细胞分子生物学名词解释2016最全版

细胞分子生物学名词解释2016最全版
细胞分子生物学名词解释2016最全版

, 内膜系统的膜结构破裂后自己重新封闭起来的小囊泡(主要

是内质网和高尔基体), 是异质性的集合体,

形态、大小及功能常因生物种类和细胞类型不同而异。据微体内含有的酶的不同可分为过氧化物酶体、糖酵解酶体和乙醛酸循环体。在蛋白质合成过程中,同一条mRNA分子能够同多个核糖体结合,同时合成若干条蛋白质多肽链,结合在同一条mRNA上的核糖

叠的多肽链相互作用的蛋白质,能够加速正确折叠的进行或提供折叠发生所需要的微环境。动物体细胞在体外可传代的次数,与物种的寿命有关,它们的增殖能力不是无限的,

DNA在核小体连接处断裂成核小体片

色体末端的特殊结构,即染色体末端DNA 序列的多个重复,其作用是保护和稳定染色

RNA 依赖性DNA 聚合酶,为一种核糖核蛋白酶,是合成端粒必需的酶。在双线期中,交叉数目逐渐减少,在着丝粒两侧的交叉向两端移动.这个现象称为

成染色体联会的两条同源染色体互相紧靠,进而缠绕在一起,基质开始附着到染色丝上,成为一条短而粗的染色体。据染色体被拉向两极所受到的力的不同,后期可分为后期A

和后期B,此时的染色体

启动DNA复制的关键因子,是真核细胞DNA M期促进因子。

能够促使染色体凝集,使细胞由G2期进入M

物质多肽的形式合成,其N末端含有作为通过膜时之信号的氨基酸序列。引导前体多肽

是指具有摄取、处理及提呈抗原能力的细胞,能摄取病原体蛋白并将其加工将成短肽段,呈递给T细胞。

,从中

于高等真核细胞中,是内层核被膜下纤维蛋白片层,纤维纵横排列整齐呈纤维网络状。

成串排列在一起,主要集中在染色体的着丝

DNA和组蛋白构成,是染色质的基本结构

在一定时期的特种细胞的细胞核内,

它由不表达的DNA序列组成,

分裂过程中,核仁出现周期性变化。一般在分裂前期逐渐消失,其纤丝和颗粒成分散失于核质之中;在分裂末期又重新出现。核仁的形成常与特定染色体的一定区域密切相关。

色体片段, 通过次缢痕与染色体主要部分相连。

指染色体组在有丝分裂中期的表型, 是染色体数目、大小、

是卵母细胞进行第一次减数分裂时, 停留在双线期的染色体。含4条染色单体,形似灯刷。

由核内有丝分裂产生的多股染色单体平行排列而成。

论其种的差异有多大,同一器官与组织的细胞大小是在一个恒定的范围之内,器官的大

发育中,由一个或一种细胞增殖产生的后代,在形态结构和生理功能上发生持久的稳定

细胞中均要表达的一类基因,

较长时间贮藏在卵细胞细胞质中但并不表达翻译、

直到卵细胞受精后才表达翻译的一类mRNA

是细胞内与细胞增殖相关的基因,是维持机体正常生命活动所必须的,在进化上高等保守。当原癌基因的结构或调控区发生变异,基因产物增多或活性增强时,使细胞过度增

是正常细胞中存在的对原癌基因表达功能进行调节的

中心体和星体等细胞分裂因素的细胞器的总称,确保两套遗传物质能均等地分配给两个子细胞。染色体列队有丝分裂和减速分裂中期染色体向赤道板运动的过程。减数分

(DNA或RNA)与蛋白质构成的非细胞形态的营寄生生活的生命体。病毒是寄生在细胞里的微生物,不能脱离细胞而生存。病毒没有细胞结构,是最简单、最小的生命形式。专性寄生性使病毒必须借助于其

细胞具有独立的、有序的自控代谢体系,细胞是代谢与功能的基本单位。细胞是有机体生长与发育的基础。细胞是遗传的基本单位,细胞具有遗传的全能性。没有细

细胞形态结构的观察方法:光学显微镜技术。电子显微镜技术,透射电镜,扫描电镜,冰冻蚀刻后用电子显微镜观察2

生物化学与分子生物学技术。免疫细胞化学,显微光谱分析技术,放射自显影术,分子杂交技术,Southern杂交,PCR 技术3细胞分离技术。差速离心,密度梯度

离心,流式细胞术,细胞电泳4细胞培养与细胞杂交

核仁、核液、双层核膜等构成的细胞核;原核细胞无核膜、核仁,故无真正的细胞核,仅有由核酸集中组成的拟核②真核细胞的转录在细胞核中进行,蛋白质的合成在细胞质中进行,而原核细胞的转录与蛋白质的合成交联在一起进行③真核细胞有内质网、高尔基体、溶酶体、液泡等细胞器,原核细胞没有④真核生物中除某些低等类群(如甲藻等)的细胞以外,染色体上都有5种或4种组蛋白与DNA结合,形成核小体;而在原核生物则无⑤真核细胞在细胞周期中有专门的DNA复制期(S期);原核细胞则没有,其DNA复制常是连续进行的⑥真核细胞的有丝分裂是原核细胞所

了膜的流动性(承受压力外形改变而不破裂,物质转运能量转换识别)和不对称性

(脂质膜蛋白糖类分布不对称)

膜的流动性是指膜结构分子的运动性,它包括膜脂的运动和膜蛋白的运动。膜脂的运动方式主要有侧向扩散、旋转运动、左右摆动以及翻转运动等。影响因素①温度②膜脂的脂肪酸链③胆固醇,膜脂与膜蛋白的结合程度、环境中的离子强度、pH 值等都会影响膜脂的流动性。膜蛋白也能以侧向扩散等方式运动。膜中蛋白质与脂类的相互作用、内在蛋白与外在蛋白相互作用、膜蛋白复合体的形成、膜蛋白与细胞骨架的作用等都影响和

,大亚基催化ATP水解,小亚基是一个糖蛋白.NaKATP酶通过磷酸化和去磷酸化过程发生构

象的变化,导致与Na+K+的亲和力发生变化.大亚基以亲Na+态结合Na+后,触发水解ATP.

每水解一个ATP释放的能量输送3个Na到胞外,同时摄取2个K

FN)、层粘连蛋白(LN)、

白,如胶原和弹性蛋白③粘着蛋白,如纤粘连蛋白和层粘联蛋白ECM是构成肾脏组织结构框架的重要胶原ECM是组织生长和受损后修复的重要物质ECM可通过与阻止细胞表面的粘附因子的结合对阻止细胞的趋化、增生、分化以及对细胞因子的合成与分泌起

着重要的调节作用。ECM

白和分泌蛋白合成的地方,也是蛋白质分泌途径的起点1蛋白质的修饰与加工2新生肽链的折叠、组装、运输3在高尔基体的进一步加工,经过高尔基体的进一步加工和分装,

②脂类代谢③解毒作用④离子贮存与调节(肌浆网膜上钙泵)溶酶体和过氧化物酶体的

酸酶。溶酶体的主要作用是细胞内消化;细胞凋亡;防御作用;参与分泌过程的调节;形成精子的顶体。过氧化物酶体又称微体,是一种具有异质性的细胞器,在不同生物及

白质能够抵抗消化酶的作用②赋予蛋白质传导信号的功能③某些蛋白只有在糖基化之后

“膜流”。高尔基体在“膜流”的调控中很可能起着重要的枢纽作用。在某些分泌旺盛的植物细胞中,高尔基体会产生大量的具膜小泡,具膜小泡的数量之多足可以在20 min之内使细胞膜的面积增大一倍。与此同时,细胞的内吞作用也非常活跃,从而保证了“膜流”的相对稳定。由高尔基体产生的溶酶体也参与“膜流”过程。溶酶体的作用主要是更新膜蛋白和

糖体的分子质量为2500ku,其大亚基的沉降系数是50S,由34种蛋白质和23SrRNA、5

SrRNA组成;小亚基的沉降系数是30S,由21种蛋白质和16SrRNA组成,大小亚基结合成70S核糖体。真核生物核糖体的分子质量为4200ku,其大亚基的沉降系数是60S,由49种蛋白质和28SrRNA、5.8SrRNA、5SrRNA组成;小亚基的沉降系数是40S,由3

