求知欲和爱国热情. 内容:投影显示如下地板砖示意图,引导学生从面积角度观察图形: 问:你能发现各图中三个正方形的面积之间有何关系吗! 学生通过观察,归纳发现:

最新初中数学八年级上下册精品学案

初中数学八年级上下册精品学案

新人教版初中数学八年级(上下册)精品学案 12.3.1.1 等腰三角形(一) 教学目标 1.等腰三角形的概念. 2.等腰三角形的性质. 3.等腰三角形的概念及性质的应用. 教学重点: 1.等腰三角形的概念及性质. 2.等腰三角形性质的应用. 教学难点:等腰三角形三线合一的性质的理解及其应用. 教学过程 Ⅰ.提出问题,创设情境 在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,?并且能够作出一个简单平面图形关于某一直线的轴对称图形,?还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形? 有的三角形是轴对称图形,有的三角形不是. 问题:那什么样的三角形是轴对称图形? 满足轴对称的条件的三角形就是轴对称图形,?也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形. 我们这节课就来认识一种成轴对称图形的三角形──等腰三角形. Ⅱ.导入新课: 要求学生通过自己的思考来做一个等腰三角形. A C A B I

作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L 的对称点C,连结AB、BC、CA,则可得到一个等腰三角形. 等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角. 思考: 1.等腰三角形是轴对称图形吗?请找出它的对称轴. 2.等腰三角形的两底角有什么关系? 3.顶角的平分线所在的直线是等腰三角形的对称轴吗? 4.底边上的中线所在的直线是等腰三角形的对称轴吗??底边上的高所在的直线呢? 结论:等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线. 要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系. 沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,?而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高. 由此可以得到等腰三角形的性质: 1.等腰三角形的两个底角相等(简写成“等边对等角”).

新课标北师大版七年级上数学教案(全册)

第一课时(介绍) 第一章丰富的图形世界 单元整体说明 本章在小学数学和中学数学的联系中起着承上启下的作用。编写本章的目的在于:(1)帮助学生梳理小学的数学知识和数学方法。(2)为学生学习中学数学作必要的准备。本章较充分地体现了课程标准的基本理论,学习本章将为其他各章的学习提供了一个示范。本章体现的数学思想方法、数学人文精神、数学应用意识、数学价值观等都应该在其他各章的学习中得到贯彻。 本章按照如下线索展开内容:数学伴我成长——人类离不开数学——人人都能学会数学——让我们来做数学贯穿于内容的始终。 课程内容标准 使学生初步认识到数学与现实世界的密切联系,懂得数学的价值,形成用数学的意识。 使学生初步体验到数学是一个充满着观察、实验、归纳、类比和猜测的探索过程。 使学生对数学产生一定的兴趣,获得学好数学的自信心。 使学生学会与他人合作,养成独立思考与合作交流的习惯。 使学生在数学活动中获得对数学良好的感性认识,初步体验到什么是“做数学”。 结构体系 单元教学建议 鉴于本章承上启下的特点,故教材内容只是给教师提供一个教学思路,教师可根据教学目标,结合学生的具体情况,补充适当的素材,灵活安排教学内容,调节课时数。 教学的总要求是以学生为主体,使学生在活动中主动构建对数学的认识,具体应注意以下几点: 1.适当补充一些能引起学生学习兴趣的素材。 2.注意引导学生通过实验得出结论。如第3页的练习第2题、第5页的练习第2题、习题1.1的第3题与第4题、第11页的练习第1题以及习题1.2的第6题都应该让学生通过实验,主动探索得出结论。

