生态系统的基本概念与特征

生态系统的基本概念与特征
生态系统的基本概念与特征

专题一、生态系统生态学

第一章生态系统的基本概念与特征

学习要点

1.了解生态系统基本概念、模型及概念的拓展。

2.学会运用生态系统基本概念、模型和特征的理论,分析有关的生态环境问题。基本概念

1.生态系统(ecosystem):是指在一定时间和空间内,由生物群落与其环境组成的一个整体,各组成要素间藉助物种流动、能量流动、物质循环、信息传递和价值流动,而相互联系、相互制约,并形成具有自调节功能的复合体。

2.生态系统模型(model):是生态系统研究的基本方法。它是从系统基本成分、结构、行为出发,简要描绘出生态系统最本质的特性和行为。

3.环境容量(environmental capacity):是指一个生态系统能容纳污染物的一个最大负荷量。

第一节生态系统的概念

一、生态系统的定义

生态系统(ecosystem)是指在一定时间和空间内,由生物群落与其环境组成的一个整体,各组成要素间藉助物种流动、能量流动、物质循环、信息传递和价值流动,而相互联系、相互制约,并形成具有自调节功能的复合体。

生态系统定义的基本含义是:①生态系统是客观存在的实体,有时、空概念的功能单元;②由生物和非生物成分组成,以生物为主体;③各要素间有机地组织在一起,具有整体的功能;

④生态系统是人类生存和发展的基础。

生态系统范围可大可小,通常是根据研究的目的和具体的对象而定。最大是生物圈(biosphere),可看作是全球生态系统,它包括了地球一切的生物及其生存条件。小的如一块草地,一个池塘都可看作一个生态系统。

生态系统生态学(ecosystem ecology)以生态系统为对象,是研究生态系统的组成要素、结构与功能、发展与演替,以及人为影响与调控机制的生态科学。

二、生态系统概念的发展

生态系统(ecosystem)一词是英国植物生态学家A.G.Tansley(1871~1955)于1935年首先提出的。他在研究中,发现气候、土壤和动物对植物的生长、分布和丰盛度都有明显的影响。于是他提出:“生物与环境形成一个自然系统。正是这种系统构成了地球表面上各种大小和类型的基本单元,这就是生态系统”。

当时,前苏联植物生态学家V.N.Sukachev(1944)提出了生物地理群落(biogeocoenosis)的概念。这是指在地球表面上的一个地段内,动物、植物、微生物与其地理环境组成的功能单元。

上述两个概念实质上是相同的。正如1965年在丹麦哥本哈根召开的国际学术会议上认定的那样,生物地理群落和生态系统是同义词。

生态系统的概念自Tansley提出来以后,作为一个理论受到许多人的赞赏。半个多世纪以来,许多生态学家对生态系统理论和实践作出了巨大贡献。

R.Lindeman(1915~1942)在学生时代就深受W.S.Cooper的影响,重视实践。于20世纪30年代末对塞达波格湖(Cedar Bog Lake)开展了研究工作,取得巨大成就作出了卓越的贡献。他深刻地揭示了营养物质移动规律,创建了营养动态模型,成为生态系统能量动态研究的奠基者。他以科学的数据,论证了能量沿着食物链转移的顺序,提出了著名的“百分之十定律”,开创了生态学从定性走向定量的新阶段。

R.E.Ricklefs(1979)在《生态学》一书中描绘了生态系统中物质循环和能量流动的基本格局,形象地表明生态系统中生物和非生物成分间相互作用和相互依赖的关系;它们通过物质交换而联系在一起;驱使生态系统物质循环的能量来自太阳。

F.B.Golley(1960,1968)曾对陆地生态系统中的弃耕地进行过营养结构及能量流的研究工作,较深入地揭示了生态系统能流的渠道是食物链;能量在沿着各营养阶层流动时是逐级减少的。他是陆地生态系统能量流动研究的奠基人。1990年在日本举行了第五届国际生态学大会。他作为国际生态学会主席在开幕式上作了“生态系统概念的发展——对序(order)的探讨”的报告,强调人类活动对生态系统、生物圈和全球变化影响的研究。

此外,在谈到生态系统概念的发展时,不能不提到Odum家族的工作。K.P.Odum和H.T.Odum兄弟二人及W.E.Odum都是当代著名的生态学家,他们对生态系统概念的发展作出过杰出的贡献。

从20世纪50年代以来,E.P.Odum就一贯强调生态系统研究工作的重要意义,在营养动态和能量流动方面提出了许多新思想和新方法,并创建了生态学和社会科学相结合的模式。H.T.Odum对佛罗里达州银泉(Silver Spring)生态系统能流收支的研究,是当今生态系统水平上能量流动分析的一个范例。

他们的著作甚为丰富,E.P.Odum的《生态学基础》不仅是一本现代生态学的教科书,而且是一部很有新意的著作。H.T.Odum的《人和自然的能量基础》一书被誉为能量研究方面的经典著作。

E.P.Odum提出了大小不同的组织层次谱系,进一步把生态系统的概念系统化。生态系统可以按照图谱所示,把研究对象划分为基因、细胞、器官、个体、种群和群落等几个层次。每个层次的生物成分和非生物成分的相互作用(能量和物质关系)产生了具有不同特征的功能系统(图5—16—1)。

图5-16-1不同特征的组织层次谱系(引自Odum l971)

H.T.Odum(1983)创建了一个整套能量的符号语言(表5—16—1),来描述复杂的生态系统。

三、现代生态系统生态学的发展

Carson.R(1962)的名著《寂静的春天》描述了杀虫药剂所造成的严重污染,阐明污染物在环境中的迁移转化,初步揭示了污染对生态系统的影响。警示人们要限制自己的行动,不能破坏生态系统结构和功能。这种生态破坏一旦形成,几年、几十年甚至百年都难以恢复。她有力地促进了生态系统与现代环境科学的结合。Cairns,J.Jr(1995)在人类面临着人口激增、资源短缺、土地退化、植被破坏、生物多样性丧失的诸多挑战,及时提出了水域生态系统恢复和重建。

生物多样性(biodiversity)是决定生态系统面貌、发展和命运的核心组成部分。对此新的假说和观点不断涌现。Paine,R.T(1969)、Ehrlich,P.R等(1981)、Walker,B.H(1992)对生态系统中物种作用提出了新概念和新理论。

针对全球环境恶化、地球出现多种胁迫的现实,Costanza(1992)和Rapport (1985)开展了生态系统健康(ecosystem health)的基本理论和评估的研究,发现现在地球上的生态系统为人类服务已不能像过去一样,而且还对人类产生了潜在威胁。呼吁人们关心全球各类生态系统的健康。

