无机化学及分析化学总结(高分析11)

无机化学及分析化学总结(高分析11)
无机化学及分析化学总结(高分析11)

无机化学及分析化学总结

第一章 绪论

● 系统误差:由固定因素引起的误差,具有单向性、重现性、可校正

● 偶然误差:随机的偶然因素引起的误差, 大小正负难以确定,不可校正,无法避免,

服从统计规律

(1)绝对值相同的正负误差出现的概率相等

(2)大误差出现的概率小,小误差出现的概率大。

● 准确度: 在一定测量精度的条件下分析结果与真值的接近程度,用误差衡量

● 精密度(precision):多次重复测定某一量时所得测量 值的离散程度。用偏差衡量

● 准确度与精密度的关系:精密度好是准确度好的前提;精密度好不一定准确度高 ● 测定结果的数据处理

(1)对于偏差较大的可疑数据按Q 检验法进行检验,决定其取舍;

(2) 计算出数据的平均值、平均偏差与标准偏差等;复习p12例题

● 有效数字及其计算规则

有效数字:实际能测得的数据,其最后一位是可疑的。对于可疑数字一般认为有±1的误差 例: 滴定管读数 21.09 mL 分析天平读数 0.2080 g 最后一位为可疑值

注意: (1) “0”的作用:有效数字(在数字的中间或后面)定位作用(在数字的前面)

(2)对数值(pH 、pOH 、pM 、pK 等)有效数字的位数取决于小数部分的位数。

计算规则:(1) 加减法:计算结果小数点后的位数与小数点后位数最少的数据一样。

(2)乘除法(乘方、开方、对数)计算结果的有效位数与有效位数最少的数据一样。

第三章 化学热力学初步

● 基本概念:化学反应进度、体系与环境、状态与状态函数(状态函数的特征)、热与功(热

与功的符号、体积功的计算=-??W p V )、内能和热力学第一定律(热力学定律第一定律数学表达式ΔU = Q + W )(p43例3-1)

● ?r H θm 的计算

△r H m :摩尔反应焓变,对于给定的化学反应,反应进度为1mol 时的反应热

?rH θm :化学反应中,任何物质均处于标准状态下,该反应的摩尔反应焓变

?f H θm :在温度T及标准态下,由参考状态单质生成1mol 物质B的标准摩尔反应焓变即为物质B在T温度下的标准摩尔生成焓。参考状态单质的标准生成焓为零。

1.利用?f H θm 计算?rH θm

r m B f m.B B

H (298.15K)H (298.15K)θ

θ?=ν?∑, ?rH θm ≈?rH θm (298.15K);

2.盖斯定律:在恒容或恒压同时只做体积功的情况下,任一化学反应,不论是一步完成的,还是分几步完成的,其化学反应的热效应总是相同的,即化学反应热效应只与始、终状态有关而与具体途径无关。根据盖斯定律若化学反应可以加和,则其反应热也可以加和。 ● 反应的方向

热力学中,有两条重要的自然规律控制着所有物质系统的变化方向

(1)从过程的能量变化来看,物质系统倾向于取得最低能量状态;(2)从系统中质点分布和运动状态来分析,物质系统倾向于取得最大混乱度。

热力学中,体系的混乱度用熵来量度的。符号:S

对于物理或化学变化而论,几乎没有例外:一个导致气体分子数增加的过程或反应总伴随着熵值增大,即: ?S > 0;如果气体分子数减少,?S < 0。

标准摩尔反应熵变的计算:r m B m.B B S (298.15K)S

(298.15K)θθ?=ν∑,

?rS θm ≈?rS θm (298.15K)

● 用熵变判断反应自发性的标准是,对于孤立系统:

ΔS (孤) >0 自发过程;ΔS (孤) =0 平衡状态;ΔS (孤)<0 非自发过程

● 判断反应方向的判据是ΔG(适用条件:恒温恒压只做体积功):

ΔG < 0 自发过程;ΔG > 0 非自发过程;ΔG = 0 平衡状态

● ΔH 、ΔS 对反应自发性的影响(ΔG =ΔH - TΔS )

ΔH<0, ΔS>0,则ΔG <0,任意温度下均自发

ΔH>0, ΔS<0,则ΔG>0,任意温度下均非自发

ΔH>0, ΔS>0,则高温下ΔG<0, 低温下ΔG>0,即高温自发,低温非自发

ΔH<0, ΔS>0,则高温下ΔG>0, 低温下ΔG<0,即高温自发,低温非自发

● Δr G θm 的计算

(1)利用标准摩尔生成吉布斯函数计算

r m B f m.B B

G (298.15K)G (298.15K)θ

θ?=ν?∑(只有298.15K 时的Δf G θm,B 数据,该方法只能

计算298.15K 时的Δr G θm )

(2)任意温度下的Δr G θm 可按吉布斯——亥姆霍兹公式近似计算

Δr G θm (T)≈Δr H θm (298.15K)-T Δr S θm (298.15K) (Δr H θm —KJ·mol -1, Δr S θm —J·mol -1·K -1注意单位换算) ● 反应自发进行的温度范围的计算

