电磁兼容性基础知识及其实1

电磁兼容性基础知识及其实1
电磁兼容性基础知识及其实1

电磁兼容性基础知识及其实现-滤波(连载2)

2.1滤波

滤波技术是抑制干扰的一种有效措施,尤其是在对付开关电源EMI信号的传导干扰和某些辐射干扰方面,具有明显的效果。任何电源线上传导干扰信号,均可用差模和共模干扰信号来表示。差模干扰在两导线之间传输,属于对称性干扰;共模干扰在导线与地(机壳)之间传输,属于非对称性干扰。在一般情况下,差模干扰幅度小、频率低、所造成的干扰较小,共模干扰幅度大、频率高,还可以通过导线产生辐射,所造成的干扰较大。因此,欲削弱传导干扰,把EMI信号控制在有关EMC标准规定的极限电平以下。除抑制干扰源以外,最有效的方法就是在开关电源输入和输出电路中加装EMI滤波器。一般设备的工作频率约为10~50 kHz。EMC 很多标准规定的传导干扰电平的极限值都是从10 kHz算起。对开关电源产生的高频段EMI信号,只要选择相应的去耦电路或网络结构较为简单的EMI滤波器,就不难满足符合EMC标准的滤波效果。

2.1 .1瞬态干扰是指交流电网上出现的浪涌电压、振铃电压、火花放电等瞬间干扰信号,其特点是作用时间极短,但电压幅度高、瞬态能量大。瞬态干扰会造成单片开关电源输出电压的波动;当瞬态电压叠加在整流滤波后的直流输入电压VI上,使VI超过内部功率开关管的漏-源击穿电压V(BR)DS时,还会损坏TOPSwitch芯片,因此必须采用抑制措施。

通常,静电放电(ESD)和电快速瞬变脉冲群(EFT)对数字电路的危害甚于其对模拟电路的影响。静电放电在5 — 200MHz的频率范围内产生强烈的射频辐射。此辐射能量的峰值经常出现在35MHz — 45MHz之间发生自激振荡。许多I/O电缆的谐振频率也通常在这个频率范围内,结果,电缆中便串入了大量的静电放电辐射能量。

当电缆暴露在4 — 8kV静电放电环境中时,I/O电缆终端负载上可以测量到的感应电压可达到600V。这个电压远远超出了典型数字的门限电压值0.4V。典型的感应脉冲持续时间大约为400纳秒。将I/O电缆屏蔽起来,且将其两端接地,使内部信号引线全部处于屏蔽层内,可以将干扰减小60 — 70dB,负载上的感应电压只有0.3V或更低。

电快速瞬变脉冲群也产生相当强的辐射发射,从而耦合到电缆和机壳线路。电源线滤波器可以对电源进行保护。线—地之间的共模电容是抑制这种瞬态干扰的有效器件,它使干扰旁路到机壳,而远离内部电路。当这个电容的容量受到泄漏电流的限制而不能太大时,共模扼流圈必须提供更大的保护作用。这通常要求使用专门的带中心抽头的共模扼流圈,中心抽头通过一只电容(容量由泄漏电流决定)连接到机壳。共模扼流圈通常绕在高导磁率铁氧体芯上,其典型电感值为15 ~ 20mH。

2.1.2传导的抑制

往往单纯采用屏蔽不能提供完整的电磁干扰防护,因为设备或系统上的电缆才是最有效的干扰接收与发射天线。许多设备单台做电磁兼容实验时都没有问题,但当两台设备连接起来以后,就不满足电磁兼容的要求了,这就是电缆起了接收和辐射天线的作用。唯一的措施就是加滤波器,切断电磁干扰沿信号线或电源线传播的路径,与屏蔽共同够成完善的电磁干扰防护,无论是抑制干扰源、消除耦合或提高接收电路的抗能力,都可以采用滤波技术。针对不同的干扰,应采取不同的抑制技术,由简单的线路清理,至单个元件的干扰抑制器、滤波器和变压器,再至比较复杂的稳压器和净化电源,以及价格昂贵而性能完善的不间断电源,下面分别作简要叙述。

2.1.3 专用线路

只要通过对供电线路的简单清理就可以取得一定的干扰抑制效果。如在三相供电线路中认定一相作为干扰敏感设备的供电电源;以另一相作为外部设备的供电电源;再以一相作为常用测试仪器或其他辅助设备的供电电源。这样的处理可避免设备间的一些相互干扰,也有利于三相平衡。

值得一提的是在现代电子设备系统中,由于配电线路中非线性负载的使用,造成线路中谐波电流的存在,而零序分量谐波在中线里不能相互抵消,反而是叠加,因此过于纤细的中线会造成线路阻抗的增加,干扰也将增加。同时过细的中线还会造成中线过热。

2.1.4 瞬变干扰抑制器

属瞬变干扰抑制器的有气体放电管、金属氧化物压敏电阻、硅瞬变吸收二极管和固体放电管等多种。其中金属氧化物压敏电阻和硅瞬变吸收二极管的工作有点象普通的稳压管,是箝位型的干扰吸收器件;而气体放电管和固体放电管是能量转移型干扰吸收器件(以气体放电管为例,当出现在放电管两端的电压超过放电管的着火电压时,管内的气体发生电离,在两电极间产生电弧。由于电弧的压降很低,使大部分瞬变能量得以转移,从而保护设备免遭瞬变电压破坏)。瞬变干扰抑制器与被保护设备并联使用。

2.1.5气体放电管

气体放电管也称避雷管,目前常用于程控交换机上。避雷管具有很强的浪涌吸收能力,很高的绝缘电阻和很小的寄生电容,对正常工作的设备不会带来任何有害影响。但它对浪涌的起弧响应,与对直流电压的起弧响应之间存在很大差异。例如90V气体放电管对直流的起弧电压就是90V,而对5kV/μs的浪涌起弧电压最大值可能达到1000V。这表明气体放电管对浪涌电压的响应速度较低。故它比较适合作为线路和设备的一次保护。此外,气体放电管的电压档次很少。

2.1.6金属氧化物压敏电阻

由于价廉,压敏电阻是目前广泛应用的瞬变干扰吸收器件。描述压敏电阻性能的主要参数是压敏电阻的标称电压和通流容量即浪涌电流吸收能力。前者是使用者经常易弄混淆的一个参数。压敏电阻标称电压是指在恒流条件下(外径为7mm以下的压敏电阻取0.1mA;7mm以上的取1mA)出现在压敏电阻两端的电压降。由于压敏电阻有较大的动态电阻,在规定形状的冲击电流下(通常是8/20μs的标准冲击电流)出现在压敏电阻两端的电压(亦称是最大限制电压)大约是压敏电阻标称电压的1.8~2倍(此值也称残压比)。

这就要求使用者在选择压敏电阻时事先有所估计,对确有可能遇到较大冲击电流的场合,应选择使用外形尺寸较大的器件(压敏电阻的电流吸收能力正比于器件的通流面积,耐受电压正比于器件厚度,而吸收能量正比于器件体积)。

使用压敏电阻要注意它的固有电容。根据外形尺寸和标称电压的不同,电容量在数千至数百pF之间,这意味着压敏电阻不适宜在高频场合下使用,比较适合于在工频场合,如作为晶闸管和电源进线处作保护用。

特别要注意的是,压敏电阻对瞬变干扰吸收时的高速性能(达ns)级,故安装压敏电阻必须注意其引线的感抗作用,过长的引线会引入由于引线电感产生的感应电压(在示波器上,感应电压呈尖刺状)。引线越长,

