原子吸收分析中常见的四大干扰的原因和消除办法

原子吸收分析中常见的四大干扰的原因和消除办法
原子吸收分析中常见的四大干扰的原因和消除办法

原子吸收分析中常见的四大干扰的原因和消除办法

定义:

试样在转移、蒸发过程中物理因素变化引起的干扰效应,主要影响试样喷入火焰的速度、进样量、雾化效率、原子化效率、雾滴大小等。

因素:

溶液的粘度、表面张力、密度、溶剂的蒸汽压和雾化气体的压力等。

特点:

物理干扰是非选择性干扰,对各种元素影响基本相同。

消除方法:

1) 配置相似组成的标准样品,采用标准加入法;

2) 尽可能避免使用粘度大的硫酸、磷酸来处理试样;

3) 当试样浓度较高时,适当稀释试液也可以抑制物理干扰。

定义:

待测元素与其它组分之间的化学作用,生成了难挥发或难解离的化合物,使基态原数目减少所引起的干扰效应。主要影响到待测元素的原子化效率,是主要干扰源。

特点:

化学干扰是选择性干扰。

因素:

1) 分子蒸发:待测元素形成易挥发卤化物和某些氧化物,在灰化温度下蒸发损失;

2) 形成难离解的化合物(氧化物、炭化物、磷化物等);

3) 氧化物:较难原子化的元素B、Ti、Zr、V、Mo、Ru、Ir、Sc、Y、La、Ce、Pr、Nd、U;

4) 很难原子化的元素:Os、Re、Nd、Ta、Hf、W;

5) 炭化物:Be、B、Al、Ti、Zr、V、W、Si、U稀土等形成难挥发炭化物;

6) 磷化物:Ca3PO4等。

消除方法:

1) 提高火焰温度使得难解离的化合物较完全基态原子化。

2) 加入释放剂,与干扰元素生成更稳定或更难挥发的化合物,使待测元素释放出来。常用的释放剂:LaCl3、Sr(NO3)2等。(如:火焰原子吸收法测定钙,磷酸盐的存在会生成难挥发的Ca2P2O7,此时可以加入LaCl3,则La3+与PO43-生成热更稳定的LaPO4,抑制了磷酸根对钙测定的干扰。)

3) 加入保护剂,待测元素形成稳定的络合物,防止待测元素与干扰物质生成难挥发化合物。常用的保护剂:EDTA、8-羟基喹林、乙二醇等。(如:火焰原子吸收法测定钙,磷酸盐的存在会生成难挥发的Ca2P2O7,加入EDTA,生成EDTA-Ca 络合物,该络合物在火焰中易于原子化,避免磷酸根与钙作用。)

4) 加入基体改进剂,改变基体或被测元素的热稳定性,避免化学干扰,这些化学试剂称为基体改进剂。(如:测定海水中Cu、Fe、Mn,加入基体改进剂NH4NO3,

使NaCl基体转变成易挥发的NH4Cl和NaNO3,使其在原子化之前低于500℃的灰化阶段除去。)

5) 化学分离法,用化学方法将待测元素与干扰元素分离。常用的化学分离法:萃取法、离子交换法、沉淀法。

定义:

某些易电离元素在火焰中产生电离,使基态原子数减少,降低了元素测定的灵敏度,这种干扰称为电离干扰。电离干扰的程度与火焰温度及元素种类有关。

消除方法:

采用低温火焰或在试液中加入过量的更易电离的化合物(消电离剂),能够有效地抑制待测元素的电离。在火焰温度下,消电离剂首先电离,产生大量的电子,抑制了被测元素的电离。

常用的消电离剂:

CsCl、KCl、NaCl等。

光谱干扰主要分为谱线干扰和背景干扰两种。主要来源于光源和原子化器。一、谱线干扰和抑制

定义:

发射线的邻近线的干扰:指空心阴极灯的元素、杂质或载气元素的发射线与待测元素共振线的重叠干扰。

吸收线重叠的干扰:指试样中共存元素吸收线与待测元素共振线的重叠干扰。抑制:

减小单色器的光谱通带宽度,提高仪器的分辨率,使元素的共振线与干扰谱线完全分开。或选择其它吸收线等方法抑制谱线干扰。

二、背景干扰和抑制:

定义:

背景干扰主要是指原子化过程中产生的分子吸收和固体微粒产生的光散射干扰效应。

抑制和消除:

(1)火焰:改变火焰类型、燃助比、调节火焰观测区高度。

石墨炉:选用适当的基体改进剂。

(2)光谱背景的校正

A、用邻近非共振线校正背景

用分析线测量原子吸收与背景吸收的总吸光度,在分析线邻近选一条非共振线,此时测出的是背景吸收,两次测量值之差即为校正背景后的吸光度。这种校正方法准确度较差,只适用于分析线附近背景分布比较均匀的情况。

B、用连续光源校正背景

用锐线光源测定分析线的原子吸收和背景吸收的总吸光度,再用氘灯(紫外区)或碘钨灯(可见区)在同一波长测定背景吸收,计算两次测定吸光度之差,即为校

正背景后的吸光度。由于空心阴极灯与氘灯两种连续光源放电性质不同,能量分布不同,会导致背景校正不足或过度。

C、用塞曼效应校正背景

塞曼效应校正背景基于磁场将吸收线分裂为具有不同偏振方向的组分,利用这些分裂的偏振成分来区别被测元素和背景吸收。塞曼效应校正背景的准确度高,但仪器价格较贵。

仪器分析[第十章原子吸收光谱分析法]山东大学期末测验知识点复习

仪器分析[第十章原子吸收光谱分析法]山东大学期末测验知识点复习

————————————————————————————————作者:————————————————————————————————日期:

第十章原子吸收光谱分析法 1.共振线与元素的特征谱线 基态→第一激发态,吸收一定频率的辐射能量,产生共振吸收线(简称共振线);吸收光谱。 激发态→基态,发射出一定频率的辐射,产生共振吸收线(也简称共振线);发射光谱。 元素的特征谱线: (1)各种元素的原子结构和外层电子排布不同,基态→第一激发态:跃迁吸收能量不同——具有特征性。 (2)各种元素的基态→第一激发态,最易发生,吸收最强,最灵敏线。特征谱线。 (3)利用特征谱线可以进行定量分析。 2.吸收峰形状 原子结构较分子结构简单,理论上应产生线状光谱吸收线。实际上用特征吸收频率左右范围的辐射光照射时,获得一峰形吸收(具有一定宽度)。 由 I t =I e-Kvb 透射光强度I t 和吸收系数及辐射频率有关。以K v 与v作图得图10一1所示 的具有一定宽度的吸收峰。

