以太网介绍

以太网介绍
以太网介绍

以太网介绍

以太网MAC地址

以太网地址用来识别一个以太网上的某个单独的设备或一组设备,这个地址又叫做物理地址或者MAC地址。

MAC采用十六进制数表示,共六个字节(48位)。IEEE规定MAC地址第一个字段的最低位为I/G位。I/G位标志这个地址是单播地址还是组播地址。而广播地址就是FFFF.FFFF.FFFF。注意:以太网卡有过滤功能,网卡只把发送给自己的帧接收,解封装后交给上层处理,而不是发给自己的帧会丢弃。不过,有些网卡可以设置为混杂模式,也就是可以接收任意帧,而不考虑这帧是不是发给自己的。这类网卡经常用于一些网络协议分析工具中

以太网帧结构

以太网帧的格式包含的字段有前同步码、帧开始界定符、目的地址、源地址、数据类型、数据及帧校验序列)等。目的地址和源地址都是MAC地址,表示发出数据帧的源设备和要到达的设备。表示上层交给IP还是IPX,最后是一个帧校验序列,用来检查数据帧在传输过程中是不是出现了查错,发现查错后,直接丢弃该帧,可以由高层协议发起重传。

以太帧的帧长度为64-1518字节。以太网定义的V2帧结构和IEEE 802.3定义的帧结构是不同的,主要在于IEEE 802.3类型字段修改为长度字段

以太网传输介质

双绞线:为了保证最佳的兼容性,普遍采用EIA/TIA 568B标准来制作网线。

568B:白橙| 橙| 白绿| 蓝| 白蓝| 绿| 白棕| 棕

其中其实真正通信的只有四芯,1-2-3-6。

直线(直通线):两端同时采用一个标准。用于不同类设备之间(就是DTE-DCE)互连。DTE 类设备:PC、路由器、交换机uplink口、HUB级联口

DCE 类设备:交换机普通口、HUB普通口。(DTE和DCE的区别是DCE主动与DTE协调时钟频率,DTE会根据协调的时钟频率工作)

反线(交叉线):一端采用568A,一端采用568B,用于同类设备之间互连(PC-PC,交换机-交换机)

光纤:

多模光纤:很多不同角度的入射的光线在一条光纤中传输。适合用于近距离传输,一般约束在550M。

单模光纤:如光纤的直径减小到只有一个光的波长,使光纤一直向前传播,而不会产生多次反射,这样的光纤就成为单模光纤。单模光纤传输距离数十公里而不必要采用中继器。

高速以太网

百兆以太网、千兆以太网的传输介质标准需要记忆。

100M以太网的新标准还规定了以下三种不同的物理层标准。

100BASE-TX支持2对5类UTP或2对1类STP。1对5类非屏蔽双绞线或1对1类屏蔽双绞线就可以发送,而另1对双绞线可以用于接收,因此100BASE-TX是一个全双工系统,每个节点都可以同时以100Mbps的速率发送与接收。

100BASE-T4支持4对3类UTP,其中有3对用于数据传输,1对用于冲突检测。100BASE-T4是快速以太网的早期实现。它需要四对铜质双绞线,但这些双绞线只需要是3类而不是TX 所要求的5类。

100BASE-FX支持2芯的多模或单模光纤。100BASE-FX主要是用做高速主干网,从节点到集线器(HUB)的距离可以达到2km,是一种全双工系统。

100BASE-T2:随着数字信号处理技术和集成电路技术的发展,只用2对3类UTP线就可以传送100Mbps的数据,因而针对100Base-T4不能实现全双工的缺点,IEEE开始制定100Base-T2标准。

1000 Base-T标准使用的是5类非屏蔽双绞线,双绞线长度可以达到100m。

1000Base-X是基于光纤通道的物理层,使用的媒体有三种:

1000 Base-CX标准使用的是屏蔽双绞线,双绞线长度可以达到25m;

1000 Base-LX标准使用的是波长为1300nm的单模光纤,光纤长度可以达到3 000m;1000 Base-SX标准使用的是波长为850nm的多模光纤,光纤长度可以达到300~550m。其中前三项标准是IEEE 802.3z,而1000 Base-T的标准是IEEE 802.3ab。

万兆以太网只工作在全双工方式。

冲突域和广播域

连接同一冲突域的设备有Hub或者其他进行简单复制信号的设备。

像Hub,交换机等这些第一,第二层设备连接的节点被认为都是在同一个广播域。

交换机交换模式

以太网交换机是利用“端口/MAC地址映射表”进行数据交换的,交换机的“地址学习”是通过读取帧的源地址并记录帧进入交换机的端口号进行的。

根据交换机的帧转发方式,交换机可以分为3类:直接交换方式、存储转发交换方式、无碎片转发方式。

链路聚合

以太通道又叫做链路聚合技术,聚合链路也能叫做Eth-trunk链路。

链路聚合的作用:根据需要灵活的增加网络设备之间的带宽;增加网络设备之间连接的可靠性;节约成本。

两台交换机之间形成以太网通道可以静态绑定聚合也可以用协议自动协商(LACP和PAgP)。WLAN

无线AP通常可以分为胖AP(Fat AP)和瘦AP(Fit AP)两类。

胖AP一般还同时具有数据加密、拨号、QOS、用户认证、网络管理、DHCP等多方面功能。胖AP一般应用于小型的无线网络建设无需AC的配合。

瘦AP仅保留无线接入的部分,瘦AP作为无线局域网的一个部件,是不能独立工作的,必须配合AC的管理才能成为一个完整的系统。一般应用于中大型的无线网络建设。

无线AP往往还具有通过交换机POE模块对其供电。

无线局域网标准:

IEEE 802.11工作在2.4GHz情况下定义了14个信道,每个信道的频带宽度是22MHz。为了最

大限度利用频带资源,可以使用(1、6、11),(2、7、12),(3、8、13),(4、9、14)这4组互不干扰的信道来进行无线覆盖。一般情况下就是用1、6、11这3个信道的组合。