感应电压也越大。为取得满意的干扰抑制效果,应尽量缩短其引线。

关于压敏电阻的电压选择,要考虑被保护线路可能有的电压波动(一般取1.2~1.4倍)。如果是交流电路,还要注意电压有效值与峰值之间的关系。所以对220V线路,所选压敏电阻的标称电压应当是

220×1.4×1.4≈430V。

此外,就压敏电阻的电流吸收能力来说,1kA(对8/20μs的电流波)用在晶闸管保护上,3kA用在电器设备的浪涌吸收上;5kA用在雷击及电子设备的过压吸收上;10kA用在雷击保护上。

压敏电阻的电压档次较多,适合作设备的一次或二次保护。

2.1.7硅瞬变电压吸收二极管(TVS管)

硅瞬变电压吸收二极管具有极快的响应时间(亚纳秒级)和相当高的浪涌吸收能力,及极多的电压档次。可用于保护设备或电路免受静电、电感性负载切换时产生的瞬变电压,以及感应雷所产生的过电压。

TVS管有单方向(单个二极管)和双方向(两个背对背连接的二极管)两种,它们的主要参数是击穿电压、漏电流和电容。

使用中TVS管的击穿电压要比被保护电路工作电压高10%左右,以防止因线路工作电压接近TVS击穿电压,使TVS漏电流影响电路正常工作;也避免因环境温度变化导致TVS管击穿电压落入线路正常工作电压的范围。

TVS管有多种封装形式,如轴向引线产品可用在电源馈线上;双列直插的和表面贴装的适合于在印刷板上作为逻辑电路、I/O总线及数据总线的保护。

TVS管在使用中应注意的事项:

·对瞬变电压的吸收功率(峰值)与瞬变电压脉冲宽度间的关系。手册给的只是特定脉宽下的吸收功率(峰值),而实际线路中的脉冲宽度则变化莫测,事前要有估计。对宽脉冲应降额使用。

·对小电流负载的保护,可有意识地在线路中增加限流电阻,只要限流电阻的阻值适当,不会影响线路的正常工作,但限流电阻对干扰所产生的电流却会大大减小。这就有可能选用峰值功率较小的TVS管来对小电流负载线路进行保护。

·对重复出现的瞬变电压的抑制,尤其值得注意的是TVS管的稳态平均功率是否在安全范围之内。

·作为半导体器件的TVS管,要注意环境温度升高时的降额使用问题。

·特别要注意TVS管的引线长短,以及它与被保护线路的相对距离。

·当没有合适电压的TVS管供采用时,允许用多个TVS管串联使用。串联管的最大电流决定于所采用管中电流吸收能力最小的一个。而峰值吸收功率等于这个电流与串联管电压之和的乘积。

·TVS管的结电容是影响它在高速线路中使用的关键因素,在这种情况下,一般用一个TVS管与一个快恢复二极管以背对背的方式连接,由于快恢复二极管有较小的结电容,因而二者串联的等效电容也较小,可满足高频使用的要求。

·固体放电管

体放电管是一种较新的瞬变干扰吸收器件,具有响应速度较快(10~20ns级)、吸收电流较大、动作电压稳定和使用点。

固体放电管与气体放电管同属能量转移型。图2.2为其伏安特性。当外界干扰低于触发电压时,管子呈截止状。一旦干扰超出触发电压时,伏安特性发生转折,进入负阻区,此时电流极大,而导通电阻极小,使干扰能量得以转移。随着干扰减小,通过放电管电流的回落,当放电管的通过电流低于维持电流时,放电管就迅速走出低阻区,而回到高阻态,完成一次放电过程。

固体放电管的一个优点是它的短路失效模式(器件失效时,两电极间呈短路状),为不少应用场合所必须,已在国内外得到广泛应用。

固体放电管的电压档次较少,比较适合于作网络、通信设备,乃至部件一级的保护。

物理电磁感应知识点的归纳

物理电磁感应知识点的归纳 物理电磁感应知识点的归纳 1.电磁感应现象 利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。 (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即0。 (2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。产生感应电动势的那部分导体相当于电源。 (3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。 2.磁通量 (1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:=BS。如果面积S与B不垂直,应以B 乘以在垂直于磁场方向上的投影面积S,即=BS,国际单位:Wb (2)求磁通量时应该是穿过某一面积的磁感线的净条数。任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正。反之,磁通量为负。所求磁通量为正、反两面穿入的磁感线的代数和。 3.楞次定律 (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。楞次定律适用于一般情况的感应电流方向的判定,而右

手定则只适用于导线切割磁感线运动的`情况,此种情况用右手定则判定比用楞次定律判定简便。 (2)对楞次定律的理解 ①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。 ③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即增反减同。 ④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。 (3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍原电流的变化(自感)。 4.法拉第电磁感应定律 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。表达式:E=n/t 当导体做切割磁感线运动时,其感应电动势的计算公式为 E=BLvsin。当B、L、v三者两两垂直时,感应电动势E=BLv。 (1)两个公式的选用方法E=n/t计算的是在t时间内的平均电动势,只有当磁通量的变化率是恒定不变时,它算出的才是瞬时电动势。E=BLvsin中的v若为瞬时速度,则算出的就是瞬时电动势:若v为平均速度,算出的就是平均电动势。 (2)公式的变形 ①当线圈垂直磁场方向放置,线圈的面积S保持不变,只是磁场的磁感强度均匀变化时,感应电动势:E=nSB/t。 ②如果磁感强度不变,而线圈面积均匀变化时,感应电动势 E=Nbs/t。

电磁感应基础练习题

电磁感应基础练习题: 1、面积是0.5m 2的导线环,放在某一匀强磁场中,环面与磁场垂直,穿过导线的磁通量是Wb 2100.1-?,则该磁场的磁感应强度是( ) A、T 2105.0-? B、T 2105.1-? C、T 2101-? D、T 2102-? 2、关于电磁感应现象,下列说法正确的是( ) A、只要磁通量穿过电路,电路中就有感应电流 B、只要穿过闭合导体回路的磁通量足够大,电路中就有感应电流 C、只要闭合导体回路在切割磁感线运动,电路中就有感应电流 D、只要穿过闭合导体回路的磁通量发生变化,电路中就有感应电流 3、如图所示,套在条形磁铁外的三个线圈,其面积321S S S =>,穿过各线圈的磁通量依次为1Φ、2Φ、3Φ,则它们的大小关系是( ) A 、32 1 Φ>Φ>Φ B 、321Φ=Φ>Φ C 、321Φ=Φ<Φ D 、321Φ<Φ<Φ 4、关于电磁感应,下列说法正确的是( ) A 、穿过线圈的磁通量越大,感应电动势就越大 B 、穿过线圈的磁通量为零,感应电动势一定为零 C 、穿过线圈的磁通量变化越快,感应电动势越大 D 、穿过线圈的磁通量变化越大,感应电动势越大 5、如图所示,在《探究产生感应电流的条件》的实验中,开关断开时,条形 磁铁插入或拔出线圈的过程中,电流表指针不动;开关闭合时,磁铁静止在 线圈中,电流表指针也不动;开关闭合时,将磁铁插入或拔出线圈的过程中, 电流表指针发生偏转.由此得出,产生感应电流的条件是:电路必须 , 穿过电路的磁通量发生 . 6、如图所示是探究感应电流与磁通量变化关系的实验.下列操作会产生感应 电流的有 . ①闭合开关的瞬间; ②断开开关的瞬间; ③闭合开关,条形磁铁穿过线圈; ④条形磁铁静止在线圈中 此实验表明:只要穿过闭合导体回路的磁通量发生 闭合导体回路中就有感应电流产生. 1、关于电磁感应,下列说法正确的是( ) A 、穿过线圈的磁通量越大,感应电动势越大 B 、穿过线圈的磁通量为零,感应电动势为零 C 、穿过线圈的磁通量变化越快,感应电动势越大 D 、穿过线圈的磁通量变化越大,感应电动势越大 2、关于感应电动势的大小,下列说法正确的是( ) A 、跟穿过闭合导体回路的磁通量有关 S

