材料热力学第三章

材料热力学-第二章

第二章热力学基础 材料热力学的基础:热力学的基本概念和基本定律经典热力学的核心和精髓:热力学3个(或称4个)基本定律 2.1 热力学基本概念 2.2 热力学第零定律(热平衡和温度) 2.3 热力学第一定律(能量关系) 2.4 热力学第二定律(过程方向) 2.5 热力学第三定律(熵值计算)

2.1 热力学基本概念(Basic concepts) 1.体系(system)和环境(surroundings) 2.系统的状态(State)和状态函数(State Function) 3.系统的过程与途径 4.体系的性质 5.热力学平衡态

体系 (system):研究的对象(是大量分子、原子、离子等物质微粒组成的宏观集合体)。人为地将所研究的一定范围的物体或空间与其余部分分开,作为我们研究的对象。1. 体系(system)和环境(surroundings): 环境(surroundings ):体系的周围部分

1. 体系(system)和环境(surroundings): 体系和环境的划分不是绝对的。 如何合适地选择体系,是解决热力学问题时必须考虑的。 例如:一个密闭容器,内装半容器水。 若以容器中的液体为体系,则为敞开体 系。因为液体水不仅可与容器内的空气 (环境)交换热量,且可与液面上的水蒸气 交换物质。 如果选整个容器为体系.则只与环境发 生热量交换,故为封闭体系。 如果将容器及其外面的空气一起选为体 系,则为孤立体系。

2 . 系统的状态和状态函数 状态:体系有一定的外在的宏观表现形式,每一个外在表现形式称作体系的一个状态。 状态是体系所具有的宏观性质。 状态与性质单值对应,因此: 系统的宏观性质也称为系统的状态函数。 当系统的状态变化时,状态函数的改变量只决定于系统的始态和终态,而与变化的过程或途径无关。

材料热力学与动力学复习题答案资料

` 一、常压时纯Al 的密度为ρ=cm 3 ,熔点T m =℃,熔化时体积增加5%。用理查得规则和克-克方程估计一下,当压力增加1Gpa 时其熔点大约是多少 解:由理查德规则 RTm Hm R Tm Hm Sm ≈??≈?= ? … 由克-克方程V T H dT dP ??=… 温度变化对ΔH m 影响较小,可以忽略, 代入得 V T H dT dP ??=dT T 1V Tm R dp V T Tm R ?≈??≈… 对 积分 dT T 1 V T Tm R p d T Tm Tm p p p ?? ?+?+?= 整理 ?? ? ???+?=?Tm T 1ln V Tm R p V T R V Tm R Tm T ??=???≈ Al 的摩尔体积 V m =m/ρ=10cm 3=1×10-5 m 3 ~ Al 体积增加 ΔV=5%V m =×10-5m 3 K 14.60314 .810510R V p T 7 9=??=??=?- Tm’=Tm+T ?=++= 二、热力学平衡包含哪些内容,如何判断热力学平衡。 内容:(1)热平衡,体系的各部分温度相等;(2)质平衡:体系与环境所含有的质量不变;(3)力平衡:体系各部分所受的力平衡,即在不考虑重力的前提下,体系内部各处所受的压力相等;(4)化学平衡:体系的组成不随时间而改变。 热力学平衡的判据: (1)熵判据:由熵的定义知dS Q T δ≥不可逆可逆 对于孤立体系,有0Q =δ,因此有 dS 可逆 不可逆 ≥,由于可逆过程由无限多个平衡态组成,因此对于孤立体系有 dS 可逆 不可逆0≥,对于封闭体系,可将体系和环境一并作为整个孤立体系来考虑熵的变化,即平衡 自发环境体系总0S S S ≥?+?=? | (2)自由能判据 若当体系不作非体积功时,在等温等容下,有 ()0 d ,≤V T F 平衡状态自发过程 上式表明,体系在等温等容不作非体积功时,任其自然,自发变化总是向自由能减小的方向 进行,直至自由能减小到最低值,体系达到平衡为止。 (3)自由焓判据 若当体系不作非体积功时,在等温等压下,有 d ≤G 平衡状态 自发过程 所以体系在等温等容不作非体积功时,任其自然,自发变化总是向自由能减小的方向进

材料力学第四章作业答案

4-1 试作下列各轴的扭矩图。 (a ) (b) 4-4 图示圆截面空心轴,外径D=40mm ,内径d=20mm ,扭矩m kN T ?=1,试计算mm 15=ρ的A 点处的扭矩切应力A τ以及横截面上的最大和最小的扭转切应力。