20世纪70年代,有人指出,现有森林管理方法可能影响生态系统的功能(Likens 1970)。美国一些机构,特别是环境保护局在关注建立健康生态系统的同时,强调了生态系统管理(ecosystem management)。管理是着眼于保持和维护生态系统的结构、功能的可持续性,保

证生态系统的长远健康。

随后,人们越来越关注生态系统健康,深刻认识到地球是人类目前惟一的家园。人们在审视和反思的基础上,可持续发展成为全人类生存的战略思想。在实现经济和社会发展的同时,要保证生态系统的可持续发展(Lubchenco J et al 1991)。

在论述生态系统发展过程中,有重大意义的国际合作是:

20世纪60年代,有54个国家合作的“国际生物学计划”(International Biological Programme,IBP),是对生态系统大规模研究的开端。先后出版了有关生态系统的35本手册和论著。这为生态系统的研究开创了一个新时代。

“人与生物圈计划”(Man and the Biosphere Programme,MAB)是1971年11月由联合国教科文组织发起,1972年通过的长期研究计划。MAB是人类历史上第一次将自然科学与社会科学结合起来的大型国际合作项目,是第一次把人和自然及其资源作为一个整体来研究,标志着生态系统研究的新的里程碑。

“国际地圈—生物圈计划”(International Geosphere—Biosphere Programme,IGBP)的目的是了解控制整个地球系统物理的、化学的和生物学作用过程以及人类活动对上述基本过程、变化的影响。该计划是国际科学联合会(ICSU)于1983年开始筹备,1986年9月在该会第21届大会上以全球变化为中心的国际研究课题而通过。在此基础上,许多生态系统研究就扩展为全球性的了。

环境生态学导论思考题

环境生态学导论 第一章绪论 P28思考题 2、举例说明你对人类活动与环境问题两者关系的看法。 参考:人类社会进入21世纪以后,以环境污染和生态破坏为主要特征的环境问题,呈现出形势继续严峻与人类社会的努力不断增强相交织攀升的状态。一方面,资源利用与环境保育的矛盾仍然是制约世界各国实现可持续发展的难点,长期积累的诸多全球性环境问题,如资源枯竭、全球气候变暖、自然生态系统功能退化以及突发性环境和生态灾害频发等还在继续发展;另一方面,人类正在用智慧,通过技术、管理和行为三个层面的整合,加大了解决自身生存、经济发展和环境保育三者间诸多矛盾的力度。 举例的话,就拿那些环境问题好了。比如,全球气候变暖。 4、简述环境生态学的学科任务。(P16) 答:研究生物圈系统和各支持系统在人类活动干扰下的演变过程、相互作用的机制和规律以及变化效应及危害,寻求受损生态系统和环境要素修复或重建的各种生态学措施。 5、举例说明你所熟悉的某个环境问题,并从生态学的视野阐述其危害作用过程、基本特征及你所思考的解决对策。 全球气候变暖,由于人们焚烧化石矿物以生成能量或砍伐森林并将其焚烧时产生的二氧化碳等多种 温室气体,由于这些温室气体对来自太阳辐射的可见光具有高度的透过性,而对地球反射出来的长波辐射具有高度的吸收性,能强烈吸收地面辐射中的红外线,也就是常说的“温室效应”,导致全球气候变暖。全球变暖的后果,会使全球降水量重新分配、冰川和冻土消融、海平面上生等,既危害自然生态系统的平衡,更威胁人类的食物供应和居住环境。 解决对策,从衣、食、住、行等方面考虑

第二章生物与环境 3、你对生物多样性的生态学意义是如何理解的? 维持平衡 4、简述光的生态作用及生物的适应。 (一)光强的生态作用与生物的适应 ①光强对生物生长发育和形态建成的作用光照强度与植物细胞的增长和分化、体积的增长和质量的增加关系密切;光还能促进组织和器官的分化,制约着器官的生长发育速度,使植物各器官和组织保持发育上的正常比例。 ②光照强度和水生植物光的穿透性限制着植物在海洋中的分布,只有在海洋表层的透光带上部,植物的光合作用量才能大于呼吸量。 ③植物对光照强度的适应类型阳地植物和阴地植物 (二)光质的生态作用与生物的适应①植物的生长发育是在日光的全光谱照射下进行的,同时,不同光质对植物的光合作用、色素形成、向光性、形态建成的诱导等影响是不同的。 可见光对动植物生殖、体色变化、迁移、毛羽更换、生长及发育等都有影响。不可见光对生物的影响也是多方面的。 (三)生物对光周期的适应日照长度的变化对动植物都有重要的生态作用。 ①植物分长日照植物和短日照植物。 ②日照长短和变化是许多动物进行迁移、生殖、换毛等生命活动最可靠的信号系统。 7、盐土和碱土有何区别?耐盐植物有哪几种适应盐土壤的方式? 盐土和碱土是所含可溶性盐的种类、pH以及土壤结构均不相同的两类土壤。 方式:①聚盐性植物细胞液浓度特别高,能吸收高浓度土壤中的水分

