板壳力学读书报告

板壳力学读书报告
板壳力学读书报告

板壳力学读书报告李晗2013级工程力学2班2013301890037

板壳力学,顾名思义,主要内容就是板和壳,就教材而言,前面第十三章到第十八章是板的内容,主要也是薄板,包括薄板的小挠度弯曲问题、薄板的振动问题、薄板的稳定问题以及薄板的大挠度问题,后面从第十九章到第二十二章是壳的内容,主要包括壳体的一般理论,柱壳、旋转壳以及扁壳问题。板壳力学是弹性力学的下册,自然是和弹性力学紧密地联系在一起的,弹性力学中有四条基本假设,同样,在板壳力学中也有几条假设,分别如下:

1)板壳是均匀的、连续的,并且是各向同性的;

2)板壳是线弹性的;

3)板壳的变形是微小的;

4)直法线假设,即认为板壳变形前垂直于中面的法线线段在变形后仍保持为

直线,并垂直于变形后的中面,且其长度不变;

5)法向应力很小,可以忽略;

6)板的中面没有变形。

除了这几条基本假设,弹性力学中的平衡方程、物理方程以及几何方程在板壳力学中也有广泛地应用。

一、板的问题

板的中面为一个平面,板分为薄板和厚板,所谓的薄和厚,主要是看板的厚度δ与中面最小尺寸b 的相对关系,如果板的厚度δ远小于中面的最小尺寸b (例如小于/8b 至/5b ),则称其为薄板,反之则称其为厚板。

1、薄板的小挠度弯曲问题

所谓薄板的小挠度弯曲问题,就是指这样的薄板:板虽然很薄,但是仍具有相当的弯曲刚度,因而板受横向荷载时挠度远小于它的厚度,这种问题就是板的小挠度弯曲问题,如果板的挠度和板的厚度同阶,则称其为大挠度弯曲问题。薄板的小挠度弯曲问题有三个基本假定,分别为(1)垂直于中面方向的正应变z ξ为零;(2)应力分量zx τ、zy τ、z σ远小于其余三个应力分量,因而是次要的,它们所引起的形变可以忽略,但是它们本身却需要维持平衡,所以他们本身不可以忽略,这一点还是很奇妙的;(3)薄板中面内的个点都没有平行于中面的位移,这就是说,中面的任意一部分,虽然弯曲成为弹性曲面的一部分,但是它在xy 平面上的投影形状却不变,从这可以推

导出,一个薄板,即使它受到横向荷载的作用,但是在小挠度弯曲问题的背

景下,它在水平面上的投影依然保持不变。

薄板的小挠度弯曲问题按位移求解,取薄板的挠度w为基本未知量,经

过前面的一系列假设以及弹性力学的三个基本方程,可以推导出薄板的弹性曲面微分方程为

4

D w q

?=(1)

式中D为薄板的弯曲刚度,为

3

3

12(1)

μ

-

,一般求解薄板的小挠度弯曲问题时,

现根据边界条件和弹性曲面微分方程求出挠度w,然后可以依次根据变换式求出应力分量。就薄板的边界条件,如果薄板的边界受有扭矩,则可以根据基尔霍夫的理论,将扭矩变换为等效的横向剪力,原来的横向剪力进行合并,这样子就可以大大减少运算的困难度。

在薄板的小挠度弯曲问题中,纳维解法和莱维解法则分别根据薄板是四边简支和两个对边被简支这两种特殊边界来求解的。而对于圆形薄板的问题,用极坐标就更为简便,可以将前面章节中的直角坐标用弹性力学中的变换方法变换成极坐标即可。

前面所讨论的问题均为薄板的厚度不变的这种情形,如果是变厚度薄板,则相对来说处理比较困难,这时必须把弯曲刚度D看作是x和y的函数,这时候弹性曲面微分方程也会有很大的变化,随着薄板的厚度的不同变化规律,微分方程的系数也就取不同的函数形式,这时候就需要不同的求解方法,考察常见的厚度沿某一方向线性变化,这是一种特殊的情况,也是较为简单求解的情形。

2、差分法和变分法求解薄板的小挠度弯曲问题

在求解薄板的小挠度弯曲问题时,需要求解一个四阶的微分方程,计算量很大,因而人们就想到了运用差分法和变分法进行求解,在薄板的中面上织成网格,根据弹性曲面微分方程和边界条件的差分形式,求出挠度在各点的数值,从而求得内里在各结点出的数值,以及边界上各结点出的反力数值。经过证明推导,差分法对于集中荷载的问题、变集度的分布荷载、文克勒地基上的基础板、连续板的问题、变厚度板的问题以及温度应力的问题均有很好的解决方法。同时,弹性力学中的里茨法和伽辽金法在这个地方也有很好的应用。

3、薄板的振动问题

薄板的振动,分为自由振动和强迫振动,根据振动力学的解释,自由振动就是在振动过程中不受外力的作用,只在初始时收到力的作用,而强迫振动则是在振动过程中一直受到强迫力的作用,讨论最多的还是薄板的自由振动。根据教材,薄板自由振动的一般问题是这样提出的:在一定的横向荷载作用下处于平衡位置的薄板,受到干扰力的作用而偏离这一位置,当干扰力被除去之后,在平衡位置附近作微幅振动。谈到振动,自然就少不了频率,频率是振动问题中最关键的一环。依然是从弹性曲面微分方程开始,这时候

所受荷载q 就变成q 和惯性力i q 的和,此时微分方程变成24

2t t w D w q m t ??=-?,为了简便,把薄板的挠度从平衡位置开始算起,建立起薄板的自由振动微分方程为24

20m w w D t ??+=?,对于这个微分方程,假设挠度w 可以展开成三角级数与一个振型函数(,)W x y 的乘积,为了求出各种振型下的振型函数m W 以及相应的频率m ω,我们取(cos sin )(,)w A t B t W x y ωω=+,代入到振动微分方程

中去,消去因子cos sin A t B t ωω+,即可得到42

D W m W ω?=,求出相应的频率。这是求解自由振动频率的一种方法,从前面讨论的问题可知,也可以采用差分法求解自由振动频率。4、薄板的稳定问题

根据材料力学中,当一根杆受压时会失稳,这个现象同样也存在于薄板之中,通过前面的讨论我们得知,当一个薄板受到横向荷载的作用时,会产生弯曲,也就是挠度的产生,同样,当一个薄板受到纵向力时,也会产生纵向弯曲,发生伸缩和切应变,这是每单位宽度的平面应力将合成所谓的中面内里或薄膜内力Tx F 、Ty F 、Txy F 以及Tyx F ,其中Tx F 和Ty F 是拉应力,Txy F 和Tyx F 是平错力或者纵向剪力。