3种蛋白质和18SrRNA组成,大小亚基结合成80S

包括外膜、内膜、膜间隙和基质四个功能区隔。外膜具有孔蛋白构成的亲水通道,内膜通透性很低,向基质折褶形成嵴,嵴上附有基粒即ATP合酶,线粒体氧化磷酸化的电子传递链位于内膜,标志酶为细胞色素C氧化酶,膜间隙是内外膜之间的腔隙,基质为内

F1和Fo通过“转子”和“定子”连接在一起,在合成水解ATP过程中,“转子”在通过F0的氢离子流推动下旋转,依次与三个β亚基作用,调节β

亚基催化位点的构象变化,在ATP酶的催化下,ADP与Pi发生磷酸化,产生ATP

(自主性);但编码的遗传信息十分有限,其RNA转录、

蛋白质翻译、自身构建和功能发挥等必须依赖核基因组编码的遗传信息(自主性有限)

fish-trap,主要包括①胞质环,位于核孔复合体胞质一侧,环上有8条纤维伸向胞质;②核质环,位于核孔复合体核质一侧,上面伸出8条纤维,纤维端部与端环相连,构成笼子状的结构;③转运器,核孔中央的一

在细胞的代谢、生长、分化中起着重要作用,是遗传物质的主要存在部位。一般说真核

细胞失去细胞核后,

的基本结构单位,由DNA和组蛋白构成,是染色质的基本结构单位。由4种组蛋白H2 A、H2B、H3和H4,每一种组蛋白各二个分子,形成一个组蛋白八聚体,约200 bp的DNA分子盘绕在组蛋白八聚体构成的核心结构外面,形成了一个核小体。DNA缠绕在核

小体上,进一步盘绕成更复杂更高层次的结构

结合,交换GTP/GDP(G蛋白活化),结合并激活AC,生成第二信使cAMP,激活PKA,

,并结合在微丝正极阻抑肌动蛋白

聚合,因而导致微丝解聚。鬼笔环肽:与微丝侧面结合,防止MF解

配,

装配的发生处称为微管组织中心(MTOC:中心体,基体

原肌球蛋白、肌钙蛋白(肌球蛋白超家族myosin I, myosin II,and myosin V存在于所有真核细胞中。功能主要是细胞内的马达。myosin II 肌肉收缩,I ,V作用于骨架和膜)

承受外力、保持细胞内部结构的有序性方面起重要作用,而且还参与许多重要的生命活动,如:在细胞分裂中细胞骨架牵引染色体分离;在肌肉细胞中细胞骨架和它的结合蛋白组成动力系统;在植物细胞中细胞

结蛋白、胶质原纤维酸性蛋白、波形纤维蛋白、神经纤丝蛋白,此外细胞核中的核纤肽也是一种中间纤维。中间纤维在细胞中围绕着细胞核分布,成束成网,并扩展到细胞质

两个二聚体反向平行组装成四聚体,三个四聚体长向连成原丝③两个原丝组成原纤维④8根原纤维组成中间纤维,横切面具有32个单体。IF装配的单体是纤维状蛋白(MF,MT 的单体呈球形);反向平行的四聚体导致IF不具有极性;IF在体外装配时不需要核苷

酸或结合蛋白的辅助,在体内装配后,细胞中几乎不存在IF

1为DNA的复制提供支架,核骨架上有DNA复

制所需要的酶2是基因转录加工的场所3

核糖体的生物

发生包括rRNA的合成、

纤维中心(FC)、致密纤维组分(DFC)、颗粒组分(GC)三大部分组成。核仁组成成分包括rRNA,rDNA和核糖核蛋白。核仁是rRNA基因存储,rRNA合成加工以及核

积缩小,连接消失,与周围的细胞脱离,然后是细胞质密度增加,线粒体膜电位消失,通透性改变,释放细胞色素C到胞浆,核质浓缩,核膜核仁破碎,DNA降解;

胞膜有小泡状形成,膜内侧磷脂酰丝氨酸外翻到膜表面,胞膜结构仍然完整,最终

的自由基本均可导致DNA的损伤。正常机体内存在DNA的修复机制,可使损伤的DNA得到修复,但是随着年龄的增加,这种修复能力下降,导致DNA的错误累积,

染色深、核内有包含物;染色质凝聚、固缩、碎裂、溶解;质膜:粘度增加、流动性降低;细胞质:色素积聚、空泡形成;线粒体数目减少、体积增大;高尔基体碎裂;尼氏体消失;包含物糖原减少、脂肪

期。G0期暂时离开细胞周期,停止细胞分裂;间期即DNA合成前期(G1期)、DNA合成期(S期)与DNA合成后期(G2期);细胞分裂期M 期1前期,形成染色体,形成纺锤体2中期核仁与核被膜已完全消失,染色体列队3后期着丝点纵裂,染色单体分开,向两级移动4末期重新出现染色质丝与核仁。使细胞处于细胞周期的同一时相,即是

期同步化1振荡收集法2秋水仙胺阻抑法3N2阻断法S期同步

化,间期染色体加倍2减一前期同源染色体联会. 3减一中期.同源染色体排列在赤道板上4减一后期,同源染色体分离,非同源染色体自由组合5减一末期细胞一分为二,形成极体和次级卵母细胞6减二前期次级卵母细胞中分散的染色体进行着两两配对7减二中期染色体排在赤道板上8减二后期

染色体着丝点分离9减二末期,

胞外信号分子2细胞记忆与决定3受精卵细胞质的不均一性4细胞间的相互作用与位置效应5环境对性别的决定6染色质变化(基因丢失,基因扩增,基因重

排,DNA甲基化)与基因重排7前体mRNA的转录、mRNA前体转录后的修饰和加工、mRNA从核内转移到胞液、mRNA的稳定性调节、mRNA的翻译活性调节、肽链翻译后的加工、肽链的转运和细胞定位、蛋白质的稳定性