生态系统基本特征

生态系统基本特征 1.有时空概念的复杂的大系统 通常与一定的空间相联系,以生物为主体,呈网络式的多维空间结构的复杂系统。 是一个极其复杂的由多要素、多变量构成的系统,而且不同变量及其不同的组合,以及这种不同组合在一定变量动态之中,又构成了很多亚系统。 2.有一定的负荷力 生态系统负荷力(carring capacity)是涉及用户数量和每个使用者强度的二维概念。在实践中可将有益生物种群保护在一个环境条件所允许的最大种群数量,此时,种群繁殖速率最快。对环境保护工作而言,在人类生存和生态系统不受损害的前提下,容纳污染物要与环境容量(environmental capacity)相匹配。任何生态系统的环境容量越大,可接纳的污物就越多,反之则越少。应该强调指出,生态系统纳污量不是无限的。污染物的排放必须与环境容量相适应。 3.有明确功能和功益服务性能 生态系统不是生物分类学单元,而是个功能单元。首先是能量的流动,绿色植物通过光合作用把太阳能转变为化学能贮藏在植物体内,然后再转给其他动物,这样营养就从一个取食类群转移到另一个取食类群,最后由分解者重新释放到环境中。其次,在生态系统内部生物与生物之间,生物与环境之间不断进行着复杂而有序的物质交换,这种交换是周而复始和不断地进行着,对生态系统起着深刻的影响。自然界元素运动的人为改变,往往会引起严重的后果。生态系统在进行多种过程中为人类提供粮食、药物、农业原料、并提供人类生存的环境条件,形成生态系统服务(ecosystem service)。 4.有自维持、自调控功能 任何一个生态系统都是开放的,不断有物质和能量的进入和输出。一个自然生态系统中的生物与其环境条件是经过长期进化适应,逐渐建立了相互协调的关系。生态系统自调控(self regulation)机能主要表现在三方面:第一是同种生物的种群密度的调控,这是在有限空间内比较普遍存在的种群变动规律。其次是异种生物种群之间的数量调控,多出现于植物与动物、动物与动物之间,常有食物链关系。第三是生物与环境之间的相互适应的调控。生物经常不断地从所在的生境中摄取所需的物质,生境亦需要对其输出进行及时的补偿,两者进行着输入与输出之间的供需调控。 生态系统调控功能主要靠反馈(feedback)来完成。反馈可分为正反馈(positive feedback)和负反馈(negative feedback)。前者是系统中的部分输出,通过一定线路而又变成输入,起促进和加强的作用;后者则倾向于削弱和减低其作用。负反馈对生态系统达到和保持平衡是不可缺少的。正、负反馈相互作用和转化,从而保证了生态系统达到一定的稳态。 5.有动态的、生命的特征 生态系统也和自然界许多事物一样,具有发生、形成和发展的过程。生态系统可分为幼期、成长期和成熟期,表现出鲜明的历史性特点,从而具有生态系统自身特有的整体演变规律。换言之,任何一个自然生态系统都是经过长期历史发展形成的。这一点很重要!我们所处的新时代具有鲜明的未来性。生态系统这一特性为预测未来提供了重要的科学依据。6.有健康、可持续发展特性 自然生态系统是在数十亿万年中发展起来的整体系统,为人类提供了物质基础和良好的生存环境,然而长期以来人们活动已损害了生态系统健康。为此,加强生态系统管理促进生态系统健康和可持续发展(sustainable development)是全人类的共同任务。

生态学基本原理

第三章生态系统基本理论 [教学目标]了解生态学的概念,掌握生态系统的结构和功能,理解生态平衡的重要性。 [教学重点]生态系统 [教学难点]生态平衡与生态破坏 [教学时数]4 本章重点 1.生态学概念 2.生态系统的组分 3.生态系统分类 4.食物网 5.生态危机 第一节生态系统的基本概念 一、生态学概念 1.生态学的概念 生态学(ecology) 一词源于希腊文“oikos”,表示住所和栖息地,原意是研究生物栖息环境的学科。 1866年,德国的动物学家黑格尔(haeckel)首次为生态学下了定义:生态学是研究有机体与其周围环境——包括非生物环境和生物环境相互关系(interaction)的科学。后来,一些著名生态学家也对生态学进行了定义。1966年,smith认认为生态学是研究有机体与生活之地相互关系的科学,所以又可把生态学称为环境生物学(evironmental biology)。著名美国生态学家E·odum(1956)提出的定义是:生态学是研究生态系统的结构和功能的科学。我国著名生态学家马世骏先生认为,生态学是研究生命系统和环境系统相互关系的科学。 生态学的不同定义代表了生态学的不同发展阶段,强调了不同的基础生态学分支和领域。生态学原是一门研究生物与其生活环境相互关系的科学,是生物学的重要分科之一。初期主要研究植物,后来逐渐涉及动物和人类。随着现代科学技术的发展并向生态学的不断渗透,赋予它新的内容和动力,使其成为多学科、较活跃的科学领域之一。目前,生态学家普遍认为,生态学是研究生物与环境之间相互关系及其作用机理的科学。

2.生态学基本原理---生态学三定律 美国环境学家小米勒(G.T.Miller,Jr.)提出的生态学三定律是: 生态学第一定律:我们的任何行动都不是孤立的,对自然界的任何侵犯都具有无数效应,其中许多效应是不可逆的。该定律为哈定(g·hardin)所提出,可称为多效应原理。 生态学第二定律:每一种事物无不与其他事物相互联系和相互交融。此定律可称为相互联系定律。 生态学第三定律:我们生产的任何物质均不应该对地球上自然的生物地球化学循环有任何干扰。此定律或可称之为勿干扰原理。 3.生态学的研究对象 生物学科的两大发展方向:微观——分子生物学;宏观——生态学。 生态学是研究生物与环境、生物和生物之间相互关系的一门生物学基础分支学科。生态学的研究是活的生物在自然界中与环境的相互作用和生物之间的相互作用。 20世纪50年代以后,欧洲工业化大生产迅速发展,带来了一系列严重后果:环境污染(三废)、自然资源的破坏、能源危机、人口膨胀带来的粮食不足等问题。——全球性的事态激化,称为“全球性生态灾难”——才重视生态学。 目前,生物多样性保护,可持续发展和全球气候变化已成为全球关注的三大生态学问题。1992年6月,世界环境与发展大会在巴西里约热内卢召开,178个国家,包括118位国家首脑参加,讨论人类生存环境与社会发展有关的一系列重大生态学战略性问题,生态学的作用已不言而喻。这次大会推动了全球生态学的进一步发展。 二、生态系统 1.生态系统的概念 种群(Population):一个生物物种在一定的范围内所有个体的总和称为生物种群。 生物群落(Community):在一定自然区域的环境条件下,许多不同种的生物相互依存,构成了有着密切关系的群体,称为生物群落。 随着环境条件的千差万别,地球上出现了各种各样的生物群落(森林、草原、荒漠等等)。而特定的生物群落又维持了相应的环境条件。一旦生物群落发生变化,也会影响到环境条件的变化。因此,人们把生物群落与其周围非生物环境的综合体,称为生态系统(Ecosystem),也即生命系统和环境系统在特定空间的组合。 生态系统(Ecosystem):指一定范围内,各生物成分和非生物成分之间,通过能量流动和物质循环而相互作用、相互依存所形成的一个统一整体。或是一定空间内由生物成分和非生物成分组成的一个生态学功能单位。