3.表征吸收线轮廓(峰)的参数 (峰值频率):最大吸收系数对应的频率或波长; 中心频率v 中心波长:最大吸收系数对应的频率或波长λ(单位为nm); 半宽度:△v 0B 4.吸收峰变宽原因 (1)自然宽度在没有外界影响下,谱线仍具有一定的宽度称为自然宽度。它与激发态原子的平均寿命有关,平均寿命越长,谱线宽度越窄。不同谱线有不同的自然宽度,多数情况下约为10-5nm数量级。 多普勒效应:一个运动着的原子发出的光, (2)多普勒变宽(温度变宽)△v 如果运动方向离开观察者(接受器),则在观察者看来,其频率较静止原子所发的频率低,反之,高。 (3)劳伦兹变宽,赫鲁兹马克变宽(碰撞变宽)△v 由于原子相互碰撞使能 L 量发生稍微变化。 劳伦兹变宽:待测原子和其他原子碰撞。 赫鲁兹马克变宽:同种原子碰撞。 (4)自吸变宽空心阴极灯光源发射的共振线被灯内同种基态原子所吸收产生自吸现象,灯电流越大,自吸现象越严重,造成谱线变宽。 (5)场致变宽场致变宽是指外界电场、带电粒子、离子形成的电场及磁场的作用使谱线变宽的现象,但一般影响较小。 为主。 在一般分析条件下△V 5.积分吸收与峰值吸收 光谱通带0.2 nm,而原子吸收线的半宽度10-3nm,如图10—2所示。 若用一般光源照射时,吸收光的强度变化仅为0.5%。灵敏度极差。

常见干扰问题怎么解决

常见干扰问题怎么解决 说起视频干扰,要讲一下视频监控信号传输的传统方式视频基带传输。所谓的视频基带传输是指视频信号不经过频率变换等任何处理由图像摄取端通过同轴电缆直接传输到监视端的传输方式,图像在传输时直接利用同轴电缆的0~6MHz来传输,非常容易受到干扰,使图像出现网纹、横纹和噪点影响监视效果。对于基带传输视频干扰,从干扰源角度分为交流声干扰和空间电磁波干扰,从干扰切入方式分为传导式干扰和辐射式干扰。下面分析一下常见视频干扰现象及其原因。 1、工频干扰 干扰现象:图像出现雪花噪点、网纹或很宽暗横带持续不断滚动。 干扰原因:此现象是当摄像端与监控设备端同时接地时,由于地电阻及电缆外皮电阻的存在,在两地之间电力系统各相负载不平衡或接地方式不同引起50Hz电位差,从而产生工频干扰所致。地电位使两接地端存在电压降,电压降加在屏蔽层两端并与大地(地电阻)构成回路产生地电流,地电流经过线缆屏蔽层形成干扰电压,地电流的部分谐波分量落入视频芯线,致使芯线与屏蔽层之间产生干扰电位,使干扰信号加入视频信号中对监控图像形成干扰。 2、空间电磁波干扰 干扰现象:图像出现较密的斜形网纹,严重时会淹没图像。 干扰原因:当监控电缆在空中架设时,空中电磁波干扰信号所产生的空间电场会作用于监控传输线路,使线路两端而产生相当大的电磁干扰电压,其频率约在200Hz~2.3MHz。由于电缆中电位差的存在,使电缆屏蔽层产生干扰电流,而一般情况下摄像端和监控设备端均为接地状态,这就使干扰电流通过线缆两端接地点与大地形成回路,导致终端负载产生干扰电压,干扰信号耦合进视频信号中,产生图像干扰情况。 3、低频干扰(20Hz-nKHz低频噪声干扰) 干扰现象:图像出现静止水平条纹。 现象原因:由于声音、数据等信号属于低频信号,其频带狭窄在传输时只用到20Hz~nKHZ,几乎采用任何种类的电缆都可以传输,一般只受交流声干扰。用于传输视频信号的同轴电缆,其屏蔽层抗干扰曲线特性表明干扰信号频率越高其屏蔽性能越好,对于诸如载波电话、有线电台等低频率信号干扰反而显得苍白无力。低频干扰信号同样会在传输线缆上产生干扰电压,从而影响图像质量。 4、高频干扰 干扰现象:图像出现雪花点或高亮点。 现象原因:虽然视频传输所用同轴电缆抗高频干扰要比抗低频干扰性能强,但是强高频干扰信号还会对

原子吸收常见问题和解决方法

原子吸收常见问题及解决方法 (以下设备以华洋仪器为参考) 一、仪器不能正常联机: 1、接触不良:如电脑-AAS仪数据线松动或因外力所致断路等 解决方法:固定松动部分更换新得数据线. 2、电脑自身出问题 解决方法:重装电脑及AAS操作软件 二、波长扫描无能量: 1、元素空心阴极灯选错 解决方法:安装上正确得元素空心阴极灯 2、光斑没对准备光孔 解决方法:用一张纸挡在光孔位置,手调元素灯(元素灯位置粗调),直至对准光孔中心 为止、(在扫描完时,还需要元素灯位置微调) 3、起始波长移位(仪器受振动如搬运等可造成这种故障) 解决方法:修改正确得起始波长,选用铜灯,在波长扫描范围中扩大扫描波长,由原来得 322、7nm~626、7nm修改成318nm~330nm,寻找两个相差约 2、7nm得能量波峰,以最前面得波为实际得324、75nm值,对 仪器起始波长进行修改,例:此波峰能量扫描波长为319、1n m,用扫描波长与实际波长得差差值:319、1-324、75= -5、65nm 修改步数:-5、65nm*5步/0、1nm=-282、5步 ,进入AAS程序所在地方对step得数字加上282即可。 4元素灯电源正负极接反(现象为灯光模糊不清,且在光孔处无光斑)

解决方法:取下灯座电源线,将两线位置交换即可、 5没有雾化效果:没有吸样或雾化器损坏. 解决方法:检查维修。 三、扫描能量负高值压偏高 1、元素灯偏离最佳位置 解决方法:将灯调到最佳位置,每次都要灯位置微调 2、光路聚光透镜受污 解决方法:用无脂棉花粘酒精对其进行擦洗(一共有两块,分别在雾室两侧得光孔中) 3、元素灯老化 解决方法:更换新得元素灯 四、无吸光度: 造1、标液配置出错(常见原因有:在配置得标准液得过程中,拿错了元素标准液;标准液浓度配置过低,低于仪器灵敏度范围;标准液 变质过损坏) 解决方法:正确配置标准液。 2、燃烧头位置偏离 解决方法:在灯位最佳位置时,燃烧头夹缝应元素光路同属一垂直平面,在燃烧头中间位置,光斑中心与燃烧头夹缝顶高度相距应该为1厘米左右 3、没有产生雾化效果 原因:吸液管堵了,不能吸样、解决方法:更换吸液管、 原因:雾化器堵了,不能吸样、解决方法:清理雾化器、 原因:雾化器坏了,不能正常雾解决方法:更换雾化器、

原子吸收常用分析方法(DOC)

