拉曼光谱实验报告

拉曼光谱实验报告
拉曼光谱实验报告

拉曼光谱实验报告

戚嘉杰(151242034)?

南京大学匡亚明学院

2018.05.25

引言

拉曼光谱是分子或者凝聚态物质的散射光谱。如果光线射向透明物体,光与物体内的粒子发生碰撞时就产生了散射现象。大部分的散射光子与入射光具有相同的频率。具有不同频率的散射光现象就是拉曼散射。

拉曼散射是单色光与分子或者晶体物质发生非弹性散射的结果。介质分子本身振动或转动造成入射光与介质分子之间交换能量,使得散射光频率发生改变。于是研究拉曼光谱可以有效的研究分子结构分子振动能级。拉曼光谱已经成为物质鉴定的有效手段。

1实验目的

1.掌握掌握拉曼散射的基本原理,学会根据拉曼散射谱线辨别其简正模式

2.掌握拉曼散射的实验技术

2实验原理

如果光线射向透明物体,光与物体内的粒子发生碰撞时就产生了散射现象。大部分的散射光子与入射光具有相同的频率。具有不同频率的散射光现象就是拉曼散射。拉曼散射是最弱的,通常小于入射光的10?6。

实验得到的拉曼散射光谱图,其谱线有三个明显的特征:

1.拉曼散射谱线波数随入射光波数变化而变化。对同一样品同意拉曼线的波数差不变。

2.若以入射光波数为中心点,两边分别是斯托克斯线与反斯托克斯线。

3.一般情况下,斯托克斯线的强度大于反斯托克斯线。

2.1拉曼散射经典解释

入射光作用下分子被诱导一个偶极矩,在入射光场不太强的情况下,感应电偶极矩P与入射光场E之间呈现线性关系:

P=αE(1)?电子邮件:151242034@https://www.360docs.net/doc/ac12801551.html,

在P 和E 不在同一方向的情况下α是一个3×3的对称矩阵,即a ij =a ji 。

如果分子中原子处于平衡位置附近振动,则分子的极化率将会发生改变。当振动幅度不大时可以使用简谐振动来近似。分子第k 个简正坐标可表示为

Q k =Q k 0cos(ωk +φk )

(2)此时a ij 将受到分子振动的微扰,它可用对简正坐标进行泰勒展开:

a ij =(αij )0+ k ?αij ?Q k 0Q k +12 k, ?2αij ?Q k ?Q 0Q k Q + (3)

这样不难得知拉曼散射是同分子的某个振动模式中电极化率是否发生变化相关联的。若入射光场表示为

E =E 0cos(ω0)t (4)

其对分子产生的电偶极矩为P =a ij E .

2.2拉曼散射的量子解释

量子力学中频率为ν0的入射单色光视作能量为hν0的光子,与分子相互作用的过程可以视作是碰撞过程。拉曼散射就是一种非弹性碰撞。

发生碰撞时可以使用跃迁图进行表示。在基态与激发态的分子受到入射光子的碰撞后,激发到各自的激发虚态,他自发向下跃迁辐射光子。若其能量为h (ν0??ν),则为斯托克斯线,若能量为h (ν0+?ν),则为反斯托克斯线

图1:拉曼散射的量子力学解释

2.3拉曼散射的偏振态与退偏度

在散射过程中即使入射光时偏振光,其散射光的方向通常与其不一致,他们之间的关系由?α?Q k 决定。由此可以确定分子振动的类型与其相应的振动模式。

由于宏观上有大量分子在空间上的取向各有不同,因此宏观上会产生退偏现象。散射光两方向的强度可以使用I y 与I x 表示,那么退偏度的定义是

ρn =I y

I x (5)

这是自然光入射的退偏度,理论计算能得到以下结果

ρn =6γ245a 2+7γ2

ρ⊥=ρ =3γ245a 2+7γ2(6)

上式中a是平均电极化率,γ是各向异性率。

2.4CCl4分子的对称结构

本实验主要通过对CCl4分子的振动拉曼光谱来研究其对称结构与振动模式。该分子具有以下五种

对称元素:E,3C m2,8C j±

3,6iC p

2

,6iC4±

2

.

有N个原子构成的分子有3N个自由度,除去三个平动自由度与三个转动自由度,分子具有3N?6个自由度,于是四氯化碳分子具有九个简正模式。根据分子的特性这九个简正模式可以分成四类。在同一类的各振动方式有相同的能量,即他们是简并的。每一类兼并对应于同一条谱线,故四氯化碳分子的振动拉曼光谱有四条基频谱线。根据实验结果他们之间的强度关系是ν1>ν4>ν2>ν3。下图2说明了该分子的几种不同的振动方式。具体振动方式如下:

1.四个Cl原子沿各自与C的连线同时向内或向外运动;

2.四个Cl原子沿垂直于各自与C原子连线的方向运动并且保持重心不变,又分两种在一种中,两

个Cl在它们与C形成的平面内运动;在另一种中,两个Cl垂直于上述平面而运动,由于两种情形中力常数相同,振动频率是简并的;

3.C原子平行于正方体的一边运动,四个Cl原子同时平行于改变反向运动,分子重心保持不变,为

三重简并;

4.两个Cl沿立方体一面的对角线作伸缩运动,另两个在对面做位相向反的运动,也是三重简并。

图2:CCl44类振动模式

3实验仪器与实验技术

现有的实验技术都要实现尽量增加拉曼光,抑制其他干扰信号。于是本实验采用高强度,高单色性,高方向性的激光光源。利用高脉冲甄别和数字计数的方法输出脉冲信号,且不需要A/D转换这样可以直接送到计算机处理。同时本实验采用的仪器一体化程度较高。可以快速并且方便的完成该试验。本实验也进一步说明了拉曼光谱确实能够研究物质的宏观与微观性质。

4实验内容

1.掌握仪器的使用原理和技术,调节仪器至最佳状态。

2.记录狭缝宽度并获得拉曼光谱,分析各个简正模式。

3.计算分子的振动频率与各个谱线与激发线的波数差。

(a)拉曼谱仪结构

(b)实验光路

图3:实验仪器和光路5实验结果与分析

5.1拉曼谱

实验最终得到的精准扫描拉曼谱如下图4.

图4:精准扫描拉曼谱

5.2实验结果分析

各峰对应的波长、光子数以及相应的波数、振动模式和相对误差见下表1。需要说明的是,d 峰是由两个紧邻的峰叠加而成,所以在取波长及光子数时,使用的是两个小峰的平均值。

d 峰处两个峰的形成与费米共振有关。所谓费米共振,是一种广泛存在于分子内和分子间的分子振动耦合和能量转移现象。分子内的费米共振现象由某个基团的基频和另一个基团的组频或某两个基团的和频发生耦合而产生。费米共振在分子振动态、电子态相互耦合、分子结构与性能等研究中具有重要的理论意义。

峰序号波长/nm光子数波数/cm?1振动模式相对误差(×100%)

a537.5812442216.692 4.68

b540.4113841314.104 1.52

c544.7227154460.511-0.75

d554.273826776.823 1.94

表1:拉曼谱各峰参数表

观察到实测各峰的波数与相应振动模式下波数的相对误差在1%左右,这是在可以接受的范围内。误差项的主要来源:

?聚焦不精准导致谱线对比度降低,半高宽增大,峰位置对应波长有所偏差。若取波长λ= 540±0.1nm来计算波数,波数的变化满足:

?k=±

106

540×(540±0.1)

≈±

106

5402

≈±3cm?1(7)

由该项引入的误差就接近于1%左右,应为主要的误差项。

?入射光子与其它原子或分子发生非弹性散射导致频率的变化,如空气、盖玻片等。但是光子与空气的作用截面应该比光子与CCl4的作用截面小,且这种产生的连续谱大都湮灭在本地中。这项误差的影响应该不算很大。

?实验设备的计数能力受限。就与CCl4发生弹性散射的光子来看,波长从531.11nm到531.39nm之间光子数均为65535;而从上文的论述中可以看到,波长变化0.1nm对于波数的结果就能有3cm?1左右,这很影响判断。同时,从530nm之前统计的光子数来看,数目的涨落可达20~30。设备的统计涨落对于确定峰值的影响也较大。设备的噪声、外环境的影响均已包含在统计涨落之内。

6思考题

1.为什么随着温度的升高反斯托克斯线的强度会增大?