解:P A I T ρ?= )1(32 44απ-=D I p 又mm 20d = D=40mm 5.0==∴D d α 41244310235500)5.01(32)1040(14.3m I p --?=-???= MPa Pa I T P A 7.63107.6310 23550010151016123 3=?=????==∴--ρτ P W T =max τ 9433431011775)5.01(16 )1040(14.3)1(16--?=-???=-=απD W P a Pa W T P MP 9.84109.8410 11775101693 max =?=??==∴-τ 当2'd =ρ时 MPa Pa I T P 4.42104.4210 23550010101016123 3'min =?=????==--ρτ 4-6 将直径d=2mm ,长l=4m 的钢丝一端嵌紧,另一端扭转一整圈,已知切变模量G=80GPa ,试求此时钢丝内的最大切应力m ax τ。 解:r G ?=τ dx d R r R ?? =∴ R=mm d 12= 3331057.1414.321012101---?=???=??=?=∴l dx d R r R π? MPa Pa r G 6.125106.1251057.11080639=?=???=?=∴-τ (方法二:π?2=, l=4 ,P GI Tl =? ,324d I P π=,r Ip W p = ,l Gd W T P πτ==max )

材料热力学

2012 年春季学期研究生课程考核 (读书报告、研究报告) 考核科目:材料热力学 学生所在院(系):理学院应用化学系 学生所在学科: 学生姓名 学号: 学生类别: 考核结果阅卷人 第 1 页(共 5 页)

材料热力学在材料研究方面的应用 摘要:材料热力学对于材料的预测和使用具有理论指导作用,本文总结了近年来材料热力学在功能材料设计分析方面的应用,并对材料热力学这门学科在材料方面的应用进行了总结。 关键词:材料热力学;材料;应用 1.材料热力学概述 材料热力学就是把热力学原理和材料联系起来,用热力学的理论解决材料在设计、制造、应用时的相应问题。材料热力学课程以热力学定律为基础,着重介绍了统计热力学在材料中的应用,如溶液的统计热力学、相图热力学、相变热力学和化学平衡热力学等。 2.计算材料科学与热力学 随着科学技术的不断进步,已有的材料越来越不能满足当前甚至可预见的未来的科技发展对于生产、生活中各种器械材料的需要,已有的材料不断被淘汰,人们对材料提出越来越多的要求和希望。材料逐渐向功能的多样化和性能的优异化发展。大量的材料量和质的需求使人们不得不摈弃传统材料开发的逐一试探的方法。带预测性的材料设计理念就这样应运而生了。随着现当代材料分析与检测仪器精度和灵敏性的提高,人们可以积累大量的材料性能的数据,这为发展新的材料模型或新材料的预测和模拟研究提供了有利条件。由此产生了以材料热力学理论为基础,计算机技术辅助支撑的计算材料科学。 耿太在他的硕士论文[1]中提到,计算材料科学发展中最活跃的是包含相图热力学和相变动力学计算在内的CALPHAD领域。在此领域中,热力学模拟优化的过程和实验技术紧密结合,并与材料的成分、足迹和制备过程联系密切。而目前,材料设计领域的新课题就是连接不同层次材料的成分设计、微观结构、制备工艺来达到从微观结构到宏观性能的整体预测和设计。在这篇文章中,应用了热力学计算软件,计算了平衡态相图对耐腐蚀合金的耐腐蚀性能,计算了铁铝、铁硼合金的平衡态相图,并与标准的二元相图做了比较分析。他认为这种计算分析对于合金成分设计制备具有指导意义。 3.材料热力学用于金属材料 实际生产生活中应用最广泛的材料是金属材料。而金属材料中用到最多的又是金属基的复合材料。通过复合化设计后金属材料可以形成金属基的复合材料。金属基的复合材料具有更好的机械性能和功能性能,是当前高新技术、环境、能源、通信、汽车、国防及航空航天设备中不可替代的重要材料,并在国民经济和国防建设中有着不可替代的重要作用。 范同祥等人认为,金属熔体的热力学性质历来是材料科学、冶金化学和流体物理学等领域的工作者关注的冶金热力学的核心课题之一[2]。他们认为,热力学和动力学在研究复合材料界面反应控制、反应自生增强相种类选择、反应自生增强相尺寸控制、金属基复合材料体系设计及复合制备工艺优化等方面有很大的应用价值。并且,基于组元元素的悟性参数能为金属基复合材料的研究提供理论指导。但是,金属熔体的结构比较复杂,其热力学和动力学性质带有复杂性,且不同的体系有其特殊性,在这种情况下的热力学和动力学的模型应用就有其局限性和针对性,这样的模型需要发展和完善。另外,可以把热力学和动力学与第一性原理相结合,从原子尺度进行计算,这样就能在复合材料的研究中扩大热力学和动力学的应

