风力发电机简介

风力发电机简介
风力发电机简介

1.受目前设备能力所限,可利用风资源是指在一定______的风。(6.0分)

A.转速范围

B.时间范围

C.温度范围

D.高度范围

我的答案:D×答错

2.在海洋环境中,包括岸边滩涂上的机组,空气中含有大量的盐分,加上潮湿,很容易在设备表面造成______对设备的长期稳定运行形成威胁。(6.0分)

A.污垢

B.灰尘

C.水雾

D.腐蚀

我的答案:D√答对

3.风力发电机的使用环境多种多样,这对风力发电机的_____提出了更高的要求。(6.0分)

A.经济性

B.可靠性

C.效率

D.风能的利用

我的答案:B√答对

4.我们需要频率恒定的电能,因此的___发电系统是我们最佳的选择发展的必由之路。(6.0分)

A.恒速恒频

B.恒速变频

C.变速恒频

D.变速变频

我的答案:C√答对

5.1. 永磁同步发电机属于________。(

6.0分)

A.双馈异步发电系统

B.永磁同步发电系统

C.鼠笼异步发电系统

D.电励磁发电系统

我的答案:B√答对

1.目前陆上风机主流机组功率为______。(8.0分))

A.1.25MW

B.3MW

C.6MW

D.8MW

我的答案:AB√答对

2.海上风电是指竖立在_______ 的机组。(8.0分))

A.深海

B.大陆架

C.滩涂

D.海沟

我的答案:BC√答对

3.风力发电机按励磁方式分为______。(8.0分))

A.陆上发电机

B.电励磁发电机

C.永磁发电机

D.海上发电机

我的答案:BC√答对

4.双馈异步发电系统接入转子的________________根据运行要求可分别进行改变。(8.0分))

A.电压

B.频率

C.相位

D.相序

我的答案:AB×答错

5.永磁同步发电机根据机舱机械结构选择不同,又分为________。(8.0分))

A.直驱永磁同步发电机

B.半直驱永磁同步发电机

C.外转子发电机

D.内转子发电机

我的答案:AB√答对

1.风力发电机,顾名思义,是利用大自然的风驱动叶轮,带动后部的发电机进行发电。(6.0分)

我的答案:正确√答对

2.陆上风电采用永磁直驱发电的技术路线也十分成熟。(6.0分)

我的答案:正确√答对

3.风力发电机组都必须竖立在300米以上的空中,就是为了保证机组能够最大限度的正常发电(6.0分)

我的答案:错误√答对

4.对我国而言,“三北”地区(东北、华北、西北)的风资源最为丰富。(6.0分)

我的答案:正确√答对

5.鼠笼异步发电机需要励磁绕组和励磁电源。(

6.0分)

我的答案:正确×答错

尖速比对风力发电机发电效率的影响

尖速比对风力发电机发电效率的影响 摘要:本文采用实验和数值分析相结合的方法,针对影响风力发电机输出性能的尖速比因素进行研究,通过尖速比的变化对风力发电机的输出功率、电流、电压以及风能利用系数的影响分析,找到了尖速比对风力发电机的输出功率、电流、电压以及风能利用系数影响程度,为设计或制造提供参考。 关键词:风力发电机;尖速比;发电效率;影响 The influence of tip speed ratio on the wind turbine power generation efficiency GaoFeng,Inner Mongolia Energy Investment Group New Energy Co.,Ltd,010020 Abstract This paper adopts the method of combining experimental and numerical analysis,conducts the research in view of tip speed ratio influence factors of the wind generator output performance,by changing the tip speed ratio of wind turbine output power,current,voltage and the influence coefficient of utilization of wind energy analysis,found the tip speed ratio of wind generator output power,current and voltage and the wind energy utilization coefficient influence,provides the reference for the design and manufacturing. Key words:wind power generator;tip speed ratio;power efficiency;influence 引言 风能是可再生能源中发展最快的清洁能源,也是最具有大规模开发和商业化发展前景的发电方式。风力发电机组的规模化发展是风能利用的主要形式。风电场场址一般选在风力资源丰富的地区,主要是偏僻的山区以及东部沿海地区,场址地区环境条件十分恶劣,风速在大范围内随机发生变化,风电机组在一些地区还要时常受飓风的侵袭,会对风电机组产生很大的冲击。叶尖速比是用来表述风电机特性的一个十分重要的参数。它等于叶片顶端的速度(圆周速度)除以风接触叶片之前很远距离上的速度;叶片越长,或者叶片转速越快,同风速下的叶尖速比就越大。针对风轮与发电机的匹配性的研究也就是考虑小型风力发电机最优输出特性[1-3]。 本文采用400W永磁直驱小型风力发电机为实验对象,分析尖速比对风力发电机输出功率、电流、电压、风能利用系数的影响。 1.功率输出分析

风力发电机的组成部件其功用

风力发电机的组成部件及其功用 风力发电机是将风能转换成机械能,再把机械能转换成电能的机电设备。风力发电机通常由风轮、对风装置、调速装置、传动装置、发电机、塔架、停车机构等组成。下面将以水平轴升力型风力发电机为主介绍它的各主要组成部件及其工作情况。图3-3-4和3-3-5是小型和中大型风力发电机的结构示意图。 图3-3-4 小型风力发电机示意图 1—风轮2—发电机3—回转体4—调速机构5—调向机构6—手刹车机构7—塔架8—蓄电池9—控制/逆变器 图3-3-5 中大型风力发电机示意图 1—风轮;2—变速箱;3—发电机;4—机舱;5—塔架。 1 风轮 风轮是风力机最重要的部件,它是风力机区别于其它动力机的主要标志。其作用是捕捉和吸收风能,并将风能转变成机械能,由风轮轴将能量送给传动装置。