当薄板在边界上受有纵向荷载时,板内将发生一定的中面内力,如果这个中面内力在各个部位、各个方向都不是压力,则此时薄板的平衡状态是稳定的,但是,如果纵向荷载所引起的中面内力在某些部位、某些方向上是压力,则当纵向荷载超过临界荷载是,薄板的平衡状态就是不稳定的,这就是说,在薄板收到横向干扰力的而弯曲以后,即使干扰力被撤去,薄板也无法

目前针对薄板的小挠度弯曲问题有了很深入的研究,对于薄壳也是如此,但是实际中有很多为中厚板,虽然针对中厚板也已经有这样那样的计算方法被提出来了,但是目前还不便应用于工程实际问题。

高等土力学读书报告

高等土力学读书报告 姓名:杨耀辉 学院:水利与土木工程学院 专业:水利工程 学号: 1338020126

无粘性土颗粒组成的类型与基本性质 一 无粘性土颗粒组成类型与分类 1.颗粒组成 颗粒组成是研究无粘性土基本性质的主要依据,通常以各粒径含量的累积曲线或分布曲线表示。 均匀土:分布曲线是单峰形式,各粒径都有一定的含量,峰值粒径含量占绝对优势,其破坏形式主要是流土破坏。 单峰形:峰值远离中值,呈左偏峰,出现双峰时右峰较低,两峰连续,谷点里粒径至少占4%至5%,曲线无明显平缓段,集中在某段,无峰值。 不均匀土:级配连续和级配不连续。 双峰形:双峰间有间断,有的相连接,但最低点粒径含量小于或等于3%,累积曲线呈椅子形,出现台阶。 2.均匀土的区分原则和方法 均匀土特点:级配不良,压实性差,孔隙率大,稳定性差。 太沙基指出5,1.0<

质仍取决于粗料。但随细料的含量的增加,混合料密度增加,孔隙相应减小,到细料超出一定含量时,混合料性质就取决于细料。最优级配的细料含量P=25%到30%。 混合料中开始参与骨架作用的细料含量 21n n n = ;并考虑到无粘性土一般21s s ρρ=;得出细料含量与孔隙率的关系 理想状态下的计算式: ()2 222 1 1 1n n n P d s d ?+?-?= ρρρ 其中 ()1 111 s d n ρρ?-=; 在理想状态下: n n n P --= 12。 为使P 含量与实际相符,就要考虑粗料孔隙体积被撑开的影响,由实验分 析知2n 随n 增大而增大,且223n n =?;我们取粗料孔隙率为0.3,则2 233.0n n += ∴ n n n P --+= 133.02 但在实际中,混合料中细料是多少要撑开粗料孔隙的,所以理论计算的P 要小于实际中的。 实际值小于它时表明细料没填满粗料孔隙; 实际值大于它时细料填满粗料孔隙且与粗料共同组成骨架; 当实际值等于它时认为混合料有最优级配料。 渗透系数与细料含量的关系; P 〈30%时填不满孔隙,对渗透系数起控制作用的是粗料。 P 〉30%时孔隙与细料产生关系。 P 〉70%时粗料只起填充作用,对渗透系数的影响减少直到消失。 4.级配连续土的基本性质 级配连续土的性质: Cu>10 1

《断裂》读书报告

从《断裂》看当今社会 摘要:介绍了《断裂:20世纪90年代以来的中国社会》一书作者的学术情况及书的基本内容,其中重点介绍了《耐用消费品时代的挑战》和《资源重新积聚与底层社会》两个章节。并从《断裂》中所分析的90年代到2000年以来的社会中的种种问题思考当今社会的一些现象,如攒钱买房现象、市场疲软等现象。 事实证明,书中所谈到的一些问题以及措施在当今社会依然适用。 关键词:社会学、社会变迁、断裂 一、关于作者 1、学术生平 孙立平一直在倡导实践的社会学。强调要面对实践形态的社会现象,要将社会事实看作是动态的、流动的,而不是静态的,如同在印象派画家的眼中,空气和阳光是流动的一样。 他提倡“过程——事件分析”的研究策略,目的是为了接近实践形态的社会现象,或者说是找到一种接近实践状态社会现象的途径。 孙立平有一个著名的观点:做社会学研究要“要命而有趣”。“要研究中国社会学的真问题,你不能把重要的看成不重要。同时,研究中国的问题要能够和国际学术界讨论、对话。”这是孙立平的治学之道。 2、学术分期 孙立平在在80年代,主要研究方向为社会现代化。曾出版《社会现代化》、《走向现代之路》、《发展的反省与探索》等著作,并发表论文多篇。其间,提出现代化的时序模式、后发外生型现代化等理论。特别是后发外生型现代化理论在学术界产生了广泛的影响。 在进入90年代之后,研究的兴趣转向中国社会结构变迁。相继发表《改革以来中国社会结构的变迁》(合作)、《改革前后中国国家、民间统治精英和民众互动关系的演变》等论文,并提出了“总体性社会”、“总体性资本”、“自由流动资源”与“自由活动空间”等重要概念和理论。发表在《战略与管理》1998年第五期上的《中国社会结构转型的中近期趋势和隐患》(合作)受到海内外学术界的关注。 目前的研究方向主要是转型社会学。其主持的大型研究计划“二十世纪下半期中国农村社会变迁口述资料收集与研究”,关注的是作为一种文明的共产主义在日常生活实践中的运行逻辑。 另外主持的“当代中国农村中国家与农民关系研究”和“从单位制到社区制----社区建设研究”则关注于“总体性社会”向“后总体性社会”的转型过程。 二、关于本书 1、写书背景 90年代至2000年左右,中国社会在很大程度上已经是一个非常不同的社会。人们的生活在不知不觉中发生了一系列变化,种种不和谐的现象也开始出现。学术界对于这样一个正转型中的中国社会进行了许多的讨论。 2、研究问题及研究目的 作者在本书中从社会学的视角出发,提出了“断裂”的概念,旨在分析社会中各种不和谐及其背后的原因,并将“80年代”和“90年代”进行了具体的比较。