Δr G θm (T)≈Δr H θm (298.15K)-T Δr S θm (298.15K)

Δr H θm (298.15K)-T Δr S θm (298.15K)<0 (反应自发)

Δr H θm (298.15K)和Δr H θm (298.15K)可以通过热力学数据算出,从而可求出自发进行的温度范围。(p58例3-7,p60,14)

第四章 化学反应速率和化学平衡化学反应速率

● 化学反应速率的表示方法(浓度随时间的变化)瞬时速率、平均速率

● 化学反应速率理论(碰撞理论、过渡状态理论)

活化分子、活化能(能用化学反应速率理论解释浓度、温度、催化剂对反应速率的影响) ● 质量作用定律(只适用于基元反应)、速率方程、反应级数

● 影响反应速率的因素

(1)内因:反应的活化能大小;(2)外因:浓度、温度、催化剂(不要求计算)

● 标准平衡常数 K θ

(1) K θ表达式的书写

溶液用相对平衡浓度表示,B c c

θ即平衡浓度除以c θ (1 mol ?L -1) 气体用相对平衡分压表示,

B p p θ即平衡分压除以p θ (100 kPa),标准平衡常数是量纲为1的量。复相反应中,固体、纯液体和溶剂不写入式中,即用“1”表示

(2)K θ的求算:a 通过表达式求得;b 由θθr m ΔG RTlnK =-求得

θθr m ΔG RTlnK =- (1) 此式把动力学与热力学联系起来,只要知道了某温度下反应的标准摩尔吉布斯函数变

θr m ΔG ,就可以求出反应的标准平衡常数K θ。

(2) θr m ΔG 值愈小(越负),则K θ值愈大,反应达到平衡时进行得愈完全。

● 非标态下化学反应方向的判据为:当 Q

Δr G m =0 处于平衡状态;当 Q>K θ Δr G m >0 反应正向非自发

● 多重平衡规则

若干反应方程式相加(减)所得到的反应的平衡常数为这些反应的平衡常数之积(商)。

反应1=反应2+反应3 123=?K K K θθθ;反应1=反应2-反应3 123/=K K K θθθ

反应1=m×反应2 12()=m K K θθ

● 化学平衡的移动(吕.查德里原理)

1.浓度(分压) 、总压力对化学平衡的影响(此时温度不变,因而K θ为定值)

2.温度对化学平衡的影响(影响K θ)

升高温度,平衡向吸热反应方向移动,降低温度,平衡向放热反应方向移动,

● 有关化学平衡的计算

1.写出反应方程式;

2.找出各物质的初始浓度(分压);

3.设定未知数表示出各物质的平衡浓度(分压)

4.表示出平衡常数(标准平衡常数或实验平衡常数) →得到方程

5.求解方程解出未知数(p87例4-10,p91,18)

第五章 物质结构基础

● 微观粒子运动的特征是波粒二象性,具体体现为量子化(能量不连续)和统计性

● 微观粒子质量小,运动速度大,如电子在原子核为10-10m 的范围内以106~108m/s

的速度运动(没有固定的轨迹,不服从牛顿定律)→微观粒子的位置与动量不能同时准确测定

● 微观粒子运动的统计性

单个电子的位置和动量不能同时准确测定,但是一个电子的多次运动,或大量电子的运动是有规律的。即电子在原子核外任何空间都能出现,只是在某些空间范围出现的概率大,某些空间范围出现的概率小

● 波函数

(1)波函数ψ(r, θ , φ)和其对应的能量E 代表了核外电子的一种运动状态,所以波函数又称为原子轨道(函), 原子轨道不再是经典力学中描述的某种确定的几何轨迹。

(2)波函数ψ(r, θ , φ)没有明确的物理意义,只是电子的运动状态满足波函数的函数式。 |ψ|2表示空间某处体积内电子出现的概率(即概率密度)

● 原子轨道(波函数)的角度分布图

将波函数角度部分Y (θ , φ)随θ,φ的变化作图,即得波函数的角度分布图,即原子轨道的角度分布图。

作图方法是:从原点(原子核)引出不同(θ , φ )的直线,直线的长度为|Y |,将所有直线的端点连接起来,在空间则形成一个封闭的曲面,并给曲面标上Y 值的正、负号。

则曲面上任意一点到原点的距离就是此时(θ , φ )对应的Y (θ , φ)函数值的绝对值

(1)s 原子轨道的角度分布图——球面形,即S 轨道角度部分函数值在在r 一定时,每个方向上取值相同

(2)p 原子轨道的角度分布图——双球面形,d 原子轨道的角度分布图——四橄榄形 即p 、d 、f 原子轨道角度部分函数值在r 一定时,在各个方向上有大小、正负不同的分布

● 电子云的角度分布图

电子云角度分布图是波函数角度部分函数Y(θ , φ)的平方|Y|2随θ、φ 角度变化的图形 作图方法与波函数角度分布图一样,只是线段的长度为|Y|2

与原子轨道角度分布图的区别在于:

(1)原子轨道角度分布图中Y 有正、负之分,而电子云角度分布图中|Y |2全为正

(2)由于Y < 1,|Y |2<|Y|,电子云角度分布图要比原子轨道角度分布图稍“瘦”些。

|ψ|2表示电子在核外空间某处出现的概率密度,n, l, m n, l l, m (,,)()(,)=?r R r Y ψθφθφ

则|Y|2表示r 一定时电子在核外空间某方向上出现的概率(密度)(方向一定,体积为单位体积) s 轨道上电子在离核的距离一定时,在每个方向上出现的概率相同

p ,d ,f 轨道上电子在离核的距离一定时,在不同方向上出现的概率有一定大小分布,某些方向上(对称轴)出现的概率最大。

● 电子云的径向分布图

|R|2表示方向(θ , φ)一定时电子,电子离核远近不同时出现的概率密度,离核越远,电子出现的体积空间越大,则 概率=概率密度× 体积;即概率=R 2(r )?4πr 2

R 2(r )? r 2对r 作图即可得电子云径向分布图 ,电子云的径向分布图反映电子在核外空间出现的概率离核远近的变化

(1)当l 相同时,n 越大,主峰(具有最大值的吸收峰)距核越远,即电子出现的最大概率区域离核的距离越远

(2) 当n 相同时,l 不同时,主峰离核的距离相近,即电子出现的最大概率区域离核的距离相近。→电子(最大概率区域)分层分布

● 四个量子数的取值及物理意义

(1)主量子数n :取值:1,2,3,…n 等正整数。描述原子中电子(出现概率最大区域)离核的远近,n 越大,电子(出现概率最大区域)离核的距离越远, 能量越高,同时n 决定电子层

(2)角量子数l :0 1 2 3… n-1

物理意义1:决定波函数角度分布图和电子云角度分布图的形状

物理意义2:在多电子原子中与主量子数n 一起决定电子的能量n 相同,l 越大能级越高 Ens

(3)磁量子数 m m=0,±1,±2,…± l

物理意义:波函数和电子云角度分布图在空间的伸展方向,即取向数目

n,l 相同,m 不同的轨道叫等价轨道(简并轨道)

(4)自旋量子数m s ,电子有两种自旋方向;

m s = +1/2或m s = -1/2;图示用箭头↑、↓符号表示

● n 、l 、m 三个量子数决定一个原子轨道(波函数);n 、l 、m 、 m s 四个量子数决定一个电

子的运动状态

● 能级组 1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s 5f 6d 7p (一定记住能级组) ● 核外电子分布的一般原则

能量最低原理、泡利不相容原理、洪特(Hund )规则

注意洪特规则(不容易理解):当电子在n, l 相同的数个等价轨道上分布时,每个电子尽可能占据磁量子数不同的轨道且自旋平行。

洪德规则的补充:简并轨道全充满、半充满或全空的状态比较稳定,全充满: p 6, d 10,f 14 半充满: p 3, d 5, f 7 全空: p 0, d 0, f 0

能级交错时(4s3d ,5s4d , 6s4f5d ,7s5f6d),可以s 轨道未填满,而让简并轨道半满,全满,

这时能量更低更稳定,如24Cr 51[]34Ar d s ,29Cu 101[]34Ar d s

● 电子层结构与元素周期律(通过电子排布式能知道元素在周期表中的位置,反之亦然)

1.能级组与元素周期(行)

(1)各周期元素数目=对应能级组中原子轨道的电子最大容量

(2)原子的电子层数=原子所在的周期数(钯Pd 除外)

2.价电子构型与元素周期表中族的划分(列)

价电子:原子发生化学反应时参与形成化学键的电子价电子构型:价电子层的电子排布 主族元素(A): 最后一个电子填入ns 或np 轨道的元素

主族元素的价电子:最外层电子 (nsnp) IA~VIIIA(VIIIA 也称零族)

副族元素(B): 最后一个电子填入(n -1)d 或(n -2)f 轨道的元素

副族元素的价电子:最外层s 电子,及(n -1)d 电子(甚至(n -2)f 电子)

IIIB~ VIIIB, ⅠB ,IIB ,其中VIIIB 元素有3列

族号数=价电子总数

(VIIIA 为8或2,ⅠB,ⅡB d10不计入,Ⅷ 8~10)

3. 价电子构型与元素的分区

s 区 :最后一个电子填入s 轨道的元素

p 区:最后一个电子填入p 轨道的元素

d 区:最后一个电子填入d 轨道且d 轨道未满的元素

ds 区:最后一个电子填入d 轨道且d 轨道填满的元素

f 区:最后一个电子填入f 轨道的元素

● 元素基本性质的周期性

掌握主族元素原子半径、电离势、电负性的递变规律

● 离子键

离子键——当活泼金属原子和活泼非金属元素原子互相接近时,前者失去电子形成正离子,后者得到电子形成负离子。正、负离子通过静电相互作用结合成离子型化合物

离子键的本质是静电作用力

生成离子键的条件: 原子间电负性相差足够大,一般要大于1.8左右

离子键的特征:没有方向性、没有饱和性

离子化合物的熔点和沸点:离子的电荷越高、半径越小,静电作用力就越强,

熔点和沸点就越高

● 价键理论

共价键的本质:原子轨道发生重叠,两核间电子出现概率增大,降低了两核间的正电排斥,又增强了两核对电子云密度大的区域的吸引,系统能量降低, 形成稳定的共价键

价键理论要点:

? 成键原子的未成对电子自旋相反;

? 最大重叠原理:成键原子的原子轨道重叠程度(面积)越大,键越牢。

? 对称性匹配原理:原子轨道的重叠必须发生在角度分布图中正负号相同的轨道之间 ● 共价键的特征

饱和性——电子配对后不再与第三个电子成键

方向性——共价键具有方向性的原因是因为原子轨道(p, d, f)有一定的方向性,所以必须沿着特定的方向重叠,它和相邻原子的轨道重叠才能达到最大重叠。

● 共价键的类型

σ键:原子轨道沿键轴方 向“头碰头”式重叠; π键:原子轨道沿键轴 方向“肩并肩”式重叠

●σ键与π键的识别

共价单键为σ键;共价双键(及三键)中:有一个σ键,其余为π键。

σ键,重叠程度大,较稳定;π键,重叠程度小,较活泼。

●杂化轨道理论

杂化轨道理论的要点

(1)同一原子中若干不同类型、能量相近的原子轨道混合起来,重新组成数目相同、能量完全相同的新轨道→杂化轨道

(2)杂化轨道(一头大,一头小)在某些方向上的角度分布更集中,因而杂化轨道比未杂化的原子轨道成键能力强

注意只有在形成分子的过程中,中心原子的能量相近的原子轨道才能进行杂化

杂化形式中心原子的孤电子对分子空间构型示例键角

sp等性0 AX2直线形CO2, BeCl2 ,炔烃180°sp2等性0 AX3平面三角形BF3, SO3,炔烃120°sp3等性0 AX4正四面体CH4, NH4+烷烃109°28′sp3不等性 1 :AX3三角锥NH3,PCl3 <109°28′

2 :AX2V字形H2O, SF2<109°28′

●极性分子与非极性分子(能区分分子的极性和键的极性;能判断分子的极性)

●分子间力

(1)取向力:极性分子中永久偶极间的相互作用力

(2)诱导力:诱导偶极与永久偶极间的作用力。

(3)色散力:瞬间偶极间的作用力。

?极性分子与极性分子间存在:取向力、诱导力、色散力

?极性分子与非极性分子间存在:诱导力、色散力

?非极性分子与非极性分子间存在:色散力

●分子间力的特征:弱作用力、近距离力、无方向性和饱和性。

●分子间力对物质物理性质的影响:结构相似的同系列物质(如:卤素、稀有气体等),

分子量越大,瞬间偶极越频繁,分子间作用力越强,物质的熔沸点越高;分子量相等或相近,体积大的变形性大,熔沸点高。

●氢键X-H┄Y (有方向的分子间力)

●X、Y代表F、O、N等电负性大而且原子半径较小的原子,可相同,也可不同。

●形成条件:

(1)分子中有与电负性大,半径小的元素(X)成强极性共价键的H

(2)分子中有电负性大,半径小,含孤电子对的Y。

●氢键的特点

方向性:X-H┄Y,尽量在同一直线上。除非其它外力有较大影响时,才改变方向。

饱和性:一个H只能与一个Y结合。

●氢键对化合物性质的影响

同系列物质中, 分子间存在氢键时, 大大地影响了分子间的结合力, 故物质的熔点、沸点将升高。形成分子内氢键相反。

结构和性质离子晶体原子晶体分子晶体金属晶体

晶格结点上的质点正、负离子原子极性或非极性分子金属原子或正离子

质点间作用力

静电引力 共价键 范氏力、氢键 金属键 典型实例

NaCl,KCl 金刚石 CO 2 H 2O 金属或合金 硬度

略硬而脆 高硬度 软 多硬、少软 熔点

较高 高 低 较高、部分低 挥发性

低挥发 难挥发 高挥发 难挥发 导热性

不良 不良 不良 良 导电性

溶、熔导电 绝缘体 绝缘体 良导体 机械加工性 不良 不良 不良 良好

第六章 酸碱平衡与酸碱滴定法

● 酸碱质子理论

质子酸、质子碱、两性物质;共轭酸碱对

酸碱反应的实质:两对共轭酸碱对间的质子的传递。

共轭酸碱对解离平衡常数的关系:共轭酸碱对的解离平衡常数乘积为K θw

32H A H A -- 13w ?=a b K K K θθθ 22H A HA --- 22w ?=a b K K K θθθ 2HA -A -3- 31w ?=a b K K K θθθ ● 同离子效应、盐效应

● 各种溶液pH 值的计算 1.一元弱酸(碱)