原子吸收 常用分析方法撰稿:裴治世

原子吸收常用分析方法 原子吸收分析如果以原子化的手段来划分,可分为两大类,即火焰原子化及无焰原子化。在日常分析中火焰原子化应用最广。着重介绍利用火焰原子化进行分析方面的一些常识。 一、常用分析方法 1、标准曲线法(又称工作曲线法) 这是原子吸收光谱最常用的方法。此法是配制一系列不同浓度的,与试样溶液基体组成相近的标准溶液,分别测量其吸光度,绘制吸光度——浓度标准曲线。同时,在仪器相同的条件下测得试样溶液的吸光度后,在标准曲线上查得试样溶液中待测元素的浓度。 绘制标准曲线的步骤如下: 首先在坐标纸上确定一个坐标系,横坐标作为浓度轴,纵坐标作为吸光度轴,在坐标系内描出各标准溶液的浓度与测得吸光度的对应点,然后将各点连成一条直线。即是标准曲线。 由于测量误差使测量值不能完全落在一条直线上,采用描点法绘制标准曲线必然会引入人为误差,为了消除这种误差,可以利用一元线性回归方程计算分析结果。 根据光吸收定律,物质的浓度C (以x 表示)和吸光度A (以y 表示)呈线性关系,可表示为y=ax+b 。设由N 点构成曲线,通过实验可得N 组观测数据(x i ,y i ),其中y i 为三次测定值的平均值,用线性回归法求a ,b 值。 ()()()() 2 221()()1i i i xy x y x X y Y N a x X x x N ---==--∑∑∑∑∑∑∑ b Y aX =- 标准曲线方程为y=ax+b 例如:某元素由4点构成标准曲线,其浓度及测得的吸光度如下 C(x) μg ·m1-1 0.00 0.50 1.00 3.00 (P479) A(y) 0.000 0.053 0.106 0.303 则 Σx=4.50 (x 值之和,浓度值之和) X =1.125 (x 的平均值,浓度的平均值)

常见电磁兼容(EMC)问题及解决办法

常见电磁兼容(EMC)问题及解决办法 通讯类电子产品不光包括以上三项:RE,CE,ESD,还有Surge--浪涌(雷击,打雷)医疗器械最容易出现的问题是:ESD--静电,EFT--瞬态脉冲抗干扰,CS--传导抗干扰,RS--辐射抗干扰。针对于北方干燥地区,产品的ESD--静电要求要很高。针对于像四川和一些西南多雷地区,EFT防雷要求要很高。 如何提高电子产品的抗干扰能力和电磁兼容性: 1、下面的一些系统要特别注意抗电磁干扰: (1)微控制器时钟频率特别高,总线周期特别快的系统。 (2)系统含有大功率,大电流驱动电路,如产生火花的继电器,大电流开关等。 (3)含微弱模拟信号电路以及高精度A/D变换电路的系统。 2、为增加系统的抗电磁干扰能力采取如下措施: (1)选用频率低的微控制器: 选用外时钟频率低的微控制器可以有效降低噪声和提高系统的抗干扰能力。同样频率的方波和正弦波,方波中的高频成份比正弦波多得多。虽然方波的高频成份的波的幅度,比基波小,但频率越高越容易发射出成为噪声源,微控制器产生的最有影响的高频噪声大约是时钟频率的3倍。 (2)减小信号传输中的畸变微控制器主要采用高速CMOS技术制造。信号输入端静态输入电流在1mA左右,输入电容10PF左右,输入阻抗相当高,高速CMOS 电路的输出端都有相当的带载能力,即相当大的输出值,将一个门的输出端通过一段很长线引到输入阻抗相当高的输入端,反射问题就很严重,它会引起信号畸变,增加系统噪声。当Tpd>Tr时,就成了一个传输线问题,必须考虑信号反射,阻抗匹配等问题。 信号在印制板上的延迟时间与引线的特性阻抗有关,即与印制线路板材料的介电常数有关。可以粗略地认为,信号在印制板引线的传输速度,约为光速的1/3到1/2之间。微控制器构成的系统中常用逻辑电话元件的Tr(标准延迟时间)为3到18ns之间。 在印制线路板上,信号通过一个7W的电阻和一段25cm长的引线,线上延迟时间大致在

原子吸收注意事项

原子吸收常见问题处理 1、为啥原子吸收仪器的灵敏度会突然下降了一半 通常灵敏度下降的原因有: A、元素灯能量下降,低于原始能量得2/3; B、雾化器故障,雾化效果不好; C、燃烧头污染; D、检测器故障,多半是老化(但这种现象很少); E、样品吸收管路堵塞(这种现象经常导致灵敏度下降); F、气体的燃烧比不对,或者气体压力不够; 2、如何判定AAS氘灯和元素灯的光斑一致原子吸收常见问题处理 准备一张白纸,在元素灯和氘灯调整完了后,用一张白纸挡在元素灯灯窗的前面,再用另一张白纸在原子化器的上方找到氘灯的光班,最好是在焦点的地方,然后设法固定。然后把原来的白纸去掉或是打开元素灯,让元素灯的光进来,看看元素灯的光斑是不是和氘灯的光班重合,如果重合就表明调节好了,如果不重合,先调节好氘灯后固定下来,就不要再动了,然后调节元素灯使其光斑与氘灯的光斑重合。 3、用火焰原子吸收法测定时,是不是每次做样前都要做标准曲线呢 A、最好每次都做标准曲线,如果单次样品量比较多的话,在测试过程中还要加入标准点进行校正。 B、如果每天有很多样品要测试,你就用QC来控制了,如果你控制的QC能过,那你也可以不用做标准曲线了。 4、火焰原子吸收测Cr方法 做铬的时候,加入氯化铵可以消除铁的干扰,还可以提高灵敏度,加入浓度一般为1%~5%。 5、钢瓶中乙炔气的总压力用到哪个数值时要换气在运输和使用中的注意事项 A、一般当钢瓶气体小于时,为安全考虑我们就要考虑换气了。 B、溶解乙炔气瓶必须根据国家《溶解乙炔气瓶安全监察规程》的要求,进行定期技术检验。 C、乙炔气瓶使用前,应稍微打开瓶阀除去瓶口的脏物,安装好专用的乙炔减压器,使减压器位于瓶体最高部位。并检查接头处是否有漏气,确认后调整到规定压力再使用。 D、乙炔气瓶一般应在40℃以下使用,当温度超过40℃时,应采取有效的降温措施。 E、乙炔气瓶不得靠近热源及电气设备,乙炔气瓶应竖直摆放;如果要使用已卧放的乙炔气瓶,必须先直立静止20分钟后再使用。 F、严禁铜、银、汞等及其制品与乙炔接触,必须使用铜合金器具时,合金的含铜量应小于65%。