无线局域网采用CSMA/CA协议解决信道争用问题。

无线局域网认证技术包括MAC地址认证、802.1X认证、PSK认证、Portal认证等手段。注意区别。

无线加密:三种方式WEP、WPA、WPA2。

其中WPA2采用了AES加密算法,安全性最高。

综合布线系统

结构化布线系统分为六个子系统:工作区子系统、水平布线子系统、干线子系统、设备间子系统、管理子系统、建筑群子系统。

网络性能参数

时延:时延是指一个报文或分组从一个网络的一端传送到另一个端所需要的时间。它包括了发送时延,传播时延,处理时延,排队时延。一般,发送时延与传播时延是我们主要考虑的。

发送时延:主机或路由器发送数据帧所需要的时间,也就是从发送数据的第一个比特算起,到该帧的最后一个比特发送完毕所需的时间。发送时延也称为传输时延。发送时延= 数据帧长度(b)/ 信道带宽(b/s)。

传播时延:电磁波在信道中传播一定的距离需要花费的时间。传播时延= 信道长度(m)/ 电磁波在信道上的传播速率(m/s)。

OptiX OSN1500以太网功能介绍

OptiX OSN1500以太网功能介绍 OptiX OSN1500提供N1EFS4、N1EFS0、N2EFS0、N1EGS2、N2EGS2、N1EGT2、N1EMS4、N1EGS4、N3EGS4和R1EFT4等以太网单板,实现不同的以太网业务需求。 各单板提供的以太网功能如表1、表2、表3和表4所示。 表1 EFS4、EFS0板功能列表 特性单板 N1EFS4 EFS4 EFS0 FS0 FS0 接口4×FE 4×FE 8×FE 8×FE 8×FE 接口类型10Base-T, 100Base-TX 0Base-T, 100Base-TX 0Base-T, 100Base-TX, 100Base-FX 0Base-T, 100Base-TX, 100Base-FX 0Base-T, 100Base-TX, 100Base-FX 配合的出线板需出线板需出线板1ETF8、N1EFF8 1ETS8(配合TSB8 实现1:1 TPS)、 N1ETF8、N1EFF8 1ETS8(配合TSB8实现1:1 TPS)、N1ETF8、N1EFF8 业务帧格式hernet II、IEEE 802.3、IEEE 802.1 q/p ernet II、IEEE 802.3、IEEE 802.1 q/p rnet II、IEEE 802.3、IEEE 802.1 q/p et II、IEEE 802.3、IEEE 802.1 q/p et II、IEEE 802.3、IEEE 802.1 q/p JUMBO帧支持9600字节支持9600字节支持9600字节支持9600字节支持9600字节上行带宽 4 VC-4 8 VC-4 4 VC-4 8 VC-4 8 VC-4 映射方式VC-12、VC-3、 VC-12-xv(x≤ 63)、VC-3-xv(x ≤12)VC-12、VC-3、 VC-12-xv(x≤ 63)、VC-3-xv(x ≤12) VC-12、VC-3、 VC-12-xv(x≤ 63)、VC-3-xv(x ≤12) VC-12、VC-3、 VC-12-xv(x≤ 63)、VC-3-xv(x ≤12) VC-12、VC-3、 VC-12-xv(x≤ 63)、VC-3-xv(x ≤12)

以太网帧格式

以太网帧格式 百科名片 现在的以太网帧格式 以太网帧格式,即在以太网帧头、帧尾中用于实现以太网功能的域。目录

编辑本段 编辑本段历史分类 1.Ethernet V1 这是最原始的一种格式,是由Xerox PARC提出的3Mbps CSMA/CD以太网标准的封装格式,后来在1980年由DEC,Intel和Xerox标准化形成Ethernet V1标准. 2.Ethernet V2(ARPA) 由DEC,Intel和Xerox在1982年公布其标准,主要更改了Ethernet V1的电气特性和物理接口,在帧格式上并无变化;Ethernet V2出现后迅速取

代Ethernet V1成为以太网事实标准;Ethernet V2帧头结构为6bytes的源地址+6bytes的目标地址+2Bytes的协议类型字段+数据。 以太网帧格式 3.RAW 802.3 这是1983年Novell发布其划时代的Netware/86网络套件时采用的私有以太网帧格式,该格式以当时尚未正式发布的802.3标准为基础;但是当两年以后IEEE正式发布802.3标准时情况发生了变化—IEEE在802.3帧头中又加入了802.2 LLC(Logical Link Control)头,这使得Novell的RAW 802.3格式跟正式的IEEE 802.3标准互不兼容. 4.802.3/802.2 LLC 这是IEEE 正式的802.3标准,它由Ethernet V2发展而来。它将Ethernet V2帧头的协议类型字段替换为帧长度字段(取值为0000-05dc;十进制的1500);并加入802.2 LLC头用以标志上层协议,LLC头中包含DSAP,SSAP以及Crontrol字段. 5.802.3/802.2 SNAP 这是IEEE为保证在802.2 LLC上支持更多的上层协议同时更好的支持IP协议而发布的标准,与802.3/802.2 LLC一样802.3/802.2 SNAP也带有LLC头,但是扩展了LLC属性,新添加了一个2Bytes的协议类型域(同时将SAP的值置为AA),从而使其可以标识更多的上层协议类型;另外添加了一个3Bytes的OUI字段用于代表不同的组织,RFC 1042定义了IP报文在802.2网络中的封装方法和ARP协议在802.2 SANP中的实现. 802.3以太网帧格式备注: 前导码(7字节)、帧起始定界符(1字节)、目的MAC地址(6字节)、源MAC地址(6字节)、类型/长度(2字节)、数据(46~1500字节)、帧校验序列(4字节)[MAC地址可以用2-6字节来表示,原则上是这样,实际都是6字节] 图2 IEEE802.3以太帧头