第11页的练习第1题等都可以通过多媒体的演示来帮助学生理解。 4.给学生提供实地考察、调查的机会。有条件的话,应给让学生实地考察一些生产、生活中应用数学的例子。 5.给学生提供合作、讨论与自我展示的机会。本章应尽可能多地采用小组学习形式。例如对第12页的云图中提出的“如果一家四人,结果是否一样呢?”可以组织学生讨论,按“3个大人和1个小孩”、“2个大人和2个小孩”等不同情况得出结论。 6.本章得练习、习题中,有一些问题可能有多种答案,如第10页的练习第1题,由于考虑得方式不一样,会发现前面的数具有各种不同的规律,这样答案自然就不同了。 7.评价时,请考虑以下几点: (1)选择生活中的实际问题,评价学生用数学的意识。 (2)利用适量的开放题,评价学生的思维水平。 (3)安排调查活动,评价学生收集信息的能力。 (4)通过写读后感,评价学生对数学的认识。 (5)开展小组活动,评价学生的合作能力。 (6)提供成果展示机会,评价学生的交流能力及学习数学的自信心。 第二课时 一、课题§1.1 生活中的立体图形(1) 二、教学目标 1.结合具体例子,体会数学与我们的成长密切相关。 2.通过对小学数学知识的归纳,感受到数学学习促进了我们的成长。 3.尝试从不同角度,运用多种方式(观察、独立思考、自主探索、合作交流)有效解决问题。 4.通过对数学问题的自主探索,进一步体会数学学习促进了我们成长,发展了我们的思维。 四、教学手段 现代课堂教学手段 教学准备 教师准备 录音机、投影仪、剪刀、长方形纸片。 学生准备 预习、剪刀、长方形纸片 五、教学方法 启发式教学 六、教学过程设计

最新八年级下册北师大版数学全册教案

最新八年级下册北师大版数学全册教案 教学目的和要求: 理解不等式的概念,感受生活中存在的不等关系 教学重点和难点: 重点: 对不等式概念的理解 难点: 怎样建立量与量之间的不等关系. 从问题中来,到问题中去. 1. 如图1-1,用用根长度均为l ㎝的绳子,分别围成一个正方形和圆. (1)如果要使正方形的面积不大于25㎝2,那么绳长l 应满足怎样的关系式? (2)如果要使圆的面积大于100㎝2,那么绳长l 应满足怎样的关系式? (3)当l =8时,正方形和圆的面积哪个大?l =12呢? (4)改变l 的取值再试一试,在这个过程中你能得到什么启发? 分析解答:在上面的问题中,所围成的正方形的面积可以表示为2)4(l ,圆的面积可以表示为2 2?? ? ??ππl . (1) 要使正方形的面积不大于25㎝2,就是 25)4 (2 ≤l ,即25162≤l . (2) 要使圆的面积大于100㎝2,就是 2 2?? ? ??ππl >100, 即 π42 l >100 (3) 当l =8时,正方形的面积为)(41682 2cm =,圆的面积为)(1.54822cm ≈π , 4<5.1,此时圆的面积大. 当l =12时,正方形的面积为)(916122 2cm =,圆的面积为)(5.1141222cm ≈π , 9<11.5,此时还是圆的面积大. (4) 不论怎样改变l 的取值,通过计算发现:总是圆的面积大,因此,我们可以猜想,用长度增色为l ㎝ 的两根绳子分别围成一个正方形和圆,无论l 取何值,圆的面积总大于正方形的面积,即 π42l >16 2 l 2. (1)通过测量一棵树的树围(树干的周长)可能计算出它的树龄,通常规定以树干离地面1.5m 的地方 作为测量部位.某树栽种时的树围为5㎝,以后树围每年增加约3㎝,这棵树至少要生长多少年其树围才能超过2.4m ?(只列关系式) (2)燃放某种礼花弹时,为了确保安全,人在点燃导火线后要在燃放前转移到10m 以外的安全区域.已知导火线的燃烧速度为0.2m/s ,人离开的速度为4m/s ,导火线的长度x (m )应满足怎样的关系式? 答案:(1)设这棵树生长x 年其树围才能超过2.4m ,则5+3x >240. (2)人离开10m 以外的地方需要的时间,应小于导火线燃烧的时间,只有这样才能保证人的安全: 4 10

相关文档
最新文档