四大生态系统的特点

陆地生态系统: 地球陆地表面由陆生生物与其所处环境相互作用构成的统一体。这一系统占地球表面总面积的1/3,以大气和土壤为介质,生境复杂,类型众多。按生境特点和植物群落生长类型可分为森林生态系统、草原生态系统、荒漠生态系统、湿地生态系统以及受人工干预的农田生态系统。该系统的第一性生产者主要是各种草本或木本植物,消费者为各种类型的草食或肉食动物。在陆地的自然生态系统中,森林生态系统的结构最复杂,生物种类最多,生产力最高,而荒漠生态系统的生产力最低。 水域生态系统: 水域生态系统主要包括湖泊、水库、江河和海洋生态系统等不同类型,而水库实际上是“人工湖泊”,有与湖泊基本相同的特征。对水域的划分,生态学中常依据对水生生物分布、生长等起重要作用的主要生态因子如水温、盐度等为依据。科学地划分水域的类型是开展水域生态系统研究的基础。水域类型不同,生物群落的结构和功能就不同,因而对外界干扰的反应和抵抗力亦不同。例如,同是淡水水域,湖泊和河流这两个类型之间无论是在生物群落的物种组成、系统的功能特征还是抗干扰的能力(如自净能力)等都存在着很大的差别。 与陆地生态系统相比,水生生态系统的环境因水具有流动性,广大水域比较均一而较少变化,并且很少出现极端情况,使许多水生生物具有广泛的地理分布,系统的类型也因此而比陆地少。根据水化学性质不同,可分为海洋生态系统和淡水生态系统。 一.城市生态系统 1.结构:是由自然系统、经济系统和社会系统所组成的(如图)。城市中的自然系统包括城市居民赖以生存的基本物质环境,如阳光、空气、淡水、土地、动物、植物、微生物等;经济系统包括生产、分配、流通和消费的各个环节;社会系统涉及城市居民社会、经济及文化活动的各个方面,主要表现为人与人之间、个人与集体之间以及集体与集体之间的各种关系。 2.组成:城市生态系统不仅有生物组成要素(植物、动物和细菌、真菌、病毒)和非生物组成要素(光、热、水、大气等),还包括人类和社会经济要素,这些要素通

《基础生态学》(第二版)必背整理

0 绪论 1、说明生态学定义 生态学是研究有机体与环境相互关系的科学,环境包括非生物环境和生物环境。生物环境分为种内的和种间的,或种内相互作用和种间相互作用。 2、试举例说明生态学是研究什么问题的,采用什么样的方法? 生态学的研究对象很广,从个体的分子到生物圈,但主要研究4个层次:个体、种群、群落和生态系统。在个体层次上,主要研究的问题是有机体对于环境的反应;在种群层次上,多度与其波动的决定因素是生态学家最感兴趣的问题,例如种群的出生率、死亡率、增长率、年龄结构和性比等等;在群落层次上,多数生态学家在目前最感兴趣的是决定群落组成和结构的过程;生态系统是一定空间中生物群落和非生物环境的复合体,生态学家最感兴趣的是能量流动和物质循环过程。生态学研究方法可以分为野外的、实验的和理论的三大类。 1 生物与环境 1、概念与术语 环境是指某一特定生物体或生物群体周围一切的总和,包括空间及直接或间接影响该生物体或生物群体生存的各种因素 生态因子是指环境要素中对生物起作用的因子,如光照、温度、水分等 生态幅是指每一种生物对每一种生态因子,在最高点和最低点之间的范围 大环境指的是地区环境、地球环境和宇宙环境。影响生物的生存和分布 小环境指的是对生物有直接影响的邻接环境,即小范围内的特定栖息地。直接影响生物的生活 大环境中的气候称为大气候是指离地面1.5m以上的气候,由大范围因素决定 小环境中的气候称为小气候是指近地面大气层中1.5m以内的气候 所有生态因子构成生物的生态环境,特定的生物体或群体的栖息地生态环境称为生境 密度制约因子对动物种群数量影响的强度随其种群密度而变化,从而调节种群数量的生态因子(食物、天敌等生物因子) 非密度制约因子可调节种群数量,但其影响强度不随种群密度而变化的生态因子(温度、降水等气候因子)生物对每一种环境因素都有一个耐受范围,只有在耐受范围内,生物才能存活。任何生态因子,当接近或超过某种生物的耐受性极限而阻止其生存、生长、繁殖或扩散时,这个因素称为限制因子 广温性是指生物对环境中的温度因子的适应范围较宽,这种生物对温度耐受限度较广的特点。具有这种特点的动物叫做广温性动物 狭温性是指生物对环境中的温度因子的适应范围较窄,这种生物对温度耐受限度较窄的特点。具有这种特点的动物叫做狭温性动物 2、什么是最小因子定律?什么是耐受性定律? 利比希在1840年提出“植物的生长取决于那些处于最少量状态的营养元素”。其基本内容是:低于某种生物需要的最小量的任何特定因子,是决定该种生物生存与分布的根本因素,这就是利比希最小因子定律Shelford于1913年提出了耐受性定律任何一个生态因子在数量上或质量上的不足或过多,即当其接近或达到某种生物的耐受限度时会使该种生物衰退或不能生存

《普通生态学》教学大纲

《普通生态学》教学大纲 课程编号:01432450 课程名称:普通生态学学分/学时:2/32 课程层次:全校文化素质教育修读类型:选修考核方式:期末考试80%,平 时成绩20%。 开课学期:春季/秋季适用专业:全校各专业 教学目的:生态学是研究生物与环境相互关系的科学。随着人口的增加和工业、技术的进步,人类正以前所未有的规模和强度影响环境,环境问题的出现,诸如世界上出现的能源耗费、资源枯竭、人口膨胀、粮食短缺、环境退化、生态平衡失调等六大基本问题的解决,都依赖于生态学理论的指导。本课程从个体、种群、群落、生态系统、景观等各个层次了解生物与环境之间的关系,结合不同学科专业介绍环境保护、自然资源开发利用、可持续发展为重点的应用生态学内容,并对生态学各个研究方向的近代研究进展作简要介绍。教学中预期达到以下目标: 1. 建立生物与环境是相互依存、协同进化的概念,对现代生态学的新进展,新成就有基本了解。 2. 人类作用是造成环境破坏的最主要的原因,在未来社会经济发展过程中,保护环境,保护资源是可持续发展的重要保证。 教学基本要求:系统讲授教学大纲规定的内容,突出重点、难点,内容力求新颖;在课堂讲解课程内容的同时,充分利用现代化教学设备,播放相关的多媒体教学软件,提高学生对生态学基本概念的理解。 课程基本内容及学时分配: 第一章绪论(2学时) 本章的重点与难点:本章主要介绍生态学的研究对象、内容、范围、方法以及生态学的最新发展趋势。使学生了解学习生态学,不仅要掌握生物与环境相互作用的一般原理,更要关注人类活动下生态过程的变化以及对人类生存的影响。 第一节地球上的生命 第二节生态学的形成及发展 思考题: 1、试述生态学的定义、研究对象与范围。 2、试述生态学的发展过程。 第二章生物与环境(2学时)