风轮一般由叶片(也称桨叶)、叶柄、轮毂及风轮轴等组成(见图3-3-6)。叶片横截面形状基本类型有3种(见图第二节的图3-2-3):平板型、弧板型和流线型。风力发电机的叶片横截面的形状,接近于流线型;而风力提水机的叶片多采用弧板型,也有采用平板型的。图3-3-7所示为风力发电机叶片(横截面)的几种结构。 图3-3-6 风轮 1.叶片 2.叶柄 3.轮毂 4.风轮轴 图3-3-7 叶片结构 (a)、(b)—木制叶版剖面; (c)、(d)—钢纵梁玻璃纤维蒙片剖面; (e) —铝合金等弦长挤压成型叶片;(f)—玻璃钢叶片。 木制叶片(图中的a与b)常用于微、小型风力发电机上;而中、大型风力发电机的叶片常从图中的(c)→(f)选用。用铝合金挤压成型的叶片(图中之e),基于容易制造角度考虑,从叶根到叶尖一般是制成等弦长的。叶片的材质在不

10MW发电机技术参数

1 1.1 主要技术要求 额定功率 额定电压 12MW 10.5kV 额定功率因数 0.8(滞后) 频率 50Hz 额定转速 1500r/min 励磁型式: 无刷励磁 冷却方式: 密闭空冷 1.2 技术标准 发电机,励磁系统,冷却系统以及检测装置等辅助系统的制造、验收和交接试验以国家标准为主要依据。同时必须符合我国有关安全、环保及其它方面强制性标准和规定。 技术标准应执行合同签订时的最新版本。各标准之间有矛盾时,按较严格标准执行。合同设备包括卖方向其他厂商购买的所有附件和设备,这些附件和设备符合相应的标准规范或法规的最新版本或其修正本的要求。 主要技术标准如下,但不限于此: GB755-2008旋转电机定额和性能; GB/T 7064-2008隐极同步发电机技术要求; JB/T 10499-2005 透平型发电机非正常运行工况设计和应用导则; GB1029-2005三相同步电机试验方法; IEC34-1(第十版)旋转电机第一部分--额定值和性能; IEC34-3 汽轮发电机的特殊要求; ANSI C50.10“同步电机的一般要求” 绝缘等级 F (注:按B 级绝缘温升考核) 短路比 不小于0.5 效率 ≥97.4% 相数 3 极数 4 定子绕组接线方式 Y

ANSI C50.13“隐极式转子的同步发电机要求” GB1441 电站汽轮发电机组噪声测定方法; GB50150-2010 电气装置安装工程电气设备交接试验标准; DL/T 843-2010大型汽轮发电机交流励磁机励磁系统技术条件; GB/T 7409.1-2008同步电机励磁系统定义; GB/T 7409.2-2008同步电机励磁系统电力系统研究用模型; GB/T 7409.3-2007同步电机励磁系统大、中型同步发电机励磁系统技术要求。 DL/T596 电气设备预防性试验规程; DL/T801-2010大型发电机内冷却水质及系统技术要求 DL/T735-2000大型汽轮发电机组定子绕组端部动力特性的测量及评定 GB 1208-2006 电流互感器 GB 16847-1997保护用电流互感器暂态特性技术要求 2技术要求 2.1汽轮发电机组技术要求 2.1.1机组使用寿命 2.1.1.1所有设备的设计和制造应合理,并能安全、稳定和连续运行,在本技术协议规定 的各种条件下发电机组的设计使用寿命为30年并且不会引起过大应力、振动、腐蚀和操作困难。 2.1.1.2机组满足冷态、温态、热态和极热态等不同启动方式下参数配合的要求。卖方配 合汽机厂提供上述不同启动方式下从启动到并网到满负荷的启动曲线。 2.1.1.3机组在其保证使用寿命期内,能在额定负荷和1.05倍额定电压下运行时,承受 出线端任何形式的突然短路而不发生有害变形(相应的保护动作时间内,不大于10s),而且还能承受非同期误并列的冲击。105%额定电压下能承受主变高压侧单相接地故障的能力。 2.1.1.4发电机具有一定的短时过电流能力。1.5倍额定电流30秒,无损伤。 2.1.1.5进相运行能力,发电机能在进相功率因数(超前)为0.95时长期带额定有功连 续运行,而不产生局部过热。

风力发电机介绍

风力发电机介绍 目录 1. 风力发电发展的推动力 2.风力发电的相关参数 2.1.风的参数 2.2.风力机的相关参数(以水平轴风力机为例) 3.风力机的种类 3.1.水平轴风力机 3.2.垂直轴风力机 4.水平轴风力机详细介绍 4.1.风轮机构 4.2.传动装置 4.3.迎风机构 4.4.发电机 4.5.塔架 4.6.避雷系统 4.7.控制部分 5.风力发电机的变电并网系统 5.1.(恒速)同步发电机变电并网技术

5.2.(恒速)异步发电机变电并网技术 5.3.交—直—交并网技术 5.4.风力发电机的变电站的布置 6.风力发电场 7.风力机发展方向 1. 风力发电发展的推动力: 1) 新技术、新材料的发展和运用; 2) 大型风力机制造技术及风力机运行经验的积累; 3) 火电发电成本(煤的价格)上涨及环保要求的提高(一套脱硫装置价格相当 一台锅炉价格)。 2. 风力发电的相关参数: 2.1. 风的参数: 2.1.1. 风速: 在近300m的高度内,风速随高度的增加而增加,公式为: V:欲求的离地高度H处的风速; V0:离地高度为H0处的风速(H0=10m为气象台预报风速的高度); n:与地面粗糙度等因素有关的指数,平坦地区平均值为0.19~0.20。 2.1.2. 风速频率曲线:

在一年或一个月的周期中,出现相同风速的小时数占这段时间总小时数的百分比称风速频率。 图1:风速频率曲线 2.1. 3. 风向玫瑰图(风向频率曲线): 在一年或一个月的周期中,出现相同风向的小时数占这段时间总小时数的百分比称风向频率。以极座标形式表示的风向频率图叫风向玫瑰图。 图2:风向玫瑰图

风电安装手册

风力发电机安全手册编号:FT000320-IT R00

目录 1.责任与义务 2.安全和防护设备 2.1 必备设备 2.2 用于特殊操作的设备2.2.1 用于紧急下降的设备2.2.2 其它特殊操作 3.基本安装注意事项 3.1 概述 3.2 对风力发电机的操作 3.3 在风力发电机附近逗留及活动3.4 访问控制单元和面板 3.5 访问变压器平台 4.安全设备 4.1 紧急停止 4.2 与电网断开 4.3 过速保护设备(VOG) 4.4 机械安全设备 4.4.1 啮合锁 4.4.2 活动元件的保护罩4.4.3 机舱顶的栏杆 4.4.4 机舱后门的栏杆 5.在风力发电机内部检查或工作6.对风力发电机的设备的操作6.1 使用绞盘 6.2 使用紧急下降器 7.风力发电机的固定 8.急救 9.应急计划 10.发生火灾时的应急措施11.发生事故时的措施

1.责任与义务 Gamesa Eólica将安全与健康方向的考虑放在首位并一以贯之,因此在我们生产的风力发电机的设计中体现了防护的需要。 设计是在决不损害人、动物或者财产的前提下进行的。因此,只要风力发电机的安装、维护和使用遵照Gamesa Eólica的设计,就不会出现这方向的问题。 经批准接触或使用风力发电机的人员在《工作场所安全与健康》方面有权得到有效保护。 同样,经批准在风力发电机中进行有关工作的人员必须遵守《工作场所的安全与健康以防工作场所事故》的有关法律及法规,在执行任务时必须正确地使用工作设备和所有防护性设备,在可能遇到的危险情况的出现必须及时报告。 经批准执行安装任务的人员必须已经接收了足够且合适的理论与实践方面的训练以正 确执行任务。 本文档介绍基本的预防,在接触风力发电机时在安全方面必须遵守的义务及程序。不同维护工作的具体安全措施将在有关这些操作的具体文档中介绍。 2.安全及防护设备 2.1必备设备 在对风力发电机进行任何检查或者维护工作之前,每个人至少应该理解如下设备的使用说明: ●安全设备 ●可调的系索 ●系索(1m和2m) ●安全头盔 ●安全手套 ●防护服 除了上面指出的设备外,每个维护或者检查小组必须具有如下物件: ●紧急下降设备 ●灭火器(在运输工具中有) ●移动电话 在任何时候,不管是在风力发电机内部还是在其外部,都应该使用安全头盔。 建议在上升设备中准备手电筒、安全眼镜和保护性耳塞,这取决于要完成的工作(是对正在运行的风力发电机的检查还是维护)。 操作者必须正确使用安全设备并在使用之前和之后都对安全设备进行检查。对安全设备

风力发电机原理及结构

风力发电机原理及结构 风力发电机是一种将风能转换为电能的能量转换装置,它包括风力机和发电机两大部分。空气流动的动能作用在风力机风轮上,从而推动风轮旋转起来,将空气动力能转变成风轮旋转机械能,风轮的轮毂固定在风力发电机的机轴上,通过传动系统驱动发电机轴及转子旋转,发电机将机械能变成电能输送给负荷或电力系统,这就是风力发电的工作过程。 1、风机基本结构特征 风力机主要有风轮、传动系统、对风装置(偏航系统)、液压系统、制动系统、控制与安全系统、机舱、塔架和基础等组成。 (1)风轮 风力机区别于其他机械的主要特征就是风轮。风轮一班有2~3个叶片和轮毂所组成,其功能是将风能转换为机械能。 风力发电厂的风力机通常有2片或3片叶片,叶尖速度50~70m/s,3也片叶轮通常能够提供最佳效率,然而2叶片叶轮及降低2%~3%效率。更多的人认为3叶片从审美的角度更令人满意。3叶片叶轮上的手里更平衡,轮毂可以简单些。 1)叶片叶片是用加强玻璃塑料(GRP)、木头和木板、碳纤维强化塑料(CFRP)、钢和铝职称的。对于小型的风力发电机,如叶轮直径小于5m,选择材料通常关心的是效率而