原子吸收光谱法习题及答案

原子吸收分光光度法 1.试比较原子吸收分光光度法与紫外-可见分光光度法有哪些异同点? 答:相同点:二者都为吸收光谱,吸收有选择性,主要测量溶液,定量公式:A=kc,仪器结构具有相似性. 不同点:原子吸收光谱法紫外――可见分光光度法 (1) 原子吸收分子吸收 (2) 线性光源连续光源 (3) 吸收线窄,光栅作色散元件吸收带宽,光栅或棱镜作色散元件 (4) 需要原子化装置(吸收池不同)无 (5) 背景常有影响,光源应调制 (6) 定量分析定性分析、定量分析 (7) 干扰较多,检出限较低干扰较少,检出限较低 2.试比较原子发射光谱法、原子吸收光谱法、原子荧光光谱法有哪些异同点? 答:相同点:属于原子光谱,对应于原子的外层电子的跃迁;是线光谱,用共振线灵敏度高,均可用于定量分析. 不同点:原子发射光谱法原子吸收光谱法原子荧光光谱法 (1)原理发射原子线和离子线基态原子的吸收自由原子(光致发光) 发射光谱吸收光谱发射光谱 (2)测量信号发射谱线强度吸光度荧光强度 (3)定量公式lgR=lgA + blgc A=kc I f=kc (4)光源作用不同使样品蒸发和激发线光源产生锐线连续光源或线光源 (5)入射光路和检测光路直线直线直角 (6)谱线数目可用原子线和原子线(少)原子线(少) 离子线(谱线多) (7)分析对象多元素同时测定单元素单元素、多元素 (8)应用可用作定性分析定量分析定量分析 (9)激发方式光源有原子化装置有原子化装置 (10)色散系统棱镜或光栅光栅可不需要色散装置 (但有滤光装置) (11)干扰受温度影响严重温度影响较小受散射影响严重 (12)灵敏度高中高 (13)精密度稍差适中适中 3.已知钠蒸气的总压力(原子+离子)为1.013 l0-3Pa,火焰温度为2 500K时,电离平

原子荧光常见的问题及方法

01 点火问题 在分析工作中,经常会碰到部分仪器点火线圈不亮,无法正常点火。首先要检查点火炉丝是否正常,如炉丝断则需要更换炉丝,如炉丝亮但点不燃火焰,就需要检查燃气或控制阀,检查炉丝与炉芯的位置是否合适,排除这些故障后仪器可正常点火。 02 无信号强度 在仪器检定过程中,经常遇到仪器测量标准溶液后无响应荧光强度。遇到此类问题,首先,应该检查静态光源,检查元素灯是否点亮。若仪器灯能量正常,说明仪器电路部分正常,则需要进一步检查反应系统或原子化系统。检查仪器泵管松紧是否合适,管道有无堵塞破裂。如出现上述情况,试剂没有进系统,仪器没有发生氧化还原反应,则不会产生信号。更换管道,调整泵管松紧可以解决此问题。 检定标准溶液的酸度或还原剂浓度不够,不能生成被测元素的氢化物,无法正常原子化也会造成仪器无响应荧光强度,这就需要检查配置标准溶液所使用的酸和还原剂浓度。 03 仪器灵敏度低 在检定过程中,由于要检定仪器的测量线性及检出限,需要在仪器上测量0.0 ng/mL、1.0 ng/mL、5.0 ng/mL、10.0 ng/mL砷锑混合标准溶液的线性。重复测量3次,记录荧光强度值,按照线性回归计算斜率b,再对空白溶液连续进行11次荧光强度测量,计算其标准偏差,然后计算仪器的检出限QL。JJG939-2009《原子荧光光度计检定规程》要求仪器检出限为0.4 ng。检定中经常碰到仪器灵敏度低,调整仪器的灯电流和负高压后仍无法达到检定规程的要求,这就需要排查解决灵敏度低的问题。 首先检查炉丝是否老化,必要时更换炉丝,然后检查原子化器位置是否偏移造成焦距的变化而影响仪器的灵敏度。调光不好,焦距不在炉芯中心也会造成仪器灵敏度低,这就需要重新调整炉芯和光路位置。载气流量低,排废太快,载流管或毛细管变形或折弯等原因,都会造成标准溶液无法正常原子化而导致仪器灵敏度降低,这就需要检查仪器的进样系统,有必要时需更换仪器进样系统管路。在检定过程中,经常碰到仪器所使用的氩气纯度不够而造成仪器灵敏度降低,更换高纯度氩气后可解决此问题。所选用元素灯的强度也会对仪器的灵敏度造成影响,在仪器灵敏度较低时需要更换元素灯。 04 仪器信号不稳定 可以降低仪器的灯电流和负高压后信号值,如果还是不稳定,这时需要检查仪器所处的环境是否有强光干扰,仪器的检测窗口若有强光照射,会引起仪器荧光信号不稳定,这就需要遮光进行检定。然后观察仪器的火焰是否跳动,若有明显跳动则检查仪器抽排风口是否抽力太大,有气流影响而造成仪器火焰不稳定。 排除上述问题后,仪器信号仍不稳定,就需要检查仪器的水封、废液管,水封和废液管不畅