电磁感应 知识点总结

第16章:电磁感应 L 闭合电路中磁通量发生变化时产生感应电流 当磁场为匀强磁场,并且线圈平面垂直磁场时磁通量: $ =BS 如果该面积与磁场夹角为 a,则其投影面积为 Ssin a,则磁通量为 =BSsin a 。磁通量的单位: 韦伯,符号: Wb 、重、难点知识归纳 1. 法拉第电磁感应定律 (1) .产生感应电流的条件:穿过闭合电路的磁通量发生变化。 以上表述是充分必要条件。不论什么情况,只要满足电路闭合和磁通量发生变化这两 个条件,就必然产生感应电流;反之,只要产生了感应电流,那么电路一定是闭合的,穿过 该电路的磁通量也一定发生了变化。 当闭合电路的一部分导体在磁场中做切割磁感线的运动时,电路中有感应电流产生。 这个表述是充分条件,不是必要的。在导体做切割磁感线运动时用它判定比较方便。 (2) .感应电动势产生的条件:穿过电路的磁通量发生变化。 、知识网络 产生感应电一 闭合电路中的部分导体在做切割磁感线运动 流的方法 闭合电路的磁通量发生变 感应电流方 _ 右手疋则, 向的判定 ? 楞次定律 E=BL v sin 0 感应电动势 A (h 的大小 ■ E - n A t 大小: 方向: 日光 构造 E 2 总是阻碍原电流的变化方向 灯管 镇流器 启动器 日光灯工作原理:自感现象 通电、断电自感实验 实验: 应用 自 感 自感电 动势

这里不要求闭合。无论电路闭合与否,只要磁通量变化了,就一定有感应电动势产生。 这好比一个电源:不论外电路是否闭合, 电动势总是存在的。 但只有当外电路闭合时, 电路 中才会有电流。 (3) .引起某一回路磁通量变化的原因 a 磁感强度的变化 b 线圈面积的变化 c 线圈平面的法线方向与磁场方向夹角 的变化 (4) .电磁感应现象中能的转化 感应电流做功,消耗了电能。消耗的电能是从其它形式的能转化而来的。 在转化和转移中能的总量是保持不变的。 (5) .法拉第电磁感应定律: a 决定感应电动势大小因素:穿过这个闭合电路中的磁通量的变化快慢 b 注意区分磁通量中,磁通量的变化量,磁通量的变化率的不同 —磁通量, 一磁通量的变化量, c 定律内容:感应电动势大小决定于磁通量的变化率的大小,与穿过这一电路磁通量的 变化率成正比。 (6 )在匀强磁场中, 磁诵量的变化 △① =①t -①o 有多种形式,主要有 ①S 、 a 不变, B 改变,这时 △①= △ B Ssin a ②B 、 a 不变, S 改变,这时 △①= △ S Bsin a ③B 、 S 不变, a 改变,这时 △①=BS(sin a 2-sin a 1) 在非匀强磁场中,磁通量变化比较复杂。有 几种情况需要特别注意: 形磁铁附近移动,穿过上边线圈的磁通量由方向向 上减小到零,再变为方向向下增大;右边线圈的磁通量由方向向下减 小到零,再变为方向向上增大。 ②如图16-2所示,环形导线 a 中有顺时针方向的电流, a 环外有 两个同心导线圈b 、c ,与环形导线a 在同一平面内。当 a 中的电流增 ①如图16-1所示,矩形线圈沿a T b T c 在条 a be 图 16-1 a 图 16-2

电磁兼容基本知识问题及答案(原)

电磁兼容课程作业(问答58题) 1.为什么要对产品做电磁兼容设计? 答:满足产品功能要求、减少调试时间,使产品满足电磁兼容标准的要求,使产品不会对系统中的其它设备产生电磁干扰。 2.对产品做电磁兼容设计可以从哪几个方面进行? 答:电路设计(包括器件选择)、软件设计、线路板设计、屏蔽结构、信号线/电源线滤波、电路的接地方式设计。 3.在电磁兼容领域,为什么总是用分贝(dB)的单位描述?10V是多少dBV? 答:因为要描述的幅度和频率范围都很宽,在图形上用对数坐标更容易表示,而dB就是用对数表示时的单位,10V是20dBV。 4.为什么频谱分析仪不能观测静电放电等瞬态干扰? 答:因为频谱分析仪是一种窄带扫频接收机,它在某一时刻仅接收某个频率范围内的能量。静电放电等瞬态干扰是一种脉冲干扰,其频谱范围很宽,但时间很短,这样频谱分析仪在瞬态干扰发生时观察到的仅是其总能量的一小部分,不能反映实际干扰情况。 5.在现场进行电磁干扰问题诊断时,往往需要使用近场探头和频谱分析仪,怎样用同轴电缆制作一个简易的近场探头? 答:将同轴电缆的外层(屏蔽层)剥开,使芯线暴露出来,将芯线绕成一个直径1~2厘米小环(1~3匝),焊接在外层上。 6.一台设备,原来的电磁辐射发射强度是300V/m,加上屏蔽箱后,辐射发射降为3V/m,这个机箱的屏蔽效能是多少dB? 答:这个机箱的屏蔽效能应为40dB。 7.设计屏蔽机箱时,根据哪些因素选择屏蔽材料?

答:从电磁屏蔽的角度考虑,主要要考虑所屏蔽的电场波的种类。对于电场波、平面波或频率较高的磁场波,一般金属都可以满足要求,对于低频磁场波,要使用导磁率较高的材料。 8.机箱的屏蔽效能除了受屏蔽材料的影响以外,还受什么因素的影响? 答:受两个因素的影响,一是机箱上的导电不连续点,例如孔洞、缝隙等;另一个是穿过屏蔽箱的导线,如信号电缆、电源线等。 9.屏蔽磁场辐射源时要注意什么问题? 答:由于磁场波的波阻抗很低,因此反射损耗很小,而主要靠吸收损耗达到屏蔽的目的。因此要选择导磁率较高的屏蔽材料。另外,在做结构设计时,要使屏蔽层尽量远离辐射源(以增加反射损耗),尽量避免孔洞、缝隙等靠近辐射源。 10.在设计屏蔽结构时,有一个原则是:尽量使机箱内的电缆远离缝隙和孔洞,为什么?答:由于电缆近旁总是存在磁场,而磁场很容易从孔洞泄漏(与磁场的频率无关)。 因此,当电缆距离缝隙和孔洞很近时,就会发生磁场泄漏,降低总体屏蔽效能。 11.测量人体的生物磁信息是一种新的医疗诊断方法,这种生物磁的测量必须在磁场屏蔽室中进行,这个屏蔽室必须能屏蔽从静磁场到1GHz的交变电磁场,请提出这个屏蔽室的设计方案。 1答:首先考虑屏蔽材料的选择问题,由于要屏蔽频率很低的磁场,因此要使用高导磁率的材料,比如坡莫合金。由于坡莫合金经过加工后,导磁率会降低,必须进行热处理。因此,屏蔽室要作成拼装式的,由板材拼装而成。事先将各块板材按照设计加工好,然后进行热处理,运输到现场,十分小心的进行安装。每块板材的结合处要重叠起来,以便形成连续的磁通路。这样构成的屏蔽室能够对低频磁场有较好的屏蔽效能,但缝隙会产生高频泄漏。为了弥补这个不足,在坡莫合金屏蔽室的外层用铝板焊接成第二层屏蔽,对高频电磁场起到屏蔽作用。