不是重量、硬度和叶片的其他特性,通常用整块优质木材加工制成,表面涂上保护漆,其根部与轮毂相接处使用良好的金属接头并用螺栓拧紧。对于大型风机,叶片特性通常较难满足,所以对材料的选择更为重要。 目前,叶片多为玻璃纤维增强负荷材料,基体材料为聚酯树脂或环氧树脂。环氧树脂比聚酯树脂强度高,材料疲劳特性好,且收缩变形小,聚酯材料较便宜它在固化时收缩大,在叶片的连接处可能存在潜在的危险,即由于收缩变形,在金属材料与玻璃钢之间坑能产生裂纹。 2)轮毂轮毂是风轮的枢纽,也是叶片根部与主轴的连接件。所有从叶片传来的力,都通过轮毂传到传动系统,在传到风力机驱动的对象。同时轮毂也是控制叶片桨距(使叶片作俯仰转动)的所在。 轮毂承受了风力作用在叶片上的推理、扭矩、弯矩及陀螺力矩。通常安装3片叶片的水平式风力机轮毂的形式为三角形和三通形。 轮毂可以是铸造结构,也可以采用焊接结构,其材料可以是铸钢,也可以采用高强度球墨铸铁。由于高强度球墨铸铁具有不可替代性,如铸造性能好、容易铸成、减振性能好、应力集中敏感性低、成本低等,风力发电机组中大量采用高强度球墨铸铁作为轮毂的材料。 轮毂的常用形式主要有刚性轮毂和铰链式轮毂(柔性轮毂

汽轮发电机主要技术参数概览

汽轮发电机主要技术参数 汽轮发电机型号QF-3-2,容量3000千瓦,转速3000转/分,极数2,频率50,功率因数0.8电压6300伏,电流343.7安,接法星形,励磁电压71.3伏,励磁电流221安,效率96.74%,发电机旋转方向(从发电机定子引出线端看)逆时针。 第一、 1.绕线绝缘电阻 定子绕组 A相对地300兆欧, A相对B相2500兆欧 B相对地300兆欧, B相对C相2500兆欧 C相对地300兆欧, C相对A相2500兆欧 测量绕组温度27.5℃转子绕组对地200兆欧,测量绕组温度30℃ 2.绕组直流电阻 绕组温度在75℃时 定子绕组D1-D4相0.065466欧,D2-D5相0.06566欧,D3-D6相0.065779欧 转子绕组0.25993欧 3. 5.线匝绝缘试验空载方式额定转速下9060伏维持1分钟 6.短时过电流试验 7.绝缘电气强度试验 定子绕组用频率50交流电压13600伏各相间及对地进行试验,维持1分钟 转子绕组用频率50交流电压1500伏各相间及对地进行试验,维持1分钟 8.定子铁心损耗试验 硅钢片压装总重量4408.8公斤,硅钢片轭部总重量3791.5公斤 定子铁心沿磁通方向的截面积1611.25平方公分 压装后铁心单位损耗(在磁密10000高斯时)1.297瓦/公斤 9.发电机参数 Xa=10.11% X2=10.11% X0=4.547% Xa”=10.13% Xa’=16.63%Ta”=0.02566秒 Ta’=0.319秒 Xs=9.67% Tao’=3.63秒 第二、 1.转子风叶超速试验及交流阻抗的测定 (1)转子超速试验前期的测量:测量是温度30℃转子绕组对轴身绝缘

风力机的基本参数与理论

风力发电机风轮系统 2.1.1 风力机空气动力学的基本概念 1、风力机空气动力学的几何定义 (1)翼型的几何参数 翼型 翼型本是来自航空动力学的名词,是机翼剖面的形状,风力机的叶片都是采用机翼或类似机翼的翼型,与翼型上表面和下表面距离相等的曲线称为中弧线。下面是翼型的几何参数图 1)前缘、后缘 翼型中弧线的最前点称为翼型的前缘,最后点称为翼型的后缘。 2)弦线、弦长 连接前缘与后缘的直线称为弦线;其长度称为弦长,用c表示。弦长是很重要的数据,翼型上的所有尺寸数据都是弦长的相对值。 3)最大弯度、最大弯度位置 中弧线在y坐标最大值称为最大弯度,用f表示,简称弯度;最大弯度点的x坐标称为最大弯度位置,用x f表示。 4)最大厚度、最大厚度位置 上下翼面在y坐标上的最大距离称为翼型的最大厚度,简称厚度,用t表示;最大厚度点的x坐标称为最大厚度位置,用x t表示。

5)前缘半径 翼型前缘为一圆弧,该圆弧半径称为前缘半径,用r1表示。 6)后缘角 翼型后缘上下两弧线切线的夹角称为后缘角,用τ表示。 7)中弧线 翼型内切圆圆心的连线。对称翼型的中弧线与翼弦重合。 8)上翼面凸出的翼型表面。 9)下翼面平缓的翼型表面。 (2)风轮的几何参数 1)风力发电机的扫风面积 风轮旋转扫过的面积在垂直于风向的投影面积是风力机截留风能的面积,称为风力机的扫掠面积,下图是一个三叶片水平轴风力机的扫掠面积示意图。 下图是一个四叶片的H型升力垂直轴风力发电机的扫掠面积示意图。 根据前面两表可由所需发电功率估算出风力机所需的扫风面积,例如200W的升力型垂直轴风力发电机工作风速为6m/s,全效率按25%计算所需扫风面积约为6.2m2,如果工作风速为10m/s则所需扫风面积约为1.4m2即可;例如10kW的升力型垂直轴风力发电机工作风速为10m/s,全效率按30%计算所需扫风面积约为56m2,如果工作风速为13m/s则所需扫风面积约为25m2即可。按高风速设计的风力机体积小成本相对低些,但必须用在高风速环境,例如把一台设计风速为10m/s的风力机放在风速为6m/s的环境工作,其功率会下降80%;按风速