《材料热力学》课程教学大纲的基本要求

1、Aim and significance of the course课程任务和目的 In response to the growing economic and technological importance of polymers, ceramics, advanced metals, composites, and electronic materials, many departments concerned with materials are changing and expanding their curricula. The advent of new courses calls for the development of new textbooks that teach the principles of materials science and engineering as they apply to all classes of materials. The Series in Materials Science and Engineering is designed to fill the needs of this changing curriculum. Based on the curriculum of the Department of Materials Science and Engineering at Nanchang University, the series will include textbooks for the undergraduate core sequence of course on Thermodynamics, Physical chemistry, Chemical physics, Structures, Mechanics, and Transport Phenomena as they apply to the study of materials. More advanced texts based on this core will cover the principles and technologies of different material classes, such as ceramics, metals, polymers, and electronic materials. The series will define the modern curriculum in materials science and engineering as the discipline changes with the demands of the future. This curriculum is deal with: treatment of the laws of thermodynamics and their applications to equilibrium, and the properties of materials. Provides a foundation to treat general phenomena in materials science and engineering, including chemical reactions, magnetism, polarizability, and elasticity. Develops relations pertaining to multiphase equilibria as determined by a treatment of solution thermodynamics. Develops graphical constructions that are essential for the interpretation of phase diagrams. Treatment includes electrochemical equilibria and surface thermodynamics. Introduces aspects of statistical thermodynamics as they relate to macroscopic equilibrium phenomena 2、main contents and basic requirement课程内容及基本要求 First Law: system and surroundings, energy transfer, energy of system, energy as a state function, work, the close system, notation, intensive and extensive properties, the open system, enthalpy, steady state, heat capacity at constant volume, heat capacity at constant pressure, adiabatic flow through a valve: Joule-Thomson Expansion, equations of state, nonideal gases, adiabatic compression or expansion, enthalpies of formation, enthalpy changes in chemical reactions, adiabatic temperature change in chemical reactions Second Law: entropy as a state function, entropy not conserved, open system entropy balance, adiabatic, reversible, steady state system, heat engines, diagrammatic representation,

材料力学习题册答案-第4章 弯曲内力

第四章梁的弯曲内力 一、判断题 1.若两梁的跨度、承受载荷及支承相同,但材料和横截面面积不同,则两梁的剪力图和弯矩图不一定相同。(×) 2.最大弯矩必然发生在剪力为零的横截面上。(×) 3.若在结构对称的梁上作用有反对称载荷,则该梁具有对称的剪力图和反对称的弯矩图。 图4-1 二、填空题 1.图4-2 所示为水平梁左段的受力图,则截面C 上的剪力 SC F=F ,弯矩C M=2Fa。2.图4-3 所示外伸梁ABC ,承受一可移动载荷F ,若F 、l均为已知,为减小梁的最大弯矩值,则外伸段的合理长度a= l/3 。 图4-2 图4-3 3.梁段上作用有均布载荷时,剪力图是一条斜直线,而弯矩图是一条抛物线。 4.当简支梁只受集中力和集中力偶作用时,则最大剪力必发生在集中力作用处。 三、选择题 1.梁在集中力偶作用的截面处,它的内力图为(C )。 A Fs 图有突变,M 图无变化; B Fs图有突变,M图有转折; C M 图有突变,Fs图无变化; D M 图有突变,Fs 图有转折。 2.梁在集中力作用的截面处,它的内力图为(B )。 A Fs 有突变,M 图光滑连续; B Fs 有突变,M 图有转折; C M 图有突变,凡图光滑连续; D M 图有突变,Fs 图有转折。 3.在图4-4 所示四种情况中,截面上弯矩M 为正,剪力Fs 为负的是(B )。 4.简支梁及其承载如图 4-1 所示,假 想沿截面m-m将梁截分为二。若取梁左 段为研究对象,则该截面上的剪力和弯 矩与q、M 无关;若以梁右段为研究对象, 则该截面上的剪力和弯矩与 F 无关。 (× )

图4-4 4.梁在某一段内作用有向下的分布力时,则在该段内,M 图是一条(A )。 A 上凸曲线;B下凸曲线; C 带有拐点的曲线; D 斜直线。 5.多跨静定梁的两种受载情况分别如图4-5 ( a )、(b )所示,以下结论中(A )是正确的。力F 靠近铰链。 图4-5 A 两者的Fs 图和M 图完全相同; B 两者的Fs 相同对图不同; C 两者的Fs 图不同,M 图相同; D 两者的Fs图和M 图均不相同。 6.若梁的剪力图和弯矩图分别如图4-6 ( a )和(b )所示,则该图表明( C ) A AB段有均布载荷BC 段无载荷; B AB 段无载荷,B截面处有向上的集中力,B C 段有向下的均布载荷; C AB 段无载荷,B 截面处有向下的集中力,BC 段有向下的均布载荷; D AB 段无载荷,B 截面处有顺时针的集中力偶,BC 段有向下的均布载荷。 图4-6