局部解剖学名词解释

Alcock管即阴部管,位于坐骨直肠窝的外侧壁上,闭孔内肌的表面闭孔筋膜上的一个管状的矢状裂隙、由阴部内血管和阴部神经穿经闭孔筋膜形成的裂隙. Calot三角由胆囊管、肝总管、肝下面三者围成;为胆囊手术时,寻找胆囊动脉的标志. Camper筋膜即腹前外侧壁的浅筋膜浅层,为富含脂肪组织的脂肪层,与邻近部位的浅筋膜相延续. Heister瓣为近胆囊颈侧的胆囊管内面的螺旋状黏膜皱襞,可使胆囊管不致过度膨大或缩小,有利于胆汁的流入与流出.当此瓣因炎症而水肿或有结石嵌顿时,可致胆囊积液. Hesselbach三角位于腹股沟韧带内侧半的上方,由腹直肌外侧缘、腹壁下动脉和腹股沟韧带内侧半围成的三角形区域,是腹壁的薄弱部位.腹腔内容物可由此突出可形成腹股沟直疝. Mcburney点即脐和右髂前上棘连线的中、外1/3交界处,为阑尾根部在腹前外侧壁的体表投影部位. pelvic diaphragm即盆膈,由肛提肌、尾骨肌及盆膈上、下筋膜构成,有肛管通过. perineum即会阴,是指盆膈以下封闭骨盆下口的全部软组织. Scarpa 筋膜即腹前外侧壁的浅筋膜深层,为富有弹性纤维的膜性层,在前正中线附于腹白线,向下在腹股沟下方约一横指处附于阔筋膜,在两侧耻骨结节之间向下与阴囊肉膜和会阴浅筋膜(Colles筋膜)相延续. 鼻烟窝位于腕外侧和伸肌支持带的远侧,当伸、展拇指时,在桡骨茎突后下方呈一远侧的三角形凹陷. 臂前骨筋膜鞘臂前深筋膜和臂内、外侧肌间隔及肱骨围成的骨筋膜鞘,内有喙肱肌、肱二头肌和肱肌,以及行于臂前区的血管神经. 边缘动脉由肠系膜上、下动脉的各结肠动脉分支之间,在结肠内缘相互吻合而成,由此发出直动脉,布于结肠壁. 肠系膜根肠系膜根:为肠系膜附着于腹后壁的部分,长约15cm,起自第2腰椎左侧,斜向右下方,止于右骶髂关节前方. 齿状韧带软脊膜增厚并在脊髓两侧向外突,形成的三角形结构称齿状韧带.冠状位介于脊神经前后根之间,有维持脊髓正常位置的作用. 齿状线是通过肛柱下端及肛瓣的边缘连成锯齿状的环状线. 耻骨后隙位于耻骨联合后面与膀胱下外侧面之间,内有大量疏松结缔组织. 耻骨梳韧带为腔隙韧带向外侧延续附于耻骨梳上的部分,构成股环的后界. 从骶骨外侧缘向坐骨结节和坐骨棘各发出一条韧带,即骶结节韧带和骶棘韧带,这两条韧带与坐骨大切迹、坐骨棘和坐骨结节围成坐骨大、小孔. 骶管裂孔骶管裂孔为椎管的下口,是由第4、5骶椎背面的切迹与尾骨围成的沿骶正中嵴向下的孔. 骶角骶角是骶骨裂孔两侧向下的突起易于触及,是骶管麻醉的进针定位标志. 第二肝门在肝的腔静脉沟上端,肝左、中间、右静脉汇入下腔静脉处. 动脉导管三角位于主动脉弓的左前方,其前界为左膈神经,后界为左迷走神经,下界为左肺动脉.三角内有动脉韧带、左喉返神经和心浅丛. 反转韧带为腹股沟管皮下环外侧脚的部分纤维经过精索深面与内侧脚的后方,向内上返转附着于白线的部分.肺根为出入肺门各结构的总称,表面包以胸膜. 肺韧带为肺根下方脏胸膜和纵隔胸膜相互移行部分的双层胸膜结构.它上连肺根,下达肺下缘,呈冠状位,有固定肺的作用半月线又称腹直肌线,为沿腹直肌外缘的弧形线. 腹白线由两侧腹直肌鞘纤维(或腹前外侧壁3层扁肌的腱膜)在腹前正中线上彼此交织而成.脐上宽、脐下窄(约1~2cm),坚韧而血管少,有血管、神经穿过的小孔或裂隙. 腹股沟管浅环(皮下环)即腹股沟管外口,为腹外斜肌腱膜在耻骨结节外上方形成的三角形裂隙,有外侧脚、内侧脚和脚间纤维等结构. 腹股沟管深环腹股沟管内口,为腹横筋膜在腹股沟韧带中点上方以一横指(1.5cm)处形成的卵圆形开口. 腹股沟管是精索或子宫圆韧带由腹膜外间隙斜穿腹前外侧壁至皮下而形成的一个潜在裂隙,位于腹股沟带内侧半上方,长约4~5cm.是腹前外侧壁的重要结构和薄弱部位. 腹股沟镰为腹内斜肌和腹横肌在腹直肌外缘呈腱性结合所形成的结构,若两者以肌性结合则称联合肌,参与腹股沟管后壁内侧1/3的构成. 腹股沟内侧窝腹股沟内侧窝:位于腹股沟韧带上方,脐外侧襞内侧的凹陷.其位置相当于腹股沟三角,其尖端指向腹股沟管深环.是腹壁的薄弱部位,腹腔内容物可由此突出可形成腹股沟直疝. 腹股沟韧带为张于髂前上棘与耻骨结节间的腹外斜肌腱膜下缘,向后卷曲增厚而成的结构,作为腹部与股部的分界. 腹股沟外侧窝位于腹股沟韧带上方,脐外侧襞外侧的凹陷.其尖端指向腹股沟管深环,是腹壁的薄弱部位,腹腔内容物可由此突出可形成腹股沟斜疝. 腹膜后隙腹膜后隙:位于后腹壁的壁腹膜与腹内筋膜之间,上起自膈,下至骶骨岬,两侧向外连于腹膜下筋

最新分子生物学名词解释

分子生物学名词解释

名词解释 1. 基因(gene): 2. 结构基因(structural gene): 3. 断裂基因(split gene): 4. 外显子(exon): 5. 内含子(intron): 6. 多顺反子RNA(polycistronic/multicistronic RNA): 7. 单顺反子RNA(monocistronic RNA): 8. 核不均一RNA(heterogeneous nuclear RNA, hnRNA): 9. 开放阅读框(open reading frame, ORF): 10. 密码子(codon): 11. 反密码子(anticodon): 12. 顺式作用元件(cis-acting element): 13. 启动子(promoter): 14. 增强子(enhancer): 15. 核酶(ribozyme) 16. 核内小分子RNA(small nuclear RNA, snRNA) 17. 信号识别颗粒(signal recognition particle, SRP) 18. 上游启动子元件(upstream promoter element) 19. 同义突变(same sense mutation) 20. 错义突变(missense mutation) 21. 无义突变(nonsense mutation)

22. 移码突变(frame-shifting mutation) 23. 转换(transition) 24. 颠换(transversion) (三)简答题 1. 顺式作用元件如何发挥转录调控作用? 2. 比较原核细胞和真核细胞mRNA的异同。 3. 说明tRNA分子的结构特点及其与功能的关系。 4. 如何认识和利用核酶? 5. 若某一基因的外显子发生一处颠换,对该基因表达产物的结构和功能有什么影响? 6. 举例说明基因突变如何导致疾病。 (四)论述题 1. 真核生物基因中的非编码序列有何意义? 2. 比较一般的真核生物基因与其转录初级产物、转录成熟产物的异同之处。 3. 真核生物的基因发生突变可能产生哪些效应? (二)名词解释 1.基因组(genome) 2. 质粒(plasmid) 3.内含子(intron) 4.外显子(exon) 5.断裂基因(split gene) 6.假基因(pseudogene)

细胞生物学名词解释

名词解释题 细胞:是生命体活动的基本单位。 原位杂交:确定特殊的核苷酸序列在上染色体或细胞中的位置的方法称为原位杂交 脂质体:根据磷脂分子可在水相中形成稳定的脂双层的趋势而制备的人工膜。单层脂分子铺展在水面上时,其极性端插入水相而非极性尾部面向空气界面,搅动后形成乳浊液,即形成极性端向外而非极性尾部在部的脂分子团或形成双层脂分子的球形脂质体。 主动运输:有载体介导的物质逆浓度梯度或电化学梯度由浓度低的一侧向高浓度的一侧进行跨膜转运的方式。此种转运的方式需要消耗能量。 转移序列:存在与新生肽连中使肽连终止转移的一段信号序列,可导致蛋白质锚定在膜的脂双层中。因终止转移信号作用而形成单次跨膜的蛋白质,那么该蛋白质在结构上只有一个终止转移信号序列,没有部转移信号,但在N端有一个信号序列作为起始转移信号。 P34cdc2/cdc28:是有芽殖或裂殖酵母cdc2/cdc28基因表达一种分子量为34X103细胞周期依赖的蛋白激酶。 细胞全能性:细胞经分裂和分化后仍具有产生完整有机体的潜能或特性 膜系统(endomembrane system): 指在结构、功能及发生上密切相关的,由膜围绕的细胞器或细胞结构,主要包括质网、高尔基体、溶酶体、过氧化物酶体、核膜、胞体和分泌泡等。 Caspase家族: Caspase活性位点是半胱氨酸(Cysteine),裂解靶蛋白位点是天冬氨酸残基后的肽键,因此称为Cysteine aspartic acic specific protease,即Caspase 细胞分化:在个体发育中,有一种相同的细胞类型经细胞分裂后逐渐在形态、结构、和功能上形成稳定性差异,产生不同的细胞类群的过程称细胞分化。或:由于基因选择性的表达各自特有的专一蛋白质而导致细胞形态、结构与功能的差异。 分泌型胞吐途径:真核细胞都从高尔基体反面管网区分泌的囊泡向质膜流动并与之融合的稳定过程。 细胞骨架:是由蛋白纤维交织而成的立体网架结构,它充满整个细胞质的空间,与外侧的细胞膜和侧的核膜存在一定的结构联系,以保持细胞特有的形状,并与细胞运动有关。(也可以这样回答:从广义上讲,细胞骨架包括细胞质骨架、细胞核骨架、细胞膜骨架和细胞外基质。从狭义上讲,细胞骨架即为细胞质骨架,包括微管、纤丝两大类纤维成分)。 膜的流动性:是生物膜的基本特征之一,包括膜脂的流动性和膜蛋白的流动性,膜脂的流动性主要是指脂分子的侧向运动。 钙粘素:属亲同性CAM,其作用依赖于Ca2+。钙粘素分子结构同源性很高,其胞外部分形成5个结构域,其中4个同源,均含Ca2+结合部位。决定钙粘素结合特异性的部位在靠N末端的一个结构域中,只要变更其中2个氨基酸残基即可使结合特异性由E-钙粘素转变为P-钙粘素。钙粘素分子的胞质部分是最高度保守的区域,参与信号转导。 接合素蛋白:它既能结合网格蛋白,又能识别跨膜受体胞质面的尾部肽信号,从而介导跨膜受体及其结合配体的选择性运输。