解:根据玻尔兹曼分布律,平衡时斯托克斯线强度I ks与反斯托克斯线I kas有如下关系

I ks I kas ∝exp(

ωk

kT

)(8)

温度升高,会使激发态上的分子数增加,反斯托克斯线对应于激发态的分子通过碰撞跃迁到基态,其强度正比于激发态上分子的数目,故随着温度的升高,反斯托克斯线的强度会增大。

2.拉曼效应与荧光过程有哪些相同与不同?

解:拉曼散射和荧光发射具有相似的起源,是两个相互竞争的过程。通常,激光光子与分子碰撞后一部分能量传递给分子振动。散射光子因而能量减小,相应的散射光表现为频率红移。不同的分子振动对应于不同的频率位移,从而给出分子的拉曼光谱,该光谱就蕴涵了该样品分子的特征信息。当激发光子的能量接近两个电子态之间的跃迁能量时,就会出现共振拉曼或者共振荧光个过程之间的差别主要在于所涉及的时间尺度,以及所涉及的中间态的本质。与共振荧光不同,阶跃荧光的起因是:分子直接吸一个光子后,从所在激发电子态的振动激发能级驰豫到振动最低能级,然后从该最低振动能级辐射光子。一个典型的荧光过程需要10?9s以上的时间,与之不同的是,拉曼跃迁可以在1ps以内的时间内完成。

3.如何判断激光束照射样品处于最佳位置?

解:在实验过程中首先使用系统自带相机功能进行观察,粗调并细调旋钮获得样品壁清晰边缘,此时认为可以进行实验,并且在实验扫描过程中可以再进行细调以保证获得的谱线峰对比度较为清晰,此时就可以认为样品处在最佳位置。

4.为何气体的拉曼图可以看到转动能级产生的拉曼线而液体样品一般不能?

解:气体分子间距大,相互作用小,分子转动能级能量低,分子容易转动,因而可以看到;液体分子间距小,相互作用大,分子转动能级能量大,分子不容易转动,因而一般看不到。

拉曼光谱实验报告

拉曼光谱实验 姓名学号 何婷21530100 李玉环21530092 宋丹21530111 [实验目的] 1、了解Raman光谱的原理和特点; 2、掌握Raman光谱的定性和定量分析方法; 3、了解Raman光谱的谱带指认。 4、了解显微成像Raman光谱。 [仪器和装置] 1、显微Raman光谱系统一套,拉曼光谱仪的型号为SPL-RAMAN-785 USB2000+的拉曼光谱仪,自带785nm激光; 2、带二维步进电机平移台一台(有控制器一台); 3、PT纳米线样品; 4、光谱仪软件SpectraSuite; 5、步进电机驱动软件; 6、摄像头(已与显微镜集成在一起)。 [实验内容] 1、使用显微Raman系统及海洋光谱软件对单根或多根纳米线进行显微Raman光谱测量, 对测量的图和标准图进行比较,并通过文献阅读对PT纳米线Raman(测量和标准)的谱峰进行指认。 2、使用显微拉曼扫描系统进行二维样品表面拉曼信号收集,并生成样品表面特定波长处的 拉曼信号强度三维图,模拟样品表面拉曼表征。选择多个拉曼波长对样品形状进行观察。[实验结果及分析]

观察PbTiO3的拉曼散射谱并比对具体的拉曼散射光谱数据进行分析,可以找到以上10个拉曼散射峰,分别位于784.54nm,794.94 nm,798.60 nm,802.90 nm,806.84 nm,811.91 nm,817.10 nm,825.29 nm,832.44 nm,879.69nm附近,对应的Raman Shift分别是-7.46 cm-1 159.28 cm-1 216.94 cm-1 284.00 cm-1 344.82 cm-1 422.21 cm-1 500.44 cm-1 621.90 cm-1 725.97 cm-1 1371.21 cm-1。 (通过Raman Shift=1/λ入射-1/λ散射计算得到) PT纳米线Raman测量的谱峰指认: 分析可知,-7.46 cm-1 159.28 cm-1 216.94 cm-1 284.00 cm-1 344.82 cm-1 422.21 cm-1 500.44 cm-1 621.90 cm-1 725.97 cm-1附近的9个振动模,分别对应于PbTiO3的A1(1TO),E(1LO),E(2TO),B1+E,A1(2TO),E(2LO)+A1(2LO),E(3TO)A1(3TO),A1(3LO)声子模。 位于159.28 cm-1附近的模对应PbTiO3纳米线表面的TiO6八面体相对于Pb的振动;位于500.44 cm-1附近的模分别对应于表面Ti-O或Pb-O键的振动;位于725.97 cm-1附近的模对应于TiO6八面体中Ti-O键的振动。而位于284.00 cm-1的振动模为静模。此外,在725.97 cm-1处PbTiO3还具有额外的Raman振动模,可能与该相中含有大量且复杂的晶胞结构有关。据报道,复杂钙钛矿结构中氧八面体的畸变或八面体内B位离子的移动在某种程度上会破坏平移对称性,引起相邻晶胞不再具有相似的局部电场和极化率。 位于-7.46 cm-1处的拉曼峰强度增强,相比标准PbTiO3纳米线,其余拉曼峰强度均减弱。798nm处样品表面拉曼信号三维强度图:

拉曼光谱

拉曼光谱实验报告 一、实验目的 1. 了解拉曼光谱的基本原理、主要部件的功能; 2. 了解拉曼光谱对所观察与分析样品的要求; 3. 了解拉曼光谱所观察材料的微观组织结构和实际应用; 4. 初步掌握制样技术和观察记录方法 二、实验仪器原理 1928年C.V.拉曼实验发现,当光穿过透明介质被分子散射的光发生频率变化,这一现象称为拉曼散射,同年稍后在苏联和法国也被观察到。在透明介质的散射光谱中,频率与入射光频率υ0相同的成分称为瑞利散射;频率对称分布在υ0两侧的谱线或谱带υ0±υ1即为拉曼光谱,其中频率较小的成分υ0-υ1又称为斯托克斯线,频率较大的成分υ0+υ1又称为反斯托克斯线。靠近瑞利散射线两侧的谱线称为小拉曼光谱;远离瑞利线的两侧出现的谱线称为大拉曼光谱。瑞利散射线的强度只有入射光强度的10-3,拉曼光谱强度大约只有瑞利线的10-3。小拉曼光谱与分子的转动能级有关,大拉曼光谱与分子振动-转动能级有关。拉曼光谱的理论解释是,入射光子与分子发生非弹性散射,分子吸收频率为υ0的光子,发射υ0-υ1的光子(即吸收的能量大于释放的能量),同时分子从低能态跃迁到高能态(斯托克斯线);分子吸收频率为υ0的光子,发射υ0+υ1的光子(即释放的能量大于吸收的能量),同时分子从高能态跃迁到低能态(反斯托克斯线)。分子能级的跃迁仅涉及转动能级,发射的是小拉曼光谱;涉及到振动-转动能级,发射的是大拉曼光谱。与分子红外光谱不同,极性分子和非极性分子都能产生拉曼光谱。激光器的问世,提供了优质高强度单色光,有力推动了拉曼散射的研究及其应用。拉曼光谱的应用范围遍及化学、物理学、生物学和医学等各个领域,对于纯定性分析、高度定量分析和测定分子结构都有很大价值。 拉曼效应起源于分子振动(和点阵振动)与转动,因此从拉曼光谱中可以得到分子振动能级(点阵振动能级)与转动能级结构的知识。用虚的上能级概念可以说明了拉曼效应: 设散射物分子原来处于基电子态,当受到入射光照射时,激发光与此分子的作用引起的极化可以看作为虚的吸收,表述为电子跃迁到虚态(Virtual state),虚能级上的电子立即跃迁到下能级而发光,即为散射光。设仍回到初始的电子态,则有如图所示的三种情况。因而散射光中既有与入射光频率相同的谱线,也有与入射光频率不同的谱线,前者称为瑞利线,后者称为拉曼线。在拉曼线中,又把频率小于入射光频率的谱线称为斯托克斯线,而把频率大于入射光频率的谱线称为反斯托克斯线。

拉曼光谱解读

激光拉曼光谱 [实验目的] 1、学习使用光谱测量中常用的仪器设备; 2、测量4CCl (液体)的拉曼光谱; 3、学习简单而常用的光谱处理方法,并对4CCl 的拉曼光谱进行处理,求出4CCl 的主要拉曼线的拉曼位移。 [拉曼光谱基本原理] 1、 现象 频率0v 的单色辐射入射到透明气体、液体或光学上完整透明的固体上时,大部分辐射无改变地透过,还有一部分受到散射。其中将出现频率为0m v v ±的辐射对。这种辐射频率发生改变的散射成为拉曼(Raman )散射;还有辐射频率不发生改变的散射称为瑞利散射。一般把瑞利散射和拉曼散射合起来所形成的光谱称为拉曼光谱,即0v 和0m v v ±合起来构成拉曼光谱。0v 称为瑞利线,0m v v ±称为拉曼线,m v 称为拉曼位移。且频率为0m v v -的拉曼线称为斯托克斯线,频率为0m v v +的拉曼线称为反斯托克斯线。瑞利散射的强度通常约为入射辐射强度的310-,强的拉曼散射的强度一般约为瑞利散射强度的310-, 2、 解释 对拉曼散射的完整理论解释是非常复杂的,限于篇幅这里不作介绍,请大家参看附后的有关参考书。下面用一个简单模型——散射系统与入射辐射之间的能量交换模型对其加以解释。 设散射系统有两个能级1E 、2E ,且有21E E >,210E E hv ->。由于入射辐射的相互作用,系统可以从低能级1E 跃迁到高能级2E ,这是必须要从入射辐射中获得所需能量21E E E ?=-。这个过程可以认为是系统吸收一个能量为0hv 的入射光子,从1E 能级跃迁到某一更高能级(通常散射系统并没有这样一个能级,所

以称其为虚能级),然后,放出一个能量为0hv E -?的散射光子而跃迁到2E 能级。此时,散射光子的频率可表述为: 000m hv E E v v v v h h -??= =-=- 另一方面,如果散射系统处于激发能级2E ,由于相互作用的存在,它可以从高能级2E 跃迁到低能级1E 。此时系统必须把能量21E E E ?=-交给入射辐射。同样这一过程可认为是系统吸收一个能量为0hv 的入射光子。从2E 能级跃迁到某一高的虚能级,然后以放出一个能量为0hv E +?的散射光子而跃迁到1E 能级。此时,散射光子的频率可表述为: 000m hv E E v v v v h h +??==+=+ 以上的描述可用图1来直观表示。 拉曼散射所涉及到得能级1E 、2E ,一般为散射系统的振动、转动能级(对于分子系统而言),或为晶格振动能级(对于晶体而言)。即拉曼位移m v 通常对应系统的振动、转动频率或晶体振动频率。

激光拉曼实验报告

激光拉曼及荧光光谱实验 一、实验目的 1、 了解激光拉曼的基本原理和基本知识以及用激光拉曼的方法鉴别物质成分和分子结构的原理; 2、 掌握LRS – II 激光拉曼/荧光光谱仪的系统结构和操作方法; 3、 研究四氯化碳CCL 4、苯C 6H 6等物质典型的振动—转动光谱谱线特征。 二、实验原理 2.1 基本原理 分子有振动。原子分双子的振动按经典力学的观点可以看成是简谐振子,其能量为 A 是振幅,k 是力常数。按照量子力学,简谐振子的能量是量子化的, t=0,1,2,3,···,是振动量子数,f 是振子的固有振动频率。如果在同一电子态中,有振动能级的跃迁,那么产生的光子能量 hf t t E E h )('12-=-=ν 波数为 CO 在红外部分有4.67微米、2.35微米、1.58微米等光谱带,其倒数之比近似为1: 2:3。当Δt=1时,测得的ν ~反映了分子键的强弱。 分子有转动。双原子分子的转动轴是通过质心而垂直于联接二原子核的直线的。按照经典力学,转动的动能是 式中P 是角动量,I是转动惯量, 222211r m r m I += 可以证明 I P I E 2212 2= =ω2 2 2 121r r m m m m I μ=+= 2222 1212 1 kA kx mv E =+ = 2 12 1m m m m m += hf t E )2 1(+=m k f π21= ,3,2,)(1 ~12ωωωωλ ν =?=-'=-= =t c f t t hc E E

上式中r1,r2和r分别代表两原子到转轴的距离及两原子之间的距离,μ称为约化质量。按照量子力学,角动量应等于 代入上式得 此式可以从量子力学直接推得,J称为转动量子数。当J=0,1,2,3,···等值时,相应的J(J+1)=0,2,6,12,···,所以能级的间隔是I h 228π的2,4,6,8,···倍。 实验和理论都证明纯转动能级的跃迁只能在邻近能级之间,就是ΔJ=±1。所得 光谱的波长应该有下式表达的值: 谱线波数(ν ~)的间隔是相等的。HCL 分子远红外吸收谱中,曾观察到很多条吸收线,这些线的波数间隔应该是2B,实验测得:B=10.34厘米 -1 ,所以由此求得 转动惯量I,进而求得HCL 分子中原子之间的核间距这一重要数据。 多原子分子的转动可以近似地看作刚体的转动,这涉及到多个转轴的不同的转动惯量。其谱线结构较为复杂,只有直线型的分子和对称高的分子转动曾研究出一些结果。在分析化学领域中提供了一些分析样品的标准特征谱线可供实验参照。 光通过透明的物体时,有一部分被散射。如果入射光具有线状谱,散射光的光谱中 除有入射光的谱线外,还另有一些较弱的谱线,这些谱线的波数ν '~等于入射光某一波数0~ν加或减一个数值,即10~~~ννν±='。新出现谱线的波数与入射光的波数之差发现与光源无关,只决定于散射物。如果换一个光源,0~ν不同了,但如果散射物不变换,那么0~~νν-'还是等于原来的1~ν,散射光的波数变动反映了散射物的性质。由于散射光的波数等于入射光的波数与另一数值1 ~ν组合的数值,所以这样的散射称作组合散射。 可以在紫外或可见区观测分子的振动和转动能级,通过选择波长在可见光波段的激 ,2,1,0,2) 1(=+=J h J J P π ) 1(82 2+= J J I h E πIc h B J BJ J J J J Ic h hc E E 2''''2'8, ,3,2,12)]1()1([8~1 ππνλ= ==+-+=-==