化工热力学(第三版)第二章答案

化工热力学(第三版) 习题解答集 朱自强、吴有庭、李勉编著

前言 理论联系实际是工程科学的核心。化工热力学素以概念抽象、难懂而深深印在学生的脑海之中。特别使他们感到困惑的是难以和实际问题进行联系。为了学以致用,除选好教科书中的例题之外,很重要的是习题的安排。凭借习题来加深和印证基本概念的理解和运用,补充原书中某些理论的推导,更主要的是使学生在完成习题时能在理论联系实际的锻炼上跨出重要的一步。《化工热力学》(第三版)的习题就是用这样的指导思想来安排和编写的。 《化工热力学》自出版以来,深受国内同行和学生的关注和欢迎,但认为习题有一定的难度,希望有一本习题集问世,帮助初学者更有效地掌握基本概念,并提高分析问题和解决问题的能力。为此我们应出版社的要求把该书第三版的习题解撰并付印,以飨读者。 在编写过程中除详尽地进行习题解答外,还对部分习题列出了不同的解题方法,便于读者进一步扩大思路,增加灵活程度;对部分有较大难度的习题前加上“*”号,如果教学时间较少,可以暂时不做,但对能力较强的学生和研究生也不妨一试。使用本题解的学生,应该先对习题尽量多加思考,在自学和独自完成解题的基础上加以利用和印证,否则将与出版此书的初衷有悖。 参加本习题题解编写的人员是浙江大学化工系的朱自强教授、南京大学化工系的吴有庭教授、以及李勉博士等,浙江大学的林东强教授、谢荣锦老师等也对本习题编写提供了有益的帮助。在此深表感谢。由于编写时间仓促,有些地方考虑不周,习题题解的写作方法不善,甚至尚有解题不妥之处,希望读者能不吝赐教,提出宝贵意见,以便再版时予以修改完善。

第二章 流体的压力、体积、浓度关系:状态方程式 2-1 试分别用下述方法求出400℃、4.053MPa 下甲烷气体的摩尔体积。(1) 理想气体方程;(2) RK 方程;(3)PR 方程;(4) 维里截断式(2-7)。其中B 用Pitzer 的普遍化关联法计算。 [解] (1) 根据理想气体状态方程,可求出甲烷气体在理想情况下的摩尔体积id V 为 331 6 8.314(400273.15) 1.381104.05310 id RT V m mol p --?+= = =??? (2) 用RK 方程求摩尔体积 将RK 方程稍加变形,可写为 0.5 ()() RT a V b V b p T pV V b -= +- + (E1) 其中 2 2.5 0.427480.08664c c c c R T a p RT b p == 从附表1查得甲烷的临界温度和压力分别为c T =190.6K, c p =4.60MPa ,将它们代入a, b 表达式得 2 2.5 6-20.5 6 0.427488.314190.6 3.2217m Pa mol K 4.6010 a ??= =???? 5 3 1 6 0.086648.314190.6 2.9846104.6010 b m m ol --??= =??? 以理想气体状态方程求得的id V 为初值,代入式(E1)中迭代求解,第一次迭代得到1V 值为 5 16 8.314673.15 2.9846104.05310 V -?= +?? 35 0.5 6 3 3 5 3.2217(1.38110 2.984610)67 3.15 4.05310 1.38110 (1.38110 2.984610) -----??-?- ??????+? 3 5 5 3 3 1 1.38110 2.984610 2.124610 1.389610m m ol -----=?+?-?=?? 第二次迭代得2V 为

化工热力学答案

第二章 均相反应动力学习题 1. 【动力学方程形式】 有一气相反应,经实验测定在400℃下的速率方程式为: 2 3.66A A dP P dt = 若转化为2 (/.)A kC A r mol hl =形式, 求相应的速率常数值及其单位。 2. [恒温恒容变压定级数] 在恒容等温下,用等摩尔H 2和NO 进行实验,测得如下数据: 总压(MPa )0.0272 0.0326 0.038 0.0435 0.0543 半衰期(s ) 256 186 135 104 67 求此反应级数 3.[二级反应恒容定时间] 4.醋酸和乙醇的反应为二级反应,在间歇反应反应器中,5min 转化率可达50%,问转化率为75%时需增加多少时间? 4、【二级恒容非等摩尔加料】 溴代异丁烷与乙醇钠在乙醇溶液中发生如下反应: i-C 4H 9Br+C 2H 5Na →Na Br+i-C 4H 9 OC 2H 5 (A) (B) (C) (D) 溴代异丁烷的初始浓度为C A0=0.050mol/l 乙醇钠的初始浓度为C B0=0.0762mol/l,在368.15K 测得不同时间的乙醇钠的浓度为: t(min) 0 5 10 20 30 50 C B (mol/l) 0.0762 0.0703 0.0655 0.0580 0.0532 0.0451 已知反应为二级,试求:(1)反应速率常数;(2)反应一小时后溶液中溴代异丁烷的浓度;(3)溴代异丁烷消耗一半所用的时间。 5. [恒温恒容变压定级数] 二甲醚的气相分解反应CH 3OCH 3 → CH 4 +H 2 +CO 在恒温恒容下进行,在504℃获得如下数据: t (s ) 0 390 777 1195 3155 ∞ Pt ×103(Pa ) 41.6 54.4 65.1 74.9 103.9 124.1