电磁兼容基础知识

电磁兼容基础知识 近年来铁路机车所用技术迅猛发展,对铁道技术的电磁兼容性要求日益提高。采用了微处理器的牵引、制动及列车的控制装置以及分布在全列车上的数据总线系统,都更重视设备的抗干扰性能。随着机车电传动式由交直向交直交的变迁,机车车辆的牵引和辅助驱动采用大功率、高电压和高电流上升率以及极高开关频率的现代变流技术,从而提高了功率部分的干扰电势。此外,机车车辆中设备的安装面积很有限,这一面迫使控制装置和功率部分挨得很近,另一面也使功率部分和通信与信号装置等靠的很近,由此导致了铁路技术对电磁兼容性有着特殊的要求。 目前我司产品涉及到的电磁兼容相关铁标如下: GB/T 17626.2-2006 电磁兼容试验和测量技术静电放电抗扰度试验 GB/T 17626.3-2006 电磁兼容试验和测量技术射频电磁场辐射抗扰度试验 GB/T 17626.4-2008 电磁兼容试验和测量技术电快速瞬变脉冲群抗扰度试验 GB/T 17626.5-2008 电磁兼容试验和测量技术浪涌(冲击)抗扰度试验 GB/T 17626.6-2008 电磁兼容试验和测量技术射频场感应的传导骚扰抗扰度试验基于此,特对电磁兼容相关资料进行整合,以期给从事技术及相关工作的同事带来一些帮助,抛砖引玉。 一、名词解释 电磁骚扰:任可能引起设备、装置或系统性能降低或者有生命或者无生命物质产生损害作用的电磁现象。 电磁兼容(EMC):一个设备或系统在其电磁环境中能正常工作,且不会对其工作环境中的任事物产生不可承受的的电磁骚扰的能力。 电磁干扰(EMI) :电磁骚扰引起的设备、传输通道或系统性能的下降。 骚扰抗扰性度:装置、设备或系统面临电磁骚扰不降低运行性能的能力。 瞬态:在两相邻稳定状态之间变化的物理量或物理现象,其变化时间小于所关注的时间尺度。 脉冲:在短时间突变,随后又迅速返回其初始值的物理量。 冲激脉冲:针对某给定用途,近似于一单位脉冲或狄拉克函数的脉冲。 尖峰脉冲:持续时间较短的单向脉冲。 骚扰限值(允值):对应于规定测量法的最大电磁骚扰允电平。 干扰限值(允值):电磁骚扰使装置、设备或系统最大允的性能降低。 差模电压:一组规定的带电导体中任意两根之间的电压。 共模电压:每个导体与规定参考点(通常是地或机壳)之间的相电压的平均值。

知识讲解电磁感应复习与巩固基础

电磁感应复习与巩固 编稿:张金虎审稿:李勇康 【学习目标】 1.电磁感应现象发生条件的探究与应用。 2.楞次定律的建立过程与应用:感应电流方向决定因素的探究,楞次定律的表述及意义。 3.法拉第电磁感应定律的运用,尤其是导体棒切割磁感线产生感应电动势 sin EBLv??的计算是感应电动势定量计算的重点所在。在应用此公式时要特别注意导体棒的有效切割速度和有效长度。 4.利用法拉第电磁感应定律、电路知识、牛顿运动定律、能的转化和守恒定律进行综合分析与计算。 【知识络】 【要点梳理】 要点一、关于磁通量?,磁通量的变化??、磁通量的变化率t??? 1、磁通量

磁通量cos BSBSBS???????,是一个标量,但有正、负之分。 可以形象地理解为穿过某面积磁感线的净条数。 2、磁通量的变化 磁通量的变化21??????. 要点诠释: ??的值可能是2?、1?绝对值的差,也可能是绝对值的和。例如当一个线圈从与磁感 线垂直的位置转动180?的过程中21??????. 3、磁通量的变化率 磁通量的变化率t???表示磁通量变化的快慢,它是回路感应电动势的大小的决定因素。 2121ttt????????, 在回路面积和位置不变时BStt??????(Bt??叫磁感应强度的变化率); 在B均匀不变时SBtt??????,与线圈的匝数无关。 要点二、关于楞次定律 (1)定律内容:感应电流具有这样的方向:感应电流的磁场总是阻碍引起感应电流的磁通量发生变化。 (2)感应电流方向的决定因素是:电路所包围的引起感应电流的磁场的方向和磁通量的增减情况。 (3)楞次定律适用范围:适用于所有电磁感应现象。 (4)应用楞次定律判断感应电流产生的力学效果(楞次定律的变式说法):感应电流受到的安培力总是阻碍线圈或导体棒与磁场的相对运动,即线圈与磁场靠近时则相斥,远离时则相吸。 (5)楞次定律是能的转化和守恒定律的必然结果。 要点三、法拉第电磁感应定律 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比,即Et????. 要点诠释: 对n匝线圈有Ent????. (1)Ent????是t?时间内的平均感应电动势,当0t??时,Ent????转化为瞬时感应电动势。

电磁感应理论基础

一、电磁感应现象 1、电生磁:(电流的磁效应) 1)通电直导线周围存在磁场,磁场的方向与电流方向有关; 根据右手螺旋法则判断:用右手握住通电直导线,让大拇指指向电流的方向,那么四指的指向就是磁感线的环绕方向; (奥斯特试验) 插入:磁场基础概念 磁感线:在磁场中画一些曲线,用(虚线或实线表示)使曲线上任何一点的切线方向都跟这一点的磁场方向相同(且磁感线互不交叉),这些曲线叫磁感线。磁感线是闭合曲线。规定小磁针的北极所指的方向为磁感线的方向。磁铁周围的磁感线都是从N极出来进入S 极或传向无穷远处,在磁体内部磁感线从S极到N极。 磁感线是为了形象地研究磁场而人为假想的曲线,并不是客观存在于磁场中的真实曲线。但可以根据磁感线的疏密,判断磁性的强弱。

磁感线密集,则磁性强,稀疏,则弱。 磁感应强度:与磁力线方向垂直的单位面积上所通过的磁力线数目, 又叫磁力线的密度,也叫磁通密度, 用B表示,单位为特斯拉(T)。 磁通量:磁通量是通过某一截面积 的磁力线总数,用Φ表示,单位为韦伯, 符号是Wb。通过一线圈的磁通的表达式为:Φ=B·S(其中B为磁感应强度,S为该线圈的面积。) 2)通电螺旋线圈两端存在磁场,磁场的方向与电流方向有关; 根据右手螺旋法则判断:用右手握住通电螺旋线圈,让四指指向电流的方向,那么大拇指的指向就是磁感线的方向; 3)电生磁的实际应用 ①发电机的转子线圈即励磁线圈;

②变压器(包括电压互感器、电流互感器)的一次线圈; ③交流电动机的定子线圈; 2、磁生电 磁生电的两个试验: 按产生原因的不同,感应电动势分为动生电动势和感生电动势两种。 1)动生电动势。原理:导体做切割磁力线运动时,在导体两端上就会产生电动势。闭合电路的一部分导体做切割磁感线运动时,在导体上就会产生电流的现象叫电磁感应现象,产生的电流叫做感应电流。