细胞生物学名词解释和简答题整理版

第四章 P16提要第一段;细胞生物学概念,研究的主要内容 研究细胞基本生命活动规律的科学称为细胞生物学。它是以细胞为研究对象,从细胞的显微水平、亚显微水平、分子水平等三个层次,主要研究细胞和细胞器的结构和功能、细胞增殖、分化、衰老和凋亡,细胞信号转导、细胞基因表达和调控,细胞起源和进化等。二、细胞生物学的主要研究内容 1 细胞核、染色体以及基因表达的研究2生物膜和细胞器的研究3生物膜和细胞器的研究4 细胞增殖及其调控5 细胞分化及其调控6 细胞的衰老和凋亡7细胞的起源和进化8 细胞工程 P46提要真核结构:1生物膜体系以及生物膜为基础构建的各种独立的细胞器2.遗传信息表达的结构体系3细胞骨架体系 P80提要,普通光学显微镜结构和性能参数 1、光学显微镜的组成主要分为光学放大系统,为两组玻璃透镜:目镜和物镜;照明系统:光源、折光镜、聚光镜;机械和支架系统,主要保证光学系统的准确配置和灵活调控。光学显微镜的分辨率是最重要的性能参数,它由光源的波长、物镜的镜口角和介质折射率三个因素决定。 2、荧光显微镜是以紫外光为光源,电子显微镜则是以电子束为光源。 3、倒置显微镜和普通光学显微镜的不同在于物镜和照明系统的位置颠倒。 一、名词解释 外在膜蛋白:外在膜蛋白为水溶性蛋白质,靠离子键或其他较弱的键和膜表面的膜蛋白分子或膜脂分子结合,因此只要改变溶液的离子强度甚至提高温度就可以从膜上分离下来,但膜结构并不被破坏。 内在膜蛋白:内在膜蛋白是通过和之共价相连的脂分子插入膜的脂双分子中,从而锚定在细胞质膜上。和脂肪酸结合的内在膜蛋白多分布在质膜内侧,和糖脂相结合的内在膜蛋白多分布在质膜外侧。 生物膜:镶嵌有蛋白质和糖类(统称糖蛋白)的磷脂双分子层,起着划分和分隔细胞和细胞器作用生物膜,也是和许多能量转化和细胞内通讯有关的重要部位,同时,生物膜上还有大量的酶结合位点。细胞、细胞器和其环境接界的所有膜结构的总称。 二、简答题 1、生物膜的结构和功能,影响生物膜流动性的因素 生物膜的基本结构和作用 (1)具有极性头部和非极性尾部的磷脂分子在水相中具有自发形成封闭的膜系统的性质,以疏水性非极性尾部相对,极性头部朝向水相的磷脂双分子层是组成生物膜的基本结构成分,尚未发现在生物膜结构中起组织作用的蛋白。 (2)蛋白分子以不同的方式镶嵌在脂双分子中或结合在其表面,蛋白的类型,蛋白分布的不对称性及其和脂分子的协同作用赋予生物膜具有各自的特性和功能。 (3)生物膜可以堪称是蛋白质在双层脂分子中的二维溶液。然而膜蛋白和膜脂之间,膜蛋白和膜蛋白之间及其和膜两侧其他生物大分子的复杂的相互作用,在不同程度上限制了膜蛋白和膜脂的流动性。 生物学功能:跨膜物质运输——主动运输,被动运输,协同作用,胞吞等。

局部解剖学名词解释

名词解释 1. 腮腺咬肌区:为腮腺和咬肌所在的下颌支外侧面和下颌后窝的区域,其上界为颧弓与外耳道。下界为下颌骨下缘平面;前界为咬肌前缘;后界为乳突和胸锁乳突肌上部的前缘。内侧界深至咽旁,为腮腺深部邻接的茎突、茎突诸肌、颈内动脉、颈内静脉、和X一XII对脑神经等,浅为皮肤与浅筋膜。腮腺咬肌区内主要生构为腮腺,此外,还有咬肌以及面侧部的有关血管、神经、林巴结等。 2. 腮腺床:位于腮腺深面的茎突及茎突诸肌,颈内动、静脉以及后4 对脑神经,共同形成“腮腺床”。 3. 面侧深区:位于腮腺咬肌区前部深面,颅底下方,口腔及咽的外侧,即颞下窝的范围。由一顶、一底和四壁围成,顶为蝶骨大翼的颞下面;底平下颌骨下缘;前壁为上颌骨体的后面;后壁为腮腺深部前面;外侧壁为下颌支;内侧壁为翼突外侧板和咽侧壁。此区内有翼内、外肌及出入颅底的血管、神经等。 4. 翼静脉丛:pteryoid venous plexus 位于翼内、外肌和颞肌之间,凡与上颌动脉及其分支伴行的静脉均参与此丛的形成。并收纳相应区域的静脉血,翼静脉丛汇合成上颌静脉,汇入下颌后静脉。翼静脉丛经过面深静脉与面静脉交通,并经卵圆孔网及破裂孔导血管与海绵窦交通,故口、鼻、咽等部位的感染可沿上述途径蔓延至颅内。 5. 咬肌间隙:masseter space 是位于咬肌与下颌支之间的狭隙。咬肌的血管、神经通过下颌切迹穿入此隙,从深面进入咬肌。咬肌间隙下部前邻下颌第三磨牙,后为腮腺。许多牙源性感染如第三磨牙冠周炎,牙槽脓肿和下颌骨骨髓炎等均有可能扩散至此间隙。 6. 翼下颌间隙:pterygomandibual space 是位于下颌支与翼内肌之间的间隙。与咬 肌间隙仅隔下颌支,两间隙经下颌切迹相互交通。此间隙前邻颊肌,后为腮腺,内有舌神经、下牙槽神经和下牙槽动、静脉通过。下牙槽神经阻滞,即将麻醉药物注射于此间隙内。牙源性感染亦常累及此间隙。 7. 舌下间隙:subli ngual space位于下颌骨体的内侧。上界为口腔底粘膜,下界为下颌舌骨肌和舌骨舌肌,前外侧界为下颌舌骨线以上的下颌骨体内侧面的骨壁,后界为舌根。舌下间隙内有舌下腺、下颌下腺的深部及下颌下腺的导管、下颌下神经节、舌神经、舌下神经和舌下血管等。舌下间隙向后在下颌舌骨肌后缘处与下颌下间隙相交通,向后上通翼下颌间隙,向前与对侧舌下间隙相交通。 8. 头皮:指额顶枕区的浅部三层结构。即皮肤、浅筋膜、帽状腱膜,三者紧密结合不易分离,称此三层合称为“头皮” 9. 帽状腱膜下间隙:为一潜在的疏松结缔组织间隙,位于帽状腱膜与颅骨外膜之间。此隙范围较大,向前可至眶上缘;向后达上项线;两侧达上颞线。头皮借此层与颅骨外膜疏松结合,头皮撕脱伤多自此层分离。腱膜下隙出血或积脓时,可广泛蔓延至全颅