工业以太网专业术语

工业以太网专业术语 一、拓扑结构 拓扑是网络中电缆的布置。众所周知,EIA-485或CAN 采用总线型拓扑。但在工业以太网中,由于普遍使用集线器或交换机,拓扑结构为星型或分散星型。 二、接线 工业以太网专题">工业以太网使用的电缆有屏蔽双绞线(STP)、非屏蔽双绞线(UTP)、多模或单模光缆。10Mbps 的速率对双绞线没有过高的要求,而在100Mbps 速率下,推荐使用五类或超五类线。 光纤链接时需要一对,常用的多模光纤波长为62.5/125μm 或50/125μm。与多模光纤的内芯相比,单模光纤的内芯很细,只有10μm 左右。通常,10Mbps 使用多模光纤,100Mbps下,单模、多模光纤都适用。 三、接头和连接 双绞线接头中RJ-45 较常见,共两对线,一对用于发送,另一对用于接收。在媒介相关接口(MDI)的定义中,这四个信号分别标识为RD+,RD-,TD+,TD-。 一条通信链路由DTE(数据终端设备,如工作站)和DCE(数据通讯设备,如中继器或交换机)组成。集线器端口标识为MDI-X 端口表明DTE 和DCE 可以使用直通电缆相连。假如是两个DTE或两个DCE相连?可以采用电缆交叉的方法或直接利用集线器提供的上连端口(电缆不要交叉)。 光纤接头有两种,ST 接头用于10Mbps 或100Mbps;SC接头专用于100Mbps。单模纤通常使用SC接头。DTE 与DCE 之间的连接只需依照端口的TX、RX 标识即可。 四、工业以太网与普通商用以太网产品 什么是工业以太网?技术上,它与IEEE802.3 兼容,但设计和包装兼顾工业和商业应用的要求。工业现场的设计者希望采用市场上可以找到的以太网芯片和媒介,兼顾考虑工业现场的特殊要求。首先考虑的是高温、潮湿、震动。第二看是否能方便地安装在工业现场控制柜内。第三是电源要求。许多控制柜内提供的电源都是低压交流或直流。墙装式电源装置有时不能适应。电磁兼容性(EMC)的要求随工业环境对EMI(工业抗干扰)和ESD (工业抗震)要求的不同而变化。现场的安全标准与办公室的完全不同。有时需要的是恶劣环境的额定值。工厂里采用的可能是工业控制柜标准而楼宇系统采用的往往是烟雾标准。显然低价的商用以太网集线器和交换机无法达到这些要求。 五、速度和距离 讨论共享型以太网的距离,不能忽略碰撞域(Collision Domain)的概念。 共享型以太网或半双工以太网的媒体访问是由载波侦听多路访问/碰撞检测(CSMA/CD)确定的。在半双工的通讯方式下,发送和接收不能同时进行,否则数据会发生碰撞。站点发送前,首先要看是否有空闲的信道。发送时,站点还会在一段时间内收听,确保在这一时间内没有其它站点在进行同步传送,最终本站发送成功。反之,发生碰撞,

以太网的帧结构

以太网的帧结构 要讲帧结构,就要说一说OSI七层参考模型。 一个是访问服务点,每一层都对上层提供访问服务点(SAP),或者我们可以说,每一层的头里面都有一个字段来区分上层协议。 比如说传输层对应上层的访问服务点就是端口号,比如说23端口是telnet,80端口是http。IP层的SAP是什么? 其实就是protocol字段,17表示上层是UDP,6是TCP,89是OSPF,88是EGIRP,1是ICMP 等等。 以太网对应上层的SAP是什么呢?就是这个type或length。比如 0800表示上层是IP,0806表示上层是ARP。我 第二个要了解的就是对等层通讯,对等层通讯比较好理解,发送端某一层的封装,接收端要同一层才能解封装。 我们再来看看帧结构,以太网发送方式是一个帧一个帧发送的,帧与帧之间需要间隙。这个叫帧间隙IFG—InterFrame Gap IFG长度是96bit。当然还可能有Idle时间。 以太网的帧是从目的MAC地址到FCS,事实上以太网帧的前面还有preamble,我们把它叫做先导字段。作用是用来同步的,当接受端收到 preamble,就知道以太网帧就要来了。preamble 有8个字节前面7个字节是10101010也就是16进制的AA,最后一个字节是 10101011,也就是AB,当接受端接受到连续的两个高电平,就知道接着来的就是D_mac。所以最后一个字节AB我们也叫他SFD(帧开始标示符)。 所以在以太网传输过程中,即使没有idle,也就是连续传输,也有20个字节的间隔。对于

大量64字节数据来说,效率也就显得不 1s = 1,000ms=1,000,000us 以太网帧最小为64byte(512bit) 10M以太网的slot time =512×0.1 = 51.2us 100M以太网的slot time = 512×0.01 = 5.12us 以太网的理论帧速率: Packet/second=1second/(IFG+PreambleTime+FrameTime) 10M以太网:IFG time=96x0.1=9.6us 100M以太网:IFG time=96x0.01=0.96us 以太网发送方式是一个帧一个帧发送的,帧与帧之间需要间隙。这个叫帧间隙IFG—InterFrame Gap 10M以太网:Preamble time= 64bit×0.1=6.4us 100M以太网:Preamble time= 64bit×0.01=0.64us Preamble 先导字段。作用是用来同步的,当接受端收到preamble,就知道以太网帧就要来了 10M以太网:FrameTime=512bit×0.1=51.2us 100M以太网:FrameTime=512bit×0.01=5.12us 因此,10M以太网64byte包最大转发速度=1,000,000 sec÷(9.6+6.4+51.2)= 0.014880952Mpps 100M以太网64byte包最大转发速度=1,000,000 sec÷(0.96+0.64+5.12)= 0.14880952Mpps