人教版高中物理选修3-2重点题型巩固练习] 电磁感应基础知识

人教版高中物理选修3-2 知识点梳理 重点题型(常考知识点)巩固练习 【巩固练习】 一、选择题 1.在电磁学发展过程中,许多科学家做出了贡献,下列说法正确的是( ) A .奥斯特发现了电流磁效应;法拉第发现了电磁感应现象 B .麦克斯韦预言了电磁波;楞次用实验证实了电磁波的存在 C .库仑发现了点电荷的相互作用规律;密立根通过油滴实验测定了元电荷的数值 D .安培发现了磁场对运动电荷的作用规律;洛伦兹发现了磁场对电流的作用规律 2. 1873年奥地利维也纳世博会上,比利时出生的法国工程师格拉姆在会展中偶然接错了导线,把另一直流发电机发出的电接到了他自己送展的直流发电机的电流输出端。由此而观察到的现象导致了他的一项重要发明,从而突破了人类在电能利用方面的一个瓶颈,此项发明是( ) A .新型直流发电机 B .直流电动机 C .交流电动机 D .交流发电机 3.法拉第通过精心设计的一系列实验,发现了电磁感应定律,将历史上认为各自独立的学科“电学”和“磁学”联系起来,在下面几个典型的实验设计思想中,所做的推论后来被实验否定的是( ) A .既然磁铁可以使近旁的铁块带磁,静电荷也可以使近旁的导体表面感应出电荷,那么静止导线中的稳恒电流也可在近旁静止的线圈中感应出电流 B .既然磁铁可在近旁运动的导体中感应出电动势,那么稳恒电流也可在近旁运动的线圈中感应出电流 C .既然运动的磁铁可在近旁静止的线圈中感应出电流,那么静止的磁铁也可在近旁运动的导体中感应出电动势 D .既然运动的磁铁可在近旁的导体中感应出电动势,那么运动导线上的稳恒电流也可以在近旁的线圈中感应出电流 4.如图所示,矩形线框abcd 放置在水平面内,磁场方向与水平方向成α角,已知4sin 5 α=,回路面积为S ,磁感应强度为B ,则通过线框的磁通量为 ( ) A .BS B . 45BS C .35BS D .34BS 5.如图所示,ab 是水平面上一个圆的直径,在过ab 的竖直平面内有一根通电导线ef 。已知ef 平行于ab ,当ef 竖直向上平移时,电流磁场穿过圆面积的磁通 量将( )

86知识讲解 电磁感应中的能量问题(基础)

物理总复习:电磁感应中的能量问题 【考纲要求】 理解安培力做功在电磁感应现象中能量转化方面所起的作用。 【考点梳理】 考点、电磁感应中的能量问题 要点诠释: 电磁感应现象中出现的电能,一定是由其他形式的能转化而来的,具体问题中会涉及多种形式能之间的转化,如机械能和电能的相互转化、内能和电能的相互转化。分析时应当牢牢抓住能量守恒这一基本规律,分析清楚有哪些力做功就可以知道有哪些形式的能量参与了相互转化,如有摩擦力做功,必然有内能出现;重力做功就可能有机械能参与转化;安培力做负功就是将其他形式的能转化为电能,做正功就是将电能转化为其他形式的能,然后利用能量守恒列出方程求解。 电能求解的主要思路: (1)利用克服安培力做功求解:电磁感应中产生的电能等于克服安培力所做的功。 (2)利用能量守恒求解:机械能的减少量等于产生的电能。 (3)利用电路特征求解:通过电路中所产生的电流来计算。 【典型例题】 类型一、根据能量守恒定律判断有关问题 例1、如图所示,闭合线圈abcd用绝缘硬杆悬于O点,虚线表示有界磁场B,把线圈从图示位置释放后使其摆动,不计其它阻力,线圈将() A.往复摆动 B.很快停在竖直方向平衡而不再摆动 C.经过很长时间摆动后最后停下 D.线圈中产生的热量小于线圈机械能的减少量 【思路点拨】闭合线圈在进出磁场的过程中,磁通量发生变化,闭合线圈产生感应电流,其机械能转化为电热,根据能量守恒定律机械能全部转化为内能。 【答案】B 【解析】当线圈进出磁场时,穿过线圈的磁通量发生变化,从而在线圈中产生感应电流,机械能不断转化为电能,直至最终线圈不再摆动。根据能量守恒定律,在这过程中,线圈中产生的热量等于机械能的减少量。 【总结升华】始终抓住能量守恒定律解决问题,金属块(圆环、闭合线圈等)在穿越磁场时有感应电流产生,电能转化为内能,消耗了机械能,机械能减少,在磁场中运动相当于力学部分的光滑问题,不消耗机械能。上述线圈所出现的现象叫做电磁阻尼。用能量转化和守恒定律解决此类问题往往十分简便。磁电式电流表、电压表的指针偏转过程中也利用了电磁阻尼现象,所以指针能很快静止下来。 举一反三 【变式】光滑曲面与竖直平面的交线是抛物线,如图所示,抛物线的方程是y=x2,下半部处在一个水平方向的匀强磁场中,磁场的上边界是y=a的直线(图中的虚线所示).一个小金属块从抛物线上y=b(b>a)处以速度v沿抛物线下滑.假设抛物线足够长,金属块沿抛物线下滑后产生的焦耳热总量是( )

巩固练习 电磁感应基础知识

【巩固练习】 一、选择题 1.在电磁学发展过程中,许多科学家做出了贡献,下列说法正确的是()A.奥斯特发现了电流磁效应;法拉第发现了电磁感应现象 B.麦克斯韦预言了电磁波;楞次用实验证实了电磁波的存在 C.库仑发现了点电荷的相互作用规律;密立根通过油滴实验测定了元电荷的数值 D.安培发现了磁场对运动电荷的作用规律;洛伦兹发现了磁场对电流的作用规律 2.1873年奥地利维也纳世博会上,比利时出生的法国工程师格拉姆在会展中偶然接错了导线,把另一直流发电机发出的电接到了他自己送展的直流发电机的电流输出端。由此而观察到的现象导致了他的一项重要发明,从而突破了人类在电能利用方面的一个瓶颈,此项发明是()A.新型直流发电机B.直流电动机C.交流电动机D.交流发电机 3.法拉第通过精心设计的一系列实验,发现了电磁感应定律,将历史上认为各自独立的“电学”和“磁学”联系起来,在下面几个典型的实验设计思想中,所做的推论后来被实验否定的是()A.既然磁铁可以使近旁的铁块带磁,静电荷也可以使近旁的导体表面感应出电荷,那么静止导线中的稳恒电流也可在近旁静止的线圈中感应出电流 B.既然磁铁可在近旁运动的导体中感应出电动势,那么稳恒电流也可在近旁运动的线圈中感应出电流 C.既然运动的磁铁可在近旁静止的线圈中感应出电流,那么静止的磁铁也可在近旁运动的导体中感应出电动势 D.既然运动的磁铁可在近旁的导体中感应出电动势,那么运动导线上的稳恒电流也可以在近旁的线圈中感应出电流 ?角,已知放置在水平面内,磁场方向与水平方向成.如图所示,矩形线框abcd44??sin,回路面积为S,磁感应强度为B,则通过线框的磁通量为5 )(BS33BS4BS.B A C.D..BS 455 。ef是水平面上一个圆的直径,在过ab的竖直平面内有一根通电导线5.如图所示,ab竖直向上平移时,电流磁场穿过圆面积的磁通efab,当已知ef平行于