分子生物学名词解释

重要名词:(下划线的尤其重要) 1.常染色质:细胞间期核内染色质折叠压缩程度较低,碱性染料着色浅而均匀的区域, 是染色质的主体部分。DNA主要是单拷贝和中度重复序列,是基因活跃表达部分。2.异染色质:细胞间期核内染色质压缩程度较高,碱性染料着色较深的区域。着丝粒、端 粒、次缢痕,DNA主要是高度重复序列,没有基因活性。 3.核小体:核小体是染色体的基本组成单位,它是由DNA和组蛋白构成的,组蛋白H3、 H4、H2B、H2A各两份,组成了蛋白质八聚体的核心结构,大约200bp的DNA盘绕在蛋白质八聚体的外面,相邻两个核小体之间结合了1分子的H1组蛋白。 4.组蛋白:是染色体的结构蛋白,其与DNA组成核小体。根据其凝胶电泳性质可将其分 为H1、H2A、H2B、H3及H4。 5.转座子:是在基因组中可以移动和自主复制的一段DNA序列。 6.基因:原核、真核生物以及病毒的DNA和RNA分子中具有遗传效应的核苷酸序列,是 遗传的基本单位。它包括结构蛋白和调控蛋白。 7.基因组:每个物种单倍体染色体的数目及其所携带的全部基因称为该物种的基因组。 8.顺反子:由顺/反测验定义的遗传单位,与基因等同,都是代表一个蛋白质的DNA 单 位组成。一个顺反子所包括的一段DNA与一个多肽链的合成相对应。 9.单顺反子和多顺反子: 真核基因转录的产物是单顺反子mRNA,即一个基因一条多肽链,每个基因转录都有各自的调控原件。 多顺反子是指原核生物一个mRNA分别编码多条多肽链,而这些多肽链对应的DNA片段位于一个转录单位内,享用同一对起点和终点。 10.转录单位:即转录时,DNA上从启动子到终止子的一段序列。原核生物的转录单位往 往可以包括一个以上的基因,基因之间为间隔区,转录之后形成多顺反子mRNA,可以编码不同的多肽链。真核生物的转录单位一般只有一个基因,转录产物为单顺反子RNA,只编码一条多肽链。 11.重叠基因:是指两个或两个以上的基因共有一段DNA序列重叠基因有多种重叠方式, 比如说大基因内包含小基因,几个基因重叠等等。 12.断裂基因:在真核生物基因组中,基因是不连续的,在基因的编码区域内部含有大量的 不编码序列,从而隔断了对应于蛋白质的氨基酸序列。这种不连续的基因又称断裂基因或割裂基因 13.限制性内切酶:限制性内切酶是一类能够识别双链DNA分子中的某种特定核苷酸序列, 并在相关位置切割DNA双链结构的核酸内切酶。 14.超螺旋:如果固定DNA分子的两端,或者本身是共价闭合环状DNA或与蛋白质结合 的DNA分子,DNA分子两条链不能自由转动,额外的张力不能释放,DNA分子就会发生扭曲,用以抵消张力。这种扭曲称为超螺旋(supercoil),是双螺旋的螺旋。 15.拓扑异构酶:通过切断DNA的一条或两条链中的磷酸二酯键,然后重新缠绕和封口来 改变DNA连环数的酶。拓扑异构酶I主要消除负超螺旋,作用一次超螺旋交叉数变化+1;拓扑异构酶II主要引入负超螺旋,作用一次L变化-2。TOPO I催化DNA的单链

细胞生物学名词解释

细胞生物学名词解释 1受体,配体:受体(receptor):存在于细胞膜上细胞内、能接受外界的信号,并将这一信号转化为细胞内的一系列生物化学反应,从而对细胞的结构或功能产生影响的蛋白质分子。 配体(ligand):受体所接受的外界信号,包括神经递质、激素、生长因子、光子、某些化学物质及其他细胞外信号。受体是细胞膜上的特殊蛋白分子,可以识别和选择性地与某些物质发生特异性结合反应,产生相应的生物效应.与之结合的相应的信息分子叫配体。 2. 细胞通讯,信号传导,信号转导,细胞识别: 细胞通讯:指一个细胞发出的信息通过介质传递到别一个细胞产生相应的反应。 信号传导:相当于是将上面细胞的刺激冲动传向下一个细胞,起着一种传递承接的作用,生化性质上没有什么改变。信号转导:指细胞通过胞膜或胞内受体感受信息分子的刺激,经细胞内信号转导系统转换,从而影响细胞生物学功能的过程。 细胞识别:是指细胞通过其表面的受体与胞外信号物质分子(配体)选择性地相互作用,从而导致胞内一系列生理生化变化,最终表现为细胞整体的生物学效应的过程。是细胞通讯的一个重要环节。

3. 分子伴侣:一类在序列上没有相关性但有共同功能的蛋白质,它们在细胞内帮助其他含多肽的结构完成正确的组装,而且在组装完毕后与之分离,不构成这些蛋白质结构执行功能时的组份。 4. 核孔复合体:在内外膜的融合处形成环状开口,直径为50~100nm,核孔构造复杂,含100种以上蛋白质,并与核纤层紧密结合。是选择性双向通道。功能是选择性的大分子出入(主动运输),酶、组蛋白、mRNA、tRNA等存在电位差,对离子的出入有一定的调节控制作用。 5. 常染色质,异染色质 : 在细胞核的大部分区域,染色质结构的折叠压缩程度比较小,即密度较低,进行细胞染色时着色较浅,这部分染色质称常染色质.着丝点部位的染色质丝,在细胞间期就折叠压缩的非常紧密,和细胞分裂时的染色体情况差不多,即密度较高,细胞染色时着色较深,这部分染色质称异染色质. 6. 核仁组织区:即rRNA序列区,它与细胞间期核仁形成有关,构成核仁的某一个或几个特定染色体片断。这一片段的DNA转录为rRNA, rRNA所在处。 7. 多聚核糖体:在蛋白质合成过程中,同一条mRNA分子能够同多个核糖体结合,同时合成若干条蛋白质多肽链,结合在同一条mRNA上的核糖体就称为多聚核糖体。 8. 紧密连接,粘着带,桥粒,间隙连接:

局部解剖学名词解释

名词解释 1.腮腺咬肌区:为腮腺和咬肌所在的下颌支外侧面和下颌后窝的区域,其上界为颧弓与外耳道。下界为下颌骨下缘平面;前界为咬肌前缘;后界为乳突和胸锁乳突肌上部的前缘。内侧界深至咽旁,为腮腺深部邻接的茎突、茎突诸肌、颈内动脉、颈内静脉、和X一XII对脑神经等,浅为皮肤与浅筋膜。腮腺咬肌区内主要生构为腮腺,此外,还有咬肌以及面侧部的有关血管、神经、林巴结等。 2.腮腺床:位于腮腺深面的茎突及茎突诸肌,颈内动、静脉以及后4对脑神经,共同形成“腮腺床”。 3.面侧深区:位于腮腺咬肌区前部深面,颅底下方,口腔及咽的外侧,即颞下窝的范围。由一顶、一底和四壁围成,顶为蝶骨大翼的颞下面;底平下颌骨下缘;前壁为上颌骨体的后面;后壁为腮腺深部前面;外侧壁为下颌支;内侧壁为翼突外侧板和咽侧壁。此区内有翼内、外肌及出入颅底的血管、神经等。 4.翼静脉丛:pteryoid venous plexus位于翼内、外肌和颞肌之间,凡与上颌动脉及其分支伴行的静脉均参与此丛的形成。并收纳相应区域的静脉血,翼静脉丛汇合成上颌静脉,汇入下颌后静脉。翼静脉丛经过面深静脉与面静脉交通,并经卵圆孔网及破裂孔导血管与海绵窦交通,故口、鼻、咽等部位的感染可沿上述途径蔓延至颅内。 5.咬肌间隙:masseter space是位于咬肌与下颌支之间的狭隙。咬肌的血管、神经通过下颌切迹穿入此隙,从深面进入咬肌。咬肌间隙下部前邻下颌第三磨牙,后为腮腺。许多牙源性感染如第三磨牙冠周炎,牙槽脓肿和下颌骨骨髓炎等均有可能扩散至此间隙。 6.翼下颌间隙:pterygomandibual space是位于下颌支与翼内肌之间的间隙。与咬肌间隙仅隔下颌支,两间隙经下颌切迹相互交通。此间隙前邻颊肌,后为腮腺,内有舌神经、下牙槽神经和下牙槽动、静脉通过。下牙槽神经阻滞,即将麻醉药物注射于此间隙内。牙源性感染亦常累及此间隙。 7.舌下间隙:sublingual space位于下颌骨体的内侧。上界为口腔底粘膜,下界为下颌舌骨肌和舌骨舌肌,前外侧界为下颌舌骨线以上的下颌骨体内侧面的骨壁,后界为舌根。舌下间隙内有舌下腺、下颌下腺的深部及下颌下腺的导管、下颌下神经节、舌神经、舌下神经和舌下血管等。舌下间隙向后在下颌舌骨肌后缘处与下颌下间隙相交通,向后上通翼下颌间隙,向前与对侧舌下间隙相交通。 8.头皮:指额顶枕区的浅部三层结构。即皮肤、浅筋膜、帽状腱膜,三者紧密结合不易分离, 称此三层合称为“头皮”。