工业以太网简介

工业以太网简介: 工业以太网就是基于IEEE 802、3 (Ethernet)得强大得区域与单元网络。利用工业以太网,SIMATIC NET 提供了一个无缝集成到新得多媒体世界得途径。 企业内部互联网(Intranet),外部互联网(Extranet),以及国际互联网(Internet) 提供得广泛应用不但已经进入今天得办公室领域,而且还可以应用于生产与过程自动化。继10M波特率以太网成功运行之后,具有交换功能,全双工与自适应得100M波特率快速以太网(Fast Ethernet,符合IEEE 802、3u 得标准)也已成功运行多年。采用何种性能得以太网取决于用户得需要。通用得兼容性允许用户无缝升级到新技术。 为用户带来得利益 :市场占有率高达80%,以太网毫无疑问就是当今LAN(局域网)领域中首屈一指得网络。以太网优越得性能,为您得应用带来巨大得利益: 通过简单得连接方式快速装配。 通过不断得开发提供了持续得兼容性,因而保证了投资得安全。 通过交换技术提供实际上没有限制得通讯性能。 各种各样联网应用,例如办公室环境与生产应用环境得联网。 通过接入WAN(广域网)可实现公司之间得通讯,例如,ISDN 或Internet 得接入。 SIMATIC NET基于经过现场应用验证得技术,SIMATIC NET已供应多于400,000个节点,遍布世界各地,用于严酷得工业环境,包括有高强度电磁干扰得区域。 工业以太网络得构成 :一个典型得工业以太网络环境,有以下三类网络器件: ◆网络部件 连接部件: ?FC 快速连接插座 ?ELS(工业以太网电气交换机) ?ESM(工业以太网电气交换机) ?SM(工业以太网光纤交换机) ?MC TP11(工业以太网光纤电气转换模块) 通信介质:普通双绞线,工业屏蔽双绞线与光纤 ◆ SIMATIC PLC控制器上得工业以太网通讯外理器。用于将SIMATIC PLC连接到工 业以太网。 ◆ PG/PC 上得工业以太网通讯外理器。用于将PG/PC连接到工业以太网。 工业以太网重要性能:为了应用于严酷得工业环境,确保工业应用得安全可靠,SIMATIC NET 为以太网技术补充了不少重要得性能: ?工业以太网技术上与IEEE802、3/802、3u兼容,使用ISO与TCP/IP 通讯协议?10/100M 自适应传输速率 ?冗余24VDC 供电 ?简单得机柜导轨安装 ?方便得构成星型、线型与环型拓扑结构 ?高速冗余得安全网络,最大网络重构时间为0、3 秒 ?用于严酷环境得网络元件,通过EMC 测试 ?通过带有RJ45 技术、工业级得Sub-D 连接技术与安装专用屏蔽电缆得Fast Connect连接技术,确保现场电缆安装工作得快速进行 ?简单高效得信号装置不断地监视网络元件 ?符合SNMP(简单得网络管理协议) ?可使用基于web 得网络管理 ?使用VB/VC 或组态软件即可监控管理网络。 工业以太网冗余原理

组建简单以太网要点

-------------学院 课程设计III课程设计设计说明书 组建简单以太网 学生姓名 学号 班级网络1202 成绩 指导教师 数学与计算机科学学院 2015年 3月 7 日

课程设计任务书 2014—2015学年第二学期 课程设计名称:课程设计III课程设计 课程设计题目:组建简单以太网 完成期限:自2015 年 3 月 5 日至2015 年 3 月13 日共 2 周 设计内容: 在Cisco Packet Tracer中构建一个局域网(有计算机、交换机和集线器构成),并且对每台计算机的IP地址和子网掩码进行配置,让局域网中的每台计算机可以相互通信 认识简单的网络拓扑结构;掌握组建以太网的技术与方法:网卡、安装配置、连通性测试等。 指导教师:教研室负责人: 课程设计评阅

摘要 本次课程设计是通过PacketTracer软件组建一个简单的以太网,并采用PacketTracer软件作为网络模拟开发环境实现该以太网,测试其连通性,采用计算机网络原理进行配置和连接,使本以太网具有基本的连接、通信功能,由此对网络结构有所掌握和学习。 关键词:计算机;以太网;PacketTracer

目录 1 课题描述 (1) 2 原理介绍 (2) 2.1 实验目的及要求 (2) 2.2网络设备概述 (2) 2.2 以太网介绍 (3) 3 以太网设计与实现 (5) 3.1网络的设计 (5) 3.2 PC机的IP设置 (5) 4测试及分析 (7) 4.1测试连通性 (7) 4.2分析注意事项 (10) 5 总结 (11) 参考文献 (12)

1 课题描述 本次课程设计是通过认识简单的网络拓扑结构;掌握组建以太网的技术与设计方法;并且基本了解网卡的安装、配置驱动程序、配置TCP/IP协议、连通性测试等操作,对计算机网络原理有实践性认识,提高对实际网络问题的分析解决能力。 开发工具:PacketTracer

以太网帧格式 EthernetⅡ和ETHERNET 802.3 IEEE802.2.SAP和SNAP的区别

EthernetⅡ/ETHERNET 802.3 IEEE802.2.SAP/SNAP的区别 1.Ethernet V1:这是最原始的一种格式,是由Xerox PARC提出的3Mbps CSMA/CD 以太网标准的封装格式,后来在1980年由DEC,Intel和Xerox标准化形成Ethernet V1标准; 2.Ethernet V2(ARPA): 这是最常见的一种以太网帧格式,也是今天以太网的事实标准,由DEC,Intel 和Xerox在1982年公布其标准,主要更改了Ethernet V1的电气特性和物理接口,在帧格式上并无变化;Ethernet V2出现后迅速取代Ethernet V1成为以太网事实标准;Ethernet V2帧头结构为6bytes的源地址+6bytes的目标地址 +2Bytes的协议类型字段+数据。 常见协议类型如下: 0800 IP 0806 ARP 8137 Novell IPX 809b Apple Talk 如果协议类型字段取值为0000-05dc(十进制的0-1500),则该帧就不是Ethernet V2(ARPA)类型了,而是下面讲到的三种802.3帧类型之一;Ethernet可以支持TCP/IP,Novell IPX/SPX,Apple Talk Phase I等协议;RFC 894定义了IP报文在Ethernet V2上的封装格式; Ethernet_II中所包含的字段:

在每种格式的以太网帧的开始处都有64比特(8字节)的前导字符,如图所示。其中,前7个字节称为前同步码(Preamble),内容是16进制数0xAA,最后1字节为帧起始标志符0xAB,它标识着以太网帧的开始。前导字符的作用是使接收节点进行同步并做好接收数据帧的准备。 ——PR:同步位,用于收发双方的时钟同步,同时也指明了传输的速率(10M和100M的时钟频率不一样,所以100M网卡可以兼容10M网卡),是56位的二进制数101010101010..... ——SD: 分隔位,表示下面跟着的是真正的数据,而不是同步时钟,为8位的10101011,跟同步位不同的是最后2位是11而不是10. ——DA:目的地址,以太网的地址为48位(6个字节)二进制地址,表明该帧传输给哪个网卡.如果为FFFFFFFFFFFF,则是广播地址,广播地址的数据可以被任何网 卡接收到. ——SA:源地址,48位,表明该帧的数据是哪个网卡发的,即发送端的网卡地址, 同样是6个字节. ----TYPE:类型字段,表明该帧的数据是什么类型的数据,不同的协议的类型字段不同。如:0800H 表示数据为IP包,0806H 表示数据为ARP包,814CH是SNMP 包,8137H为IPX/SPX包,(小于0600H的值是用于IEEE802的,表示数据包的长度。) ----DATA:数据段,该段数据不能超过1500字节。因为以太网规定整个传输包的最大长度不能超过1514字节。(14字节为DA,SA,TYPE) ----PAD:填充位。由于以太网帧传输的数据包最小不能小于60字节, 除去(DA,SA,TYPE 14字节),还必须传输46字节的数据,当数据段的数据不足46字节时,后面补000000.....(当然也可以补其它值) ----FCS:32位数据校验位.为32位的CRC校验,该校验由网卡自动计算,自动生成,自动校验,自动在数据段后面填入.对于数据的校验算法,我们无需了解. ----事实上,PR,SD,PAD,FCS这几个数据段我们不用理它 ,它是由网卡自动产生的,我们要理的是DA,SA,TYPE,DATA四个段的内容.

工业以太网总述

为用户带来的利益 ----市场占有率高达80%,以太网毫无疑问是当今LAN(局域网)领域中首屈一指的网络。以太网优越的性能,为您的应用带来巨大的利益: 通过简单的连接方式快速装配。 通过不断的开发提供了持续的兼容性,因而保证了投资的安全。 通过交换技术提供实际上没有限制的通讯性能。 各种各样联网应用,例如办公室环境和生产应用环境的联网。 公司之间的通讯

通过接入WAN(广域网)可实现公司之间的通讯,例如,ISDN 或Internet 的接入。 ----SIMATIC NET基于经过现场应用验证的技术,SIMATIC NET已供应多于400,000个节点,遍布世界各地,用于严酷的工业环境,包括有高强度电磁干扰的区域。 工业以太网络的构成 ----一个典型的工业以太网络环境,有以下三类网络器件: 网络部件 连接部件: FC 快速连接插座 ELS(工业以太网电气交换机) ESM(工业以太网电气交换机) SM(工业以太网光纤交换机) MC TP11(工业以太网光纤电气转换模块) 通信介质: 普通双绞线,工业屏蔽双绞线和光纤 SIMATIC PLC控制器上的工业以太网通讯处理器。用于将SIMATIC PLC连接到工业以太网。 PG/PC 上的工业以太网通讯处理器。用于将PG/PC连接到工业以太网。 工业以太网重要性能

----为了应用于严酷的工业环境,确保工业应用的安全可靠,SIMATIC NET 为以太网技术补充了不少重要的性能: 工业以太网技术上与IEEE802.3/802.3u兼容,使用ISO和TCP/IP 通讯协议 10/100M 自适应传输速率 冗余24VDC 供电 简单的机柜导轨安装 方便的构成星型、线型和环型拓扑结构 高速冗余的安全网络,最大网络重构时间为0.3 秒 用于严酷环境的网络元件,通过EMC 测试 通过带有RJ45 技术、工业级的Sub-D 连接技术和安装专用屏蔽电缆的Fast Connect连接技术,确保现场电缆安装工作的快速进行 简单高效的信号装置不断地监视网络元件 符合SNMP(简单的网络管理协议) 可使用基于web 的网络管理 使用VB/VC 或组态软件即可监控管理网络 工业以太网的技术特点 工业以太网技术具有价格低廉、稳定可靠、通信速率高、软硬件产品丰富、应用广泛以及支持技术成熟等优点,已成为最受欢迎的通信网络之一。近些年来,随着网络技术的发展,以太网进入了控制领域,形成了新型的以太网控制网络技术。这主要是由于工业自动化系统向分布化、智能化控制方面发展,开放的、透明的通讯协议是必然的要求。以太网技术引入工业控制领域,其技术优势非常明显:

以太网帧格式

以太网帧格式详解: Etherne II 报头8 目标地址6 源地址6 以太类型2 有效负载46-1500 帧检验序列4 报头:8个字节,前7个0,1交替的字节(10101010)用来同步接收站,一个1010101011字节指出帧的开始位置。报头提供接收器同步和帧定界服务。 目标地址:6个字节,单播、多播或者广播。单播地址也叫个人、物理、硬件或MAC地址。广播地址全为1,0xFF FF FF FF。 源地址:6个字节。指出发送节点的单点广播地址。 以太网类型:2个字节,用来指出以太网帧内所含的上层协议。即帧格式的协议标识符。对于IP报文来说,该字段值是0x0800。对于ARP信息来说,以太类型字段的值是0x0806。 有效负载:由一个上层协议的协议数据单元PDU构成。可以发送的最大有效负载是1500字节。由于以太网的冲突检测特性,有效负载至少是46个字节。如果上层协议数据单元长度少于46个字节,必须增补到46个字节。 帧检验序列:4个字节。验证比特完整性。 IEEE 802.3 根据IEEE802.2 和802.3标准创建的,由一个IEEE802.3报头和报尾以及一个802.2LLC报头组成。 报头7 起始限定符1 目标地址6(2)源地址6(2)长度2 DSAP1 SSAP1 控件2 有效负载3 帧检验序列4 -----------802.3报头--------------§- --802.2报头----§ §-802.3报尾-§