电磁兼容基本知识术语定义

电磁兼容基本知识 一、术语定义 1. 额定电压 EMI滤波器用在指定电源频率的工作电压(中国:250V, 50Hz,欧洲:230V,50Hz;美国:115V, 60Hz) 2.额定电流 在额定电压和指定温度条件下(常为环境温度40℃),EMI滤波器所允许的最大连续工作电流(Imax)。在其他环境温度下的最大允许工作电流是环境温度的函数,可用如下公式 得出: 3.试验电压 在EMI滤波器的指定端子之间和规定时间内施加的电压。试验电压分为两种,一种是加载在电源(或负载)端子之间,称为线-线试验电压;另一种是加载在电源(或负载)任一端与接地端(或滤波器金属外壳)之间,称为线-地试验电压。 4.泄漏电流 EMI滤波器加载额定电压后,断开滤波器的接地端与电源安全地线的条件下,测得接地端到电源(或负载)任一端间的电流,该值直接与接地电容的容量有关,可由如下公式得出:I LC=2×π× F×C×V 其中,F为工作频率, C为接地电容的容量, V为线-地电压 5.插入损耗 是衡量滤波器效果的指标。指的是在一定条件下,EMI滤波器对干扰信号的衰减能力。它用滤波器插入前信号源直接传送给负载的功率和插入后传送给负载的功率的对数来描述。在50Ω系统内测试时,可用下式来表示: IL=20Lg(E0/E1) 其中,IL-插入损耗(单位:dB); EO-负载直接接到信号源上的电压; E1-插入滤波器后负载上的电压 6.气候等级 指EMI滤波器的工作环境等级,按IEC规定应按以下方式标注:XX/XXX/XX 前2位数字代表滤波器的最低工作温度 中间数字代表滤波器的最高工作温度 后2位数字代表质量认定时在规定稳态湿热条件下的试验天数 7. 绝缘电阻 绝缘电阻是指滤波器相线,中线对地之间的阻值。通常用专用绝缘电阻表测试。

电磁兼容基本知识整理

电磁兼容基础知识 1.电磁兼容性基本概念 电磁兼容性:(EMC,即Electromagnetic Compatibility,)是指设备或系统在其电磁环境中符合要求运行并不对其环境中的任何设备产生无法忍受的电磁骚扰的能力。EMC其实就是包含了干扰性、抗干扰性与电磁环境三部分内容。(1)EMI(电磁干扰) 即处在一定环境中的设备或系统,在正常运行时,不应产生超过相应标准所要求的电磁能量。相对应的测试项目有: ·电源线传导骚扰(CE) ·信号、控制线传导骚扰(CE) ·辐射骚扰(RE) ·谐波电流测量(Harmonic) ·电压波动和闪烁测量(Fluctuation and Flicker) (2)EMS(电磁抗扰度) 即处在一定环境中的设备或系统,在正常运行时,设备或系统能承受相应标准规范范围内的电磁能量干扰。相对应的测试项目有: ·静电放电抗扰度(ESD) ·电快速瞬变脉冲群抗扰度(EFT/B) ·浪涌(SURGE) ·辐射抗扰度(RS) ·传导抗扰度(CS) ·电压跌落与中断(DIP) (3)电磁环境 即系统或设备的工作环境。 2.传导、辐射与瞬态 (1)传导干扰 由一个设备中产生的电压/电流通过电源线、信号线传导并影响其他设备时,

这个电压/电流的变化被称为“传导干扰”。通过给发生源及被干扰设备的电源线等安装滤波器,阻止传导干扰的传输。另外,当信号线上出现噪声时,将信号线改为光纤,也可隔断传输途径。 (2)辐射干扰 通过空间传播,并对其他设备电路产生无用电压/电流,造成危害的干扰称为“辐射干扰”。辐射现象的产生必然存在着天线与源。由于传播途径是空间,因此屏蔽也是解决辐射干扰的有效方法。 注:当设备和导线的长度比波长短时,主要问题是传导干扰;当它们的尺寸比波长长时,主要问题是辐射干扰。 (3)瞬态干扰 环境中存在的一些短暂的高能脉冲干扰,这些干扰对电子设备的危害很大,一般称这种干扰为“瞬态干扰”。瞬态干扰可以通过电缆进入设备,也可以以宽带辐射干扰的形式对设备造成影响。产生瞬态干扰的原因主要有:雷电、静电放电、电力线上的负载通/断(特别是感性负载)和核电磁脉冲。可见,瞬态干扰是指时间很短,但幅度较大的电磁干扰。常见的瞬态干扰有三种:电快速脉冲(EFT)、浪涌(SURGE)和静电放电(ESD)。

80知识讲解 电磁感应现象 感应电流方向的判断(基础)

物理总复习:电磁感应现象 感应电流方向的判断 【考纲要求】 1、知道磁通量的变化及其求解方法,理解产生感应电流、感应电动势的条件; 2、理解楞次定律的基本含义与拓展形式; 3、理解安培定则、左手定则、右手定则、楞次定律的异同,并能在实际问题中熟练运用。 【知识网络】 【考点梳理】 考点一、磁通量 1、定义: 磁感应强度B 与垂直场方向的面积S 的乘积叫做穿过这个面积的磁通量,BS φ=。如果面积S 与B 不垂直,如图所示,应以B 乘以在垂直于磁场方向上的投影面积S '。即 cos BS φθ'=。 2、磁通量的物理意义: 磁通量指穿过某一面积的磁感线条数。 3、磁通量的单位:Wb 21 1Wb T m =?。 要点诠释: (1)磁通量是标量,当有不同方向的磁感线穿过某面时,常用正负加以区别,这时穿过某面的磁通量指的是不同方向穿过的磁通量的代数和。另外,磁通量与线圈匝数无关。 磁通量正负的规定:任何一个面都有正、反两面,若规定磁感线从正面穿入磁通量为正,则磁感线从反面穿入时磁通量为负。穿过某一面积的磁通量一般指合磁通量。 (2)磁通量的变化21φφφ?=-,它可由B 、S 或两者之间的夹角的变化引起。 4、磁通量的变化 要点诠释: (一)、磁通量改变的方式有以下几种 (1)线圈跟磁体间发生相对运动,这种改变方式是S 不变而相当于B 变化。 (2)线圈不动,线圈所围面积也不变,但穿过线圈面积的磁感应强度是时间的函数。 (3)线圈所围面积发生变化,线圈中的一部分导体做切割磁感线运动。其实质也是B 不变,而S 增大或减小。 (4)线圈所围面积不变,磁感应强度也不变,但二者间的夹角发生变化,如在匀强磁场中转动矩形线圈。