分子生物学名词解释等

名词解释 1、广义分子生物学:在分子水平上研究生命本质的科学,其研究对象是生物大分子的结构和功能。2 2、狭义分子生物学:即核酸(基因)的分子生物学,研究基因的结构和功能、复制、转录、翻译、表达调控、重组、修复等过程,以及其中涉及到与过程相关的蛋白质和酶的结构与功能 3、基因:遗传信息的基本单位。编码蛋白质或RNA等具有特定功能产物的遗传信息的基本单位,是染色体或基因组的一段DNA序列(对以RNA作为遗传信息载体的RNA病毒而言则是RNA序列)。 4、基因:基因是含有特定遗传信息的一段核苷酸序列,包含产生一条多肽链或功能RNA所必需的全部核苷酸序列。 5、功能基因组学:是依附于对DNA序列的了解,应用基因组学的知识和工具去了解影响发育和整个生物体的特定序列表达谱。 6、蛋白质组学:是以蛋白质组为研究对象,研究细胞内所有蛋白质及其动态变化规律的科学。 7、生物信息学:对DNA和蛋白质序列资料中各种类型信息进行识别、存储、分析、模拟和转输 8、蛋白质组:指的是由一个基因组表达的全部蛋白质 9、功能蛋白质组学:是指研究在特定时间、特定环境和实验条件下细胞内表达的全部蛋白质。 10、单细胞蛋白:也叫微生物蛋白,它是用许多工农业废料及石油废料人工培养的微生物菌体。因而,单细胞蛋白不是一种纯蛋白质,而是由蛋白质、脂肪、碳水化合物、核酸及不是蛋白质的含氮化合物、维生素和无机化合物等混合物组成的细胞质团。 11、基因组:指生物体或细胞一套完整单倍体的遗传物质总和。 12、C值:指生物单倍体基因组的全部DNA的含量,单位以pg或Mb表示。 13、C值矛盾:C值和生物结构或组成的复杂性不一致的现象。 14、重叠基因:共有同一段DNA序列的两个或多个基因。 15、基因重叠:同一段核酸序列参与了不同基因编码的现象。 16、单拷贝序列:单拷贝顺序在单倍体基因组中只出现一次,因而复性速度很慢。单拷贝顺序中储存了巨大的遗传信息,编码各种不同功能的蛋白质。 17、低度重复序列:低度重复序列是指在基因组中含有2~10个拷贝的序列 18、中度重复序列:中度重复序列大致指在真核基因组中重复数十至数万(<105)次的重复顺序。其复性速度快于单拷贝顺序,但慢于高度重复顺序。 19、高度重复序列:基因组中有数千个到几百万个拷贝的DNA序列。这些重复序列的长度为6~200碱基对。 20、基因家族:真核生物基因组中来源相同、结构相似、功能相关的一组基因,可能由某一共同祖先基因经重复和突变产生。 21、基因簇:基因家族的各成员紧密成簇排列成大段的串联重复单位,定位于染色体的特殊区域。 22、超基因家族:由基因家族和单基因组成的大基因家族,各成员序列同源性低,但编码的产物功能相似。如免疫球蛋白家族。 23、假基因:一种类似于基因序列,其核苷酸序列同其相应的正常功能基因基本相同、但却不能合成功能蛋白的失活基因。 24、复制:是指以原来DNA(母链)为模板合成新DNA(子

细胞生物学名词解释整理终版题库

名词解释 1. genome 基因组p235 某一个生物的细胞中储存于单倍染色体组中的总遗传信息,组成该生物的基因组 2. ribozyme 核酶p266 核酶是具有催化功能的RNA分子,是生物催化剂,可降解特异的mRNA序列。核酶又称核酸类酶、酶RNA、核酶类酶RNA。大多数核酶通过催化转磷酸酯和磷酸二酯键水解反应参与RNA自身剪切、加工过程。与一般的反义RNA相比,核酶具有较稳定的空间结构,不易受到RNA酶的攻击。更重要的是,核酶在切断mRNA后,又可从杂交链上解脱下来,重新结合和切割其它的mRNA分子。 3. signal molecule 信号分子p158 信号分子是细胞的信息载体,包括化学信号如各种激素,局部介质和神经递质以及各种物理信号比如声、光、电和温度变化。各种化学信号根据其化学性质通常可分为3类:1、气体性信号分子,包括NO、CO,可以自由扩散,进入细胞直接激活效应酶产生第二信使cGMP,参与体内众多生理过程。2、疏水性信号分子,这类亲脂性分子小、疏水性强,可穿过细胞质膜进入细胞,与细胞内和核受体结合形成激素-受体复合物,调节基因表达。3、亲水性信号分子,包括神经递质、局部介质和大多数蛋白类激素,他们不能透过靶细胞质膜,只能通过与靶细胞表面受体结合,经信号转换机制,在细胞内产生第二信使或激活蛋白激酶或蛋白磷酸酶的火星,引起细胞的应答反应。 4. house-keeping gene管家基因p319 管家基因是指所有细胞中均表达的一类基因,其产物是维持细胞基本生命活动所需要的,如糖酵解酶系基因等。这类基因一般在细胞周期S期的早期复制。分化细胞基因组所表达的基因大致可分为2中基本类型一类是管家基因,另外一类是组织特异性基因。 5. cis-acting elements顺式作用元件 存在于基因旁侧序列中能影响基因表达的序列。顺式作用元件包括启动子、增强子、调控序列和可诱导元件等,它们的作用是参与基因表达的调控。顺式作用元件本身不编码任何蛋白质,仅仅提供一个作用位点,要与反式作用因子相互作用而起作用。是指与结构基因串联的特定DNA序列,是转录因子的结合位点,它们通过与转录因子结合而调控基因转录的精确起始和转录效率。 6. epigenetics 表观遗传学p251(重新查!!!1) 表观遗传学是研究基因的核苷酸序列不发生改变的情况下,基因表达了可遗传的变化的一门遗传学分支学科。表观遗传的现象很多,已知的有DNA甲基化,基因组印记,母体效应,基因沉默,核仁显性,休眠转座子激活和RNA编辑等。是在基因组水平上对表观遗传学改变的研究。表观遗传现象包括DNA甲基化、RNA干扰、组织蛋白修饰等 7. Hayflick limitation Hayflick界线 Leonard Hayflick利用来自胚胎和成体的成纤维细胞进行体外培养,发现:胚胎的成纤维细胞分裂传代50次后开始衰退和死亡,相反,来自成年组织的成纤维细胞只能培养15~30代就开始死亡。Hayflick等还发现,动物体细胞在体外可传代的次数,与物种的寿命有关;细胞的分裂能力与个体的年龄有关,由于上述规律是Hayflick研究和发现的,故称为Hayflick 界线。关于细胞增殖能力和寿命是有限的观点。细胞,至少是培养的二倍体细胞,不是不死的,而是有一定的寿命;它们的增殖能力不是无限的,而是有一定的界限,这就是Hayflick 界线。 8. proto-oncogene原癌基因p312 原癌基因是细胞内与细胞增殖相关的基因,是维持机体正常生命活动所必须的,在进化上高等保守。当原癌基因的结构或调控区发生变异,基因产物增多或活性增强时,使细胞过度增