景观生态学的发展及前景

景观生态学的发展及前景 作者: 指导老师: 专业: 年月日

摘要 景观生态学是生态学中一门年轻的分支学科,它的理论与方法和传统生态学有着本质的区别,它注重人类活动对景观格局与过程的影响。最近几年,园林生态学受到人们的关注。它是一项全新的生态学内容。它不但分析体系本身的发展和变化特征,分析了今后的发展方向。景观生态学为综合解决资源与环境问题提供了新的理论和方法,因而近年来受到高度重视。从景现生态学的理论框架、一般原理、研究方法和实际应用四个方面进行论述。景观生态学研究的焦点问题是景观结构、景观动态与景观功能。综述了景观格局、景观动态、景观异质性、景观尺度与景观功能的研究现状,并探讨了景观生态学理论的最新应用领域,展望了景观生态学的研究。 关键词:景观生态学;理论框架;应用;发展趋势

Abstract Landscape ecology is a young discipline, its theory and method and the traditional ecology are essentially different, it pays attention to the impact of human activities on landscape pattern and process. In recent years, landscape ecology concern. It is a new ecology. It not only analysis of the development and changes of the system itself, analyzes the development direction in the future. Landscape ecology provides a new theory and method for solving the problems of environment and resources, in recent years, attention. From the four aspects of theory, landscape ecology principles, research methods and practical application. Are a research focus in landscape ecology landscape structure, landscape and landscape function. Study on the current situation of landscape pattern, landscape dynamics, landscape diversity, landscape scale and landscape function were reviewed, and discusses the theory of landscape ecology in the new application field, the prospect of the landscape ecology. Keywords: landscape ecology; theory; application; development trend

生态系统的概念及基本特征

生态系统的概念及基本特征 一、生态系统的概念 生态系统这一概念是由英国生态学家坦斯黎首先提出的。他认为,生态系统的基本概念是物理学上使用的“系统”整体,这个系统不仅包括有机复合体,而且也包括形成环境的整个物理因素复合体。生态系统是指在一定时间和空间内,由生物群落与其环境组成的一个整体。各组成要素间借助物种流动、能量流动、物质循环、信息传递和价值流动,而相互联系、相互制约,并形成具有自调节功能的复合体。生态系统可以是一个很具体的概念,一个池塘,一片森林或一块草地都是一个生态系统。同时,它又是在空间范围上抽象的概念。生态系统和生物圈只是研究的空间范围及其复杂程度不同。小的生态系统联合成大的生态系统,简单的生态系统组合成复杂的生态系统,而最大,最复杂的生态系统就是生物圈。 二、生态系统的基本特征 每一个生态系统都有一定的生物群落与其栖息的环境相结合,进行着物种、能量和物质的交流。在一定时间和相对稳定条件下,系统内各组成要素的结构与功能处于协调的动态之中。关于这部分内容,蔡晓明作了相应阐述,生态系统具有如下l0项重要特征。 1.以生物为主体,具有整体性特征 生态系统通常与一定空间范围相联系,以生物为主体,生物多样性与生命支持系统的物理状况有关。一般而言,一个具有复杂垂直结构的环境能维持多个物种。一个森林生态系统比草原生态系统包含了更

多的物种。同样,热带生态系统要比温带或寒带生态系统展示出更大的多样性。各要素稳定的网络式联系,保证了系统的整体性。 2.复杂、有序的层级系统 由于自然界中生物的多样性和相互关系的复杂性,决定了生态系统是一个极为复杂的、多要素、多变量构成的层级系统。较高的层级系统以大尺度、大基粒、低频率和缓慢速度为特征,它们被更大系统、更缓慢作用所控制。 3.开放的、远离平衡态的热力学系统 任何一个自然生态系统都是开放的。有输入和输出,而输入的变化总会引起输出的变化。虽然输出并不是立即变化,有时它们可能落在后面,但它们不会赶在输入之前,这是因为输出是输入的结果,而输入是原因、源。从这一观点看,没有输入也就没有输出。维持生态系统需要能量。生态系统变得更大更复杂时,就需要更多的可用能量去维持,经历着从混沌到有序,到新的混沌,再到新的有序的发展过程。 4. 具有明确功能和功益服务性能 生态系统不是生物分类学单元,而是个功能单元。例如能量的流动,绿色植物通过光合作用把太阳能转变为化学能贮藏在植物体内,然后再转给其他动物,这样营养物质就从一个取食类群转移到另一个取食类群,最后由分解者重新释放到环境中。又如在生态系统内部生物与生物之间,生物与环境之间不断进行着复杂而有规律的物质交换。这种物质交换是周而复始不断地进行着,对生态系统起着深刻的影响。自然界元素运动的人为改变,往往会引起严重的后果。生态系统就是

景观生态学的基本理论和原理

景观生态学的基本理论 一、耗散结构理论 1. 耗散结构理论概述 ?一个远离平衡态的非线性的开放系统(不管是物理的、化学的、生物的乃至社会的、经济的系统),通过不断地与外界 交换物质和能量,在系统内部某个变量的变化达到一定的阈值时,通过涨落,系统可能发生突变,由原来的混沌无序状态转变为一种在时间上、空间上或功能上的有序状态。 ?由于这种在远离平衡的非线性区形成的有序结构,以能量的耗散来维持自身的稳定性,故称为“耗散结构”(dissipative structure) 。 ?耗散结构:位于远离平衡态的复杂系统,在外界能量流或物质流的维持下,通过自组织形成一种新的有序结构。 2. 耗散结构理论的意义 ?耗散结构理论认为:生态系统属于耗散结构系统,在于: 1). 生态系统是开放系统; 2). 所有生态系统都远离热力学平衡态; 3). 生态系统中普遍存在着非线性动力学过程。 二、等级理论(hierarchy theory ) 等级理论是关于复杂系统结构、功能和动态的系统理论。 通常,等级是一个由若干个单元组成的有序系统,而复杂性常具有等级形式。一个复杂系统由相互关联的亚系统组成,亚系统又由各自的亚系统组成,往下类推直到最低层次。 所以,等级系统中的每一层次都由不同的亚系统或整体元组成,每一级组成单元相对于低层次表现出整体特性,而对高层次则表现出从属性或制约性。 基于等级理论,复杂系统可视为由具有离散性等级层次组成的等级系统。 解析:高等级层次上的生态过程(如全球植被变化)呈现大尺度、低频率和慢速;而低等级层次的生态过程(如局地植物群落物种组成变化)为小尺度、高频率和快速。 不同等级层次间相互作用,高层次对低层次的制约作用在模型中可表达为常数,而低层次提供机制和功能,其信息常以平均值的形式来表达。 等级系统结构:分垂直和水平两种。前者指等级系统层次数目、特征及其相互作用关系,后者指同一层次上亚系统的数目、特征和相互作用关系。 层次和整体单元的边界称为界面。界面对能流、物流和信息流具过滤功能。界面是系统组成成分相互作用差异最大的地方。 三、空间异质性与景观格局 异质性——用来描述系统和系统属性在时空属性的动态变化。其中,系统和系统属性在时间维变化即为动态变化,而生态学的异质性通常是指空间异质性。 空间异质性(spatial heterogeneity):指生态学过程和格局在空间上分布上的不均匀性和复杂性。 1. 景观异质性的意义 定义:景观异质性是景观尺度上景观要素组成和空间结构上的变异性和复杂性。 意义:决定景观的整体生产力、承载力、抗干扰能力、恢复力和景观生物多样性。 2. 景观稳定性 景观是由异质的景观要素以一定方式组合构成的系统,景观要素间通过物流、能流、信息流和交换保持着密切的联系,影响景观要素的相互作用,制约着景观的整体功能。 景观的空间异质性可提高景观对干扰的扩散阻力,缓解某些灾害性干扰对景观稳定性的威胁。 3. 景观格局