材料热力学知识点

第一章单组元材料热力学 名词解释: 1 可逆过程 2 Gibbs自由能最小判据 3 空位激活能 4 自发磁化: 5 熵: 6 热力学第一定律热力学第二定律 7 Richard定律 填空题 1 热力学第二定律指出:一个孤立系统总是由熵低的状态向熵高的状态变化,平衡状态则是具有最大熵的状态。 2 按Boltzmann方程,熵S与微观状态数W的关系式为S=klnW 3 热容的定义是系统升高1K时所吸收的热量,它的条件是物质被加热时不发生相变和化学反应 4 α-Fe的定压热容包括:振动热容、电子热容和磁性热容。 5 纯Fe的A3的加热相变会导致体积缩小 6 Gibbs-Helmholtz方程表达式是 7 铁磁性物质的原子磁矩因交换作用而排列成平行状态以降低能量的行为被称为自发磁化 论述题 1 根据材料热力学原理解释为什么大多数纯金属加热产生固态相变时会产生体积膨胀的效应? 2 试根据单元材料的两相平衡原理推导克拉伯龙(Clapeyron)方程。 3 试用G-T图的图解法说明纯铁中的A3点相变是异常相变。 4 试画出磁有序度、磁性转变热容及磁性转变(指铁磁-顺磁转变)自由能与温度的关系曲线。 计算题 1已知纯钛α/β的平衡相变温度为882O C,相变焓为4142J?mol-1,试求将β-Ti过冷到800O C 时,β→α的相变驱动力 2若某金属形成空位的激活能为58.2KJ?mol-1,试求在700O C下,该金属的空位浓度。 3纯Bi在0.1MPa压力下的熔点为544K。增加压力时,其熔点以3.55/10000K?MPa-1的速率下降。另外已知融化潜热为52.7J?g-1,试求熔点下液、固两相的摩尔体积差。(Bi的原子量为209g?mol-1.

化工热力学(下册)第二版-夏清-第2章-吸收答案

?第二章 吸收? 1. 从手册中查得101.33 KPa 、25 ℃时,若100 g水中含氨1 g,则此溶液上方的氨气平衡分压为0.987 K Pa。已知在此组成范围内溶液服从亨利定律,试求溶解度系数H (kmol/ (m 3·k Pa))及相平衡常数m 。 解:(1) 求H 由33NH NH C P H *=.求算. 已知:30.987NH a P kP *=.相应的溶液浓度3NH C 可用如下方法算出: 以100g 水为基准,因为溶液很稀.故可近似认为其密度与水相同.并取其值为31000/kg m .则: 3333 31/170.582/1001 1000 0.582/0.590/()0.987NH NH NH a C kmol m H C P kmol m kP *= =+∴===? (2). 求m .由333 333330.9870.00974101.331/170.01051/17100/18 0.00974/0.9280.0105 NH NH NH NH NH NH NH NH y m x P y P x m y x ****=== ===+=== 2. 101.33 kpa 、10 ℃时,氧气在水中的溶解度可用p O2=3.31×106x 表示。式中:P O2为氧在气相中的分压,k Pa 、x为氧在液相中的摩尔分数。试求在此温度及压强下与空气充分接触后的水中,每立方米溶有多少克氧。 解: 氧在空气中的摩尔分数为0.21.故: 222 266101.330.2121.2821.28 6.43103.31106 3.3110O O a O O P Py kP P x -==?====??? 因2O x 值甚小,故可以认为X x ≈ 即:2266.4310O O X x -≈=? 所以:溶解度6522232()6.431032 1.1410()/()11.4118()g O kg O kg H O m H O --????==?=?????

材料力学性能第四章

第四章缺口试件的力学性能 前面介绍的拉伸、压缩、弯曲、扭转乃至硬度试验等静载荷试验方法,都是采用横截面均匀的光滑试样,但实际生产中存在的构件,绝大多数都不是截面均匀无变化的的光滑体,往往存在着截面的急剧变化,例如键槽、油孔、轴肩、螺纹、退刀槽及焊缝等。这种截面变化的部位可以视为缺口(切口)。由于缺口的存在,在载荷(静载荷或冲击载荷)作用下,缺口截面上的应力状态将发生变化,产生“缺口效应”,从而影响到金属材料的力学性能。 §4.1 静载荷作用下的缺口效应 一、缺口试样在弹性状态下的局部应力和局部应变 1. 应力集中和应变集中 一薄板的中心边缘开缺口,并承受拉应力σ作用。缺口部分不能承受外力,这一部分外力要有缺口截面其他部分材料来的承担,因而缺口根部的应力最大。或者说,远离缺口处的截面上的力线的分布是均匀的,而在缺口截面上,由于截面突然缩小,力线密度增加,越靠近缺口根部力线越密,出现所谓应力集中的现象。 应力集中程度以应力集中系数表示之: max max l t n l n K σ σ σ σ = -缺口截面轴向最大应力 -缺口净截面平均轴向应力(名义应力)