计算机辅助工程分析读书报告

《计算机辅助工程分析技术》读书报告 姓名: 班级: 学号: 学院:机电工程学院 日期:2012年12月29日 成绩:

摘要:弹性力学是固体力学的一个分支,是研究弹性体由于外力或温度改变等 原因而发生的应力、应变和位移。确定弹性体的各质点应力、应变和位移的目的就是确定构件设计中强度和刚度指标,以此用来解决实际工程结构中的强度、刚度和稳定性问题。弹性力学需解决的是满足边界条件的高阶多变量偏微分方程,在数学上求解困难,一般采用有限元法进行分析。有限元分析的力学基础是弹性力学,而方程求解的原理是采用加权残值法或泛函极值原理,实现的方法是数值离散技术,最后的技术载体是有限元分析软件(如ANSYS)。因此,有限元分析的主体内容包括:基本变量和力学方程、数学求解原理、离散结构和连续体的有 限元分析实现、各种应用领域、分析中的建模技巧、分析实现的软件平台。[]1关键词:弹性力学有限元计算机辅助工程分析 一、前言 工程分析是产品开发的基本任务之一,而CAE是CAD/CAM不可缺少的组成部分。弹性力学是工程分析中的一项重要内容,用来解决实际工程结构中的强度、刚度和稳定性问题,同时也是有限元方法的力学基础。而有限元分析方法是CAE 中的一种重要手顿。 计算机辅助工程(Computer Aided Engineering)是指用计算机对工程和产品进行性能与安全可靠性分析,模拟工程或产品未来的状态和运行状态,及早地发现设计缺陷,为优化设计提供依据。准确地说,CAE是指工程设计中的分析计算与分析仿真,具体包括工程数值分析、结构与过程优化设计、强度与寿命评估、运动/动力学仿真。 广义地讲,计算机辅助工程是有关设计制造、工程分析、仿真、实验及信息分析处理,以及相应数据库和数据管理系统(DBMS)在内的计算机辅助设计和生产的综合系统。狭义地讲,CAE主要是指CAE环节的工作和系统。 CAE的核心技术为有限元分析技术,核心应用是虚拟样机。有限元方法是用于求解各类工程问题的一种数值计算方法。应力分析之中的稳态、瞬态、线性或非线性问题以及热传导、流体流动和电磁学中的问题都可以用有限元方法进行分 析。[]2 本报告主要介绍了计算机辅助工程分析技术的主要内容、相关技术、计算机辅助工程分析技术的应用现状、计算机辅助工程分析技术的发展趋势,还介绍了弹性力学的基本理论、有限元法的原理、方法和特点及其举例。 二、学习内容 1、弹性力学 弹性力学是固体力学的一个分支,是研究弹性体由于外力或温度改变等原因

力学实验报告

力学实验报告 篇一:工程力学实验(全) 工程力学实验学生姓名:学号:专业班级:南昌大学工程力学实验中心目录实验一金属材料的拉伸及弹性模量测定试验实验二金属材料的压缩试验实验三复合材料拉伸实验实验四金属扭转破坏实验、剪切弹性模量测定实验五电阻应变片的粘贴技术及测试桥路变换实验实验六弯曲正应力电测实验实验七叠(组)合梁弯曲的应力分析实验实验八弯扭组合变形的主应力测定实验九偏心拉伸实验实验十偏心压缩实验实验十二金属轴件的高低周拉、扭疲劳演示实验实验十三冲击实验实验十四压杆稳定实验实验十五组合压杆的稳定性分析实验实验十六光弹性实验实验十七单转子动力学实验实验十八单自由度系统固有频率和阻尼比实验 1 2 6 9 12 16 19 23 32 37 41 45 47 49 53 59 62 65实验一金属材料的拉伸及弹性模量测定试验实验时间:设备编号:温度:湿度:一、实验目的二、实验设备和仪器三、实验数据及处理引伸仪标距l =mm 实验前 2低碳钢弹性模量测定 E? 实验后 ?F?l = (?l)?A 屈服载荷和强度极限载荷 3载荷―变形曲线(F―Δl曲线)及结果四、问题讨论(1)比较低碳钢与铸铁在拉伸时的力学性能;(2)试从不同的断口特征说明金属的两种基本破坏形式。 4篇二:工程力学实验报告工程力学实验报告自动化12级实验班 1-1 金属材料的拉伸实验一、试验目的 1.测定低碳钢(Q235 钢)的强度性能指标:上屈服强度ReH,下屈服强度ReL和抗拉强度Rm 。 2.测定低碳钢(Q235 钢)的塑性性能指标:断后伸长率A和断面收缩率Z。 3.测定铸铁的抗拉强度Rm。 4.观察、比较低碳钢(Q235 钢)和铸铁的拉伸过程及破坏现象,并比较其机械性能。 5.学习试验机的使用方法。二、设备和仪器 1.试验机(见附录)。 2.电子引伸计。 3.游标卡尺。三、试样 (a) (b) 图1-1 试样拉伸实验是材料力学性能实验中最基本的实验。为使实验结果可以相互比较,必须对试样、试验机及实验方法做出明确具体的规定。我国国标GB/T228-2002 “金属材料室温拉伸试验方法”中规定对金属拉伸试样通常采用圆形和板状两种试样,如图(1-1)所示。它们均由夹持、过渡和平行三部分组成。夹持部分应适合于试验机夹头的夹持。过渡部分的圆孤应与平行部分光滑地联接,以保证试样

扬州大学建筑与土木工程

工程硕士专业学位(建筑与土木工程领域) 研究生培养方案 一、培养目标 培养建筑与土木工程领域应用型、复合型高层次的工程技术人才与管理人才,能够胜任大、中型企业建筑工程技术的研究、开发、应用及管理工作,也可以在工科教育、行政机关等企事业单位和管理部门从事相关的教学、科研和管理等工作。具体要求如下:1.坚持德、智、体全面发展的方针和“三个面向”的时代要求,热爱社会主义祖国,拥护中国共产党的领导,学习马列主义、毛泽东思想、邓小平理论和“三个代表”的重要思想,遵纪守法,具有良好的学术道德和科研作风,具有合作精神和创新精神,积极为国家的现代化建设事业服务。 2.坚持理论与实践相结合,夯实基础,强调实践,重在应用。掌握建筑与土木工程领域坚实的基础理论、宽广的专业与管理知识,掌握解决该工程领域工程问题的先进方法和技术手段。具有综合应用先进方法和技术手段解决该工程领域实际工程问题的能力;具有创新意识和从事新设计、新技术、新工艺、新材料、新产品的研制与开发能力;具有独立担负工程技术或工程管理工作的能力。 3.具备阅读本领域外文资料及初步运用外语进行交流的能力。 二、研究方向 本领域设置建筑学、建筑工程、交通土建工程、岩土工程、市政工程、工程管理等6个研究方向,详见表一。 表一:工程硕士专业学位(建筑与土木工程领域)研究方向