局部解剖学名词解释

局部解剖学名词解释 翼点:位于颧弓中点上方约两横指处,额、顶、颞、蝶骨在此相接,多呈“H”形的缝。翼点是颅骨的薄弱部分,其内面有脑膜中动脉前支通过。此处受暴力击打时,易发生骨折,并常伴有脑膜中动脉的撕裂出血,形成硬膜外血肿。 咬肌间隙:位于咬肌与下颌支之间。咬肌的血管、神经经下颌切迹进入此隙,从深面进入咬肌。咬肌间隙下部前方有下颌第三磨牙,后方有腮腺。 腮腺床:由位于腮腺深面的茎突及茎突诸肌、颈内动脉、颈内静脉以及第Ⅸ~ⅩⅡ对脑神经共同形成。 海绵窦:海绵窦为一对重要的硬脑膜窦,位于蝶鞍和垂体的两侧,前达眶上裂内侧部,后至颞骨岩部的尖端。窦内有许多结缔组织小梁,将窦腔分隔成为许多互相交通的小腔隙。窦中血流缓慢,感染时易形成栓塞。 气管前间隙:位于气管前筋膜与气管颈部之间,内有甲状腺最下动脉、甲状腺下静脉、甲状腺奇静脉丛、左头臂静脉及头臂干、气管前淋巴结。小儿有胸腺上部。 椎前间隙:位于椎前筋膜与颈、胸椎之间,上达颅底,下至第三胸椎,该间隙感染除局限于此范围外,还可向两侧蔓延至颈外侧区。 颈动脉三角:境界颈动脉三角位于胸锁乳突肌上份前缘、肩胛舌骨肌上腹和二腹肌后腹之间。其浅面为皮肤、浅筋膜、颈阔肌及颈筋膜浅层;深面为椎前筋膜;内侧为咽侧壁及其筋膜。三角内有舌下神经及其降支,颈内静脉及其属支,颈总动脉及其分支,迷走神经及其分支,副神经和颈深淋巴结等。 锁胸筋膜:锁胸筋膜是位于锁骨下肌、胸小肌和喙突之间的胸部深筋膜,有头静脉、胸肩峰血管和胸外侧神经穿过。 腰肋三角:位于膈的腰部与肋部起点之间,底为第十二肋.前临肾,后邻肋膈隐窝.肾手术时应注意,避免撕破引起气胸.该处薄弱,为膈疝易发处 颈动脉鞘:由颈深筋膜构成,上起自颅底,下续纵膈,鞘内有颈总动脉、颈内动脉、颈内静脉和迷走神经。颈内静脉位于颈总动脉和颈内动脉的外侧,迷走神经位于动、静脉的后方。 锁胸筋膜:位于喙突、锁骨下肌和胸小肌的筋膜称锁胸筋膜。胸肩峰动脉的分支和胸外侧神经穿出该筋膜,分布于胸大、小肌。头静脉和淋巴管穿该筋膜入腋腔,分别注入腋静脉和腋淋巴结。手术切开胸锁筋膜时应注意保护胸外侧神经,以免引起胸大、小肌瘫痪。 食管后隐窝:右侧纵膈胸膜在肺根以下突入食管与奇静脉和胸导管之间,形成食管后隐窝。由于左、右胸膜腔在此处相隔很近,故经左胸作食管下段手术时可能破入右侧胸膜腔,导致气胸。 弓状线:在脐与耻骨联合连线中点(约脐以下4~5cm)处,腹内、外斜肌腱膜和腹横肌腱膜伸向腹直肌的前方构成腹直肌鞘的前层,使后层缺如,因此腹直肌鞘后层由于腱膜中断而形成一凸向上方的弧形分界线,即弓状线,又称半环线

分子生物学名词解释1

分子生物学名词解释 第二章(主要的:核小体、半保留复制、复制子、单链结合蛋白、岗崎片段、错配修复、DNA的转座、C值矛盾、前导链与后随链。) 1. C值反常现象(C值矛盾C-value paradox): C值是一种生物的单倍体基因组DNA的总量。 真核细胞基因组的最大特点是它含有大量的重复 序列,而且功能DNA序列大多被不编码蛋白质的非 功能DNA所隔开,这就是著名的“C值反常现象”。 C值一般随着生物进化而增加,高等生物的C值一般大于低等生物。某些两栖动物的C值甚至比哺乳动物还大,而在两栖动物里面,C值变化也很大。 2.DNA的半保留复制: 由亲代DNA生成子代DNA时,每个新形成的子代DNA中,一条链来自亲代DNA,而另一条链则是新合成的,这种复制方式称半保留复制。 3.DNA聚合酶: ●以DNA为模板的DNA合成酶 ●以四种脱氧核苷酸三磷酸为底物 ●反应需要有模板的指导 ●反应需要有3 -OH存在 ●DNA链的合成方向为5 3 4.DNA连接酶(1967年发现):若双链DNA中一条链有切口,一端是3’-OH,另一端是5‘-磷酸基,连接酶可催化这两端形成磷酸二酯键,

而使切口连接。但是它不能将两条游离的DNA单链连接起来 DNA连接酶在DNA复制、损伤修复、重组等过程中起重要作用5.DNA 拓扑异构酶(DNA Topisomerase): 拓扑异构酶?:使DNA一条链发生断裂和再连接,作用是松解负超螺旋。主要集中在活性转录区,同转录有关。例:大肠杆菌中的ε蛋白 拓扑异构酶Π:该酶能暂时性地切断和重新连接双链DNA,作用是将负超螺旋引入DNA分子。同复制有关。 例:大肠杆菌中的DNA旋转酶 6. DNA 解螺旋酶/解链酶(DNA helicase) 通过水解ATP获得能量来解开双链DNA。 E.coli中的rep蛋白就是解螺旋酶,还有解螺旋酶I、II、III。rep蛋白沿3 ’ 5’移动,而解螺旋酶I、II、III沿5 ’ 3’移动。 7. 单链结合蛋白(SSBP-single-strand binding protein):稳定已被解开的DNA单链,阻止复性和保护单链不被核酸酶降解。 8. 从复制原点到终点,组成一个复制单位,叫复制子.每个DNA复制的独立单元被称为复制子(replicon),主要包括复制起始位点(Origine of replication)和终止位点 9.复制时,解链酶等先将DNA的一段双链解开,形成复制点,这个复制点的形状象一个叉子,故称为复制叉 10.DNA的半不连续复制:DNA复制时其中一条子链的合成是连续的,而另一条子链的合成是不连续的,故称半不连续复制。