激光拉曼光谱实验报告

激光拉曼光谱实验报告 摘要:本实验研究了用半导体激光器泵浦的3Nd + :4YVO 晶体并倍频后得到的532nm 激 光作为激发光源照射液体样品的4CCL 分子而得到的拉曼光谱,谱线很好地吻合了理论分析的4CCL 分子4种振动模式,且频率的实验值与标准值比误差低于2%。又利用偏振片及半波片获得与入射光偏振方向垂直及平行的出射光,确定了各振动的退偏度,分别为、、、,和标准值0和比较偏大。 关键词:拉曼散射、分子振动、退偏 一, 引言 1928年,印度物理学家拉曼()和克利希南()实验发现,当光穿过液体苯时被分子散射的光发生频率变化,这种现象称为拉曼散射。几乎与此同时,苏联物理学家兰斯别而格()和曼杰尔斯达姆()也在晶体石英样品中发现了类似现象。在散射光谱中,频率与入射光频率0υ相同的成分称为瑞利散射,频率对称分布在0υ两侧的谱线或谱带01υυ±即为拉曼光谱,其中频率较小的成分01υυ-又称为斯托克斯线,频率较大的成分01υυ+又称为反斯托克斯线。这种新的散射谱线与散射体中分子的震动和转动,或晶格的振动等有关。 拉曼效应是单色光与分子或晶体物质作用时产生的一种非弹性散射现象。拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征。 20世纪60年代激光的问世促进了拉曼光谱学的发展。由于激光极高的单色亮度,它很快被用到拉曼光谱中作为激发光源。而且基于新激光技术在拉曼光谱学中的使用,发展了共振拉曼、受激拉曼散射和番斯托克斯拉曼散射等新的实验技术和手段。 拉曼光谱分析技术是以拉曼效应为基础建立起来的分子结构表征技术,其信号来源于分子的振动和转动。它提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。拉曼光谱的分析方向有定性分析、结构分析和定量分析。

激光拉曼光谱仪实验报告

实验六 激光拉曼光谱仪 【目的要求】 1.学习和了解拉曼散射的基本原理; 2.学习使用激光拉曼光谱仪测量CCL 4的谱线; 【仪器用具】 LRS-3型激光拉曼光谱仪、CCL 4、计算机、打印机 【原 理】 1. 拉曼散射 当平行光投射于气体、液体或透明晶体的样品上,大部分按原来的方向透射 而过,小部分按照不同的角度散射开来,这种现象称为光的散射。散射是光子与物质分子相互碰撞的结果。由于碰撞方式不同,光子和分子之间会有多种散射形式。 ⑴ 弹性碰撞 弹性碰撞是光子和分子之间没有能量交换,只是改变了光子的运动方向,使得散射光的频率与入射光的频率基本相同,频率变化小于3×105HZ ,在光谱上称为瑞利散射。瑞利散射在光谱上给出了一条与入射光的频率相同的很强的散射谱线,就是瑞利线。 ⑵ 非弹性碰撞 光子和分子之间在碰撞时发生了能量交换,这不仅使光子改变了其运动方向,也改变了其能量,使散射光频率与入射光频率不同,这种散射在光谱上称为拉曼散射,强度很弱,大约只有入射线的10-6。 由于散射线的强度很低,所以为了排除入射光的干扰,拉曼散射一般在入射线的垂直方向检测。散射谱线的排列方式是围绕瑞利线而对称的。在拉曼散射中散射光频率小于入射光频率的散射线被称为斯托克斯线;而散射光频率大于入射光频率的散射线被称为反斯托克斯线。斯托克斯线和反斯托克斯线是如何形成的呢?在非弹性碰撞过程中,光子与分子有能量交换, 光子转移一部分能量给分子, 或者从分子中吸收一部分能量,从而使它的频率改变,它取自或给予散射分子的能量只能是分子两定态之间的差值21E E E -=?。在光子与分子发生非弹性碰撞过程中,光子把一部分能量交给分子时,光子则以较小的频率散射出去,称为频率较低的光(即斯托克斯线),散射分子接受的能量转变成为分子的振动或转动能

拉曼光谱实验报告

成绩 评定 教师 签名 嘉应学院物理学院近代物理实验 实验报告 实验项目:拉曼光谱 实验地点: 班级: 姓名: 座号: 实验时间:年月日

图2 ν? 0ν ν? 斯托克斯线 瑞利线 反斯托克斯线 一、实验目的: 1、 了解拉曼散射的基本原理 2、 学习使用拉曼光谱仪测量物质的谱线,知道简单的谱线分析方法。 二、实验仪器和用具: RBD 型激光拉曼光谱仪 三、实验原理: 按散射光相对于入射光波数的改变情况,可将散射光分为瑞利散射、布利源散射、拉曼散射;其中瑞利散射最强,拉曼散射最弱。在经典理论中,拉曼散射可以看作入射光的电磁波使原子或分子电极化以后所产生的,因为原子和分子都是可以极化的,因而产生瑞利散射,因为极化率又随着分子内部的运动(转动、振动等)而变化,所以产生拉曼散射。 在量子理论中,把拉曼散射看作光量子与分子相碰撞时产生的非弹性碰撞过程。在弹性碰撞过程中,光量子与分子均没有能量交换,于是它的频率保持恒定,这叫瑞利散射,如图(1a );在非弹性碰撞过程中光量子与分子有能量交换,从而使它的频率改变,它取自或给予散射分子的能量只能是分子两定态之间的差值12E E E ?=-,当光量子把一部分能量交给分子时,频率较低的光为斯托克斯线,散射分子接受的能量转变成为分子的振动或转动能量,从而处于激发态1E ,如图(1b ),这时的光量子的频率为0ννν'=-?;光量子从较大的频率散射,称为反斯托克斯线,这时的光量子的频率为0ννν'=+?。 最简单的拉曼光谱如图2所示,中央的是瑞利散射线,频率为0ν,强度最强;低频一侧的是斯托克斯线,强度比瑞利线的强度弱很多;高频的一侧是反斯托克斯线,强度比斯托克斯线的 图(1a ) 0h ν ()0h νν+? 0h ν ()0h νν-? 图(1b ) (上能态是虚能态,实 际不存在。这样的跃迁 过程只是一种模型实 际并没有发生) 0h ν 0h ν 0h ν 0h ν