原子吸收常见问题

六十五、你们用的气瓶,每次用完后减压阀都要旋到自由状态吗?然后再次使用时,再重新调节减压阀旋钮吗?我今天看了才知道,我的只开关瓶阀,减压阀都是固定的了,危险!乙炔减压阀压力调到0.1MPa可以吗? 1. 你调的减压法的压力太大,看看你说明书,一般在0.06-0.08MP,不论换不换气,一把减压阀的压力调到这个就可以了,因为减压阀的压力显示与气瓶内的压力有关系,所以每次测定时都要调的 2. 只开关瓶阀而固定减压阀是可以的,操作简单可行,没什么危险。减压阀具有一定的稳压作用,不用每天调节反而能保证输出压力基本一致。另外关闭总阀可以在燃烧状态时进行,以便让管道中的乙炔气烧完。或者也可以在闭阀后用有关操作释放管道中的残存气体,使表头归零(释放表头,避免内部弹簧因长期负荷而老化)。 乙炔压力只要不进入红区都是安全的,当然一般都调节在0.05-0.07Mpa左右。如果乙炔管路内部还有稳压阀,则输入压力可适当高些,以便稳压阀有适当的工作压差而正常工作。 七十一、原子吸收进样不通畅,进样毛细管更换,雾化器取下清洗,进样仍然不通畅。是不是雾化器坏了?怎样判断啊? 1. 更换毛细管并不能清除雾化器的堵塞,还有仔细看看重新安装雾化器时安装的配件位置是否得当。 2. 雾化器一般是不会坏的,一定是吸入杂质颗粒堵了,你可以用空气反吹,同时轻轻振动金属部分! 3. 我想一定是堵塞了,你再仔细检查检查 4. 1)堵塞:只通空气,大拇指堵住毛细管口,松开,堵上,数次后可冲通吸样的管路 2)负压不足,吸力不够:调节与毛细管相接的不锈钢毛细管的前后位置 5. 要光是堵塞的问题,你可以通过进样量和进样时听声音就可以判断出来的 6. 当旋转撞击球的位置,使喷出的雾呈直线向前散射。如果是堵了声音会和平常的时候有明显差别,火焰也会有变化 七十四、土壤样品多时自然风干的时间太长,可否使用冷冻干燥器来缩短干燥时间,那位DX 能够提供其他快速干燥的方法(烘箱干燥除外)? 1. 用红外灯来照射 2. 主要看你测定什么成分了,我觉得只要保证待测成分在不损失的前提任何干燥方式都可以用的 3. 关键看你测定什么成分,做原子吸收烘干,冷冻都可以用. 4. 真空干燥较好,温度可以较低. 5. 用烘箱比较直接,速度快,但是可能造成有机物质损失,重金属中游离汞流失;使用红外其实和烘箱一样的。使用真空干燥和低温冷冻干燥看起来比较好,但是速度慢,样品处理含量少,自己选择了 6. 红外(线灯)干燥箱可以一试 7. 在烘箱内60度风干 七十五、原子吸收的自吸收扣背景和氘灯扣背景有何不同? 氘灯是连续光源扣背景,由于能量限制(对于能量在不同波段的分布可以看看可见论坛上的图),一般用于紫外波段180-350NM扣背景,由于氘灯背景校正采用两种光源,因此从平衡能量,光路重合方面不一定是完全的,从而影响校正的效果.自吸是用大电流使发射线产生变宽来测量背景的,可以适合全波段校正,在校正过程中用同一光源,因此批面了氘灯两种光源对校正的影响,由于自吸收与各元素的本身物理性质有关,因此对有些元素来说用自吸收校正灵敏度不是太好 七十九、石墨炉出现问题了

分析化学习题参考答案原子吸收光谱法

第六章原子吸收光谱法 基本要求:掌握以下基本概念:共振线、特征谱线、锐线光源、吸收线轮廓、通带、积分吸收、峰值吸收、灵敏度和检出限,掌握原子吸收的测量、AAS的定量关系及定量方法,了解AAS中的干扰及火焰法的条件选择,通过和火焰法比较,了解石墨炉法的特点。 重点:有关方法和仪器的基本术语。 难点:AAS的定量原理,火焰法的条件选择。 参考学时:4学时 部分习题解答 1、何谓原子吸收光谱法?它有什么特点? 答:原子吸收光谱法是利用待测元素的基态原子对其共振辐射光(共振线)的吸收进行分析的方法。 它的特点是:(1)准确度高;(2)灵敏度高;(3)测定元素范围广;(4)可对微量试样进行测定;(5)操作简便,分析速度快。 2、何谓共振发射线?何谓共振吸收线?在原子吸收分光光度计上哪一部分产生共振发射线?哪一部 分产生共振吸收线? 答:电子从基态激发到能量最低的激发态(第一激发态),为共振激发,产生的谱线称为共振吸收线。当电子从共振激发态跃迁回基态,称为共振跃迁,所发射的谱线称为共振发射线。在原子吸收分光光度计上,光源产生共振发射线、原子化器产生共振吸收线。 3、在原子吸收光谱法中为什么常常选择共振线作分析线? 答:(1)共振线是元素的特征谱线。(2)共振线是元素所有谱线中最灵敏的谱线。 4、何谓积分吸收?何谓峰值吸收系数?为什么原子吸收光谱法常采用峰值吸收而不应用积分吸收? 答:原子吸收光谱法中,将光源发射的电磁辐射通过原子蒸汽时,被吸收的能量称为积分吸收,即吸收线下面所包围的整个面积。中心频率处的吸收系数称为峰值吸收系数。 原子吸收谱线很窄,要准确测定积分吸收值需要用高分辨率的分光仪器,目前还难以达到。 而,峰值吸收系数的测定只要使用锐线光源而不必使用高分辨率的分光仪器就可办到。 5、原子分光光度计主要由哪几部分组成?每部分的作用是什么? 答:原子分光光度计主要由四部分组成:光源、原子化系统、分光系统和检测系统。 光源:发出待测元素特征谱线,为锐线光源。

原子吸收光谱法在环境分析的应用及发展

原子吸收光谱法在环境分析的应用及发展 所在学院生物与环境学院 专业班级生物工程123班 学生姓名赵家熙学号2012013424 指导教师张慧恩 完成日期2013 年10 月30 日

文献综述 原子吸收光谱法在环境分析的应用及发展 摘要:原子吸收光谱法以其设备简单、操作方便、灵敏度高,特效性好、快速准确等优点, 在地质、化工、农业、食品、生物医药、环境保护、材料科学等各个领域内获得广泛的应用。本文介绍了原子吸收光谱法在环境分析的应用及发展。 关键词:原子吸收光谱法:环境分析:应用:发展: 环境的好坏直接影响了人们的健康状况,环境质量监测已成为我国环境重点保护的一项内容。好的环境检测方法成为了研究人员追求的方向,而原子吸收光谱法也成为环境分析中的首选方法。 1、原子吸收光谱法的基本原理 利用空心阴极元素灯光源发出被测元素的特征辐射光,为火焰原子化器产生的样品蒸气中的待测元素基态原子所吸收。通过测定特征辐射光被吸收的大小,来计算出待测元素的含量。子吸收光谱仪是由光源、原子化系统、光学系统、检测系统和显示装置五大部分组成的,其中原子化系统在整个装置中具有至关重要的作用。对于不同的元素都已有特定的阴极灯、波长范围、狭缝宽度、灯电流值等配合测定。若想测定达到较高的数量级或提高检测质量,其关键还在于样品的预处理和进样技术。 2、原子吸收光谱法的发展史 1955年澳大利亚物理学家沃尔什(A.Walsh)发表了原子吸收光谱分析的论文,开创了火焰原子吸收光谱法。1965年我国吴延照成功组装了实验型原子吸收分光度计。自此之后,原子吸收分析在全世界得到了迅速地发展和推广应用。1968年马斯曼在李沃夫(L’vov)电热石墨炉的基础上,发展和推广马斯炉商品仪器。1975年我国北京第二光学仪器厂,根据马怡载等研制的石墨炉原子器及控制电源生产出WFD-Y3型第一台带石墨炉的商品仪器。1990年美国PE公司首先推出横向加热石墨炉(PE-4100ZL)。1997年我国北京普析通用仪器公司生产出自动化程度最高、横向加热平台石墨炉(TAS-986型)。今天原子吸收光谱仪器已进入高水平发展的平台阶段,多元素同时测定,将是分析工作者与仪器公司今后关注的热门课