电磁兼容基本知识介绍电磁耦合机理

1、传导耦合 导线经过有干扰的环境,即拾取干扰信号并经导线传导到电路而造成对电路的干扰,称为传导耦合,或者叫直接耦合。 在音频和低频的时候由于电源线、接地导体、电缆的屏蔽层呈现低阻抗,故电流注入这些导体时容易传播,当噪声传导到其他敏感电路的时候,就能产生干扰作用。 在高频的时候:导体的电感和电容将不容忽视,感抗随着频率的增加而增加,容抗随着频率的增加而减小。jwL,1/jwC 解决方法:防止导线的感应噪声,即采用适当的屏蔽和将导线分离,或者在骚扰进入明暗电路之前,用滤波的方法将其从导线中除去; 2、共阻抗耦合 当两个电路的电流经过一个公共阻抗时,一个电路的电流在该公共阻抗上形成的电压就会影响到另一个电路。 3、感应耦合 a)电感应容性耦合 干扰电路的端口电压会导致干扰回路中的电荷分布,这些电荷产生电场的一部分会被敏感电路拾取,当电场随时间变化,敏感回路中的时变感应电荷就会在回路中形成感应电流,这种叫做电感应容性耦合。 解决方法:减小敏感电路的电阻值,改变导线本身的方向性屏蔽或者分隔来实现。 b)磁感应耦合 干扰回路中的电流产生的磁通密度的一部分会被其他回路拾取,当磁通密度随时间变化时就会在敏感回路中出现感应电压,这种回路之间的耦合叫做磁感应耦合。 主要形式:线圈和变压器耦合、平行双线间的耦合等。铁心损耗常常使得变压器的作用类似于抑制高频干扰的低通滤波器。平行线间的耦合是磁感应耦合的主要形式 要想减少干扰,必须尽量减少两导线之间的互感。 4、辐射耦合 辐射源向自由空间传播电磁波,感应电路的两根导线就像天线一样,接受电磁波,形成干扰耦合。干扰源距离敏感电路比较近的时候,如果辐射源有低电压大电流,则磁场起主要作用;如果干扰源有高电压小电流,则电场起主要作用。 对于辐射形成的干扰,主要采用屏蔽技术来抑制干扰。

电磁感应基础知识

电磁感应基础知识 知识网络 1 2、通量Φ、磁通量变化?Φ、磁通量变化率 t ??Φ 对比表

3 4、感应电动势 在电磁感应现象中产生的电动势叫感应电动势,产生感应电流比存在感应电动势,产生感应电动势的那部分导体相当于电源,电路断开时没有电流,但感应电动势仍然存在。 a) 电路不论闭合与否,只要有一部分导体切割磁感线,则这部分导体就 会产生感应电动势,它相当于一个电源 b) 不论电路闭合与否,只要电路中的磁通量发生变化,电路中就产生感 应电动势,磁通量发生变化的那部分相当于电源。 5、公式 n E ?Φ =与E=BLvsin θ 的区别与联系

6、楞次定律 a)感应电流方向的判定方法 碍产生感应电流的原因 i.阻碍原磁通量的变化或原磁场的变化; ii.阻碍相对运动,可理解为“来拒去留”。 iii.使线圈面积有扩大或缩小趋势; iv.阻碍原电流的变化。

知识点一—磁通量 ▲知识梳理 磁通量 1.穿过某一面积的磁感线条数,在匀强磁场中, =BS,单位是韦伯,简称韦,符号是Wb.使用条件是B为匀强磁场,S为平面在磁场方向上的投影.磁通量虽然是标量,但有正负之分. 2.磁通量的物理意义 磁通量指穿过某一面积的磁感线条数。 3.磁通量的单位:Wb 。 4.磁通密度 垂直穿过单位面积的磁感线条数,即磁感应强度的大小。 :如图所示,矩形线圈的面积为S (),置于磁感应强度为B(T)、方向水平向右的匀强磁场中,开始时线圈平面与中性面重合。求线圈平面在下列情况的磁通量的 改变量:绕垂直磁场的轴转过(1);(2);(3)。 解析: 初位置时穿过线圈的磁通量 ;转过 时,; 转过时,;转过时,,负号表示穿过面积S的方向和以上情况相反,故: (1); (2); (3)。负号可理解为磁通量在减少。 变式练习: 1.如图所示,平面M的面积为S,垂直于匀强磁场B,求平面M由 此位置出发绕与B垂直的轴线转过60°时磁通量的变化为 ____________,转过180°时磁通量的变化量为____________。

电磁感应基础训练

一 选择题 1.如图所示,一矩形线圈,以匀速自无场区平移进入均匀磁场区,又平移穿出.在(A)、(B)、(C)、(D)各I --t 曲线中哪一种符合线圈中的电流随时间的变化关系(取逆时针 指向为电流正方向,且不计线圈的自感)? [ ] D t I 0 I t I 0 I (A) (B) (C) (D)

2. 一根长度为L 的铜棒,在均匀磁场 B 中以匀角速度ω绕通 过其一端O 的定轴旋转着, B 的 方向垂直铜棒转动的平面,如图所示.设t =0时,铜棒与Ob 成 θ 角(b 为铜棒转动的平面上的一个固定点),则 在任一时刻t 这根铜棒两端之间的感应电动势是: (A) )cos( 2 θωω+t B L . (B) t B L ωωcos 2 12 . (C) )cos( 22 θωω+t B L . (D) B L 2 ω. (E) B L 2 2 1ω. [ ] E B

3. 如图,长度为l的直导线ab在均匀磁场B 中以速度v 移动,直导线ab中的电动势为 (A) Bl v. (B) Bl v sinα. (C) Bl v cosα.(D) 0. [] D

4.如图所示,导体棒AB 在均匀磁场B 中 绕通过C 点的垂直于棒长且沿磁场方向的轴OO ' 转动(角速度ω 与 B 同方 向),BC 的长度为棒长的31 , 则 (A) A 点比B 点电势高. (B) A 点与B 点电势相等. (B) A 点比B 点电势低. (D) 有稳恒电流从A 点流向B 点. [ A ]

5. 如图所示的电路中,A、B 阻r >>R,L是一个自感系数相当 大的线圈,其电阻与R相等.当 开关K接通和断开时,关于灯泡 A和B的情况下面哪一种说法正确? (A) K接通时,I A >I B. (B) K接通时,I A =I B. (C) K断开时,两灯同时熄灭. (D) K断开时,I A =I B. [ A ]

tk电磁感应基础知识专题

高考综合复习——电磁感应(一)电磁感应基础知识、自感专题 ● 知识网络 ● 高考考点 考纲要求: 复习指导: 本章以电场及磁场等知识为基础,研究了电磁感应的一系列现象,通过实验总结出了产生感应电流的条件和判定感应电流方向的一般方法——楞次定律,给出了确定感应电动势大小的一般规律——法拉第电磁感应定律。感应电流的产生和感应电流的方向的判定和感应电动势的计算是电磁感应的基本的内容,纵观近年高考题可以看出题型主要为选择,在物理单科考试中应用较多,在理科综合试题中单独的涉及本考点的题目很少,大多是和电学知识相结合的综合性试题,且可以肯定本考点一定会在高考中出现。 通过对近年高考题目的分析比较可以看出,2006年的高考如果是物理单科有可能感应电流的产生和感应电流的方向的判定方面出题,而如果是理综考试试题,由于命题的要求的限制,单独考查的可能性很小,还应注意本考点与其它考点的结合而出现的综合性题目。还可以看出,矩形线框穿越有界匀强磁场问题,涉及到楞次定律(或右手定则)、法拉第电磁感应定律、磁场对电路的作用力、含电源电路的计算等知识,综合性强,能力要求高,这也是命题热点。2006年的高考,感应电动势的计算问题是肯定会出现的一个计算点,如果在选择题中出现,则应以基本计算为主,如果在计算题中出现则应当是一个综合性较强的题目。 ● 要点精析 ☆磁通量相关:

1. 磁通量: 穿过磁场中某个面的磁感线的条数叫做穿过这一面积的磁通量。磁通量简称磁通,符号为Φ,单位是韦伯(Wb)。 2. 磁通量的计算 (1)公式Φ=BS 此式的适用条件是:①匀强磁场,②磁感线与平面垂直。 (2)如果磁感线与平面不垂直上式中的S为平面在垂直于磁感线方向上的投影面积。 Φ=B·Ssinθ,其中θ为磁场与面积之间的夹角,我们称之为“有效面积”或“正对面积”。 (3)磁通量的“方向性” 磁感线正向穿过某平面和反向穿过该平面时,磁通量的正负关系不同,求合磁通时应注意相反方向抵消以后所剩余的磁通量。 注意:磁通量是标量。 (4)磁通量的变化(量):△Φ=Φ2-Φ1 △Φ可能是B发生变化而引起,也可能是S发生变化而引起,还有可能是B和S同时发生变化而引起,在确定磁通量的变化时应注意。 (5)磁通量的变化率△Φ/△t:指磁通量的变化快慢。 ☆电磁感应现象的产生条件: 1.产生感应电流的条件: 穿过闭合电路的磁通量发生变化,若电路不闭合,即使有感应电动势产生,也没有感应电流。 2.感应电动势的产生条件: 无论电路是否闭合只要穿过电路的磁通量发生变化,这部分电路就会产生感应电动势.这部分电路或导体相当于电源。 ☆感应电流的方向: 1.右手定则 右手定则:伸开右手,使大拇指跟其余四指垂直,并且都跟手掌在一个平面内,让磁感线垂直穿入手心,拇指指向导体运动方向,那么伸直四指指向即为感应电流的方向。 说明: ①伸直四指指向还有另外的一些说法:A.感应电动势的方向;B.导体的高电势处

关于电磁感应的几个基本问题

关于电磁感应的几个基本问题 (1)电磁感应现象 利用磁场产生电流(或电动势)的现象,叫电磁感应现象。 所产生的电流叫感应电流,所产生的电动势叫感应电动势。 所谓电磁感应现象,实际上是指由于磁的某种变化而引起电的产生的现象,磁场变化,将在周围空间激起电场; 如周围空间中有导体存在,一般导体中将激起感应电动势; 如导体构成闭合回路,则回路程还将产生感应电流。 (2)发生电磁感应现象,产生感应电流的条件: 发生电磁感应现象,产生感应电流的条件通常有如下两种表述。 ①当穿过线圈的磁通量发生变化时就将发生电磁感应现象,线圈里产生感应电动势。如线圈闭合,则线圈子里就将产生感应电流。 ②当导体在磁场中做切割磁感线的运动时就将发生电磁感应现象,导体里产生感应电动势,如做切割感线运动的导体是某闭合电路的一部分,则电路里就将产生感应电流。产生感应电动势的那部分导体相当于电源。 这里注意一点事啊 闭合电路的一部分做切割磁感线运动时,穿过闭合电路的磁通量也将发生变化。所以上述两个条件从根本上还应归结磁通量的变化。但如果矩形线圈abcd在匀强磁场B中以速度v平动时,尽管线圈的bc和ad边都在做切割磁感线运动,但由于穿过线圈的磁通量没有变,所以线圈回路中没有感应电流。 (3)发生电磁感应现象的两种基本方式及其理论解释 ①导体在磁场中做切割磁感线的相对运动而发生电磁感应现象:当导体在磁场中做切割磁感线的相对运动时,就将在导体中激起感应电动势。这种发生电磁感应现象的方式可以用运动电荷在磁场中受到洛仑兹力的作用来解释。 ②磁场变化使穿过磁场中闭合回路的磁通量改变而发生电磁感应现象:当磁场的强弱改变而使穿过磁场中的闭合回路程的磁通量发生变化时,就将在闭合回路程里激起感应电流。这种发生电磁感应现象的方式可以用麦克斯韦的电磁场理论来解释。 引起磁通量变化的常见情况 (1)线圈在磁场中转动; (2)线圈在磁场中面积发生变化; (3)线圈中磁感应强度发生变化; (4)通电线圈中电流发生变化。 感应电流方向的判断 (1)右手定则:伸开右手,让拇指跟其余四指垂直,并且都跟手掌在一个平面内,让磁感线垂直从手心进入,拇指指向导体运动的方向,其余四指指的就是感应电流的方向。 四指指向还可以理解为:感应电动势的方向、该部分导体的高电势处。 用右手定则时应注意:

高中物理-电磁感应知识梳理+练习

高中物理-电磁感应知识梳理+练习 一.电磁感应现象 1、电磁感应:闭合电路的一部分在磁场中做切割磁感线的运动时,导体中产生电流。由电磁感应产生的电流叫做感应电流。 2、磁通量:有“穿过一个闭合电路的磁感线的多少”来形象地理解“穿过这个闭合电路的磁通量”。 3、产生感应电流的条件:只要穿过闭合电路的磁通量发生变化,闭合电路中就有感应电流产生。 二.法拉第电磁感应定律 1、磁通量Φ、磁通量的变化量?Φ和磁通量的变化率 t ??Φ 2、法拉第电磁感应定律:电路中感应电动势E 的大小,跟穿过这一电路的磁通量的变化率 t ??Φ成正比。 t n E ??Φ = n 为线圈匝数 3、从能量角度理解电磁感应现象:其他形式的能转化为电能。 三.交变电流 1、发电机的结构及基本原理:各种发电机由定子和转子组成,当转子转动时,穿过线圈的磁通量发生变化,线圈中产生感应电动势。 2、正弦式电流的波形:正弦函数的规律变化 瞬时值表达式:t I i m ωsin =,t U u m ωsin = 3、正弦式电流的周期T :交流完成一次周期性变化所用的时间。单位:s 频率f :交流在1s 内发生周期性变化的次数。单位:Hz f T 1 = 4、交流电的峰值(m m I U ,):电流或电压的最大值。 有效值(e e I U ,):把交流和直流分别通过相同的电阻,如果在相等的时间内它们产生的热量相等,我们就把这个直流电压、电流的数值称做交流电压、电流的有效值。 对于正弦式交流电有:2 m e U U = ,2 m e I I = 5、电容器对交流的作用:隔直流、通交流。

四.变压器 1、变压器的基本结构:原线圈、副线圈和铁芯。 2、变压器的匝数与电压的关系:原、副线圈中,匝数多的线圈电压高。 3、升压变压器:原线圈匝数小于副线圈匝数;降压变压器:原线圈匝数大于副线圈匝数。 五.高压输电 1、输电过程中的电能损失:输电线上有电流的热效应。 2、高压输电的优点:提高电压来降低输电电流,根据Rt I Q2 ,可以有效地降低输电线上电能的损失。 3、电网的重要作用和电网安全的重要性 六.自感现象涡流 1、自感现象:线圈中电流的变化引起的磁通量变化,也会在自身激发感应电动势。 2、电感器:电感器的性能用自感系数来描述。自感系数:线圈越大、匝数越多、加入铁芯等。电感器的作用:对交流有阻碍作用。 3、涡流:只要空间有变化的磁通量,其中的导体中就会产生感应电流。 应用:电磁炉、金属探测器。 减小涡流危害的方法:电机、变压器的铁芯用电阻率很大的硅钢片叠成。 例题解析:例题:科学家探索自然界的奥秘,要付出艰辛的努力。19世纪,英国科学家法拉第经过10年坚持不懈的努力,发现了电磁感应现象。下图中可用于研究电磁感应现象的实验是() 检测卷一、选择题 1.第一个发现电磁感应现象的科学家是() 图选1-1-23 A D C B

相关文档
最新文档