浓度为c a mol/L 的 HA 溶液 a HA H A c +-

+ 初 0 0

a c H H H +++平 -[] [] [] 5%c /400,c []c +<>-≈a a a a K H θα若,则

5%c /400,>

3H A -2H A 2-HA 3-A

1a K θ2a K θ3a K θ3b K θ2b K θ1b K θa1b3

K K θθ酸 碱a2b2 K K θθ酸 碱a3b1

K K θθ酸 碱2a [][][][]c []a H Ac H K HAc H θ

+-++==-22a a [][][][][]c []c a H Ac H H K HAc H θ+-+++==≈-+θ

a a

[H ]=c K 2

a [][][][]c []a H Ac H K HAc H θ+-++==-+2+a a a [H ]+K [H ]-c K =0θθ2+-()4[H ++a a a a K K K C θθθ

一元弱碱完全一样,只是把H +换成OH -, a K θ换成b K θ

2.多元弱酸(碱)

对于多元弱酸(碱)一般 ,则可忽略第二级及其以后的解离,多元弱酸可近似当做一元弱酸处理,多元弱碱也可以同样处理。

3.两性物质

NaHCO 3溶液;NaH 2PO 4溶液: Na 2HPO 4溶液: (4.缓冲溶液(能够抵抗加入少量强酸或强碱或稀释而能保持溶液pH 值基本不变的溶液) 组成:弱电解质的共轭酸碱对

原理:同时存在抗酸组分和抗碱组分

由C a mol/L HB 和C b mol/L B - 构成的缓冲溶液

由C b mol/L 弱碱和C a mol/L 共轭酸 构成的缓冲溶液 影响缓冲溶液缓冲能力的因素:共轭酸碱对的总浓度、共轭酸碱对的浓度比

总浓度一定时,浓度比等于1时,缓冲能力最强

此时对应的pH 范围称为缓冲溶液的缓冲范围:

缓冲溶液的选择:

那么配制一定pH 值的缓冲溶液时,为了使共轭酸碱对的浓度比接近于1,所以要选择pKa θ接近pH 值的缓冲溶液(p167 例6-17,6-18, p192,9)

● 滴定分析概述

定量分析的任务:定性分析、定量分析、结构分析

定量分析方法的分类 :重点掌握按测定原理、组分在试样中的相对含量分类

按测定原理分类:化学分析法(主要有重量分析法和滴定分析法)、仪器分析法

按组分在试样中的相对含量分类:

常量组分分析(>1%);微量组分分析(0.01%~1%);痕量组分分析(<0.01%)

● 定量分析的一般程序:采样 → 前处理 → 测定 ( 消除干扰 ) → 数据处理 ● 滴定分析的方法和滴定方式

标准溶液、化学计量点(sp)、滴定终点(ep)、

终点误差(计量点和滴定终点不相吻合而造成的分析误差)

1

2...n a a a K K K θθθ>>>>12[]a a H K K θθ+=23[]a a H K K θθ+=a b a b HB H B c c c H H c H +-+++??→+←?? 初 0 平 -[] [] +[] b a []c [][] []c a H H B K HB θ++-==a ≈C b ≈C a b b []c c OH K θ-=a b c 1=[,10]c 10

共轭酸碱对的总浓度足够大时,时,有较强的缓冲能力a b c p p lg p 1c a a H K K θθ=-=±b a []c [][] []c a H H B K HB θ++-==θθa a b b c =1pH=pK pOH=pK c 时缓冲能力最强,此时(或)

滴定分析的方法: 酸碱滴定法、沉淀滴定法、氧化还原滴定法、配位滴定法

滴定分析对滴定反应的要求:

反应必须定量进行、反应必须速进行、有简便可靠的确定终点的方法

滴定方式:直接滴定法、返滴定法、间接滴定法、置换滴定法

标准溶液的配置:直接配制法、标定法

滴定分析结果的计算:物质的量的比等于反应式中系数比

● 酸碱滴定法

1.指示剂变色原理、变色范围

示剂的理论变色点 变色范围: 注意:人眼对不同颜色的敏感程度不同所以理论变色范围与实际变色范围有一定差别 ● 酸碱滴定曲线

强酸(强碱)的滴定:化学计量时产物为H 2O,则pH=7.00

弱酸的滴定:化学计量时产物为该弱酸的共轭碱,则pH>7.00

弱碱的滴定:化学计量时产物为该弱碱的共轭酸,则pH<7.00

多元弱酸(碱):会判断有几个滴定突跃,化学计量点时生成什么物质

酸碱滴定突跃:化学计量点前后±0.1%范围内pH 值的急剧变化

指示剂选择原则:

(1)指示剂的变色范围全部 或部分处于滴定突跃范围之内。

(2)变色点与化学计量点尽量接近

指示剂在滴定突跃范围内变色,则滴定的相对误差小于±0.1%

弱酸弱碱滴定突跃的影响因素:浓度、解离常数

浓度越大、解离常数越大,滴定突跃范围越宽

弱酸(碱)准确滴定的条件:-8a cK 10θ≥( -8b cK 10θ≥)

对多元弱酸滴定:

(1)判断能否准确滴定,根据:8 10-≥ai cK θ;