原子荧光常见问题

原子荧光常见问题及解决方法 一、有没有那位做过植树式样的汞砷前处理?前处理后试样使用原子荧光检测,使用汞砷同测或者分测,样品有120个,需要一种可以大批量检测的方法。我今天使用3个国标样,参照土壤使用50ml具塞比色管90度水浴消煮,结果好像蛋白含量高,全部溢出了 称1g样于150ml烧杯中,加入10ml浓硝酸放置过夜.次日在电热板上蒸至尽干,再加入5ml浓硝酸蒸至小体积,稍冷后加入1:1HCl5ml溶解盐类,转入25ml试管中,用水定容后测定。 二、原子荧光法(AFS230)测锑在低温氢化时砷锡气相干扰严重,升高原子化温度又产生较大记忆效应,请教有什么解决办法解决? 1。不知道您测试什么样品,在10—20%酸度下,锡应该不产生干扰,一般含量的砷及锑测定之间无干扰,10ng/ml砷不产生干扰,对于50ml样品您加入5ml硫脲(5%)-抗坏血酸(5%)试试。 2。加入硫脲与搞抗坏血酸试试。 3. 加点HBr,即可消除 三、我在一次测定的时候发现了一个新问题:我用同一种溶液进行测定,其荧光值很不稳定,一会儿大、一会儿小。开始的时候我以为是蠕动泵的原因,但是我调整了蠕动泵的松紧后也出现这种情况。不知道是什么原因 看看管路是不是堵了;看看氩气是不是漏了;看看炉子的位置是不是正确。 四、在AFS法测定时,要用Ar气作载气和屏蔽气,但是瓶口阀门处的两个压力表,都起什么作用? 第一个副表是气瓶的压力,第二个是进到仪器内部的气压. 五、原子荧光的电路系统的检测方法 检测电路系统的方法:1。两个灯互换;2。用黑纸遮住光电倍增管,仪器读数应在20—100内,此为正常,最最最直接的本底。 六、现在我感觉汞真的难测了。以前汞的曲线还能做好,现在汞的曲线都老是做不好。现象就是前面二个或三个点还正常,到第四个点突然就下降了许多。而第五个点正常。有时候几个点都不正常。很难一次就做出3个9的曲线. 我也经常遇到你的问题,我的感觉是,仪器条件降低时,线形比较好。还有就是可能你用的汞灯可能有问题,它的寿命不长,检测的时候注意观察一下,看汞灯是否有闪烁现象。 你说前几个值好,但是后面的有问题.应该可以排除试剂方面的问题。 七、我刚接触原子荧光分析方法,有很多问题都不懂,想请教一下,我用的是海光的AFS—2202E。测定茶叶中的汞。 请问1硼氢化钾的浓度为多少适宜 2用0.5/L的重铬酸钾配置汞标准储备液和使用液会影响汞的测定吗?也就是说重铬酸钾不会对汞的测定造成干扰吗? 3我用5%的硝酸做载流是否合理(汞固定液用的是5%的硝酸和0。5/L的重铬酸钾溶液). 4文献中规定测定汞一般要在低温下进行,可是我怎么没有找到设置炉温的地方呢? 1. 1、你要作条件最佳化。 2、不会有太大的干扰。 3、用10%盐酸好一点.

化工仪表常见的外部干扰问题及处理措施孙爱敏

化工仪表常见的外部干扰问题及处理措施孙爱敏 发表时间:2019-11-20T12:45:08.563Z 来源:《中国电业》2019年15期作者:孙爱敏 [导读] 随着时代的快速发展,进而相关的化工行业也紧随其后不断发展 摘要:随着时代的快速发展,进而相关的化工行业也紧随其后不断发展,在整个化工行业的生产过程中相应的化工仪表是其中非常关键工具,相应的化工仪表在整体的生产过程中起着监测和显示的作用,从而保证整体化工生产的有序安全进行。 关键词:化工仪表常;外部干扰问题;处理措施 引言 化工仪表就是化工自动化仪表的简称,指的就是化工生产中对压力、温度、流量、液位等变量进行自动控制与监测的显示仪表。随着化工仪表智能化水平的不断提高,化工生产中仪表技术越来越成熟,逐渐实现了化工仪表的网络自动化,具有非常广泛的应用范围。 1造成化工仪表外部干扰的一些因素 在整体的化工生产过程中,对于相应的化工仪表可能产生干扰的主要因素包括电磁场的突变,高频电压干扰因素以及电磁场高压的影响等等。这些因素的存在都会对于相应的化工仪表的正常运行产生影响,对于这些因素的存在有些是化工的生产过程中不可避免的,所以相应的人员对于这些影响相应的化工仪表正常工作的一些外部因素进行充分了解,了解其产生的原因以及造成影响的程度,从而才能做到对于相应的干扰因素采取相应的有效措施,以下对于这些对于化工仪表外部产生的一些干扰因素进行简要的陈述和分析。 1.1横向干扰 在化工生产的过程中,影响化工仪表横向干扰的主要因素有以下3个:①体现在电磁场的突变上。电磁场的突变是横向干扰中最为典型的一种电磁干扰,尤其是在化工生产过程中,由于需要设置较多的强电流机器设备,比如高频率变压器及其电流较强的电网等,导致化工广场的磁场稳定性不足,易受到影响,进而导致化工仪表的测量准确性有所偏差。同时,如果化工厂的磁场干扰强度不断上升并达到所限制的强度范围,不仅会导致化工仪表无法正常运转,还会造成化工仪表的信号传输端口出现问题。②化工仪表会受到高频干扰因素的影响。与突变电磁场相比,高频电压对化工仪表的影响相对较小,其原因主要是在化工仪表的输入回路带电容的情况下,进行自我闭合或断开动作时,其触点会产生花火,而这些花火均为高频干扰源,进而对化工仪表的工作运转造成了影响。由于化工仪表在工作时大多处于低频状态,因此,相比于电磁场突变,该因素的影响度较小。③在实际的化工生产过程中,由于需要设置高频变压器、交流电动机等具有高压的设备,所以,化工仪表还会受到电磁场高压的影响,在对化工仪表产生电势干扰的同时,导致化工仪表的回路出现电容,进而影响了化工仪表的正常运行。 1.2纵向干扰 化工仪表的纵向干扰通常是指由漏电电阻产生的平行干扰。所谓“漏电电阻”,也称为绝缘电阻,即在电容正负之间的介质并不是完全绝对绝缘的,而是作为有限数值存在着。在这种绝缘电阻的影响下,纵向干扰的电压通常处于几伏特到几十伏特之间。因此,纵向干扰对化工仪表产生的影响通常是基于横向干扰的转换之后才造成的。而纵向干扰转向横向干扰的情形主要有以下2方面:①基于入地电流的影响。入地电流主要是指大地中流动着的电流。当化工仪表的周边置放着大功率的电气设备时,由于该电气设备没有较强的绝缘性,易造成地面漏电的情况发生,出现入地电流。除此之外,化工仪表在使用时,其电路的接入点通常不止一个,导致电流在经过地面时接入点出现电位差,进而对化工仪表的正常运转造成影响。②电流泄漏的干扰是影响化工仪表运作的因素。其表现通常为绝缘材料的老化现象。在生产过程中,由于多种变量信号集中传输,加之绝缘材料的老化,导致电流泄漏,进而干扰到了其他信号的输送,阻碍了化工仪表的工作运转。比如在化工仪表工作时,采用220V的供电,使电源与其信号线产生短路,设备被烧坏,进而影响了化工仪表的正常运转。 1.3大功率设备 在化工生产的过程中,如果在化工仪表的周边存在着较大功率的设备时,也会对于仪表的正常工作产生影响。主要原因是相应大功率的电气设备没有较强的绝缘性,这样就非常容易出现地面漏电的现场的产生,如果出现了相应的地面漏电现象的发生,就会产生入地的电流,进而对于设备的整体的运转造成非常大的影响。在实际的化工生产过程中,以上这些因素的存在都会对于相应的化工仪表的正常工作产生干扰,存在的这些干扰因素中,有些干扰因素对于相应的化工仪表的正常运行的影响是非常严重的,所以相应的人员就需要对于这些存在的干扰因素进行有效的排除,如果不采取一定的措施,很容易造成相应化学仪表的工作异常甚至损坏,严重还会影响整体化工的正常生产运行。 2化工仪表外部干扰问题的处理措施 2.1屏蔽法 为了避免电磁场干扰,可以对电缆线加设屏蔽管,或者用导线穿线管对化工仪表电缆予以覆盖,也就是说,把电缆穿入穿线管当中,金属在本身磁阻作用下,屏蔽之后的交变磁场就不会对穿线管中德电缆产生影响;屏蔽之后的干扰电压将会降低为原来的1/20。此外,对导线进行绞合,之后穿入屏蔽管,能够有效降低干扰。 2.2滤波法 感性原件具有储能作用,当化工仪表输入信号源与输出驱动为感性原件的时候,在接点闭合的状态下就会发生电弧,断开的状态下就会出现高于电源电压的反电势,对于此种干扰源而言,可以通过滤波法予以处理,在化工仪表输入端设置R-C或者L-C滤波电路,削弱干扰程度,并且以触发电平的方式,对杂波信号予以拦截。 2.3隔离法 隔离法指的就是借助放大器浮空避免干扰,也就是说,避免放大器和化工仪表之间的直接接触。在化工生产中,在放大器和化工仪表之间放置绝缘材料,将放大器垫起,使其和化工仪表之间保持一定的距离,这是切断纵向干扰的有效手段,此种做法可以避免电压泄露,有效杜绝了纵向干扰。电源也是干扰化工仪表正常运转的主要因素,此种干扰主要指的就是由供电线路阻抗耦合产生的,部分大功率用电设备均会成为干扰源,一般指的是大功率变频器。为了有效防治此种干扰,可以在仪器交流电源输入端设置隔离变压器,使电源和供电线路之间保持一定的距离,尽可能降低干扰程度。 2.4接地法 通常情况下,干扰源频率均在1MHz以下,可以一点接地;而针对干扰源频率超出10MHz的情况而言,需要设置多点接地;当干扰源频