风力发电机的控制方式综述

风力发电机及风力发电控制技术综述 摘要:本文分析比较了各种风力发电机的优缺点,介绍了相关风力发电控制技术,风力发 电系统中的应用,最后对未来风力发电机和风力发电控制技术作了展望。 关键词:风力发电机电力系统控制技术 Overview of Wind Power Generators and the Control Technologies SU Chen-chen Abstract:This paper analyzes the advantages and disadvantages of the various wind turbine control technology of wind power, wind power generation system, and finally prospected the future control of wind turbines and wind power technology. 1 引言 在能源短缺和环境趋向恶化的今天,风能作为一种可再生清洁能源,日益为世界各国所重视和开发。由于风能开发有着巨大的经济、社会、环保价值和发展前景,近20年来风电技术有了巨大的进步,风电开发在各种能源开发中增速最快。德国、西班牙、丹麦、美国等欧美国家在风力发电理论与技术研发方面起步较早,因而目前处于世界领先地位。与风电发达国家相比,中国在风力发电机制造技术和风力发电控制技术方面存在较大差距,目前国内只掌握了定桨距风机的制造技术和刚刚投入应用的兆瓦级永磁直驱同步发电机技术,在风机的大型化、变桨距控制、主动失速控制、变速恒频等先进风电技术方面还有待进一步研究和应用[1]。发电机是风力发电机组中将风能转化为电能的重要装置,它不仅直接影响输出电能的质量和效率,也影响整个风电转换系统的性能和装置结构的复杂性。风能是低密度能源,具有不稳定和随机性特点,控制技术是风力机安全高效运行的关键,因此研制适合于风电转换、运行可靠、效率高、控制且供电性能良好的发电机系统和先进的控制技术是风力发电推广应用的关键。本文分析比较了各种风力发电机的优缺点,介绍了相关风力发电控制技术,风力发电系统中的应用,最后对未来风力发电机和风力发电控制技术作了展望。 2 风力发电机 2.1 风电机组控制系统概述 图1为风电机组控制系统示意图。系统本体由“空气动力学系统”、“发电机系统”、“变流系统”及其附属结构组成; 电控系统(总体控制)由“变桨控制”、“偏航控制”、“变流控制”等主模块组成(此外还有“通讯、监控、健康管理”等辅助模块)。各种控制及测量信号在机组本体系统与电控系统之间交互。“变桨控制系统”负责空气动力系统的“桨距”控制,其成本一般不超过整个机组价格5%,但对最大化风能转换、功率稳定输出及机组安全保护至关重要,因此是风机控制系统研究重点之一。“偏航控制系统”负责风轮自动对风及机舱自动解缆,一般分主动和被动两种偏航模式,而大型风电机组多采用主动偏航模式。“变 流控制系统”通常与变桨距系统配合运行,通过双向变流器对发电机进行矢量或直接转矩控制,独立调节有功功率和无功功率,实现变速恒频运行和最大(额定)功率控制。

1.5MW风力发电机维护手册2015.8

风力发电机 维护使用手册 佳木斯电机股份有限公司

风力发电机维护使用手册 1通用信息 请妥善保存本手册! 适用范围 本手册适用于由佳木斯电机股份有限公司生产制造的1.5MW双馈风力发电机。 2指南 本手册简要概括了电机构造及以下相关信息说明 ?结构型式 ?保养与维护 ?故障分析与排除 ?售后服务 本手册不能代替相关专业人员对操作人员所作的重要操作指导。本手册对组件安装已做出了相类似说明,操作者可参照此些方法执行。对于超出一般范畴而在此手册中未提及的电机维修及保养工作,应由电机专业有经验人员执行。电机若由于交货后客户的不适当操作或存储维护不利所产生的损失,电机生产商对此不承担责任。 须指出,此手册的内容不属于早期或现行协议、承诺或法律关系的一部分。也无修订这些内容的作用。 3发电机结构特征 1 轴 2 伸端接地碳刷 3 伸端端盖系统 4 定子接线盒 5 机座 6 自动注油泵 7 呼吸阀 8 进、出水管 9 尾端端盖系统10 滑环罩 11 转子接线盒12 编码器13 辅助接线盒14 手动注油管 15 轴承测温16 自动注油管17 排油器 4维护保养 精心的维护保养(包括监控,维护,检测及设备补充)才能保证电机的正常运转。 未对电机进行维护保养,用户将失去保修的权利。 发电机应进行周期性的维护和检查,应保证: a)发电机清洁,定子和转子的通风管路畅通无阻; b)负载不超过额定值和使用系数;

c)线圈温升不超过额定值; d)绕组绝缘电阻和端盖绝缘电阻要大于推荐的最小值。 危险! 绝缘试验所使用的高压能造成损伤和生命危险,只能由合格人员来做试验,注意试验装置说明中的安全部分。 e) 电压频率的变化应符合相关的规定; f) 滚动轴承温度应不超过95℃,保持润滑油清洁和适当油量; g) 没有异常的振动和噪声; h) 必要零件的贮备及备用件库存一览表; i) 对中数据(与准确对中的偏差,高温允许值); j) 正常检查结果(“使用记录”); k) 修理(“使用记录”); l) 润滑数据:1) 使用方法;2) 润滑脂的贮备;3) 维护周期;4) 对每台设备进行记录。 请在电机停机时进行维护工作,应断开电源开关。 4.1清洁 4.1.1机壳外部 去除电机外部及其配件的污垢、灰尘和陈油。 4.1.2小型清洁(每6~8个月) ?清洁接线盒内部 ?清洁集电环及刷架(见4.5.1) ?清洁绝缘端盖灰尘及油污 4.1.3大型清洁(每3年至5年,由环境条件决定) ?用毛刷在干燥的压缩空气下小心清洁受污绕组。对于粘性的污垢(如润滑油脂)应使用酒精浸渍过的抹布将其去除。最后必须对绕组进行干燥 处理(见4.3) ?用干燥压缩空气吹洗定子及转子铁心通风沟。 ?用干燥压缩空气吹洗定子机壳,轴承端盖及转子的金属表面。 ?清洁接线盒及绝缘端盖。 4.2检测线圈直流电阻及绝缘电阻 4.2.1检测线圈直流电阻 每6个月检查直流电阻,通常使用双臂电桥来检查,如下图所示。 断开用户接线状态下,用双臂电桥分别测量接线板U与V相、V与W相、U与W相间直流电阻(或者K与L相,L与M相,K与M相),阻值分别记为R1、R2、R3。三相平均电阻值为R=(R1+R2+R3)/3。各线端电阻值(R1或R2或R3)与平均电阻值(R)之差不应大于1.5%。