(2)判断能否准确分步滴定,根据:41/10+≥ai ai K K θθ

若条件(2)成立,相邻两步解离相互不影响,则滴定时分别与NaOH 中和反应,即可以分别滴定

例:滴定下列多元弱酸或弱碱溶液时,有几个滴定突跃

1. 0.1mol/LH 2C 2O 4 1个 化学计量点时生成Na 2C 2O 4

2. 0.1mol/LNa 2CO 3 1个 化学计量点时生成Na 2SO 4和H 3BO 3

3. 0.1mol/LH 2S 1个 化学计量点时生成NaHS

● 酸碱标准溶液配制与标定

盐酸标准溶液:基准物质:无水碳酸钠和硼砂(Na 2B 4O 7·10H 2O )

氢氧化钠标准溶液:基准物质有草酸、邻苯二甲酸氢钾

● 双指示剂法(酚酞、甲基橙)滴定混合碱(能根据V1和V2的大小关系判断混合碱的组θ

a pH=pK (HIn)

()1

a pH pK HIn θ=±则25125.410, 6.410

--=?=?a a K K θθ3.757.63122110, 10--====w w b b a a K K K K K K θθθθθθ713121.0710, 1.310

--=?=?a a K K θθ

成,并计算各成分的百分含量)

混合碱的组成:纯Na 2CO 3、Na 2CO 3 + NaOH 、Na 2CO 3 + NaHCO 3

(1)酚酞变色(pH=9.1) 时发生的反应: 1l HC V 用去的体积为

(2)甲基橙变色时(pH=3.8)发生的反应:NaHCO 3+HCl→NaCl+H 2CO 3,用去HCl 的体积为 V 2 V 1= V 2 组成为Na 2CO 3;V 1> V 2 组成为NaOH + Na 2CO 3;V 1 < V 2组成为Na 2CO 3 + NaHCO 3(p193,17, 20题)

第七章 沉淀溶解平衡及在分析化学中的应用

● 溶度积常数 K θSP

● 溶度积和溶解度的相互换算(纯水中)

初: 0 0 平衡: nS mS

对同类型的难溶电解质,可用溶度积K θSP 的大小来比较溶解度S 的大小。但不同类型的难溶电解质则不宜直接用溶度积K θSP 的大小来比较溶解度S 的大小。

● 溶度积规则

Q i >K θSP 时,溶液为过饱和溶液,沉淀析出;Q i =K θSP 时,溶液为饱和溶液,处于平衡状态 。 Q i <K θSP 时,溶液为未饱和溶液 ,沉淀溶解 。

● 影响难溶电解质溶解度的因素:本性、温度、同离子效应、盐效应(注意不在纯水中,

溶解度的计算p198例7-3,p200 例7-7)

第八章 氧化还原平衡与氧化还原滴定法

● 氧化数、氧化还原电对、电极 、原电池,原电池的符号(p221,例8-5)

● 离子—电子法(半反应法)配平氧化还原反应方程式

● 电极电势的绝对值无法测定解决方法就是使用参比电极——标准氢电极

规定:标准氢电极的电极电势为0V

● 标准电极电势/E θ

氧化型还原型标准电极电势:电极处于标准态时的电势

标准电极电势表示在电极反应条件下,对某物质氧化型得电子或还原型失电子能力的量度 电极电势数值越小→还原型的还原能力(失电子倾向)越强

电极电势数值越大→氧化型的氧化能力(得电子倾向)越强

影响电极电势的因素:组成电极的氧化还原电对的性质、溶液的浓度、体系的温度

对于一个特定的电极,标准状态时,其组成、浓度(分压)、温度均唯一确定,所以一个电极的标准电极电势唯一确定

● 电动势和吉布斯函数变的关系△G =-nF ε

标准状态下: ● 能斯特(Nernst)方程

应用Nernst 方程的注意事项(p228 例8-10,p257 16题)

(1)电对中的固体、纯液体用1表示,溶液浓度为相对浓度,气体为相对分压,p/p θ

(2) 如果还有其他物质参加电极反应,如H +、OH -,这些物质的浓度也应表示在能斯特方

程式中。

● 判断氧化还原反应进行的方向

223

3+→+??+→+?NaOH HCl NaCl H O Na CO HCl NaHCO NaCl n m sp

K =[nS][mS] θm+n-n m A B (s) = nA (aq) + mB (aq)m G nF θθε?=-(/c )0.059lg n (/)a b C E E C c θθθ=+氧化型氧化型/还原型氧化型/还原型还原型

△r G m <0,电动势 ε >0, E +> E - 反应正向进行

△r G m =0 ,电动势 ε =0, E += E - 反应处于平衡

△r G m >0 ,电动势 ε<0, E +< E - 反应逆向进行

● 氧化还原反应的平衡常数的计算

n------氧化还原反应中转移的电子数 注意K θ对应标准电动势,与浓度无关

● 氧化还原滴定法

KMnO 4的自动催化反应、诱导反应

氧化还原滴定突跃:化学计量点前后±0.1%范围内滴定剂和待测物两个氧化还原电对的电势的急剧变化

影响氧化还原滴定突跃范围的因素:氧化还原滴定中影响电势突跃的主要因素是反应完全程度,即是两个电对的条件电极电势差,两个电对的条件电极电势差越大,反应越完全。 氧化还原滴定法中的指示剂:自身指示剂(KMnO 4)、特殊指示剂 (淀粉)、氧化还原指示剂 氧化还原指示剂的变色原理和变色范围及选择(与酸碱指示剂相似)