三、培养方式 工程硕士研究生的培养实行学校与工程单位联合培养的方式。攻读工程硕士专业学位人员采取进校不离岗、集中与分散相结合的方式进行在职学习,不脱离现职和生产实际,课程学习实行弹性学分制。 1.双导师制 工程硕士生的培养采用校内外导师联合培养的方式。校内导师由具有工程实践经验的教师担任,校外导师由学校聘任工程单位中业务水平高、责任心强的具有高级职称的工程技术人员担任。校内导师是研究生培养的第一责任人,具体负责个人培养方案的制定、课程设置、教学实践活动等工作的组织协调。校外导师协助校内导师共同负责研究生论文的选题及其相关的工程设计、技术改造、试验研究和论文撰写等环节的指导工作。导师应教书育人,关心研究生的成长,引导他们走德、智、体全面发展的道路。 2.课程学习与工程设计并重 工程硕士研究生既要深入掌握坚实的基础理论和本专业的专门知识,又要通过学位论文培养从事科学研究和胜任专门技术工作的能力。特别要加强研究生综合能力和素质的培养,包括创新能力、活动能力和适应能力的培养。研究生要尊敬师长,虚心学习,博采众长,积极进取。 3.产学研联合培养 工程硕士研究生采用在校内修读课程学分,到“产学研”研究生联合培养基地开展科学研究或工程设计研究并完成学位论文的产学研联合培养方式。充分发挥高校、科研部门和企事业单位的自身优势和特色,培养高层次应用型人才。 四、学习年限 学习年限为3年,最长不超过5年。课程学习实行学分制,按规定修满课程学分、完成所有培养环节和论文工作,并通过论文答辩,方可毕业。在校学习时间累积不少于6个月。 五、课程设置及学分分配 工程硕士研究生课程分为学位课、必修课和选修课三类,同时必须完成必修环节。本工程领域工程硕士研究生课程学习的最低学分要求为30学分,其中学位课程13学分,必修课程9学分,必修环节3学分。具体课程设置见表二。 表二:工程硕士专业学位(建筑与土木工程领域)课程设置及学分分配

计算结构力学读书报告

计算结构力学读书报告 XX1 (XX大学) 摘要:本文主要叙述了在阅读与学习《计算结构力学》这本书的一些相关的心得体会;在学习由原作者所创立的样条有限点法的过程中,收获了一些新的理解与体验。 关键词:计算结构力学;样条有限点法;读书报告 Computational Structural Mechanics Reading Report (XX) Abstract: This article mainly describes some of the relevant experiences in reading and learning the book “Computational Structural Mechanics”. In the process of learning the spline point method established by the original author, some new understandings and experiences were learned. Keywords: computational structural mechanics; spline finite point method; reading report 引言 工程中的许多问题,从本质上来说都可以归结到力学问题。而这些力学问题,如果按照传统的解析求解方式,往往只能求解一些较为简单和理想化的力学问题,同时又需要专业的力学家花费大量的时间和精力推导公式,并将之记录在教科书中。而近代以来,又有许多力学数学界的专家共同努力,创造出了用于解决力学分析问题的有限单元法,随着电子计算机的发展,利用有限单元法,借助电算方式,求解工程中的力学问题已成为一种趋势。 工程中的力学问题,从本质上说是非线性的,线性假设只是实际问题的一种简化。如果工程中的结构按照线性理论设计,不仅会浪费,而且还会造成灾难。在结构工程设计中,如果考虑弹塑性问题,则可以挖掘材料潜力,提高工程结构承受能力,节约材料,正确估计工程安全度,使工程经济合理及安全可靠;如果按照线弹性理论设计,则会显得过于保守。由此可知,在各种工程设计中,只假设它为线性问题是不够的,必须进一步考虑非线性问题才能保证工程既经济合理又安全可靠。近几年来,在现代化建设中,人们面临着越来越多的非线性力学问题,结构非线性分析已成为工程设计不可缺少的一个工作。因此,结构非线性力学已成为工程设计不可缺少的一个重要学科。 1基本概念 1.1材料特性 在结构工程中,所使用的材料有很多,广泛使用的材料有钢材、混凝土、岩土以及各种砖石。 在单向拉伸状态中,材料由初始弹性状态进入塑性状态的界限是屈服极限。这被称为单向拉伸状态的屈服条件,也称初始屈服条件,它的表达式为:f(σ)=σ?σs=0。 式中,σ和σs分别为应力和屈服极限,f(σ)为屈服函数。如果σ<σs,则f(σ)<0,这时试件处于弹性状态;如果σ>σs,则f(σ)>0,这时试件进入塑性状态。 经过屈服阶段后,材料又恢复抵抗变形的能力,必须增加荷载才能产生变形,这种现象称为材料强化,也称硬化。 1.2应力与应变状态 物体的任意一点的应力状态可由九个应力分量来描述,而且这些分量构成一个二阶对称张量:

工程力学实验报告

工程力学实验报告 自动化12级实验班 §1-1 金属材料的拉伸实验 一、试验目的 1.测定低碳钢(Q235 钢)的强度性能指标:上屈服强度R eH,下屈服强度R eL和抗拉强度R m 。 2.测定低碳钢(Q235 钢)的塑性性能指标:断后伸长率A和断面收缩率Z。 3.测定铸铁的抗拉强度R m。 4.观察、比较低碳钢(Q235 钢)和铸铁的拉伸过程及破坏现象,并比较其机械性能。 5.学习试验机的使用方法。 二、设备和仪器 1.试验机(见附录)。 2.电子引伸计。 3.游标卡尺。 三、试样 (a) (b) 图1-1 试样 拉伸实验是材料力学性能实验中最基本的实验。为使实验结果可以相互比较,必须对试