激光拉曼光谱试验

拉曼散射是印度科学家Raman在1928年发现的,拉曼光谱因之得名。光和媒质分子相互作用时引起每个分子作受迫振动从而产生散射光,散射光的频率一般和入射光的频率相同,这种散射叫做瑞利散射,由英国科学家瑞利于1899年进行了研究。但当拉曼在他的实验室里用一个大透镜将太阳光聚焦到一瓶苯的溶液中,经过滤光的阳光呈蓝色,但是当光束进入溶液之后,除了入射的蓝光之外,拉曼还观察到了很微弱的绿光。拉曼认为这是光与分子相互作用而产生的一种新频率的光谱带。因这一重大发现,拉曼于1930年获诺贝尔奖。 激光拉曼光谱是激光光谱学中的一个重要分支,应用十分广泛。如在化学方面应用于有机和无机分析化学、生物化学、石油化工、高分子化学、催化和环境科学、分子鉴定、分子结构等研究;在物理学方面应用于发展新型激光器、产生超短脉冲、分子瞬态寿命研究等,此外在相干时间、固体能谱方面也有广泛的应用。 实验目的:1、掌握拉曼光谱仪的原理和使用方法; 2、测四氯化碳的拉曼光谱,计算拉曼频移。 实验重点:拉曼现象的产生原理及拉曼频移的计算 实验难点:光路的调节 实验原理:[仪器结构及原理] 1、仪器的结构 LRS-II激光拉曼/荧光光谱仪的总体结构如图12-4-1所示。 2、单色仪 单色仪的光学结构如图12-4-2所示。S1为入射狭缝,M1为准直镜,G为平面衍射光栅,衍射光束经成像物镜M2汇聚,经平面镜M3反射直接照射到出射狭缝S2上,在S2外侧有一光电倍增管PMT,当光谱仪的光栅转动时,光谱信号通过光电倍增管转换成相应的电脉冲,并由光子计数器放大、计数,进入计算机处理,在显示器的荧光屏上得到光谱的分布曲线。 3、激光器 本实验采用50mW半导体激光器,该激光器输出的激光为偏振光。其操作步骤参照半导体激光器

激光拉曼光谱仪实验报告记录

激光拉曼光谱仪实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

实验六 激光拉曼光谱仪 【目的要求】 1.学习和了解拉曼散射的基本原理; 2.学习使用激光拉曼光谱仪测量CCL 4的谱线; 【仪器用具】 LRS-3型激光拉曼光谱仪、CCL 4、计算机、打印机 【原 理】 1. 拉曼散射 当平行光投射于气体、液体或透明晶体的样品上,大部分按原来的方向透射 而过,小部分按照不同的角度散射开来,这种现象称为光的散射。散射是光子与物质分子相互碰撞的结果。由于碰撞方式不同,光子和分子之间会有多种散射形式。 ⑴ 弹性碰撞 弹性碰撞是光子和分子之间没有能量交换,只是改变了光子的运动方向,使得散射光的频率与入射光的频率基本相同,频率变化小于3×105HZ ,在光谱上称为瑞利散射。瑞利散射在光谱上给出了一条与入射光的频率相同的很强的散射谱线,就是瑞利线。 ⑵ 非弹性碰撞 光子和分子之间在碰撞时发生了能量交换,这不仅使光子改变了其运动方向,也改变了其能量,使散射光频率与入射光频率不同,这种散射在光谱上称为拉曼散射,强度很弱,大约只有入射线的10-6。 由于散射线的强度很低,所以为了排除入射光的干扰,拉曼散射一般在入射线的垂直方向检测。散射谱线的排列方式是围绕瑞利线而对称的。在拉曼散射中散射光频率小于入射光频率的散射线被称为斯托克斯线;而散射光频率大于入射光频率的散射线被称为反斯托克斯线。斯托克斯线和反斯托克斯线是如何形成的呢?在非弹性碰撞过程中,光子与分子有能量交换, 光子转移一部分能量给分子, 或者从分子中吸收一部分能量,从而使它的频率改变,它取自或给予散射分子的能量只能是分子两定态之间的差值21E E E -=?。在光子与分子发生非弹性碰撞过程中,光子把一部分能量交给分子时,光子则以较小的频率散射出去,称为频

拉曼光谱实验报告

嘉应学院物理学院近代物理实验 实验报告 实验项目:拉曼光谱 实验地点: 班级: 姓名: 座号:

实验时间:年月日 一、实验目的: 1、了解拉曼散射的基本原理 2、学习使用拉曼光谱仪测量物质的谱线,知道简单的谱线分析方法。 二、实验仪器和用具: RBD型激光拉曼光谱仪 三、实验原理: 按散射光相对于入射光波数的改变情况,可将散射光分为瑞利散射、布利源散射、拉曼散射;其利散射最强,拉曼散射最弱。在经典理论中,拉曼散射可以看作入射光的电磁波使原子或分子电极化以后所产生的,因为原子和分子都是可以极化的,因而产生瑞利散射,因为极化率又随着分子部的运动(转动、振动等)而变化,所以产生拉曼散射。 在量子理论中,把拉曼散射看作光量子与分子相碰撞时产生的非弹性碰撞过程。在弹性碰撞过程中,光量子与分子均没有能量交换,于是它的频率保持恒定,这叫瑞利散射,如图(1a);在非弹性碰撞过程中光量子与分子有能量交换,从而使它的频率改变,它取自或给

图2 ν?0νν? 斯托克斯线瑞利线反斯托克斯线予散射分子的能量只能是分子两定态之间的差值 12 E E E ?=-,当光量子把一部分能量交 给分子时,频率较低的光为斯托克斯线,散射分子接受的能量转变成为分子的振动或转动能 量,从而处于激发态 1 E,如图(1b),这时的光量子的频率为 ννν '=-?;光量子从较大 的频率散射,称为反斯托克斯线,这时的光量子的频率为 ννν '=+?。 最简单的拉曼光谱如图2所示,中央的是瑞 利散射线,频率为 ν,强度最强;低频一侧的 是斯托克斯线,强度比瑞利线的强度弱很多;高 频的一侧是反斯托克斯线,强度比斯托克斯线的 强度又要弱很多,因此并不容易观察到反斯托克 斯线的出现,但反斯托克斯线的强度随着温度的升高而迅速增大。斯托克斯线和反斯托克斯 线通常称为拉曼线,其频率常表示为 νν ±?,ν?称为拉曼频移。为尽可能地考虑增强入射光的光强和最大限度地收集散射光,又要尽量地抑制和消除主要来自瑞利散射的背景杂散光,提高仪器的信噪比。拉曼光谱仪一般由图3所示的五个部分构成。 仪器的外形示意图见图5所示。仪器配套实验台,各分部件安装于实验台上,实验台结实平稳,满足精度光学实验的要求。 图3 拉曼光谱仪的基本结构