《农业生态学》基本概念汇总

概念 1.生态学是研究生物与其周围环境之间相互关系的科学。其中环境包括非生物环境与生 物环境,研究对象随研究层次水平而变化。 2.系统:系统论创始人贝塔朗菲:相互联系的诸要素的联合体。钱学森:由相互作用和 相互依赖的若干组成部分结合而成的、具有特定功能的有机整体。系统是指在一定边界范围内,由两个或者两个以上相互联系和相互作用的组分构成的、具有某种特定功能并朝着某个特定目标运动发展的有机整体。 3.生态系统:生物与生物之间以及生物与生存环境之间密切联系、相互作用,通过物质 交换、能量转化和信息传递,成为占据一定空间、具有一定结构、执行一定功能的动态平衡整体。在一定空间内的生物与非生物环境相互作用形成的系统(简单定义)。 4.农业生态系统:人们在一定的时间和空间范围内,利用农业生物与非生物环境之间, 以及生物种群之间的相互作用建立起来,并在人为和自然共同支配下进行农副产品生产的综合体。农业生态系统受自然规律和社会经济规律共同制约。 5.1866年德国学者H.Haeckel(海克尔)提出生态学一词,并定义为:“研究有机体与环 境条件相互关系的科学”。 6.1935年英植物生态学家坦斯尼(Tansley)第一次提出生态系统概念。 7.美国生态学家林德曼在20世纪40年代对生态系统营养结构即食物链和能量流动的研 究工作,初步奠定了生态系统的理论基础。 8.20世纪50年代,美国生态学家奥德姆建立了比较完善的生态系统概念与体系。 9.农业生态学(agroecology)是运用生态学和系统论的原理与方法,把农业生物与其自 然和社会环境作为一个整体,研究其中的相互关系、协同演变、调节控制和持续发展规律的科学。 10.生态学研究对象随研究层次水平而变化。 11.农业生态学的研究对象主要是农业生态系统(agroecosystem)。 12.生态学原理是农业生态学研究的理论基础,系统论是其方法基础。 13.生态因子:指自然环境中对生物生存起作用的各种因子,如光照、温度、水分、CO2、 O2 、土壤PH值、土壤酸碱度等。生态因子分类:气候因子、土壤因子、地形因子、生物因子、人为因子。 14.Liebig最小因子定律(Law of minimum):植物的生长取决于数量最不足的那一种营养

普通生态学重点

生态学重点 名词解释(10空10') 1、环境:是指某一特定生物体或生物群体以外的空间,以及直接、间接影响该生物体或生物群体生存的一切事物的总和,由许多环境要素构成。 2、环境因子:生物体外部的全部环境要素。 3、单体生物:个体清楚,基本保持一致的体形,每一个体来源于一个受精卵。个体的形态和发育都可以预测。如鸟类、兽类、昆虫等。 4、构件生物:由一个合子发育成一套构件,然后发育成更多的构件,形成分支结构。由这些构件组成个体。发育的形式和时间是不可预测,如水稻、浮萍、树木等。 5、同资源集(种)团:生物群落中,以同一方式利用共同资源的物种集合,即占据相似生态位的物种集合。 6、内禀增长能力:① 在种群不受限制的条件下,即能够排除不利的天气条件,提供理想的 食物条件,排除捕食者和疾病,我们能够观察到种群的最大增长能力(rm )。mm最大的瞬 时增长率,即内禀增长率或内禀增长能力。 ②在没有任何环境因素(食物、领地和其他生物)限制的条件下,又种群内在因素决定 的稳定的最大增殖速度称为种群的内禀增长率(intrinsic growth rate ),记作rm。) 7、生物群落:在同一时间聚集在同一地域或生境中的各种生物种群有规律的集合。 8、生态系统:指在一定的空间内,生物成分和非生物成分通过物质循环和能量流动互相作用、互相依存而构成的一个生态学功能单位,这个生态学功能单位称生态系统。 9、生态交错区:①不同的群落之间交错的不同群落中物种共存的地区就称为生态交错区。 ②生态交错区又称群落交错区或生态过渡带,是两个或多个生态地带之间(或群落之间) 的过渡区域。 10、边缘效应:① 群落交错区种的数目及一些种的密度增大的趋势称为边缘效应。 ②指缀块边缘部分由于受外围影响而表现出与缀块中心部分不同的生态学特征的现象。 11、次级生产:初级生产以外的生态系统生产,即消费者利用初级生产的产品进行新陈代谢, 经过同化作用形成异养生物自身的物质,称为次级生产(secondary production),或第二性 生产。 12、生物量:①某一特定观察时刻,某一空间范围内,现有有机体的量。用单位面积或体积的个体数量、重量(狭义的生物量)或含能量来表示,因此它是一种现存量。 ②单位空间内,积存的有机物质的量。 13、优势种:对群落的结构和群落环境的形成有明显控制作用的物种称为优势种,它通常指的是那些个体数量多,生物量高,生活能力较强,即优势度较大的物种。 14、关键种:生物群落中,处于较高营养级的少数物种,其取食活动对群落的结构产生巨大的影响,称关键种。/指的是其消失或削弱能引起整个群落和生态系统发生根本性的变化的物种,它是优势种或建群种中的一部分。 15、生态价:生态每种生物对一种生态因子都有一个生态学上的最低点和一个最高点,最高点和最低点之间的范围称为生态幅或生态价。 16、初级生产:生态系统中绿色植物通过光合作用,吸收和固定太阳能,从无机物合成、转 化成复杂的有机物。由于这种生产过程是生态系统能量贮存的基础阶段,因此,绿色植物的 这种生产过程称为初级生产(primary productio n),或第一性生产。 17、适应:① 生物对环境压力的调整过程。 ②生物所具有的有助于生存和生殖的任何遗传特征。