样、试验机及实验方法做出明确具体的规定。我国国标GB/T228-2002 “金属材料 室温拉伸试验方法”中规定对金属拉伸试样通常采用圆形和板状两种试样,如图(1-1)所示。它们均由夹持、过渡和平行三部分组成。夹持部分应适合于试验机夹头的夹持。过渡部分的圆孤应与平行部分光滑地联接,以保证试样破坏时断口在平行部分。平行部分中测量伸长用的长度称为标距。受力前的标距称为原始标距,记作l 0,通常在其两端划细线标志。 国标GB/T228-2002中,对试样形状、尺寸、公差和表面粗糙度均有明确规定。 四、实验原理 低碳钢(Q235 钢)拉伸实验(图解方法) 将试样安装在试验机的上下夹头中,引伸计装卡在试样上,启动试验机对试样加载,试验机将自动绘制出载荷位移曲线(F-ΔL 曲线),如图(1-2)。观察试样的受力、变形直至破坏的全过程,可以看到低碳钢拉伸过程中的四个阶段(弹性阶段、屈服阶段、强化阶段和局部变形阶段)。 屈服阶段反映在F-ΔL 曲线图上为一水平波动线。上屈服力eH F 是试样发生屈服而载荷首次下降前的最大载荷。下屈服力eL F 是试样在屈服期间去除初始瞬时效应(载荷第一次急剧下降)后波动最低点所对应的载荷。最大力R m 是试样在屈服阶段之后所能承受的最大载荷。相应的强度指标由以下公式计算: 上屈服强度R eH :0 S F R eH eH = (1-1) 下屈服强度R eL :0 S F R eL eL = (1-2 ) 抗拉强度R m : 0 S F R m m = (1-3) 在强化阶段任一时刻卸载、再加载,可以观察加载、御载规律和冷作硬化现象。 在F m 以前,变形是均匀的。从F m 开始,产生局部伸长和颈缩,由于颈缩,使颈缩处截面减小,致使载荷随之下降,最后断裂。断口呈杯锥形。

土力学读书报告分析

高等土力学读书报告 学院:土木工程 专业:结构工程 指导教师: 姓名: 学号: 2015.12.30

本学期学了土的应力与应变,强度理论,全量理论,增量理论,模型理论,滑线场理论及极限分析。以下对这些理论做简要回顾。 应力应变 土的应力应变关系十分复杂,除了时间外,还有温度、湿度等影响因素。其中时间是一个主要影响因素。与时间有关的土的本构关系主要是指反映土流变性的理论。而在大多数情况下,可以不考虑时间对土的应力——应变和强度(主要是抗剪强度)关系的影响。土的强度是土受力变形发展的一个阶段,即在微小的应力增量作用下,土单元会发生无限大(或不可控制)的应变增量。因而它实际上是土的本构关系的一个组成部分。 由于土是岩石风化而成的碎散颗粒的集合体,一般包含有固、液、气三相,在其形成的漫长的地质过程中,受风化、搬运、沉积、固结和地壳运动的影响,其应力应变关系十分复杂,并且与诸多因素有关。其中主要的应力应变特性是其非线性、弹塑性和剪胀(缩)性。主要的影响因素是应力水平(Stresslevel、应力路径(Strespath)和应力历史(Stresshistor),亦称3S影响 土的强度理论 土在外力作用下达到屈服或破坏时的极限应力。由于剪应力对土的破坏起控制作用,所以土的强度通常是指它的抗剪强度。 确定强度的原则土的强度一般是由它的应力-应变关系曲线上某 些特征应力来确定的,如屈服应力、破坏应力(或峰值应力)等,这些特征应力值与土的种类和物理条件(如加载时间、加载速率和排水条件等)有关。在不考虑加载时间或加载速率对土强度影响的常规试验中,对于不同的土,大体上可获得三种典型的应力-应变关系曲线,一种是当应力随应变增大直至峰值时,土体出现破裂,随着应变进一步增大,应力由峰值逐渐降低,最后达到稳定应力值。对此,人们取峰值应力作为破坏强度,取最后稳定应力值作为破坏后的强度。第二种是当应力达到最大值后,应力虽然不增加,但应变继续增加,对此,也可取最大应力值作为破坏强度。第三种是,在较大应变下,应力仍未达到最大值,而是随

邓肯-张模型研究认识

塑性力学读书报告 邓肯-张模型研究认识 学院:建设工程 姓名:王吉亮 学号:2006631011 专业:地质工程

教师:金英玉

邓肯-张模型研究认识 王吉亮(83分) 摘 要:从邓肯-张模型的本源开始,分析研究了邓肯-张模型与E-B 模型的建立过程和模型中参数如何确定的问题,结合对该模型的认识,提出该模型具有的缺点与不足。 关键词:邓肯-张模型;E-B 模型;参数确定 CONGNITION ON THE STUDY OF DUNCAN-CHANG MODEL Wang Jiliang Abstract: rom the parent of Duncan-Chang model, studing the establish procedure of Duncan-Chang model and E-B model, introducing the problem of how to define the indexes in the model. Associate the congnition on this model, present the shortcomings. Keywords: Duncan-Chang model; E-B model; indexes define 1 引言 邓肯-张模型是一个非线性本构模型,既然是一个本构模型,可想而之他反应的是应力与应变之间的关系。说它是非线性的,那么反映应力应变关系的模量就不是一个常数E那么简单。在介绍该模型之前,先要介绍一个概念,就是反映非线性关系的增量广义胡克定律: 1123()t t t v d d d d E E σεσσ= -+ (1) 1963年,康纳(Kondner )根据大量土的三 轴试验的应力应变关系曲线,提出可以用双曲线拟合出一般土的三轴试验13()~a σσε-曲线,即: 13a a a b εσσε-= + (2) 其中,a 、b 为试验常数。对于常规三轴压缩试验,1a εε=。邓肯等人根据这一双曲线应力应变关系提出了一种目前被广泛的增量弹性模型, 一般被称为邓肯-张(Duncan-Chang )模型。 在常规三轴压缩试验中,13a a a b εσσε-=+可以写成: 1113 a b εεσσ=+- (3) 将常规三轴压缩试验的结果按 11 13 ~εεσσ-的关系进行整理,则二者近似成线性关系(见图1)。其中,a 为直线的截距;b 为直线的斜率。 在常规三轴压缩试验中,由于 230d d σσ==,所以切线模量为 ε1/(σ1 -σ3 ) -σ3 )ult 图1 1113 ~εεσσ-线性关系图 132 11()() t d a E d a b σσεε-= =+ (4) 在试验的起始点,10ε=,t i E E =,则: 1 i E a = ,这表明a 表示的是在这个试验中的起始变形模量E i 的倒数。如果1ε→∞,则: 131 ()ult b σσ-= (5)