风力发电机设计与研究综述

风力发电机设计与研究综述 在资源越来越贫乏的现代社会,工业化的迅速发展,使得人们对于电力资源的需求大大增加,对于资源的开发上是一个不小的压力。由此,现代社会努力寻找各种替代能源来缓解压力,而风能的利用开发就是新能源的一种,本文就将针对风力发电机设计理念进行详细的分析介绍,对其中蕴含的原理和知识进行综合论述,同时对未来风力发电的技术方向和研发方向进行分析预测,提出切实的建议。 标签:风力发电机;设计理念;未来前景 风力发电技术的发展其实不是特别久远,主要也是从国外发展而来的,而且这个技术的发展跟现代能源的开发也有关系,是生产力和生产资源的需要促使国外的集团机构进行资源开发技术上的研究,在技术上也是经过了几代人的磨炼探索,终于在对于新能源的资源利用上取得了突破。中国也在这样的背景下研制出来了风力发电机,事实上这是对风能转换成电力资源的完美利用。利用率高,并且不存在污染现象。但是在实际的运用中还是要分析一下风力发电机的工作情况,思考风力发电机设计原理的合理性和现实性,进行查漏补缺,实时抱有不断前进不断成长的学习态度。 一、风力发电机的设计概述 (一)了解风力发电的设计原理 风力发电实际上是对风能的有效利用,是对于风能的开发转换,而风力发电机就是针对这一需要进行技术支持的设备。它主要是利用风的流动对叶片产生的压力,促使内部轮轴进行转动,在经过不同的作用环节的催发下,生成最后所需要的电能资源。纵观一系列的作用环节,实际上主要就是一个从风能到机械能再到动能再到电能的转化过程。并且它的设计也是在原有传统能源利用的优缺点基础上进行的,吸取了原有的优势启发,但是在转换率和副作用上有了很大的改善,避免了很多原有能源开发可能会带来的问题,例如对环境的污染,对开采能源造成的地质破坏,对能源材料的集中运输难度等一系列问题,所以风力发电机绝对是一个较为科学且实际的合理设计。 (二)针对不同类型的不同设计 风力发电机是对于风能的采集利用,其实也存在类型上的不同,这也是针对电能的不同需求做出的改变。风力发电机大体上可以按照主轴方向和输出、功率调节形式和机械形式、发电机组几种区分标准进行分类,大大小小也是可以分为近十余种风力发电机的类型,这些有的是以发电目的为导向来进行输出功率大小的量比,有的是以内在结构的运作方式不同进行发电机类型的区分,其实这些类型都是基于现有技术和使用者的使用需求进行的设计生产,都是可以在不同环境不同使用期待下进行合理的风能向电能的转化的。风力发电机设计的更多类型也

发电机组技术参数

30KW扬动防雨箱发电机组技术参数 1、发电机组主要参数 机组型号:ZSYD-30GF 额定功率:30KW/37.5KVA 额定电压:400V/230V 额定电流:54A 额定频率:50Hz 额定功率因素:COS=0.8滞后 稳态电压调整率:≤±0.5% 瞬态电压调整率:≤-15%/ +20% 电压稳定时间:≤1.5sec 电压波动率:≤0.5% 电压波形失真度≤8% 稳态频率调整率:≤3% 瞬态频率调整率:≤10% 频率稳定时间:3sec 频率波动率:≤0.25% 满载燃油耗量:215g/kw.h 开架机组外形尺寸(mm): 1450*720*1200 开架机组重量:650KG 防雨箱机组外形尺寸(mm)1800*1000*1600 防雨箱机组重量:1100KG 2、柴油机主要参数 品牌:扬动 柴油机型号:YSD490ZLD 额定功率:32KW/40KVA 类型:四冲程,直接喷射压燃式 冷却方式:自带风扇水箱强制闭式循环水冷却 排列型式:直列型 气缸数:4缸 缸径*行程:90mm*100mm 排量: 2.534L 机油容量:12L 转速:1500r/min 转速调节:机械调速 启动方式:DC24V 电启动 3、发电机主要参数 发电机品牌:上海领驭 产地:江苏 发电机型号:KHI-30 类型:封闭、防滴自通风保护、自励磁、自调节、带

自动电压调节器的旋转无刷同步发电机相数接法:Y型,三相四线 绝缘等级:H级 温升:H级 防护等级:IP22 额定频率:50HZ 额定功率因数:0.8(滞后) 额定电压:400/230V 额定转速:1500r/min 励磁方式:无刷自励磁 4、机组组成部分 1)柴油机 2)发电机 3) 普通柜 4)防雨箱 6、参考图片 扬动发电机组