IEEE802.3报头和报尾 报头:7个字节,同步接收站。位序列10101010 起始限定符:1个字节,帧开始位置的位序列10101011。 报头+起始限定符=Ethernet II的报头 目标地址:同Ethernet II。也可以为2个字节,很少用。 源地址:同Ethernet II。也可以为2个字节,很少用。 长度:2个字节。 帧检验序列:4个字节。 IEEE802.2 LLC报头 DSAP:1个字节,指出帧的目标节点的上层协议。Destination Service Access Point SSAP:1个字节,指出帧的源节点的上层协议。Source Service Access Point DSAP和SSAP相当于IEEE802.3帧格式的协议标识符。为IP定义的DSAP和SSAP 字段值是0x06。但一般使用SNAP报头。 控件:1-2个字节。取决于封装的是LLC数据报(Type1 LLC)还是LLC通话的一部分(Type2 LLC)。 Type1 LLC:1个字节的控件字段,是一种无连接,不可靠的LLC数据报。无编号信息,UI帧,0x03。 Type2 LLC:2个字节的控件字段,是一种面向连接,可靠的LLC对话。 对IP和ARP,从不使用可靠的LLC服务。所以,都只用Type1 LLC,控件字段设为0x03。 区分两种帧 根据源地址段后的前两个字节的类型不同。 如果值大于1500(0x05DC),说明是以太网类型字段,EthernetII帧格式。值小于等于1500,说明是长度字段,IEEE802.3帧格式。因为类型字段值最小的是0x0600。而长度最大为1500。 IEEE802.3 SNAP 虽然为IP定义的SAP是0x06,但业内并不使用该值。RFC1042规定在IEEE802.3, 802.4, 802.5网络上发送的IP数据报和ARP帧必须使用SNAP(Sub Network Access Prototol)封装格式。 报头7 起始限定符1 目标地址6 源地址6 长度2 DSAP1 SSAP1 控件1 组织代码3 以太类型2 IP数据报帧检验序列 ----IEEE802.3报头-----------§IEEE8023 LLC报头---§--SNAP报头----§ §802.3报尾§ 0x0A 0x0A 0x03 0x00-00-00 0x08-00 (38-1492字节) Ethernet地址 为了标识以太网上的每台主机,需要给每台主机上的网络适配器(网络接口卡)分配一个唯一的通信地址,即Ethernet地址或称为网卡的物理地址、MAC 地址。 IEEE负责为网络适配器制造厂商分配Ethernet地址块,各厂商为自己生产的每块网络适配器分配一个唯一的Ethernet地址。因为在每块网络适配器出厂时,其Ethernet地址就已被烧录到网络适配器中。所以,有时我们也将此地址称为烧录地址(Burned-In-Address,BIA)。

1.1以太网接口简介·

目录 1以太网接口配置············································································································· 1-1 1.1 以太网接口简介·········································································································· 1-1 1.2 以太网接口配置·········································································································· 1-1 1.2.1 以太网接口基本配置 ··························································································· 1-1 1.2.2 以太网子接口基本配置 ························································································ 1-2 1.2.3 切换以太网接口的二三层工作模式 ········································································· 1-2 1.2.4 配置以太网接口允许超长帧通过 ············································································ 1-3 1.2.5 配置以太网接口dampening功能 ············································································ 1-3 1.2.6 配置以太网接口统计信息的时间间隔 ······································································ 1-5 1.2.7 配置以太网接口的MAC地址 ················································································· 1-5 1.3 以太网接口显示和维护································································································· 1-6

计算机网络实验报告(以太网帧格式分析)

计算机网络实验报告 学院计算机与通信工程学院专业网络工程班级1401班 学号20姓名实验时间:2016.5.13 一、实验名称: FTP协议分析实验 二、实验目的: 分析FTP 报文格式和FTP 协议的工作过程,同时学习 Serv-U FTP Server服务软件的基本配置和FTP 客户端命令的使用。 三、实验环境: 实验室局域网中任意两台主机PC1,PC2。 四、实验步骤及结果: 步骤1:查看实验室PC1和PC2的IP地址,并记录,假设PC1的IP 地址为10.64.44.34,PC2的IP地址为10.64.44.35。 步骤2:在PC1上安装Serv-U FTP Server,启动后出现图1-20所示界面。 点击新建域,打开添加新建域向导,完成如下操作。 添加域名:https://www.360docs.net/doc/ac2710475.html,;设置域端口号:21(默认);添加域IP地址:10.28.23.141;设置密码加密模式:无加密,完成后界面如图1-21所示。 完成上述操作后,还需要创建用于实验的用户帐号。点击图1.20中

浮动窗口中的“是”按钮,打开添加新建用户向导:添加用户名:test1;添加密码:123;设置用户根目录(登陆文件夹);设置是否将用户锁定于根目录:是(默认);访问权限:只读访问,完成后界面如图1-22所示。 新建的用户只有文件读取和目录列表权限,为完成实验内容,还需要为新建的用户设置目录访问权限,方法为点击导航——〉目录——〉目录访问界面,然后点击添加按钮, 按照图1-23所示进行配置。 步骤3:在PC1 和PC2 上运行Wireshark,开始捕获报文。 步骤4:在PC2 命令行窗口中登录FTP 服务器,根据步骤2中的配置信息输入用户名和口令,参考命令如下: C:\ >ftp ftp> open To 10.28.23.141 //登录ftp 服务器 Connected to 10.28.23.141 220 Serv-U FTP Server v6.2 for WinSock ready... User(none): test1 //输入用户名 331 User name okay, need password. Password:123 //输入用户密码 230 User logged in, proceed. //通过认证,登录成功