关于损伤力学的建议与看法

关于损伤力学的建议与看法 在别的论坛看到关于损伤力学的讨论,想起来几年前毕业的一位师兄在其论文中对损伤力学的讨论,现在发出来大家探讨一下 原文如下: 1.3 材料疲劳分析的损伤力学方法 目前,对汽轮机转子破坏过程的研究,基本采用的是线弹性断裂力学方法,其研究的是转子结构中具有明确几何边界的宏观裂纹问题。它从整体出发,对裂纹前沿的应力、应变、位移和能量场的分析,以确定控制裂纹行为的力学参数,来实现对裂纹扩展和转子安全性进行预测。而对裂纹萌生的宏观位置往往根据经验进行人为的假定。 事实上,实际转子服役过程中裂纹的萌生寿命往往很长,有的占总寿命的80%~90%。在这个阶段,材料内部微细观结构逐渐劣化,并逐步发展成为宏观裂纹[25,26,27],况且有些损伤现象并不导致断裂力学所描述的临界开裂,而且崩溃、失稳等。因此,对上述转子损伤现象进行定量的数学描述,对于转子结构的裂纹萌生及寿命预估是非常重要的。也是断裂力学无法解决的。目前,对于无裂纹转子虽能大致估计其致裂寿命,但不能定量描述裂纹的形成发展过程及确切位置和形貌,而且由于往往采用线性损伤累积理论,不能正确地反映转子材料的实际损伤发展情况,因此,其分析结果往往与实际偏差较大。 近三十年发展起来的连续介质损伤力学[28],它采用唯象学方法,引入表征损伤的内部状态变量,将损伤纳入热力学框架,重点研究微观缺陷对材料宏观整体平均力学特性的影响,因此,用损伤力学理论导得的结果,既能反映材料微观结构的变化,又能说明材料宏观力学性能的实际变化情况。可用于分析微裂纹的演化,宏观裂纹形成直至构件的完全破坏的整个过程,弥补了微观研究和断裂力学研究的不足。因此,损伤力学对于研究汽轮机转子结构在各种载荷环境条件下的灾变事故的产生和发展,进而对其进行复现与防治,有着极其重要的意义。 1.3.1 损伤力学发展概况 损伤力学的发端被公认为是1958年Kachanov 在研究金属蠕变时所做的工作,他在当时提出了连续性因子与有效应力的概念,并利用后者给出了前者的演化方程。1963年Rabotnov又定义了损伤因子的概念。在其后的一二十年当中,以Lemaitre,Chaboche,Hult,Lechie,Krajcinovic,Rousselier等为代表的一批学者,针对损伤力学的基本概念、方法等做了大量开创性的工作,这不仅使其框架渐渐明晰充实,而且还把它的适用领域从最初的蠕变分析,推广到对于弹性、塑性、粘塑性、脆性及疲劳等损伤现象的分析[29,30,31];而其所描述的材料,也从金属扩展到复合材料、陶瓷、混凝土等非(纯)金属材料。由于损伤力学已表现出可观的理论价值与应用前景,这使其逐步上升为固体力学的一个新兴分支,并已成为目前国内外力学界所关注的一个十分活跃的研究领域。 然而,从损伤力学发展的现状来看,其相当一部分工作是关于基本理论的,而关于损伤力学算法的研究则显得相对薄弱。目前,关于构件损伤分析的算例,一部分是针对简单受力情形的(如控制应力或控制应变的一维拉伸或纯剪),而对于复杂的问题则采用的是损伤耦合的有限元法。对含裂纹体的损伤力学分析也是该领域中特别引人注目的一个专题。已有的一些工作表明:无论是对于蠕变、塑性、脆性,还是对于疲劳,计及损伤的裂纹性质都显著有别于经典断裂力学中的理想情形。 这些工作虽然已将损伤力学从理论研究向实际应用朝前推进了一大步,但已有的进展还显得不够充分,尚有待于人们进一步的努力。 1.3.2损伤力学研究方法 用损伤力学方法对材料的力学特性进行研究,首先要对材料变形过程进行宏观和微观的实验观察,根据材料损伤演变的微观现象及其宏观表现,采用唯象方法,选择适当的损伤参数,作为本构关系中的内变量建立方程。如何建立能够正确反映材料的损伤本质的损伤演化方程,是未来工作的核心。 ----------------------------------------------------------------------------------- 请问损伤力学如何学习? 前面有热力学的东西,头都大了! 张量也很令人费解! 有没有大侠指一条明路,谢谢!