氧化还原指示剂指示剂的变色区间全部或部分存在于突跃区间内。由于指示剂的变色区间很小, 常直接用指示剂的条件电位来进行选择

常用的氧化还原滴定法:

碘量法(直接碘量法、间接碘量法、淀粉指示剂加入的时机)

碘量法指示剂加入的时机:

1.直接碘量法:滴定开始即加入淀粉,终点: 出现蓝色

2.间接碘量法:接近终点(浅黄色)时加入淀粉,终点: 蓝色消失

第九章 配位平衡与配位滴定

● 金属指示剂的变色原理

滴定前加入指示剂: 游离态颜色 络合物颜色

滴定开始至终点前:

MY 无色或浅色,以MIn 形成背景颜色

终点: 络合物颜色 游离态颜色

络合物颜色(+MY 的颜色)→游离态颜色(+MY 的颜色)

● Ca 2+、 Mg 2+混合溶液中Ca 2+的测定: 调节pH>12,Mg 2+变成Mg(OH)2 ↓,从而不干扰 Ca 2+

的滴定——沉淀掩蔽

● Al 3+的测定——返滴定法(Al 3+与EDTA 反应慢,Al 3+要封闭指示剂, Al 3+很容易水解) (过量)

(一定量过量) (+)(-)n(E E )nF lgK 2.303RT 0.0592-==θθθθεIn +M

MIn Y + M MY Y + MIn

MY + In 3EDTA Al Al EDTA EDTA +?+??→-+Zn 2+

Zn —EDTA Al EDTA Zn

n n n =-

考研无机化学_知识点总结

第一章物质存在的状态………………………………………………………………2 一、气体 .......................................................................................................... 2 二、液体 .......................................................................................................... 3 ①溶液与蒸汽压 ................................................................................................ 3 ②溶液的沸点升高和凝固点的下降 ................................................................... 3 ③渗透压 .......................................................................................................... 4 ④非电解质稀溶液的依数性 .............................................................................. 4 三、胶体 .......................................................................................................... 4 第二章 化学动力学初步……………………………………………………………5 一、化学反应速率 ............................................................................................ 5 二、化学反应速率理论 ..................................................................................... 6 三、影响化学反应速率的因素 .......................................................................... 6 2、温度 ............................................................................................................ 7 第三章 化学热力学初步……………………………………………………………8 一、热力学定律及基本定律 .............................................................................. 8 二、化学热力学四个重要的状态函数 ................................................................ 9 4、自由能 ....................................................................................................... 10 ①吉布斯自由能 .............................................................................................. 10 ②自由能G ——反应自发性的判据 .................................................................. 11 ③标准摩尔生成自由能θ m f G ? (11)

中级无机化学作业

软硬酸碱理论 将酸和碱根据性质的不同各分为软硬两类的理论。软硬酸碱理论简称HSAB理论,是一种尝试解释酸碱反应及其性质的现代理论。它目前在化学研究中得到了广泛的应用,其中最重要的莫过于对配合物稳定性的判别和其反应机理的解释。软硬酸碱理论的基础是酸碱电子论,即以电子对得失作为判定酸、碱的标准。 体积小,正电荷数高,可极化性低的中心原子称作硬酸,体积大,正电荷数低,可极化性高的中心原子称作软酸。将电负性高,极化性低难被氧化的配位原子称为硬碱,反之为软碱。硬酸和硬碱以库仑力作为主要的作用力;软酸和软碱以共价键力作为主要的相互作用力。 在软硬酸碱理论中,酸、碱被分别归为“硬”、“软”两种。“硬”是指那些具有较高电荷密度、较小半径的粒子(离子、原子、分子),即电荷密度与粒子半径的比值较大。“软”是指那些具有较低电荷密度和较大半径的粒子。“硬”粒子的极化性较低,但极性较大;“软”粒子的极化性较高,但极性较小。此理论的中心主旨是,在所有其他因素相同时,“软”的酸与“软”的碱反应较快速,形成较强键结;而“硬”的酸与“硬”的碱反应较快速,形成较强键结。大体上来说,“硬亲硬,软亲软”生成的化合物较稳定。 1963年由R.G. 皮尔孙提出。1958 年S.阿尔兰德、J.查特和N.R.戴维斯根据某些配位原子易与Ag+、Hg2+、Pt2+ 配位;另一些则易与Al3+、Ti4+配位,将金属离子分为两类。a类金属离子包括碱金属、