K t 和材料性质无关,只决定于缺口几何形状(所以又称为几何应力集中因子或弹性应力集中因子)。例如: 12t c K ρ=+圆孔:3t K ≈ (无限宽板) 应力集中必然导致应变集中,在弹性状态下,有: E σε= 则: max max l t n l t n n K K K E E εσσεεε?== =?=? 即在弹性状态下,应力集中系数和应变集中系数相同。 2. 多轴应力状态 由图可见,薄板开有缺口承受拉应力后,缺口根部还出现了横向拉伸应力σx ,它是由材料的横向收缩引起的。可以设想,加入沿x 方向将薄板分成很多细小的纵向拉伸试样,每一个小试样受拉伸后都能产生自由变形。根据小试样所处的位置不同,它们所受的纵向拉伸应力σy 大小也不一样,越靠近缺口根部,σy 越大,相应的纵向应变εy 也越大(应力应变集中)。每一个小试样在产生纵向应变εy 的同时,必然也要产生横向收缩应变εx ,且εx =-νεy 。如果横向应变能自由进行,则每个小试样必然相互分离开来。但是,实际上薄板是弹性连续介质,不允许各部分自由收缩变形。由于这种约束,各个小试样在相邻界面上必然产生横向拉应力σx ,以阻止横向收缩分离。因此,σx 的出现是金属变形连续性要求的结果。在缺口截面上σx 的分布是先增后减,这是由于缺口根部金属能自由收缩,所以根部的σx =0。自缺口根部向内部发展,收缩变形阻力增大,因此σx 逐渐增加。当增大到一定数值后,随着σy 的不断减小,σx 也随之减小。(薄板,平面应力,z 向变形自由,σz =0,

化工热力学第二章习题答案剖析

习题: 2-1.为什么要研究流体的pVT 关系? 答:在化工过程的分析、研究与设计中,流体的压力p 、体积V 和温度T 是流体最基本的性质之一,并且是可以通过实验直接测量的。而许多其它的热力学性质如内能U 、熵S 、Gibbs 自由能G 等都不方便直接测量,它们需要利用流体的p –V –T 数据和热力学基本关系式进行推算;此外,还有一些概念如逸度等也通过p –V –T 数据和热力学基本关系式进行计算。因此,流体的p –V –T 关系的研究是一项重要的基础工作。 2-2.理想气体的特征是什么? 答:假定分子的大小如同几何点一样,分子间不存在相互作用力,由这样的分子组成的气体叫做理想气体。严格地说,理想气体是不存在的,在极低的压力下,真实气体是非常接近理想气体的,可以当作理想气体处理,以便简化问题。 理想气体状态方程是最简单的状态方程: RT pV = 2-3.偏心因子的概念是什么?为什么要提出这个概念?它可以直接测量吗? 答:纯物质的偏心因子ω是根据物质的蒸气压来定义的。实验发现,纯态流体对比饱和蒸气压的对数与对比温度的倒数呈近似直线关系,即符合: ???? ??-=r s r T p 11log α 其中,c s s r p p p = 对于不同的流体,α具有不同的值。但Pitzer 发现,简单流体(氩、氪、氙)的所有蒸气压数据落在了同一条直线上,而且该直线通过r T =0.7,1log -=s r p 这一点。对于给定流体对比蒸气压曲线的位置,能够用在r T =0.7的流体与氩、氪、氙(简单球形分子)的s r p log 值之差来表征。 Pitzer 把这一差值定义为偏心因子ω,即 )7.0(00.1log =--=r s r T p ω 任何流体的ω值都不是直接测量的,均由该流体的临界温度c T 、临界压力c p 值及r T =0.7时的饱和蒸气压s p 来确定。 2-4.纯物质的饱和液体的摩尔体积随着温度升高而增大,饱和蒸气的摩尔体积随着温度的 升高而减小吗? 答:正确。由纯物质的p –V 图上的饱和蒸气和饱和液体曲线可知。 2-5.同一温度下,纯物质的饱和液体与饱和蒸气的热力学性质均不同吗? 答:同一温度下,纯物质的饱和液体与饱和蒸气的Gibbs 自由能是相同的,这是纯物质气液

知识点--热力学与材料热力学部分(20200707134454)