疲劳和断裂读书报告

材料的疲劳和断裂读书报告 在这个报告里,首先阐述材料的疲劳和断裂机理、规律,其次阐述钛合金的疲劳和断裂,以及解决方法。在之前的本科课程里《工程材料力学性能》、《》、《失效分析》,对金属的疲劳、断裂、蠕变都进行了较为详细的阐述。同时,也进行了TC4合金的疲劳性能实验,因此对疲劳相关的知识有了一定的了解。 在大多数情况下,零件承受的并不是静载荷,而是交变载荷。在交变载荷作用下,材料往往在低于屈服强度的载荷下,发生疲劳断裂。例如,汽车的车轴断裂,桥梁,飞机等。因此对于疲劳断裂的研究是很有意义的。 一般来说,疲劳的定义是:金属材料或构件在变动应力和应变长期作用下,由于累积损伤而引起的断裂现象称为疲劳。断裂的定义是:由弥散分布的微裂纹串接为宏观裂纹,再由宏观裂纹扩展为失稳裂纹,最终材料发生断裂。在此,需要明确疲劳和断裂的关系。疲劳和断裂在机理研究和工程分析时是紧密相连的,只是疲劳更侧重于研究裂纹的萌生,断裂力学则侧重于裂纹的扩展,即带裂纹体的强度问题。 对于疲劳,阐述的思路是疲劳分类及特点,疲劳机理与断口,疲劳性能表征,影响疲劳的因素。对于断裂,从宏观和微观的角度分别阐述。 疲劳 疲劳分类及特点 疲劳分类方法如下: 按应力状态不同,可以分为弯曲疲劳、扭转疲劳、拉压疲劳及复合疲劳; 按环境和接触情况不同,分为大气疲劳、腐蚀疲劳、高温疲劳、热疲劳、接触疲劳; 按照断裂寿命和应力高低不同,分为高周疲劳和低周疲劳,其中高周疲劳也是低应力疲劳,低周疲劳即高应力疲劳。 疲劳特点如下: 材料在交变载荷峰值远低于材料强度极限时,就可能发生破坏,表现为低应力脆性断裂特征。这是因为,疲劳时应力较低(低于屈服强度),因此在宏观上看,材料没有塑性变形。在裂纹扩展到临界尺寸时,发生突然断裂。 材料疲劳是一个累积过程,尽管疲劳断裂表现为突然断裂,但是在断裂前经历了裂纹萌生,微裂纹连接长大,裂纹失稳扩展的过程。而形成裂纹后,可以通过无损检测的方法来判断裂纹是否达到临界尺寸,从而来判断零件的寿命。 疲劳寿命具有分散性。对于同一类材料来说,每次疲劳测试的结果都不会相同,有的时候相差很大。因此在测量疲劳寿命时,需要采用升降法和分组法来测得存活率为50%的疲劳强度。疲劳对于缺陷很敏感。这些缺陷包括材料表面微裂纹,材料应力集中部分,组织缺陷等。这些缺陷加速材料的疲劳破坏。 疲劳断口记录了疲劳断裂的重要信息,通过断口分析能了解到疲劳过程的机理。 疲劳裂纹形成和扩展机理及断口 一般把疲劳分成裂纹形成和裂纹扩展过程。而研究疲劳机理,都是借助于某一种模型来研究,这在断裂力学,蠕变过程的研究中经常看到。 裂纹形成: 资料表明,疲劳微观裂纹都是由不均匀的局部滑移和显微开裂引起的。主要包括表面滑移带开裂;第二相、夹杂物或其界面开裂;晶界或亚晶界开裂等。 裂纹形成的延性材料滑移开裂模型。 在静拉伸过程中,可以在光滑试样表面看到滑移带,这是由于位错的滑移形成的。在交变载

土力学结课论文及对工程案例的分析

高等土力学读书报告 对地基下沉问题的讨论 姓名刘兴顺 学号2014210046 年级2014 专业桥梁与隧道工程系(院)建筑工程学院指导教师陈颖辉 2015年5月26日

摘要 本论文主要是本人对高等土力学的学习总结,并根据工程中遇到的问题用土力学的知识进行分析(由于本人没有实际的工程经验,现主要是对比比较著名的一些工程)。土力学是研究土体在力的作用下的应力-应变或应力-应变-时间关系和强度的应用学科,是工程力学的一个分支。为工程地质学研究土体中可能发生的地质作用提供定量研究的理论基础和方法。主要用于土木、交通、水利等工程。本论文主要结合中外建筑物倾斜(意大利比萨斜塔和中国苏州虎丘塔)与地基严重下沉(中国上海展览中心馆和墨西哥市艺术馆)来讨论其中关于土力学的乱放,并运用土力学的方法进行分析。 关键词:高等土力学;工程实例;地基基础

ABSTRACT This thesis is mainly my learning of advanced soil mechanics summary,and according to the problems encountered in engineering with the knowledge of soil mechanics analysis (because I didn't have the practical engineering experience,now is mainly contrast compared to the well-known engineering).Soil mechanics is a branch of engineering mechanics,which is applied to study the stress-strain,stress-strain,time and strength of the stress strain time relationship and strength of the soil..To provide the theoretical basis and methods for quantitative study of geological effects that may occur in the engineering geology..Mainly used in civil engineering,transportation,water conservancy and other projects.This paper mainly combines(Leaning Tower of Pisa,Italy and China Suzhou Huqiu tower and ground sinking heavily(China Shanghai Exhibition Center Museum and Mexico City Museum of Art) inclined buildings at home and abroad is to discuss the misplacing on soil mechanics,and using the method of soil mechanics analysis. Key words:advanced soil mechanics;engineering examples;foundation foundation

2011高等土力学部分考题及答案

一、高等土力学研究的主要内容 答:土力学主要是研究土的物理、化学、和力学特性以及土体在荷载、水、温度等外界因素作用下的工程性状。高等土力学则是深化上述研究,重点研究先进的土工试验(实验)方法和设备、土体本构关系、塑性特性、强度、渗流、固结、压缩及其机理。 二、与上部结构工程相比,岩土工程的研究和计算分析有什么特点? 答: 1)岩土工程的规模和尺寸比一般的结构工程大得多,其实际范围是空间半无限体,工程计算分析中采用的边界是近似和模糊的; 2)岩土的各种参数是空间的函数,参数的变异性大,变异系数在0.1-0.35,有的可能超过0.4,并且土性之间或不同点的土性具有较强的相关性,包括互相关和自相关; 3)岩土属于高非线性材料,在不同的应力水平下变形特性不同,岩土工程的极限状态方程也经常是高度非线性的,并且诱发极限状态的原因或作用多种多样; 4)岩土试样性质与原状岩土的性质往往存在较大的差别,即使是原为测试,反应的也仅仅是岩土的“点” 性质(如现场十字板强度试验)或“线”性质(如静力触探实验)。而岩土工程的行为往往由它的整体空间平均性质控制,因此在岩土工程可靠度分析中,要注意“点”、“线”到空间平均性概率统计指标问题 5)由于上述岩土性质和岩土工程的不确定性加之推理的不确定性(如有目的的简化),岩土工程的计算模型往往具有较大的不确定性或者不精确性,并且除了上述3)中提到的在岩土工程中针对不同原因和作用,会有不同的极限状态方程外,对同一计算参数也存在不同的计算表达式; 6)施工工艺,施工质量及施工水平等会对岩土工程的性质和功能产生很大的影响。 三、土的特性 答:1土的变异性大,离散性大,指标值合理确定很困难。2土的应力应变关系是非线性的,而且不是唯一的,与应力历史有关。3土的变形在卸载后一般不能完全恢复,饱和粘土受力后,其变形不能立刻完成,而且要经过很长一段时间才能逐渐稳定。4土的强度也不是不变的,它与受力条件排水条件密切相关。5土对扰动特别敏感,可使土的力学性质发生很大的变化。 四、简述土的结构性与成因,比较原状土与重塑土结构强弱,并说明原因。 答:土的结构是表示土的组成成分、空间排列和粒间作用的综合特性,土的结构性是由于土的这种结构特性造成的力学特性。 原状土比重塑土的结构性强,这是由于原状土在搬运、沉积、固结及千万年历史中的各种变故都会使土形成不同的或特有的特性。由于原状土是长期地质作用的产物,因而比室内重塑土具有更强的结构性。 五、简述土工试验的目的和意义 答: 1)揭示土的一般或特有的物理力学性质 2)针对具体土样的试验。揭示区域性土、特殊土、人工复合土的物理力学性质 3)确定理论计算和工程设计的参数 4)验证理论计算的正确性及实用性 5)原位测试、原型监测直接为土木工程服务,也是分析和实现信息化施工的手段 六、简述土工参数不确定性的主要来源和原因 答: 土工参数不确定性的来源主要有两条途径 1)土的固有变异性