风力发电机运行仿真

基于MATLAB的“风力发电机运行仿真” 软件设计 摘要 关键词 1前言 1.1建模仿真的发展现状 20世纪 50—60年代, 自动控制领域普遍采用计算机模拟方法研究控制系统动态过程和性能。“计算机模拟”实质上是数学模型在计算机上的解算运行, 当时的计算机是模拟计算机, 后来发展为数字计算机。1961年G.W.Morgenthler 首次对仿真一词作了技术性的解释,认为“仿真”是指在实际系统尚不存在的情况下,对于系统或活动本质的复现。目前,比较流行于工程技术界的技术定义是系统仿真是通过对系统模型的实验,研究一个存在的或设计中的系统。仿真的三要素之间的关系可用三个基本活动来描述。如图1 图1 系统仿真三要素之间的关系 20世纪50年代初连续系统仿真在模拟计算机上进行, 50年代中出现数字仿真技术, 从此计算机仿真技术沿着模拟仿真和数字仿真两个方面发展。60年代初出现了混和模拟计算机, 增加了模拟仿真的逻辑控制功能, 解决了偏微分方程、差分方程、随机过程的仿真问题。从60-70代发展了面向仿真问题的仿真语言。20世纪80年代末到90年代初, 以计算机技术、通讯技术、智能技术等为代表的信息技术的迅猛发展, 给计算机仿真技术在可视仿真基础上的进一步发展带来了契机, 出现了多媒体仿真技术。多媒体仿真技术充分利用了视觉和听觉媒体的处理和合成技术, 更强调头脑、视觉和听觉的体验, 仿真中人与计算机交互手段也更加丰富。80年代初正式提出了“虚拟现实”一词。虚拟现实是一种由计算机全部或部分生成的多维感觉环境, 给参与者产生视觉、听觉、触觉等各种感官信息, 使参与者有身临其境的感觉, 同时参与者从定性和定量综合集成的虚拟环境中可以获得对客观世界中客观事物的感性和理性的认识。图2体现

2MW风力发电机技术说明书解析

全功率变频高速永磁风力发电机 技术规格说明书

目录 一、酒钢/2000系列风机特点 二、风电场的特性和风电场的设计原则 1、风电场的特性资料 2、风电场的设计原则 三、嘉峪关地区气象、地质条件及能源介质条件 四、风力发电机组的设计要求 1、风力发电机设计的基本原则 2、风力发电机设计的外部条件 3、风力发电机等级要求 4、其它环境影响 5、外部电网条件的影响 6、载荷方面的影响 五、风力发电机组主要技术参数 1、技术参数 2、轮毂高度的设计风速 3、安全系统参数 4、风机设计主要技术参数 六、风力发电机的技术规格与要求 1、叶轮 2、增速箱 3、偏航系统 4、液压系统 5、润滑与冷却系统 6、制动系统 7、锁紧装置 8、电控系统 1)变桨控制系统 2)风机主控系统

3)中央监控系统 4)机舱控制柜主要功能 5)塔基控制柜主要功能 6)变流器主要功能 9、发电机 1)永磁发电机的结构组成 2)高速永磁同步发电机基本技术参数 3)永磁同步发电机制造要求 4)发电机出厂测试要求 10、全功率变流器 1)变流器控制原理图 2)变流器功能要求 3)变流器技术指标和参数 4)变流器设备的可靠性及维护性 5)变流器的国际标准和电网法规 6)低电压穿越功能的实现 7)保护功能 8)接口和通讯内容 11、滑环 12、防雷保护 13、联轴器 14、风机主轴 15、风机轴承 16、风机塔架 17、风机机舱 1)机舱罩 2)底座 18、雷电保护、接地、等电位联结和浪涌保护 19、机舱内部的密封、隔音和保护

20、提升机 21、机组安全系统 22、风力发电机的基础 23、机舱总装流程图 七、风机主要部件供货说明 1、风机的主要部件供货清单 1)叶片 2)高速永磁发电机 3)液压系统 4)变流器 5)控制系统供货范围 6)中央监控系统供货范围 7)风机刹车系统 8)风机变桨系统 9)全功率风能变流器 10)公辅系统方面 2、风机的其它供货内容 八、风机的设计图纸和文件交付内容 1、通用资料 2、叶片 3、连轴器 4、液压系统; 5、发电机 6、变流器 7、滑环 8、控制系统 9、中央监控系统 九、产品制造标准 1、设计和制造必须执行的标准

影响风力发电机出力的因素

影响风力发电机出力的因素 风力发电机在工作时由于受到环境或本身结构的影响,其功率会受到影响,目前大坝风场使用华锐3MW风机32台,现就一些影响风机出力的因素进行简单分析: 一、功率曲线与上网发电量 1、功率曲线反映了风力发电机组的功率特性,是衡量机组风能转换能力的指标之一,设备验收时功率曲线往往是被重点考核的对象。 下图为华锐3MW风机理论设计功率曲线 下图为风机实际功率曲线

从标准功率曲线与实际功率曲线对比可以看出,风机实际出力功率曲线与设计理论功率曲线趋近于相同(达到满发点有差异)。但实际风场中还有个别风机存在功率曲线异常情况,如下图所示:下图为风机异常功率曲线:

造成功率曲线异常有以下几点:一是华锐3MW远程监控系统数据记录错误或丢失。二是我风场由于受到功率限制,大风期部分风机风机停运。三是由于故障风机长时间停机,导致主控检测到的数据为零等。