原子吸收常见故障排除法石墨炉篇修订版

原子吸收常见故障排除法石墨炉篇修订版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】

一. 重现性差 (1)产生原因:样品的前处理不彻底; 判断方法:换成20ppb的铜标准溶液测定; 解决办法: 重新配置样品溶液(注意:使用优级纯硝酸做介质); (2)产生原因:进样针高度调整得不合适或管路中有气泡; 判断方法:用牙医镜观察进样状况;检查清洗泵中有无气泡; 解决办法:重新调整进样针高度,清洗进样针头,清洗泵排气; (3)产生原因:升温程序设置不合理(主要是灰化和原子化温度); 判断方法:通过模拟监视屏幕观察信号线有无灰化损失(在灰化阶段出峰),原子化信号上升沿是否陡直及下降沿有无拖尾和断尾; 解决办法:重新设置升温程序; (4)产生原因:石墨管、石墨环被污染产生了记忆效应; 判断方法:按照正常升温程序不进样,观察石墨管的空白吸光值是否小于 0.008Abs以下(任何元素均如此),并且重复性是否相差不大 解决办法:更换相应部件; (5)产生原因:石墨环与石墨管接触电阻变大;

判断方法: 石墨管在原子化升温开始瞬间,石墨管正常是由中央向两端延伸发 光,如果石墨管是从两端向中央集中发光则是接触不良; 解决办法:首先更换一只新的石墨管试试,如未果则是石墨环不良所致; 根据以往经验,石墨环不良的几率较大; (6)产生原因:石墨炉电极与底座接触电阻变大; 判断方法:石墨炉升温几次过后,用手指触摸电极感觉温度很高; 解决办法:取下有问题一侧的电极,用600目的水砂纸研磨电极底座,最后用乙醇清洗电极底座和载气通道,防止因污染影响测定值; (7)产生原因:石英窗结露;此故障较隐蔽其原因多由冷却水低于室温所致; 判断方法:取下石英窗朝光亮处观看很容易发现; 解决办法:用乙醇/乙醚混合液清理石英窗;控制冷却水温度,建议最好使用可调温度的水冷循环器; (8)产生原因:载气针状出口被堵塞(取下石墨炉电极后见平台的凸起部); 判断方法:一般是一侧载气被堵,于是被堵一侧的石英窗上会有附着物; 解决办法:用仪器附带的通丝清通载气出口针孔;清洗石英窗; (9)产生原因:阴极灯不良 判断方法:通过【Line Profile】谱线轮廓功能和基线平坦度来观察;