热力学与材料热力学部分 热力学:用能量转化和守恒的观点来研究物质热运动的客观规律;以实验事实为基础,总结研究系统状态变化过程中的功能转化和热力学过程的方向性问题。 热力学研究能(energy)和能的转变(transformations)规律 材料研究的每个过程离不开热力学 1、材料服役性能 2、材料制备 3、材料微观组织 材料热力学是热力学基本原理在材料设计、制备与使用过程中的应用。 材料热力学是材料科学的重要基础之一。 材料学的核心问题是求得材料成分-组织结构-各种性能之间的关系。问题的前半部分,即材料成分-组织结构的关系要服从一个基本的科学规则,这个基本规则就是材料热力学。在材料的研究逐渐由“尝试法”走向“定量设计”的今天,材料热力学的学习尤其显得重要。 材料热力学是经典热力学和统计热力学理论在材料研究方面的应用,其目 的在与揭示材料中的相和组织的形成规律。固态材料中的熔化与凝固以及各类固态相变、相平衡关系和相平衡成分的确定、结构上的物理和化学有序性以及各类晶体缺陷的形成条件等是其主要研究对象。 现代材料科学发展的主要特征之一是对材料的微观层次认识不断进步。利用场离子显微镜和高分辨电子显微镜把这一认识推进到了纳米和小于纳米的层次, 已经可以直接观察到从位错形态直至原子实际排列的微观形态。这些成就可能给人们造成一种误解,以为只有在微观尺度上对材料的直接分析才是深刻把握材料 组织结构形成规律的最主要内容和最主要途径;以为对那些熵、焓、自有能、活 度等抽象概念不再需要更多的加以注意。其实不然,不仅热力学的主要长处在于它的抽象性和演绎性,而且现代材料科学的每一次进步和发展都一直受到经典热 力学和统计热力学的支撑和帮助。材料热力学的形成和发展正是材料科学走向成 熟的标志之一。工业技术的进步在拉动材料热力学的发展,而材料热力学的发展又在为下一个技术进步准备基础和条件。 材料热力学是热力学理论在材料研究、材料生产活动中的应用。因此这是一门与实践关系十分密切的科学。学习这门课程,不能满足于理解书中的内容,而应当多进行一些对实际材料问题的分析与计算,开始可以是一些简单的、甚至是别人已经解决的问题,然后由易渐难,循序渐进。通过不断的实际分析与计算, 增进对热力学理论的理解,加深对热力学的兴趣,进而有自己的心得和成绩。 热力学最基本概念: 1、焓变 enthalpy 焓,热函:一个系统中的热力作用,等于该系统内能加上其体积与外界作用

材料热力学与动力学复习题

一、常压时纯Al 的密度为ρ=2.7g/cm 3,熔点T m =660.28℃,熔化时体积增加5%。用理查得规则和克-克方程估计一下,当压力增加1Gpa 时其熔点大约是多少? 解:由理查德规则 RTm Hm R Tm Hm Sm ≈??≈?= ? …① 由克-克方程V T H dT dP ??=…② 温度变化对ΔH m 影响较小,可以忽略, ①代入②得 V T H dT dP ??=dT T 1V Tm R dp V T Tm R ?≈??≈…③ 对③积分 dT T 1 V T Tm R p d T Tm Tm p p p ?? ?+?+?= 整理 ??? ? ??+?=?Tm T 1ln V Tm R p V T R V Tm R Tm T ??=???≈ Al 的摩尔体积 V m =m/ρ=10cm 3=1×10-5m 3 Al 体积增加 ΔV=5%V m =0.05×10-5m 3 K 14.60314 .810510R V p T 7 9=??=??=?- Tm’=Tm+T ?=660.28+273.15+60.14=993.57K 二、热力学平衡包含哪些内容,如何判断热力学平衡。 内容:(1)热平衡,体系的各部分温度相等;(2)质平衡:体系与环境所含有的质量不变;(3)力平衡:体系各部分所受的力平衡,即在不考虑重力的前提下,体系内部各处所受的压力相等;(4)化学平衡:体系的组成不随时间而改变。 热力学平衡的判据: (1)熵判据:由熵的定义知dS Q T δ≥不可逆可逆 对于孤立体系,有0Q =δ,因此有 dS 可逆 不可逆 ≥,由于可逆过程由无限多个平衡态组成,因此对于孤立体系有 dS 可逆 不可逆0≥,对于封闭体系,可将体系和环境一并作为整个孤立体系来考虑熵的变化,即平衡 自发环境体系总0S S S ≥?+?=? (2)自由能判据 若当体系不作非体积功时,在等温等容下,有 ()0d ,≤V T F 平衡状态 自发过程 上式表明,体系在等温等容不作非体积功时,任其自然,自发变化总是向自由能减小的方向 进行,直至自由能减小到最低值,体系达到平衡为止。 (3)自由焓判据 若当体系不作非体积功时,在等温等压下,有 d ≤G 平衡状态 自发过程 所以体系在等温等容不作非体积功时,任其自然,自发变化总是向自由能减小的方向进 行,直至自由能减小到最低值,体系达到平衡为止。