2、因玉门地区发电量送出通道有限,导致我风场负荷受到严重限制,平常全厂出力为3万千瓦时左右(容量十万),大风期我风场风机大部分不能满负荷发电。 二、风况及地理位置对风力发电机出力的影响 风力发电的原动力是不可控的,它是否处于发电状态以及出力的大小都决定于风速的状况,风速的不稳定性和间歇性决定了风电机组的出力也具有波动性和间歇性的特点。 1、目前我风场年平均风速为6.3m/s(以2013年为例,90m高度),设计之初年平均风速为7.86m/s(70m高度,出自大坝风场可研性报告),风场年平均风速有所下降。 2、目前我风场所处位置西南及南面均有山,成西高东低地理位置不理想,根据风场玫瑰图可以看出我风场主导风向为东风和西风,山对风的影响比较大。 3、因风场地理位置、环境等客观因素,风切变也是影响风机出力的不可抗力的原因之一。风切变,又称风切或风剪,是指风矢量(风向、风速)在空中水平和(或)垂直距离上的剧烈变化。现场风速及风向的剧烈变化,造成风机出力不稳定、偏航、变桨调整时间延长等,

康明斯发电机参数表

美国康明斯发电机组系列 康明斯在华投资逾一亿四千万美元,作为中国发动机行业最大的外国 投资者,康明斯在中国拥有六家合资和独资制造企业,生产发动机、涡 轮增压器、滤清器、发电机和发电机组等产品。14个系列的康明斯发 动机产品已经有8个系列按照康明斯全球统一的严格质量标准在中国生 产。基本特点:在中国研发制造的新产品(已获ISO9001质量体系认 证)。采用康明斯合资公司生产的柴油发动机和交流发电机,配备世界先 进的控制系统,为一领先设计、专业生产、性能优异的柴油发电机组 完美组合。 机组型号 输出功率 发动机型号电球型号机组尺寸(mm)重量(kg) Kva KW JHS-C4035/4028/324BT3.9G LSG241981×737×1143658 JHS-C5650/5640/454BT3.9G1LSG251981×737×1143687 JHS-C6863/6850/554BT3.9G2LSG281981×737×1143783 JHS-C8073/8058/644BTA3.9G1LSG282242×737×1143864 JHS-C949470/756BT5.9G1LSG322242×737×1143960 JHS-C110100/11080/886BT5.9G2LSG322242×737×1143960 JHS-C138125/138100/1102655×864×12961360 JHS-C138125/138100/1106CT8.3G LSG342655×864×12961360 JHS-C193175/193140/1546CTA8.3G LSG352655×864×12961360 JHS-C225200/225160/1806CTAA8.3G2655×864×12961360 JHS-C275250/275200/220NAT855G1UCD274K/3000×1055×16252747 JHS-C350313/350250/280NTA855G2HC1444E/3000×1055×16252747 JHS-C388350/388280/310NTA855G43000×1055×16252747 JHS-C413375/413300/330NTA855G73000×1055×16252747 JHS-C413375/413300/330KTA19G2HC1544C/3505×1245×17273575 JHS-C500450/500360/400KTA19G3HC1544C/3505×1245×17273668

风力发电机增速器

摘要 我国属于发展中国家,经济、能源与环境的协调发展是实现我国现代化目标的重要前提。我国是个能源大国,也是个能源消费大国,当前我国能源的发展面临着人均能耗水平低、环境污染严重、能源利用率以及可再生能源比例少等问题。因此,调整能源结构,减少温室气体排放,缓解环境污染,加强能源安全已成为全国关注的热点,对可再生能源的利用,特别是风能开发利用也给予了高度重视。风能是一种清洁的可再生能源,风力发电是风能利用的主要形式,也是目前可再生能源中技术最成熟、最具有规模化开发条件和商业化发展前景的发电方式之一。 风力发电机的传动机构主要由主轴、齿轮箱、输出轴等部分组成,首先对齿轮箱进行设计,根据某型风力发电机所要求的技术匹配参数,选择适当的齿轮传动方案,在此基础上进行传动比分配与各级传动参数如模数、齿数等的确定,对于齿轮箱中的轴进行设计,并对齿轮、轴以及轴承进行校核,再考虑行星架、箱体的选用问题,最后在考虑其他因素对风力发电机的影响,进行三维仿真模拟。 关键词:风力发电机传动机构;行星齿轮传动;模拟仿真

Abstract China is a developing country, the coordinated development of economy, energy and environment is an important prerequisite to realize our modernization goal. China is a big energy country, but also a large energy consumption, the current development of China's energy is facing a low level of per capita energy consumption, environmental pollution, energy efficiency and the proportion of renewable energy and other issues. Therefore, to adjust the energy structure, reduce greenhouse gas emissions, ease environmental pollution, strengthen energy security has become a hot topic of concern to the use of renewable energy, especially wind energy development and utilization has also given high priority. Wind energy is a clean renewable energy, wind power is the main form of wind energy utilization, but also the renewable energy in the most mature technology, the most large-scale development conditions and commercial development prospects of one of the power generation. The transmission mechanism of the wind turbine is mainly composed of the main shaft, gear box and output shaft. First, the gear box is designed. According to the technical matching parameters required by a certain type of wind turbine, the appropriate gear transmission scheme is selected. On this basis, The gear ratio and the transmission parameters such as modulus, the number of teeth, etc. to determine the shaft for the design of the gear box, and gears, shafts and bearings to check, and then consider the planetary planes, the selection of the box, and finally Three-dimensional simulation is carried out to consider the influence of other factors on wind turbines. Key words:Wind turbine transmission mechanism;Planetary gear drive; Simulation

相关文档
最新文档