激光拉曼光谱仪实验报告

实验六激光拉曼光谱仪 【目的要求】 1.学习和了解拉曼散射的基本原理; 2.学习使用激光拉曼光谱仪测量CCL的谱线; 【仪器用具】 LRS-3型激光拉曼光谱仪、CCL、计算机、打印机 【原理】 1.拉曼散射 当平行光投射于气体、液体或透明晶体的样品上,大部分按原来的方向透射而过,小部分按照不同的角度散射开来,这种现象称为光的散射。散射是光子与物质分子相互碰撞的结果。由于碰撞方式不同,光子和分子之间会有多种散射形式。 (1)弹性碰撞 弹性碰撞是光子和分子之间没有能量交换,只是改变了光子的运动方向,使得散射光的频率与入射光的频率基本相同,频率变化小于3X 105HZ在光谱上称为瑞利散射。瑞利散射在光谱上给出了一条与入射光的频率相同的很强的散射谱线,就是瑞利线。 ⑵非弹性碰撞 光子和分子之间在碰撞时发生了能量交换,这不仅使光子改变了其运动方向,也改变了其能量,使散射光频率与入射光频率不同,这种散射在光谱上称为拉曼散射,强度很弱,大约只有入射线的10-6。 由于散射线的强度很低,所以为了排除入射光的干扰,拉曼散射一般在入射线的垂直方向检测。散射谱线的排列方式是围绕瑞利线而对称的。在拉曼散射中散射光频率小于入射光频率的散射线被称为斯托克斯线;而散射光频率大于入射光频率的散射线被称为反斯托克斯线。斯托克斯线和反斯托克斯线是如何形成的呢?在非弹性碰撞过程中,光子与分子有能量交换,光子转移一部分能量给分子或者从分子中吸收一部分能量,从而使它的频率改变,它取自或给予散射分子的能量只能是分子两定态之间的差值=E - E2。在光子与分子发生非弹性碰撞 过程中,光子把一部分能量交给分子时,光子则以较小的频率散射出去,称为频率较低的光(即斯托克斯线),散射分子接受的能量转变成为分子的振动或转动能 量,从而处于激发态Ei,这时的光子的频率为、-- ■'■:■■-(入射光的频率为\ 0);

物理实验实验报告

物理仿真实验——拉曼光谱 一、实验目的: 1.拍摄拉曼光谱并观察; 2.学会推测出分子拉曼光谱的基本概貌,如谱线数目、大致位置、偏振性质和它们的相对强度; 3.从实验上确切知道谱线的数目和每条线的波数、强度及其应对应的振动方式。 4.以上两个方面工作的结合和对比,利用拉曼光谱获得有关分子的结构和对称性的信息。 二、实验原理 (1)拉曼效应和拉曼光谱:当光照射到物质上时会发生非弹性散射,散射光中除有与激发光波长相同的弹性成分(瑞利散射)外,还有比激发光波长长的和短的成分,后一现象统称为拉曼效应。由分子振动、固体中的光学声子等元激发与激发光相互作用产生的非弹性散射称为拉曼散射,一般把瑞利散射和拉曼散射合起来所形成的光谱称为拉曼光谱。 (2)拉曼光谱基本原理: 设散射物分子原来处于基电子态,振动能级如下图所示。 当受到入射光照射时,激发光与此分子的作用引起的极化可以看作为虚的吸收,表述为电子跃迁到虚态,虚能级上的电子立即跃迁到下能级而发光,即为散射光。

设仍回到初始的电子态,则有如图所示的三种情况。因而散射光中既有与入射光频率相同的谱线,也有与入射光频率不同的谱线,前者称为瑞利线,后者称为拉曼线。在拉曼线中,又把频率小于入射光频率的谱线称为斯托克斯线,而把频率大于入射光频率的谱线称为反斯托克斯线。 瑞利线与拉曼线的波数差称为拉曼位移,因此拉曼位移是分子振动能级的直接量度。下图给出的是一个拉曼光谱的示意图。 (3)拉曼效应的经典电磁解释:如分子,在激发光的交变场作用下发生感生极化,也就是正负电中心从相合变为相离,成为电偶极子。这感生电偶极子是随激发场而交变的,因此它也就是成了辐射体。简单的与激光同步的发射,就成为瑞利散射。然而分子本身有振动和转动,各有其特种频率。这些频率比激发光的频率低一两个数量级或更多些,于是激发光的每一周期所遇的分子振动和转动相位不同,相应的极化率也不同。 (4)当光入射到样品上时的三种情况: 1.光子同样品分子发生了弹性碰撞,没有能量交换,只是改变了光子的运动方向, 此时散射光频率=入射光频率:hv k =hv 1 ; 2.如频率为v 1的入射光子被样品吸收,样品分子被激发到能量为hv L 的振动能级 L = 1上,同时发生频率为v s=v1-v L的斯托克斯散射;

Renishaw显微共焦激光拉曼光谱仪操作说明

Renishaw显微共焦激光拉曼光谱仪操作说明 一、开机顺序 1、打开主机电源; 2、计算机电源 3、将使用的激光器电源 1)、514nm:打开激光器后面的总电源开关->打开激光器上的钥匙; 2)、785nm:直接打开激光器电源开关。 二、自检 1、用鼠标双击WiRE2.0 图标,进入仪器工作软件环境; 2、系统自检画面出现,选择Reference All Motors 并确定(OK)。系统将检验所有的电机。 3、从主菜单Measurement -> New -> New Acquisition 设置实验条件。静态取谱(Static),中心520 Raman Shift cm-1, Advanced -> Pinhole 设为in。 4、使用硅片,用50 倍物镜,1 秒曝光时间,100%激光功率取谱。使用曲线拟合(Curve fit)命令检查峰位。 三、实验 1、实验条件设置 1)、点击设置按钮(或者菜单中Measurement-->Setup Measurement),(设置)下列参数 2)、OK:采用当前设置条件,并关闭设置窗口;Apply:应用当前设置条件,不关闭窗口; 2、采谱:执行Measurement -> Run 命令。 四、关机 1、关闭计算机 1)、关闭WiRE2.0 软件; 2)、Start-->Shut Down-->Turn off computer。计算机将自动关闭电源。 2、关闭主机电源; 3、关闭激光器 1)、关闭钥匙; 2)、514 激光器散热风扇会继续运转,此时不要关闭主电源开关。等风扇自动停转后再关闭主电源开关; 五、注意事项 1、开机顺序:主机在前,计算机在后。 2、关机顺序:计算机在前,主机在后。514nm 激光器要充分冷却后才能关闭主电源。 3、自检:一定要等自检完成再做其他动作。不能取消(Cancel)。 4、硅片:514nm,自然解理线与横向成45 度时信号最强。780nm,(633nm,325nm)自然解理线与横向基本平行时信号最强。

拉曼光谱实验报告

拉曼光谱实验报告 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

实验报告 实验项目:拉曼光谱 实验地点: 班级: 姓名: 座号: 实验时间:年月日 一、实验目的: 1、了解拉曼散射的基本原理 2、学习使用拉曼光谱仪测量物质的谱线,知道简单的谱线分析方法。 二、实验仪器和用具: RBD型激光拉曼光谱仪 三、实验原理: 按散射光相对于入射光波数的改变情况,可将散射光分为瑞利散射、布利源散射、拉曼散射;其中瑞利散射最强,拉曼散射最弱。在经典理论中,拉曼散射可以看作入射光的电磁波使原子或分子电极化以后所产生的,因为原子和分子都是可以极化的,因而产生瑞利散射,因为极化率又随着分子内部的运动(转动、振动等)而变化,所以产生拉曼散 射。

在量子理论中,把拉曼散射看作光量子与分子相碰撞时产生的非弹性碰撞过程。在弹性碰撞过程中,光量子与分子均没有能量交换,于是它的频率保持恒定,这叫瑞利散射,如图(1a );在非弹性碰撞过程中光量子与分子有能量交换,从而使它的频率改变,它取自或给予散射分子的能量只能是分子两定态之间的差值12E E E ?=-,当光量子把一部分能量交给分子时,频率较低的光为斯托克斯线,散射分子接受的能量转变成为分子的振动或转动能量,从而处于激发态1E ,如图(1b ),这时的光量子的频率为0ννν'=-?;光量子从较大的频率散射,称为反斯托克斯线,这时的光量子的频率为0ννν'=+?。 最简单的拉曼光谱如图2所示,中央的是瑞利散射线,频率为0ν,强度最强;低频一侧的是斯托克斯线,强度比瑞利线的强度弱很多;高频的 一侧是反斯托克斯线,强度比斯托克斯线的强度又要弱很多,因此并不容易观察到反斯托克斯线的出现,但反斯托克斯线的强度随着温度的升高而迅速增大。斯托克斯线和反斯托克斯线通常称为拉曼线,其频率常表示为0νν±?,ν?称为拉曼频移。为尽可能地考虑增强入射光的光强和最大限度地收集散射光,又要尽量地抑制和消除主要来自瑞利散射的背