材料成型及控制工程导论读书报告

材料成型及控制工程导论读书报告材控普0903 覃春花20094406 摘要:材料成型及控制工程导论科目上课时间:从本学期的第五周到本学期的十二周。上课地点:A106。第五、六周学习内容:本科目的学习方法、基本要求、目的、任务,材料科学与工程学科的介绍。第七周学习内容:金属塑性加工中的基础理论及现代设计分析方法运用介绍。第八、九周学习内容:焊接的相关知识。第十、十一周学习内容:体积成形技术中的锻造、轧制相关知识。第十二周学习内容:特种成形及其它成形,板料成形、模具相关知识。 本课程主要学习内容有材料加工技术的发展与现状、金属塑性加工、模具技术、焊接与连接技术等,要求学生通过学习对材料加工技术的基本方法有较全面、较概括的了解,对相关的新技术、新工艺、新材料的最新发展成果有所了解,初步掌握材料加工工程中的基本概念、基础知识及发展概况。本课程是为以后专业学习做准备的,让我们进一步了解我们的专业。 材料加工技术的发展与现状: 1.材料加工技术的发展与人类文明 我们通过学习了解了关于石器、陶瓷、青铜器相关知识,以及

对学科的历史有了一定的了解。 (1)石器——数百万年前,人开始用骨头、石头制成简单的工具,具有了材料加工痕迹。开始了人类历史达二、三百万年之久的石器时代。50万年前,北京猿人使用的石头和骨头工具,制作粗糙,无用途分化,无美的概念。 (2)陶器——六千多年前的西安半坡遗址出把锡矿石加到铜里一起熔炼,制成的物品更加土的制作十分精美的尖底陶罐、鱼纹彩陶盆等。出现了带装饰性的容器类陶制器皿。 (3)青铜器——生产力发展,古人在不断改进石器和寻找石料的劳动中,发现了天然铜块,加热锻打,加工成各种器物。我国的青铜冶炼始于夏代。青铜器是中国伟大文明历史的记载,她在记载伟大文明的同时,也见证了中国近代屈辱史。 材料加工技术的学科内涵: 材料加工技术属于材料加工工程学科,是研究控制材料的外部形状和内部组织结构,以及将材料加工成人类社会所需求的各种零部件及成品的应用技术的学科。而材料加工工程学科又属于材料科学工程学科,这是一个一级学科。其中,材料加工工程又分为以下几个方面:1、金属压力加工。2、高分子材料成型加工。3、焊接。4、铸造。5、金属材料及热处理。其中金属压力加工包括我们学校的特色:金属的轧制。

工程力学拉伸实验报告

试验目的: 1. 测定低碳钢(塑性材料)的弹性摸量E;屈服极限σs 等机械性能。 2.测定灰铸铁(脆性材料)的强度极限σb 3.了解塑性材料和脆性材料压缩时的力学性能。 材料拉伸与压缩实验指导书 低碳钢拉伸试验 拉伸试验的意义: 单向拉伸试验是在常温下以缓慢均匀的速度对专门制备的试件施加轴向载荷,在试件加载过程中观测载荷与变形的关系,从而决定材料有关力学性能。通过拉伸试验可以测定材料在单向拉应力作用下的弹性模量及屈服强度、抗拉强度、延伸率、截面收缩率等指标。其试验方法简单且易于得到较可靠的试验数据,所以是研究材料力学性能最基本、应用最广泛的试验。 操作步骤: 1.试验设备:WDW-3050电子万能试验机 2.试件准备:用游标卡尺测量试件试验段长度l0和截面直径d0,并作记录。 3.打开试验机主机及计算机等相关设备。 4.试件安装(详见WDW3050电子万能试验机使用与操作三.拉伸试件的安装)。 5.引伸计安装(用于测量E, 详见WDW3050电子万能试验机使用与操作四.引伸计安装)。 6.测量参数的设定: 7.再认真检查一遍试件安装等试验准备工作。 8.负荷清零,轴向变形清零,位移清零。 9.开始进行试验,点击试验开始。 10.根据提示摘除引伸计。 11.进入强化阶段以后,进行冷作硬化试验,按主机控制面板停止,再按▼,先卸载到10kN,再加载,按▲,接下来计算机控制,一直到试件断裂(此过程中计算机一直工作,注意观察负荷位移曲线所显示的冷作硬化现象.). 12.断裂以后记录力峰值。 13.点击试验结束(不要点击停止)。

14.材料刚度特征值中的弹性模量E的测定 试验结束后,在试验程序界面选定本试验的试验编号,并选择应力─应变曲线。在曲线上较均匀地选择若干点,记录各点的值,分别为及 (如i =0,1,2,3,4),并计算出相应的 计算E i的平均值,得到该材料的弹性模量E的值。 15.材料强度特征值屈服极限和强度极限的测定 试验结束后,在试验程序界面选定本试验的试验编号,并选择负荷─位移曲线,找到的曲线屈服阶段的下屈服点,即为屈服载荷F s, 找到的曲线上最大载荷值,即为极限载荷P b. 计算屈服极限:;计算强度极限:; 16.材料的塑性特征值延伸率及截面收缩率的测定 试件拉断后,取下试件,沿断裂面拼合,用游标卡尺测定试验段长度,和颈缩断裂处截面直径。 计算材料延伸率 计算截面收缩率 低碳钢拉伸试验报告 试验目的: 1. 掌握电子万能试验机操作; 2. 理解塑性材料拉伸时的力学性能; 3. 观察低碳钢拉伸时的变形特点; 4. 观察低碳钢材料的冷作硬化现象; 5. 测定低碳钢材料弹性模量E ; 6. 测定材料屈服极限和强度极限; 7. 测定材料伸长率δ和截面收缩率Ψ 试验设备:

相关文档
最新文档