各种工业以太网的区别

各种工业以太网的区别其实就是协议的区别,其中最主要的还是应用层协议的区别。 都是以太网通讯,只是每个公司的叫法不一样,西门子用PROFINET、AB用Ethernet IP、施耐德的MODBUS TCP/IP。 取个例子,以太网就像高速公路,Ethernet/IP、Profinet、Modbus TCP/IP分别像高速公路上的宝马、奔驰、奥迪车,都可以从一个城市把物品运送到另一城市。但是每个车上安装的零件无法和另一车上的零件进行更换。 EtherCAT(以太网控制自动化技术)是一个以以太网为基础的开放架构的现场总线系统,EterCAT名称中的CAT为ControlAutomation Technology(控制自动化技术)首字母的缩写。最初由德国倍福自动化有限公司(Beckhoff AutomationGmbH)研发。EtherCAT为系统的实时性能和拓扑的灵活性树立了新的标准,同时,它还符合甚至降低了现场总线的使用成本。EtherCAT的特点还包括高精度设备同步,可选线缆冗余,和功能性安全协议(SIL3)。 Ethernet/IP是一个面向工业自动化应用的工业应用层协议。它建立在标准UDP/IP与TCP/IP 协议之上,利用固定的以太网硬件和软件,为配置、访问和控制工业自动化设备定义了一个应用层协议西蒙公司开发 Ethernt/IP属于ODVA组织,Rockwell只是其中一个推广力度比较大的公司而已。施耐德也是ODVA组织的成员,施耐德所有PLC都可以支持Ethernt/IP协议。Ethernt/IP协议是十大总线之一,和Controlnet、Devicenet一起称为CIP总线。可以实现协议间路由,但是需要Rslinx 软件进行配置。通讯时需要设置RPI参数,没有任何客户端的反馈信息,因此不管现场客户端是否收到数据,数据一致由服务器不断的发,缺少相应的检测。 PROFINET由PROFIBUS国际组织(PROFIBUS International,PI)推出,是新一代基于工业以太网技术的自动化总线标准。作为一项战略性的技术创新,PROFINET为自动化通信领域提供了一个完整的网络解决方案,囊括了诸如实时以太网、运动控制、分布式自动化、故障安全以及网络安全等当前自动化领域的热点话题,并且,作为跨供应商的技术,可以完全兼容工业以太网和现有的现场总线(如PROFIBUS)技术,保护现有投资。 PROFINET是适用于不同需求的完整解决方案,其功能包括8个主要的模块,依次为实时通信、分布式现场设备、运动控制、分布式自动化、网络安装、IT标准和信息安全、故障安全和过程自动化。 MODBUS/TCP是简单的、中立厂商的用于管理和控制自动化设备的MODBUS系列通讯协议的派生产品。显而易见,它覆盖了使用TCP/IP协议的“Intranet”和“Internet”环境中MODBUS 报文的用途。协议的最通用用途是为诸如PLC’s,I/O模块,以及连接其它简单域总线或I/O 模块的网关服务的。 MODBUS/TCP协议是作为一种(实际的)自动化标准发行的。既然MODBUS已经广为人知,该规范只将别处没有收录的少量信息列入其中。然而,本规范力图阐明MODBUS中哪种功能对于普通自动化设备的互用性有价值,哪些部分是MODBUS作为可编程的协议交替用于PLC’s的“多余部分”。 它通过将配套报文类型“一致性等级”,区别那些普遍适用的和可选的,特别是那些适用于特殊设备如PLC’s的报文。 Modbus TCP/IP由Modbus IDA组织提出,有施耐德旗下的Modicon公司主推,在目前施耐德所有PLC产品中都支持,同时也支持Ethernet/IP协议,Modbus TCP/IP是免费的、全开放协议,可以用VB等高级编程语言调用winsock控件即可实现与PLC的数据通讯,因此,很

工业以太网的意义及其应用分析

以太网技术在工业控制领域的应用及意义 随着计算机和网络技术的飞速发展,在企业网络不同层次间传送的数据信息己变得越来越复杂,工业网络在开放性、互连性、带宽等方面提出了更高的要求。现场总线技术适应了工业网络的发展趋势,用数字通信代替传统的模拟信号传输,大量地减少了仪表之间的连接电缆、接线端口等,降低了系统的硬件成本,被誉为自动化领域的计算机局域网。 现场总线的出现,对于实现面向设备的自动化系统起到了巨大的推动作用,但现场总线这类专用实时通信网络具有成本高、速度低和支持应用有限等缺陷,以及总线通信协议的多样性使得不同总线产品不能直接互连、互用和互可操作等,无法达到全开放的要求,因此现场总线在工业网络中的进一步发展受到了限制。 随着Internet技术的不断发展,以太网己成为事实上的工业标准,TCP/IP 的简单实用已为广大用户所接受,基于TCP/IP协议的以太网可以满足工业网络各个层次的需求。目前不仅在办公自动化领域内,而且在各个企业的上层网络也都广泛使用以太网技术。由于它技术成熟,连接电缆和接口设备价格较低,带宽也在飞速增加,特别是快速Ethernet与交换式Ethernet的出现,使人们转向希望以物美价廉的以太网设备取代工业网络中相对昂贵的专用总线设备。Ethernet通信机制 Ethernet是IEEE802. 3所支持的局域网标准,最早由Xerox开发,后经数字仪器公司、Intel公司和Xerox联合扩展,成为Ethernet标准。Ethernet采用星形或总线形结构,传输速率为10Mb/s,100 Mb/s,1000 Mb/s或是更高,传输介质可采用双绞线、光纤、同轴电缆等,网络机制从早期的共享式发展到目前盛行的交换式,工作方式从单工发展到全双工。 在OSI/ISO 7层协议中,Ethernet本身只定义了物理层和数据链路层,作为一个完整的通信系统,它需要高层协议的支持。自从APARNET将TCP/IP和