拉曼光谱实验报告

拉曼光谱实验报告

嘉应学院物理学院近代物 理实验 实验报告 实验项目:拉曼光谱 实验地点:

班级: 姓名: 座号: 实验时间:年月日 一、实验目的: 1、了解拉曼散射的基本原理 2、学习使用拉曼光谱仪测量物质的谱线,知道简单的谱线分析方法。 二、实验仪器和用具: RBD型激光拉曼光谱仪 三、实验原理:

按散射光相对于入射光波数的改变情况,可将散射光分为瑞利散射、布利源散射、拉曼散射;其中瑞利散射最强,拉曼散射最弱。在经典理论中,拉曼散射可以看作入射光的电磁波使原子或分子电极化以后所产生的,因为原子和分子都是可以极化的,因而产生瑞利散射,因为极化率又随着分子内部的运动(转动、振动等)而变化,所以产生拉曼散射。 在量子理论中,把拉曼散射看作光量子与分子相碰撞时产生的非弹性碰撞过程。在弹性碰撞过程中,光量子与分子均没有能量交换,于是它的频率保持恒定,这叫瑞利散射,如图(1a );在非弹性碰撞过程中光量子与分子有能量交换,从而使它的频率改变,它取自或给予散射分子的能量只能是分子两定态之间的差值1 2 E E E ?=-,当光 量子把一部分能量交给分子时,频率较低的光为斯托克斯线,散射分子接受的能量转变成为分子

的振动或转动能量,从而处于激发态1 E ,如图 (1b ),这时的光量子的频率为0 ννν '=-?;光量子 从较大的频率散射,称为反斯托克斯线,这时的 光量子的频率为0 νν ν '=+?。 最简单的拉曼光谱如图2所示,中央的是瑞利散射线,频率为0 ν,强度 最强;低频一侧的是斯托 克斯线,强度比瑞利线的强度弱很多;高频的一侧是反斯托克斯线,强度比斯托克斯线的强度又要弱很多,因此并不容易观察到反斯托克斯线的出现,但反斯托克斯线的强度随着温度的升高而迅速增大。斯托克斯线和反斯托克斯线通常称为拉曼线,其频率常表示为0 ν ν ±?,ν?称为拉曼频移。 为尽可能地考虑增强入射光的光强和最大限度地收集散射光,又要尽量地抑制和消除主要来自瑞利散射的背景杂散光,提高仪器的信噪比。拉曼光谱仪一般由图3所示的五个部分构成。

拉曼光谱常见问题汇总

拉曼光谱问题汇总 问题目录 一、测试了一些样品,得到的是Ramanshift,但是文献是wavenumber,不知道它们之间的转换公式是怎么样的?激光波长632.8nm。 二、如何用拉曼光谱仪测透明的有机物液体,测试时放到了玻璃片上测出来的结果是玻璃的光谱。 三、我们这里有做生物样品的拉曼光谱的,在获得的图里面有很强的荧光,有的说,如果拉曼得不到就用其荧光谱。可我想问一下,在拉曼谱里面得到的荧光背景,是真正的荧光特征谱吗?这和荧光光谱仪里面的荧光图有什么区别? 四、什么是共焦显微拉曼光谱仪? 五、请问,测固体粉末的拉曼图谱时,对于荧光很强的物质,应该如何处理?特别是当荧光将拉曼峰湮灭时,应该怎么办?增加照射时间的方法,我试过,连续照射了4小时,结果还是有很强的荧光。我只有一台532nm的激光器,所以更换激光波长的方法目前我不能用。想问问各位,还有别的方法吗? 六、请问用激光拉曼仪能测量薄膜的厚度、折射率及应力吗?它能对薄膜进行那些方面的测量呢? 七、拉曼做金属氧化物含量的下限是多少? 我有一几种氧化物的混合物,其中MoO3含量只有5%,XRD检测不到,拉曼可以吗? 八、小弟是刚涉足拉曼这个领域,主打生物医学方面。实验中,发现温度不同时,拉曼好像也不一样。不知到哪位能帮忙解释一下这个现象 九、文献上说,拉曼的峰强与物质的浓度是成正比关系,那么比如我配置1mol/L的某溶液,和0.5mol/L的溶液,其峰强度是正好一半的关系吗?应用拉曼,是否能采用峰积分,或者用近红外那样的多元统计的办法来定量吗?准确度怎么样? 十、拉曼峰1640对应的是什么东西啊?无机的 十一、1 红外分析气体需要多高的分辨率? 2 拉曼光谱仪是否可分析纯金属? 3 红外与拉曼联用,BRUKER和NICOLET哪个好些? 十二、我想请问一下这里的高手测定过渡金属络合物水溶液中金属与有机物中的某个原子是否成键可以用拉曼光谱分析吗? 十三、金红石和锐钛矿对紫外Raman的响应差别大不大?同样条件下的金红石和锐钛矿的Raman峰会不会差很多? 十四、什么是3CCD? 十五、请教我所作的实验是用柠檬酸金属盐溶胶拉制成纤维,想做一下拉曼光谱来证明是否有线性分子的存在,可以吗 十六、在测量拉曼光谱仪的灵敏度参数时,有人提出,单晶硅的三阶拉曼峰的强度跟硅分子的取向(什么111,100之类)的有关,使用不同取向的硅使用与其相匹配的激光照射时,其强度严重不一样,是这样吗?不知道大家测量激光拉曼光谱仪的灵敏度时都是怎么测量的 十七、请问如何进行拉曼光谱数据处理? 十八、拉曼系统自检具体是检测哪些硬件?是个什么过程? 十九、请教作激光拉曼测试,样品如何预处理? 二十、请问激光拉曼光谱是什么意思? 二十一、请教喇曼谱实验时,如何选择激发波长,1064nm?还是785nm或633nm? 二十二、拉曼信号对入射角和出射角的响应又是什么样?我的样品是有衬底支持的薄膜样品(膜厚几百纳米--几微米),怎样扣除衬底的影响? 二十三、微区拉曼和普通拉曼有区别吗,尤其在图谱上?多晶,单晶和非晶拉曼有何区别? 二十四、我是做复合材料的研究的,主要是想研究纤维增强复合材料的界面性能? 二十五、学校有一套天津港东的拉曼光谱仪,计划给学生开一个测量固体(或粉末)拉曼光谱的实验。试了几种材料都不明显,各位高人能推荐几种容易找到的象四氯化碳拉曼光谱那么明显的固体,晶体,或者粉末吗? 二十六、我们研究小组新近涉及碳纳米管的领域。由于纳米管的Raman信号很弱,就是要重复不断的测试才能在1600cm-1的附近得到峰。请问具体操作条件应该怎么选。如laser的功率,解析度,扫描数scannumber等等,我们用的Raman仪器是(Brucker, RFS-100/S)。 二十七、激光拉曼光谱仪应该可以实现快速的定量分析,但经过前段时间一些咨询,使我对其是否可进行快速分析颇存疑问,尤其是气体分析。请问,一般来说分析一次样品(气体或固体)的时间是多长