细胞生物学名词解释

名词解释 Cell Biology:广泛采用现代生物学的实验技术和手段,应用分析和综合的方法,将细胞的整体活动水平,亚细胞水平和分子水平三方面的研究有机地结合起来,以动态的观点观察细胞和细胞器的结构和功能,以期最终阐明生命的基本规律。 脂筏(lipid raft)是质膜上富含胆固醇和鞘磷脂的微结构域(microdomain)。大小约70nm 左右,是一种动态结构,位于质膜的外小叶。 质膜主要由膜脂和膜蛋白组成,另外还有少量糖,主要以糖脂和糖蛋白的形式存在。 膜骨架membrane associated skeleton 细胞膜下与膜蛋白相连的由纤维蛋白组成的网架结构,它参与维持细胞膜的形状并协助质膜完成多种生理功能。 被动运输(passive transport):通过简单扩散或协助扩散实现物质由高浓度向低浓度方向的跨膜转运。动力来自物质的浓度梯度,不需要细胞提供代谢能量。 简单扩散(simple diffusion)疏水的小分子或小的不带电荷的极性分子的热运动可以使分子从膜的一侧通过细胞膜到另一侧,其结果是分子沿着浓度梯度降低的方向转运。因无需细胞提供能量,也没有膜蛋白的协助,故名。 协助扩散(facilitated diffusion) 小分子物质沿其浓度梯度(或电化学梯度)减小方向的跨膜运动,是由膜转运蛋白“协助”完成的。 主动运输active transport 由载体蛋白所介导的物质逆着浓度梯度或电化学梯度由低浓度侧到高浓度侧转运,需要供给能量。ATP直接供能、间接供能、光能。 协同运输(cotransport):由离子泵与载体蛋白协同作用,利用跨膜的离子浓度梯度或电化学梯度,使特定离子的顺梯度运动与被转运分子或离子的逆梯度运输相偶联。直接动力是膜两侧的离子浓度梯度。 胞吞作用:质膜内陷形成囊泡将外界大分子裹进并输入细胞的过程。 胞吐作用:与胞吞作用的顺序相反,将细胞内的分泌泡或其它某些膜泡中的物质通过细胞膜运出细胞的过程。 外膜(outer membrane):单位膜结构,厚约6nm。含40%的脂类和60%的蛋白质,具有孔蛋白(porin)构成的直径2-3nm的亲水通道,10KD以下的分子包括小型蛋白质可自由通过。内膜(inner membrane):厚约6-8nm。含100种以上的多肽,蛋白质和脂类的比例高于3:1。心磷脂含量高(达20%)、缺乏胆固醇,类似于细菌。 膜间隙(intermembrane space):内外膜之间的腔隙,延伸到嵴的轴心部。宽约6-8nm。其中含有许多可溶性酶类,底物和辅助因子。标志酶为腺苷酸激酶。 基质(matrix):内膜之内侧,类似胶状物,含有很多Pr.和脂类。三羧酸循环,脂肪酸和丙酮酸氧化的酶类都在其中。另外还有线粒体DNA、核糖体、tRNA、rRNA、DNA聚合酶、AA活化酶等。其标志酶为苹果酸脱氢酶。 外被(outerenvelop):双层膜,每层厚6~8nm,膜间隙为10~20nm。外膜通透性大,细胞质中大多数营养分子可自由进入膜间隙。内膜对物质透过的选择性比外膜强,其上有特殊载体称为转运体,可运载物质过膜。 类囊体(Thylakoid):在叶绿体基质中由单位膜所形成的封闭扁平小囊。 光合磷酸化:由光照所引起的电子传递与磷酸化作用相偶联而生成A TP的过程,称为photophosphorylation 细胞质膜系统(cytoplasmic membrane system):是指细胞内那些在生物发生上与质膜相关的细

细胞生物学名词解释,齐鲁工业大学

细胞生物学名词解释: 1.生物膜:细胞内的膜系统与细胞质膜统称为生物膜 2.载体蛋白:又称通透酶(permease)生物膜上普遍存在的跨膜蛋白,能与特定的溶质分子结合,通过一系列构象改变介导跨膜被动运输或主动运输 3.通道蛋白:能形成穿膜充水小孔或通道的蛋白质。担负溶质的穿膜转运,如细菌细胞膜的膜孔蛋白。通道蛋白的特点:1)介导被动运输。2)对离子有高度选择性。3)转运速率高4)不持续开放,受“阀门”控制。 4.单克隆抗体:通过克隆单个分泌抗体的B淋巴细胞,获得的只针对某一抗原决定簇的抗体具有专一性强、能大规模生产的特点。 单克隆抗体:来自单个细胞克隆所分泌的抗体 5.离子泵:离子泵是膜运输蛋白之一,也看作一类特殊的载体蛋白,能驱使特定的离子逆电化学梯度穿过质膜,同时消耗ATP形成的能源,属于主动运输。 6.钠钾泵:此类运输泵运输时需要磷酸化,具有两个独立的α催化亚基,具有ATP结合位点;绝大多数还具有β调节亚基,α亚基利用ATP水解能发生磷酸化与去磷酸化,从而改变泵蛋白的构象,实现离子的跨膜转运。 7.协同运输:协同运输又称偶联主动运输,它不直接消耗ATP,但要间接利用自由能,并且也是逆浓度梯度的运输。运输时需要先建立电化学梯度,在动物细胞主要是靠钠泵,在植物细胞则是由H+泵建立的H+质子梯度 8.脂筏:生物膜上富含(神经)鞘脂和胆固醇的微小区域,与生物膜某些功能的发挥有关。 9.脂质体:在水溶液环境中人工合成的一种球星脂双层结构。 10.组成型胞吐途径:在真核细胞,有高尔基体反面囊膜分泌的囊泡向质膜流动并与之融合的膜泡运输过程,呈连续分泌状态,完成质膜更新,分泌胞外基质组分、营养或信号分子等功能。 11.调节型胞吐作用:在真核生物的一些特化细胞,所产生的分泌物储存在分泌泡内,当细胞受到胞外刺激时,分泌泡与质膜合并并将内含物分泌出细胞。该胞吐作用方式称为调节型胞吐途径。 12.膜骨架:细胞质膜的一种特别结构,是由膜蛋白和纤维蛋白组成的网架,它参与维持细胞质膜的形状并协助质膜完成多种生理功能,这种结构称为膜骨架。 13.血影:是指人的红细胞经低渗处理后,质膜破裂剩下保持原来的形态和大小的细胞膜结构。 14.胞吞作用:通过质膜内线形成膜泡,浆细胞外或者细胞膜表面的物质包裹到膜泡内并转运到细胞内 15.细胞通讯:信号细胞发出的信息传递到靶细胞并与受体作用,引起靶细胞产生特异性生物学效应的过程 16.信号分子:细胞的信息载体,种类繁多,包括化学信号和物理信号,化学信号诸如各类激素、局部介质和神经递质等,物理信号如声、光、电和温度变化等 17.N-连接糖基化:新合成蛋白进行糖基化修饰的一种方式。糖通过与蛋白质的天冬酰胺的自由NH2基连接,所以将这种糖基化称为N-连接的糖基化。 N-连接糖基化:在ER和Golgi中,由酶催化将寡糖链连接到蛋白质天冬酰胺原子上的糖基化形式。直接结合的糖是N-乙酰葡糖胺 18.O-连接糖基化:是将糖链转移到多肽链的丝氨酸、苏氨酸或羟赖氨酸的羟基的氧原子上。O-连接的糖基化是由不同的糖基转移酶催化的, 每次加上一个单糖。同复杂的N-连接的糖基化一样, 最后一步是加上唾液酸残基,这一反应发生在高尔基体反面膜囊和TGN中

局部解剖学名词解释_百度文库汇总

局部解剖学名词解释 1. 股三角(femoral triangle :位于股前内侧区倒置的三角形间隙,由腹股沟韧带,缝匠肌内侧缘,长收肌内侧缘围成。其内有隐神经、股动脉、股静脉通过。 2. 股鞘 (femoral sheath :在股三角内, 可见自腹横筋膜和髂腰筋膜向下延续, 包绕股动脉, 股静脉上段的筋膜鞘,即为骨鞘。 3. 股管(femoral canal :骨鞘在矢状面上被筋膜分成三份,外侧容纳股动脉,中间容纳股静脉,内侧格即为股管。 4. 股环(femoral ring :股管的上口即为股环,其前界为腹股沟韧带,后界为耻骨梳韧带, 内侧界为腔隙韧带,外侧界为股静脉内侧的纤维隔。 5. 肌腔隙 (lacuna musculorum :肌腔隙前界为腹股沟韧带外侧部,后外界为髂骨, 内侧界为髂耻弓。其内有髂腰肌、股神经和股外侧皮神经通过,是腹、盆腔与股内侧区之间的重要通道。 6. 血管腔隙(lacuna vasorum :血管腔隙前界为腹股沟韧带内侧部,后界为耻骨肌筋膜及耻骨梳韧带,内侧界为腔隙韧带 (陷窝韧带 ,外界为髂耻弓。其内有骨鞘及其包含的股动、静脉、生殖股神经股支和淋巴管通过。 7. 收肌管(adductor canal :又称 Hunter 管,位于股中 1/3段前内侧,外侧壁为股内侧肌, 内侧壁为大收肌,前壁是缝匠肌以及股收肌板,下口为大收肌腱裂孔, 其内有隐神经、股血管通过。 8. 腕管(carpal canal :由腕横韧带与腕骨沟共同构成的骨筋膜鞘。管内有指浅、深屈肌腱及拇长屈肌腱共 9条肌腱、正中神经、桡侧囊、尺侧囊通过。 9. 尺侧腕管 (ulnarcarpal canal :腕横韧带尺侧端附于豌豆骨和钩骨, 与腕掌侧韧带远侧份围成,内有尺神经和尺血管通过

相关文档
最新文档