材料热力学及动力学复习题答案

一、常压时纯Al 的密度为ρ=2.7g/cm 3 ,熔点T m =660.28℃,熔化时体积增加5%。用理查得规则和克-克方程估计一下,当压力增加1Gpa 时其熔点大约是多少? 解:由理查德规则 RTm Hm R Tm Hm Sm ≈??≈?= ? …① 由克-克方程V T H dT dP ??=…② 温度变化对ΔH m 影响较小,可以忽略, ①代入②得 V T H dT dP ??=dT T 1V Tm R dp V T Tm R ?≈??≈…③ 对③积分dT T 1 V T Tm R p d T Tm Tm p p p ?? ?+?+?= 整理?? ? ???+?=?Tm T 1ln V Tm R p V T R V Tm R Tm T ??=???≈ Al 的摩尔体积V m =m/ρ=10cm 3=1×10-5m 3 Al 体积增加ΔV=5%V m =0.05×10-5 m 3 K 14.60314 .810510R V p T 7 9=??=??=?- Tm ’=Tm+T ?=660.28+273.15+60.14=993.57K 二、热力学平衡包含哪些内容,如何判断热力学平衡。 内容:(1)热平衡,体系的各部分温度相等;(2)质平衡:体系与环境所含有的质量不变;(3)力平衡:体系各部分所受的力平衡,即在不考虑重力的前提下,体系内部各处所受的压力相等;(4)化学平衡:体系的组成不随时间而改变。 热力学平衡的判据: (1)熵判据:由熵的定义知dS Q T δ≥不可逆可逆 对于孤立体系,有0Q =δ,因此有 dS 可逆 不可逆 ≥,由于可逆过程由无限多个平衡态组成,因此对于孤立体系有 dS 可逆 不可逆0≥,对于封闭体系,可将体系和环境一并作为整个孤立体系来考虑熵的变化,即平衡 自发环境体系总0S S S ≥?+?=? (2)自由能判据 若当体系不作非体积功时,在等温等容下,有 ()0 d ,≤V T F 平衡状态 自发过程 上式表明,体系在等温等容不作非体积功时,任其自然,自发变化总是向自由能减小的方向进行,直至自由能减小到最低值,体系达到平衡为止。 (3)自由焓判据 若当体系不作非体积功时,在等温等压下,有

材料热力学2014试卷及答案

《材料热力学》考试试题 (2014年12月23日) 1.名词解释(30分) (1) 混合吉布斯自由能 (2) 过剩吉布斯自由能:P2左上 (3) Dulong 和Petit 规则:P6右上 (4) Neumann-Kopp 规则:P6右上 (5) Pictet 和Trouton 规则:P6右上二,教材P22 (6) 热力学稳定图:P7右上 (7) 磁性对吉布斯自由能的3个参数:P4左下 (8) 2元系退化平衡的两种情况:P20,一般是二个熔点相差很大的体系,在低熔点元素附近的平衡,温度很接近该元素熔点,成分很接近边界,无法分辨出是共晶还是包晶反应,它说的两种情况应该是指包晶反应的退化和共晶反应的退化。 (9) 化学势:化学势又称为偏摩尔势能,化学势就是吉布斯自由能对成分的偏微分,教材P70 (10) 热力学第四定律:P11右上二 2. 钢铁中M2C相由亚点阵(Cr,Fe,Mo)1(C, Va)0.5表示 (1) 写出吉布斯自由能表达式,并注明表达式中各符号的意义 (2) 写出Cr的摩尔分数x Cr与其点阵分数之间的关系式(20分) 3. 解释Schreinemarkers’ rule, 并说明图中哪个相图不符合Schreinemarkers’ rule(20分)

(a) (b) (c)

Schreinemarkers’ rule: the extrapolations of boundaries of the one-phase field in t he elementary unit must either both fall inside the three-ph ase fields or inside each of the two two-phase fields 4. Cr-Ni-Nb三个边界二元系的相图及液相面投影图如下所示: 请写出点U1, U2, E1, E2, e5,max的相平衡表达式,并画出Cr-Ni-Nb体系含液相的反应图(30分)。

材料热力学 第4章 二元相

Thermodynamics and Kinetics of Materials Chapter 4 Binary phases Thermodynamics and Kinetics of Materials, M. Y. Zheng, Fall 2005

For example: ?钢铁材料可以简化成Fe-C 二元合金;?镍基高温合金可以简化成Ni-Al 二元合金; ?硅酸盐玻璃可简化为SiO 2与Na 2O 或Al 2O 3等氧化物的二元系;?ZrO 2陶瓷材料可简化为ZrO 2-Y 2O 3二元系等。 虽然实际的材料大多是多组元材料,但其中的多数可以简化为二组元材料来分析研究。 *二组元材料的热力学理论是材料热力学最基本的内容

二元系统中存在的相: 纯组元相 溶体相: 溶液(液态)、固态溶体(固溶体) 溶体相是二组元材料及多组元材料中最重要的相组成物 化合物中间相。

4.1 理想溶体近似(Ideal solution approximation)4.2 正规溶体近似(Regular solutions approximation) 4.3 溶体的性质(Properties of solution) 4.4 混合物的自由能(Free energy of mixture) 4.5 亚正规溶体模型(sub-regular solution model)4.6 化学位(Chemical potential) 4.7 化学位和自由能-成分图(Gm-x图) 4.8 活度(Activity) 4.9 化合物相(Compound)

4.1 理想溶体近似(Ideal solution approximation) 溶体、溶液(solution):广义地说,两种或两种以上物质彼此以原子、分子或离子状态均匀混合所形成的粒子混合系统(Particle mixing system)。 溶体以物态可分为气态溶液、固态溶液和液态溶液。 本课程主要讨论凝聚态的溶体:溶液和固溶体。

相关文档
最新文档