激光拉曼光谱和红外光谱对比

激光拉曼光谱 原理:散射光与入射光之间的频率差v称为拉曼位移,拉曼位移与入射光频率无关,它只与散射分子本身的结构有关。拉曼散射是由于分子极化率的改变而产生的(电子云发生变化)。拉曼位移取决于分子振动能级的变化,不同化学键或基团有特征的分子振动,ΔE反映了指定能级的变化,因此与之对应的拉曼位移也是特征的。 特点:无须或极少准备样品;快速检测;操作简便。 应用:高分子构象研究;聚合物变形研究;医用高分子材料研究;研究生物大分子结构;络合物的组成、结构和稳定性的研究;矿石成分的定性分析。 显微拉曼光谱 特点:高分辨率;可进行显微成像测量,分辨率高,可对样品表面进行um级的微区检测;可进行显微成像测量。 应用:广泛用于新型复合材料,纳米材料和电极材料的研究。

红外光谱 原理:红外吸收光谱是由分子不停地作振动和转动运动而产生的,分子振动是指分子中各原子在平衡位置附近作相对运动,多原子分子可组成多种振动图形。当分子中各原子以同一频率、同一相位在平衡位置附近作简谐振动时,这种振动方式称简正振动(例如伸缩振动和变角振动)。分子振动的能量与红外射线的光量子能量正好对应,因此当分子的振动状态改变时,就可以发射红外光谱,也可以因红外辐射激发分子而振动而产生红外吸收光谱。分子的振动和转动的能量不是连续而是量子化的。但由于在分子的振动跃迁过程中也常常伴随转动跃迁,使振动光谱呈带状。所以分子的红外光谱属带状光谱。 分类:根据红外波数测试范围,可以将红外光谱分为:近红外,中红外和远红外三种。 近红外光谱 近红外光是指波长在780~2526nm范围内的电磁波,近红外光谱的产生,主要是由于分子振动的非谐振性,使分子振动从基态向高能级的跃迁成为可能。在近红外光谱范围内,测量的主要是含氢基团XH(X=C、N、O、S等)振动的倍频及合频吸收。 近红外光谱分析的主要技术特点如下: (1)分析速度快。 (2)分析效率高。 (3)分析成本低。 (4)测试重现性好。 (5)便于实现在线分析。 (6)典型的无损分析技术。 (7)现代近红外光谱分析也有其固有的弱点。一是测试灵敏度相对较低,这主要是 因为近红外光谱作为分子振动的非谐振吸收跃迁几率较低,一般近红外倍频和合频的谱带强度是其基频吸收的10到10000分之一,就对组分的分析而言,其含量一般应大于0.1%;二是一种间接分析技术,方法所依赖的模型必须事先用标准方法或参考方法对一定范围内的样品测定出组成或性质数据, 因此

激光拉曼光谱实验

近代物理实验报告 激光拉曼及荧光光谱实验 姓名:陈聪 091204120 付静静091204121 实验目的: 1、学习使用光谱测量中常用的仪器设备; 2、测量(液体)的拉曼光谱; 3、学习简单而常用的光谱处理方法,并对的拉曼光谱进行处理,求出的主要拉曼线的拉曼位移。 [实验装置] 拉曼光谱实验系统一般由单色激发光源、样品室、色散系统和探测记录装置等组成。本实验采用苏州大学生产的SD-RI型小型拉曼光谱仪。整个实验装置如图2所示。下面分别加以介绍。 1、激发光源 激发拉曼光谱的光源,最主要的是要具有高单色性,并能在样品上给出高辐照度。本实验采用激光器作为单色光源。其输出激光的波长为。它的使用比较简单,打开电源,调节电流至所需值(一般约为)即可。 2、样品室

前面已介绍过,拉曼散射的强度比较弱。为了有效的进行测量,样品室必须仔细设计。样品时要考虑使激发光以最有效的方式照射样品,并要尽可能地收集散射光。本实验所用的样品室(见图2),由两个凹面反射镜、和两个凸透镜、组成。这里的作用是对入射激发光进行聚焦以提高激发强度,的作用在于把透过样品的激发光反射回样品再次利用以进一步提高激发强度;、用于收集散射光。其中把向着色散系统——单色仪方向散射的光聚集起来送入单色仪,把背着单色仪方向散射的光反射回来,通过的聚焦送入单色仪。 具体实验中,对样品装置的调整以使得各光学元件达到最佳位置是一件非常困难的事,这也是本实验最关键的一步,样品装置是否能调整好直接关系着实验的成败! 3、色散系统 对色散系统的选择,主要决定于所用激发光源的波长和所研究样品

的拉曼位移的大小。目前一般采用以光栅作为色散元件的单色仪。又是为了提高光谱信号的信噪比,将两台单色仪串接起来使用,这称为双联单色仪或双光栅单色仪。 本实验所选选用的是一台小型光栅单色仪,如图3所示。

《激光拉曼光谱》.(DOC)

激光拉曼光谱实验讲义 引言 一 实验目的 1、了解拉曼散射的基本原理 2、学习使用拉曼光谱仪测量物质的谱线,知道简单的谱线分析方法。 二 实验原理 当波束为0ν的单色光入射到介质上时,除了被介质吸收、反射和透射外,总会有一部分被散射。按散射光相对于入射光 波数的改变情况,可将散射光分为三类:第一类,其波数基本不变或变化小于5110cm --,这类散射称为瑞利散射;第二类, 其波数变化大约为10.1cm -,称为布利源散射;第三类是波数变化大于11cm -的散射,称为拉曼散射;从散射光的强度看, 瑞利散射最强,拉曼散射最弱。 在经典理论中,拉曼散射可以看作入射光的电磁波使原子或分子电极化以后所产生的,因为原子和分子都是可以极化的,因而产生瑞利散射,因为极化率又随着分子内部的运动(转动、振动等)而变化,所以产生拉曼散射。 在量子理论中,把拉曼散射看作光量子与分子相碰撞时产生的非弹性碰撞过程。当入射的光量子与分子相碰撞时,可以是弹性碰撞的散射也可以是非弹性碰撞的散射。在弹性碰撞过程中,光量子与分子均没有能量交换,于是它的频率保持恒定,这叫瑞利散射,如图(1a );在非弹性碰撞过程中光量子与分子有能量交换,光量子转移一部分能量给散射分子,或者从散射分子中吸收一部分能量,从而使它的频率改变,它取自或给予散射分子的能量只能是分子两定态之间的差值12E E E ?=-,当光量子把一部分能量交给分子时,光量子则以较小的频率散射出去,称为频率较低的光(斯托克斯线),散射分 子接受的能量转变成为分子的振动或转动能量,从而处于激发态 1E ,如图(1b ),这时的光量子的频率为0ννν'=-?;当分子已经处于振动或转动的激发态1E 时,光量子则从散射分子中取得 了能量E ?(振动或转动能量),以较大的频率散射,称为频率较 高的光(反斯托克斯线),这时的光量子的频率为 0ννν'=+?。如果考虑到更多的能级上分子的散射,则可产生更多的 斯托克斯线和反斯托克斯线。

相关文档
最新文档