普通生态学复习资料

普通生态学复习资料 这份资料基于本人上课所做的笔记以及最后一节课上朱明德老师所给的重点和 本人的理解整理而成,并不是一份十分全面的复习参考资料,仅供参考。千万 不要过分依赖此复习资料,平时认真听课、勤做笔记、善于思考才是取得高分 的不二法门! 生态学:生态学是研究有机体及其周围环境相互作用关系,以及与社会、经济、人类相互作用关系的一门生物学分支学科。 生态学有方法论和层次观。 生态学的4个组织层次:个体、种群、群落、生态系统。 生态学的5个研究方法:野外考察、实验室分析、模拟实验、网络分析、多方 面整合。 生物圈:是指地球上的全部生物和一切适合于生物栖息的场所,它包括岩石圈 的上层、全部水圈和大气圈的下层。 环境:是指某一特定生物体或生物群体周围一切的总和,包括空间及直接或间 接影响该生物体或生物群体生存的各种因素。 大环境:大环境是指地区环境、地球环境和宇宙环境。 大气候:大环境中的气候称为大气候,是指离地面1.5m以上的气候,是由大范围因素所决定。 小环境:是指对生物有直接影响的邻接环境,即指小范围内的特定栖息地。 生态因子:是指环境要素中对生物起作用的因子,如光照、温度、水分、氧气、二氧化碳、食物和其他生物等。 生境:所有生态因子构成生物的生态环境,特定生物体或群体的栖息地的生态 环境称为生境。 生态因子的作用特征: ○1综合作用:环境中的每个生态因子不是孤立的、单独的存在,总是与其他因子相互联系、相互影响、相互制约的。因此,任何一个因子的变化,都会不同 程度地引起其他因子的变化,导致生态因子的综合作用。 ○2主导因子作用:对生物起作用的众多因子并非等价的,其中有一个是起决定性作用的,它的改变会引起其他生态因子发生变化,使生物的生长发育发生变化,这个因子称主导因子。

景观生态学的理论基础

景观生态学的理论基础 许多学者对景观生态学基础理论的探索已经作出了重要贡献,例如Risser等提出的5条原则,Forman等提出的7项规则等等。但从景观生态学理论研究现状来看,目前用理论这一术语表达景观生态学的基础理论,比用原理、定律、定理等方式更适宜些。相关学科为景观生态学提供的基础理论,概括起来主要有以下7项。 1.生态进化与生态演替理论 达尔文提出了生物进化论,主要强调生物进化;海克尔提出生态学概念,强调生物与环境的相互关系,开始有了生物与环境协调进化的思想萌芽。应该说,真正的生物与环境共同进化思想属于克里门茨。他的五段演替理论是大时空尺度的生物群落与生态环境共同进化的生态演替进化论,突出了整体、综合、协调、稳定、保护的大生态学观点。坦斯里提出生态系统学说以后,生态学研究重点转向对现实系统形态、结构和功能和系统分析,对于系统的起源和未来研究则重视不够。但就在此时,特罗尔却接受和发展了克里门茨的顶极学说而明确提出景观演替概念。他认为植被的演替,同时也是土壤、土壤水、土壤气候和小气候的演替,这就意味着各种地理因素之间相互作用的连续顺序,换句话说,也就是景观演替。毫无疑问,特罗尔的景观演替思想和克里门茨演替理论不但一致,而且综合单顶极和多顶极理论成果发展了生态演替进化理论。 生态演替进化是景观生态学的一个主导性基础理论,现代景观生态学的许多理论原则如景观可变性、景观稳定性与动态平衡性等,其基础思想都起源于生态演替进化理论,如何深化发展这个理论,是景观生态学基础理论研究中的一个重要课题。 2.空间分异性与生物多样性理论 空间分异性是一个经典地理学理论,有人称之为地理学第一定律,而生态学也把区域分异作为其三个基本原则之一。生物多样性理论不但是生物进化论概念,而且也是一个生物分布多样化的生物地理学概念。二者不但是相关的,而且有综合发展为一条景观生态学理论原则的趋势。 地理空间分异实质是一个表述分异运动的概念。首先是圈层分异;其次是海陆分异;再次是大陆与大洋的地域分异等。地理学通常把地理分异分为地带性、地区性、区域性、地方性、局部性、微域性等若干级别。生物多样性是适应环境分异性的结果,因此,空间分异性生物多样化是同一运动的不同理论表述。 景观具有空间分异性和生物多样性效应,由此派生出具体的景观生态系统原理,如景观结构功能的相关性,能流、物流和物种流的多样性等。

扬州大学普通生态学重点

扬州大学普通生态学重点 刘芳杨益众 1.1生态学与昆虫生态学的基本概念 什么是生态学ecology? 研究生命系统与其环境之间相互关系的学科。(马世骏,著名生态学家) 环境又包括非生物环境和生物环境。 Levels of biological organization? Five levels:个体、种群、群落、生态系统、生物圈。 1869年,生态学由德国生物学家恩斯特·海克尔首次描述“研究生物有机物与其周围环境相互关系的科学。” 几个重要概念: Species 种生物个体间相近似而能够交配,产生可育(fertile)的后代; population群,种群指在一定时间内占据一定空间的同种生物的所有个体。Community 群落具有直接或间接关系的多种生物种群的有规律的组合,具有复杂的种间关系。包含一定的空间。 Ecosystem 生态系统指由生物群落与无机环境构成的统一整体。 个体生态学autecology = ethology 群体生态学synecology 生态学的三个主要研究步骤: 1、野外观察与调查。这是基本方法; 2、室内实验测定。进一步完善,检验科学理论和假设。这是重要途径; 3、理论分析。是前两者的升华,可用于解释现象和结果,指导生产实践。 田间昆虫取样调查的方法: A.五点取样:适用于较小或近方形的田块,样点可稍大; B.对角线取样:分单对角线和双对角线,样点可稍大,取样数较少; C.棋盘式取样将田块划分等距、等面积方块,每隔一个中央取点; D.单行线取样适用于成形的作物田; E.“Z”字形取样样点分布沿田边较多,田中较少。主要针对在田间分布不均的昆虫,如红蜘蛛。 昆虫的观测方法: 1、直接肉眼观察; 2、拍打或抖动法(拍离法) 3、抽吸法 4、网捕法 2.1种群生态学 昆虫种群生态学(population ecology of insect)的概念:研究种群,环境和时间、空间,性比、出生率、存活率、迁移率、年龄结构、分布、种内竞争、种间竞争、生态对策、种群模型以及种群调节和数量波动原因等。 种群生态学的首个重要的理论贡献者Thomas Malthus 托马斯·马尔萨斯。他发表了《人口学原理》。 2.1.1 什么是种群?