仪器分析报告笔记 《原子吸收光谱法》

第四章原子吸收光谱法 ——又称原子吸收分光光度法§4.1 原子吸收分光光度法(AAS)概述 4.1.1 概述 1、定义 原子吸收分光光度法是基于从光源辐射出具有待测元素特征谱线的光,通过试样蒸气时被蒸气中待测元素基态原子所吸收,由辐射谱线被减弱的程度来测定试样中待测元素含量的方法。 2、特点 ?灵敏度高:在原子吸收实验条件下,处于基态的原子数目比激发态多得多,故灵敏度高。检出限可达10—9 g /mL (某些元素可更高) ?几乎不受温度影响:由波兹曼分布公式 00 q E q q KT N g e N g - =知,激发态原子浓度与基态原子浓度的比 值 q N N 随T↗而↗。在原子吸收光谱法中,原子化器的温度一般低于3000℃,此时几乎所有元素的0 1% q N N =。也就是说, q N随温度而强烈变化,而 N却式中保持不变,其浓度几乎完全等于原子的 总浓度。 ?较高的精密度和准确度:因吸收线强度受原子化器温度的影响比发射线小。另试样处理简单。RSD 1~2%,相对误差0.1~0.5%。 ?选择性高:谱线简单,因谱线重叠引起的光谱干扰较小,即抗干扰能力强。分析不同元素时,选用不同元素灯,提高分析的选择性 ?应用围广:可测定70多种元素(各种样品中)。 ?缺点:难熔元素、非金属元素测定困难,不能同时多元素分析。 3、操作 ①将试液喷入成雾状,挥发成蒸汽; ②用镁空心阴极灯作光源,产生波长285.2nm特征谱线; ③谱线通过镁蒸汽时,部分光被蒸汽中基态镁原子吸收而减弱; ④通过单色器和检测器测得镁特征谱线被减弱的程度,即可求得试样中镁的含量. 4、原子吸收光谱分析过程 ?确定待测元素。 ?选择该元素相应锐线光源,发射出特征谱线。 ?试样在原子化器中被蒸发、解离成气态基态原子。 ?特征谱线穿过气态基态原子,被吸收而减弱,经色散系统和检测系统后,测定吸光度。 ?根据吸光度与浓度间线性关系,定量分析。 5、与发射光谱异同点 ①原子吸收光谱分析利用的是原子的吸收现象,发射光谱分析则基于原子的发射现象; ②原子的吸收线比发射线的数目少得多,这样谱线重叠的概率就小得多; ③原子吸收法的选择性、灵敏度和准确性都好。

(完整word版)原子吸收光谱定量分析方法

原子吸收定量分析方法 一、定量分析方法(P145) (1)标准曲线法: 配制一系列浓度不同的标准溶液,在相同测定条件下,测定标准系列溶液和待测试样溶液的吸光度,绘制A-c标准曲线,由待测溶液的吸光度值在标准曲线上得到其含量。 (2) 标准加入法 当试样组成复杂,待测元素含量很低时,应采用标准加入法进行定量分析。 取若干份体积相同的试液(cX),依次按比例加入 不同量的待测物的标准溶液(cO): 浓度依次为:cX ,cX+cO ,cX+2cO ,cX+3cO ,cX+4cO … 分别测得吸光度为:AX ,A1 ,A2 ,A3 ,A4 … 直线外推法:以A对浓度c做图得一直线,图中c X点即待测溶液浓度。 (3)稀释法: (4)内标法: 在标准试样和被测试样中,分别加入内标元素,测定分析线和内标线的吸光度比,并以吸光度比与被测元素含量或浓度绘制工作曲线。 内标元素的选择:内标元素与被测元素在试样基体内及在原子化过程中具有相似的物理化学性质,样品中不存在,用色谱纯或者已知含量 二、灵敏度和检出限 (1)灵敏度 1、定义: 在一定浓度时,测定值(吸光度)的增量(ΔA)与相应的待测元素浓度(或质量)的增量(Δc 或Δm)的比值(即分析校正曲线的斜率) PS:习惯上用特征浓度和特征质量表征灵敏度 2、特征浓度 定义:能产生1%吸收或产生0.0044吸光度时所对应的被测元素的质量浓度定义为元素的特征浓度 3、特征质量 定义:能产生1%吸收或产生0.0044吸光度时所对应的被测元素的质量定义为元素的特征质量。 (2)检出限 定义: 适当置信度下,能检测出的待测元素的最低浓度或最低质量。用接近于空白的溶液,经若干次重复测定所得吸光度的标准偏差的3倍求得。

原子荧光常见故障解决建议(陆飞峰)

原子荧光常见故障解决建议 一、请先仔细阅读《原子荧光应用手册》第68、69页。 二、通讯失败,参考文件《原子荧光光度计电脑通讯失败的详细解决方法》。 三、空白污染。 参考文件《仪器试剂污染处理方法》。 问题1.试剂污染:主要是酸的纯度不够,或纯度够了质量不好。解决方法:配制一个2%的和10%的HCL,上机看两个浓度酸的荧光值有多大差距,一般好酸荧 光值不会有太大差距,若10%的酸是2%酸荧光值好几倍,则判断酸的纯度不 能够(此方法不适用于做铅)。 问题2.容器污染:主要是器皿质量不好,或泡器皿的酸不好,或容器没有清洗干净。 解决方法:判断是否是器皿的问题,用一个干净的容器配制好2%酸若干,部分倒入被怀疑有污染的容器中,震荡几分钟后上机,看两容器中荧光值是否相近,若 被浸染,被浸染的器皿中的酸出的荧光值会高很多。器皿质量不好(有些厂家 器皿本身含所测元素的量比较大),只能更换,尽量选用A级的容量瓶、刻度 管;泡器皿的酸不好,泡器皿的酸尽量用优级纯的硝酸,并定量更换;容器没 有清洗干净,进行清洗。 问题3.还原剂试剂被粘污。 问题4.环境污染(主要是汞浸染):若室内以前打碎过温度计,或做过高浓度的元素实验,容易引起环境污染。 解决方法:只能更换实验室。开着排风扇用电风扇吹,并在房间中放硫磺(汞污染)。 四、无信号。 问题:测完标准空白后,测标准点,荧光值自动扣空白后在0上下浮动,各点乱无线性关系。 解决方法: 1.检查水封有没有加水(主机内,部分仪器没有水封)。 2.检查排废管有没有夹好。夹管方法:在做样时拧松夹块上的螺钉,让废液在蠕动泵不转时也能排出。逐渐拧紧螺钉,拧到以下刚出现情况后再拧半周为好:蠕动泵转动时废液排出,不转时废液马上停止在管路中。 3.检查点火炉丝有没有点亮。 4.如果是Hg做样无信号,查看Hg灯有无点亮。激发点亮,点亮后必须重新预热! 5.8X仪器,检查样品管和还原剂管有没有夹好样品和还原剂是否进到反应块。9X仪器检查进样针中是否有空气,有空气则说明中间已经折断。 6.拿一纸条,在进标准液后,回到载流槽时,悬在原子化器炉口(距炉口1CM以内),看纸条是否被点着(熏黑不算点着),若点不着检查下一步。能点着即有火焰无信号看第10步。 7.检查气液分离器内所进混合液是否反应,若有大量气泡生成(也可观察排出废液中是否有大量小气泡),无气泡生成则看下一步;有气泡则正常,检查气液分离器至原子化器毛细管是否漏气或被堵塞,无漏气、堵塞第一步肯定有火焰生成。能点着即有火焰无信号看第10步。 8.检查载流液、标准点是否有5%左右的酸(保证至少要3%的酸),还原剂硼氢化钾的量保证8X仪器不小于2%,9X仪器不小于1%,检查硼氢化钾是否失效(硼氢化钾易吸潮,易结块)。

相关文档
最新文档