以太网网卡结构和工作原理

以太网网卡结构和工作原理 网络适配器又称网卡或网络接口卡(NIC),英文名NetworkInterfaceCard。它是使计算机联网的设备。平常所说的网卡就是将PC机和LAN连接的网络适配器。网卡(NIC)插在计算机主板插槽中,负责将用户要传递的数据转换为网络上其它设备能够识别的格式,通过网络介质传输。它的主要技术参数为带宽、总线方式、电气接口方式等。它的基本功能为:从并行到串行的数据转换,包的装配和拆装,网络存取控制,数据缓存和网络信号。目前主要是8位和16位网卡。 网卡必须具备两大技术:网卡驱动程序和I/O技术。驱动程序使网卡和网络操作系统兼容,实现PC机与网络的通信。I/O技术可以通过数据总线实现PC和网卡之间的通信。网卡是计算机网络中最基本的元素。在计算机局域网络中,如果有一台计算机没有网卡,那么这台计算机将不能和其他计算机通信,也就是说,这台计算机和网络是孤立的。 网卡的不同分类:根据网络技术的不同,网卡的分类也有所不同,如大家所熟知的ATM网卡、令牌环网卡和以太网网卡等。据统计,目前约有80%的局域网采用以太网技术。根据工作对象的不同务器的工作特点而专门设计的,价格较贵,但性能很好。就兼容网卡而言,目前,网卡一般分为普通工作站网卡和服务器专用网卡。服务器专用网卡是为了适应网络服种类较多,性能也有差异,可按以下的标准进行分类:按网卡所支持带宽的不同可分为10M网卡、100M网卡、 10/100M自适应网卡、1000M网卡几种;根据网卡总线类型的不同,主要分为ISA网卡、EISA网卡和PCI网卡三大类,其中ISA网卡和PCI网卡较常使用。ISA总线网卡的带宽一般为10M,PCI总线网卡的带宽从10M到1000M都有。同样是10M网卡,因为ISA总线为16位,而PCI总线为32位,所以PCI网卡要比ISA网卡快。 网卡的接口类型:根据传输介质的不同,网卡出现了AUI接口(粗缆接口)、BNC接口(细缆接口)和RJ-45接口(双绞线接口)三种接口类型。所以在选用网卡时,应注意网卡所支持的接口类型,否则可能不适用于你的网络。市面上常见的10M网卡主要有单口网卡(RJ-45接口或BNC接口)和双口网卡(RJ-45和BNC两种接口),带有AUI粗缆接口的网卡较少。而100M和1000M网卡一般为单口卡(RJ-45接口)。除网卡的接口外,我们在选用网卡时还常常要注意网卡是否支持无盘启动。必要时还要考虑网卡是否支持光纤连接。 网卡的选购:据统计,目前绝大多数的局域网采用以太网技术,因而重点以以太网网卡为例,讲一些选购网卡时应注意的问题。购买时应注意以下几个重点: 网卡的应用领域----目前,以太网网卡有10M、100M、10M/100M及千兆网卡。对于大数据量网络来说,服务器应该采用千兆以太网网卡,这种网卡多用于服务器与交换机之间的连接,以提高整体系统的响应速率。而10M、100M和 10M/100M网卡则属人们经常购买且常用的网络设备,这三种产品的价格相差不大。所谓10M/100M自适应是指网卡可以与远端网络设备(集线器或交换机)

以太网交换机说明

以太网交换机的功能与原理详细说明 下面文章根据以太网交换机的功能和原理进行详细的说明介绍,或许一些刚刚接触到这一行业的用户来说,以太网交换机这个名词对于他们来说是个陌生的东西,那么看完本文能给您带来相关益处。 作为局域网的主要连接设备,以太网交换机成为应用普及最快的网络设备之一。随着交换技术的不断发展,以太网交换机的价格急剧下降,交换到桌面已是大势所趋。如果你的以太网络上拥有大量的用户、繁忙的应用程序和各式各样的服务器。 而且你还未对网络结构做出任何调整,那么整个网络的性能可能会非常低。解决方法之一是在以太网上添加一个10/100Mbps的交换机,它不仅可以处理10Mbps的常规以太网数据流,而且还可以支持100Mbps的快速以太网连接。 如果网络的利用率超过了40%,并且碰撞率大于10%,交换机可以帮你解决一点问题。带有100Mbps快速以太网和10Mbps以太网端口的交换机可以全双工方式运行,可以建立起专用的20Mbps到200Mbps连接。 不仅不同网络环境下交换机的作用各不相同,在同一网络环境下添加新的交换机和增加现有交换机的交换端口对网络的影响也不尽相同。充分了解和掌握网络的流量模式是能否发挥交换机作用的一个非常重要的因素。 因为使用交换机的目的就是尽可能的减少和过滤网络中的数据流量,所以如果网络中的某台交换机由于安装位置设置不当,几乎需要转发接收到的所有数据包的话,交换机就无法发挥其优化网络性能的作用,反而降低了数据的传输速度,增加了网络延迟。 除安装位置之外,如果在那些负载较小,信息量较低的网络中也盲目添加交换机的话,同样也可能起到负面影响。受数据包的处理时间、交换机的缓冲区大小以及需要重新生成新数据包等因素的影响。 在这种情况下使用简单的HUB要比交换机更为理想。因此,我们不能一概认为交换机就比HUB有优势,尤其当用户的网络并不拥挤,尚有很大的可利用空间时,使用HUB更能够充分利用网络的现有资源。 “交换机”是一个舶来词,源自英文“Switch,原意是“开关”,我国技术界在引入这个词汇时, 翻译为“交换”。在英文中,动词“交换”和名词“交换机”是同一个词(注意这里的“交换”特指电信技术中的信号交换,与物品交换不是同一个概念)。 1993年,局域网交换设备出现,1994年,国内掀起了交换网络技术的热潮。其实,交换技

相关文档
最新文档