景观生态学-研究内容与基本原理

景观生态学Landscape ecology 二、景观生态学的研究内容与基本原理 (一)研究内容 景观生态学是研究景观的结构功能和变化及景观的规划管理。 景观结构: 指的是不同景观要素之间的空间关系(各种生态系统的性状、大小、数目、种类和构图与能量、物质和物种分配的关系) 景观功能: 指的是多种景观要素之间的相互作用,即不同生态系统之间的能流、物质流和物种流。 景观变化: 指的是景观在结构和功能上随时间的变化。 景观管理: 是将景观生态学的基本理论,应用于生产实践。主要内容是通过综合分析景观特征,提出景观利用管理最优化方案。包括下述内容: ①景观生态分类;②景观生态评价;③景观生态规划设计;④景观生态规划设计的实施。 (二)景观生态学的理论基础与基本原理 景观生态学的理论基础是整体论(holism)和系统理论(system theory)。 整体论是1926年由Smuts提出的哲学思想,这一思想说明,客观现实是由一系列的处于不同等级系列的整体所组成,每一整体都是一个系统,即处于一个相对稳定态中的相互关系集合。稳定态的维持机制称之为内稳定性,它是靠一系列正反馈和负反馈因素使系统处于两种动态平衡之中。

所以从根本上说,景观生态学研究的就是内稳态的机制,也就是研究地表所有作用因素之间的相互关系如何,它们又是如何造成水平和垂直的异质性的。 关于垂直异质性问题,由于欧洲学者对景观和景观生态学的理解,与R.Forman和M.Godron的定义有所区别,比如荷兰学者I.S.Zonneveld指出,应将景观视为一个生态系统,而又认为生态系统的概念不包括范围大小。景观是在地球表面由所有作用因素形成的开放系统。这些因素组成三维现象。水平方面表现在互相联系的要素的水平格局上,垂直方面表现在存在着相互作用的很多“层”上。景观的每一层成为一门科学的研究对象(如地质学、土壤学、植被学等),而独有景观生态学则将全部土地属性形成的垂直异质性作为一个整体来研究。这是景观生态学最基本的特点。可见,整体范围内的垂直和水平异质性是景观生态学的研究对象。 Forman & Godron (1986)提出下列七个景观生态学原理: (一)景观结构和功能原理(landscapestructureand functionprinciple): 在景观尺度上,每一独立的生态系统(或景观生态元素)可看作是一宽广的斑块,狭窄的廊道或基质。生态学对象在景观生态元素间是异质分布的。景观生态元素的大小,形状,数目,类型和结构是反覆变化的,其空间分布由景观结构所决定。 (二)生物多样性原理(biodiversity principle): 景观异质性程度高,造成斑块及其内部环境的物种减少,同时也增加了边缘物种的丰度。 (三)物种流动原理(speciesflowprinciple): 景观结构和物种流动是反馈环中的链环。在自然或人类干扰形成的景观生态元素中,当干扰区有利于外来种传播时,会造成敏感物种分布的的减少。 (四)养分再分配原理(nutrientredistributionprinciple):

普通生态学

普通生态学作业 固体废物污染 固体废物污染 定义:固体废物排入环境所引起的环境质量下降而有害于人类及其他生物的正常生存和发展的现象。

固体废物按来源大致可分为生活垃圾、一般工业固体废物和危险废物三种。此外,还有农业固体废物、建筑废料及弃土。固体废物如不加妥善收集、利用和处理处置将会污染大气、水体和土壤,危害人体健康。 概述 生活垃圾是指在人们日常生活中产生的废物,包括食物残渣、纸屑、灰土、包装物、废品等。一般工业固体废物包括粉煤灰、冶炼废渣、炉渣、尾矿、工业水处理污泥、煤矸石及工业粉尘。危险废物是指易燃、易爆、腐蚀性、传染性、放射性等有毒有害废物,除固态废物外,半固态、液态危险废物在环境管理中通常也划入危险废物一类进行管理。 固体废物具有两重性,也就是说,在一定时间、地点,某些物品对用户不再有用或暂不需要而被丢弃,成为废物;但对另些用户或者在某种特定条件下,废物可能成为有用的甚至是必要的原料。固体废物污染防治正是利用这一特点,力求使固体废物减量化、资源化、无害化。对那些不可避免地产生和无法利用的固体废物需要进行处理处置。 固体废物还有来源广、种类多、数量大、成分复杂的特点。因此防治工作的重点是按废物的不同特性分类收集运输和贮存,然后进行合理利用和处理处置,减少环境污染,尽量变废为宝。 固体废物污染现状 2003年,全国工业固体废物产生量为10.0亿吨,比上年增加6.3%;工业固体废物排放量为1941万吨,比上年减少26.3%。工业固体废物综合利用量为5.6亿吨,综合利用率为55.8%,比上年增加3.8个百分点。危险废物产生量1171万吨,比上年增加17.1。 2003年,全国生活垃圾清运量为14857万吨,比上年增加8.8%;其中生活垃圾无害化处理量为7550万吨,比上年增加2.0%,生活垃圾无害化处理率为50.8%。 固体废物污染的危害 对土壤的污染 固体废物长期露天堆放.其有害成分在地表径流和雨水的淋溶、渗透作用下通过土壤孔隙向四周和纵深的土壤迁移。在迁移过程中,有害成分要经受土壤的吸附和其他用。通常,由于土壤的吸附能力和吸附容量很大,随着渗滤水的迁移,使有害成分在土壤固相中呈现不同程度的积累,导致土壤成分和结构的改变,植物又是生长在土壤中,间接又对植物产生了污染,有些土地甚至无法耕种。例如,德国某冶金厂附近的土壤被有色冶炼

相关文档
最新文档