碱土金属Ti4+、Fe3+、Cr3+、H+;b 类金属离子包括Cu+、Ag+、Hg2+、Pt2+。皮尔孙在前人工作的基础上提出以软硬酸碱来区分金属离子和配位原子:硬酸包括a类金属离子(碱金属、碱土金属Ti4+、Fe3+、Cr3+、H+)硬碱包括F-、OH-、H2O、NH3、O2-、CH3COO-、PO43-、SO42-、CO32-、ClO4-、NO3-、ROH等软酸包括b类金属离子Cu2+、Ag+、Hg2+、Pt2+ Au+;Cd 2+; Pd2+、Hg2+及M0等。软碱包括I-、SCN-、CN-、CO、H-、S2O32-、C2H4、RS-、S2-等 交界酸包括Fe2+、Co2+、Ni2+; Zn2+、Pb2+、Sn2+、Sb3+、Cr2+、Bi3+ 、Cu2+等,交界碱包括N3-、Br- 、NO2-、N2 、SO32-等 表:软硬酸碱分类反应规律“硬酸优先与硬碱结合,软酸优先与软碱结合①取代反应都倾向于形成硬- 硬、软- 软的化合物。②软-软、硬-硬化合物较为稳定,软- 硬化合物不够稳定。③硬溶剂优先溶解硬溶质,软溶剂优先溶解软溶质,许多有机化合物不易溶于水,就是因为水是硬碱。④解释催化作用。有机反应中的弗里德-克雷夫茨反应以无水氯化铝(AlCl3)做催化剂,AlCl3是硬酸,与RCl中的硬碱Cl -结合而活化。 金属离子和配位原子分成a 和b两类。a类金属离子包括碱金属、碱土金属、高氧化数的轻过渡元素Ti、Fe、Cr和H;b类金属离子包括较重的、低氧化数的过渡元素Cu、Ag、Hg、Pt。a类金属离子的特性随氧化数升高而加强,它优先与体积小、电负性大的原子结合;b类金属离子形成化合物的稳定性,因配位原子的电负性增大而减弱:C≈S>I>Br>Cl>N>O>F此顺序几乎(不是全部)和a类金属离子形成

无机化学读书笔记

无机化学读书笔记 【篇一:无机化学学习心得】 《普通化学》培训总结 本人作为化学专业的一名普通老师,有幸参加了高等学校教师网络 在线培训课程,同济大学吴庆生教授主讲的《普通化学》生动形象,他渊博的知识、严谨的态度、丰富的经验以及独特的教学艺术,给 我留下深刻的印象,使我受益良多。 本门课程的培训视频以在校的普通化学及其相关课程的授课老师为 对象,主要介绍了普通化学的课程定位、课时安排、教学理念、难 重点教学设计、主要的教学方法、示范教学、考核与评价、教学前 沿等内容。通过主讲教师对其多年课程教学经验的分享,经过面对 面交流,为我们指点迷津,提高了我们对本门课程教学能力。 我作为一名老师队伍当中的新人,需要从学生的学习思维模式和立 场迅速切换到老师的授课思维状态,经过本门课程的学习,使我有 了一定的感悟。我初步明白,作为一名老师,要竭尽所能的将知识 传授给学生,但用何种教学方式才能更好地激发学生的学习热情与 潜能,这是我目前以至于以后都要不断思考、总结的问题。经过此 次的培训,给我提供了一些思路,我打算从以下几方面着手: 第一,丰富教学形式。以丰富多样的课堂教学模式,充分结合当代 学生的性格特点,不拘泥于枯燥的理论教学,而要采用富有激情、 生动形象、理论结合实际的教学方式,把理论化学与生活中的化学 结合在一起,使学生能更好地运用到生活的方方面面,做到理论与 实践完美结合。当然,除了课堂教学之外,还要适当增加实践教学,激发学生的学习热情。 第二,充分利用多媒体教学与板书教学相结合的方式。对一些无机 化学当中抽象的内容,要采用动画的方式,具象地展现在学生面前,以便于他们更好地理解。 第三,教学要详略得当,对于重难点问题,要深入解析,以具体的 教学案例深入分析问题,使学生更好地掌握所学内容和解决问题的 方法,同时,要将所学内容完美结合,前后串起来,在学习新知识 的同时,复习旧知识,而且便于更好地理解所学内容。 以上就是我本次学习的心得体会,我非常感谢吴教授的精彩授课, 同时非常荣幸有这次机会可以跟吴教授面对面交流学习,使我我受 益匪浅,希望以后还有更多的交流、学习和提升的机会。

无机化学心得

姓名: 班级: 学号:

无机及分析化学心得 经过一个学期对《无机及分析化学》这门课程的学习,我的感触颇多。因为我是一名转专业的学生,所以在大二的时候才开始上这门课。从一开始的自我想象容易,到自我感觉良好,到有点小小的紧张,再到立志要开始认真的学习,到感觉状态有所好转,再到充满自信。这其中的纠结、艰辛和自豪,不是一两句话就可以描述清楚的。再加上因为我想要获得保研的资格,因此我对于将这门课学好是持着一种前所未有的坚定心情。下面我就将会将我这一学期所收获的一一讲来。 从一开始的自我想象容易,这其中的莫名的自信感来自于因为我在高中的时候是一名理科生,当时的化学成绩自我感觉还行吧,所以在开学的时候说实话根本就没把《无机及分析化学》这门课当做我所学的重点去认真的准备。到后来在开学的第四周的时候开始上无机化学的第一节课,那节课老师在无心之间问了一句:“同学们,现在这个班上有多少人在高中的时候是学的文科啊?”当时我们就只看见前后左右的人都举手了,还认识到只有我们极少数的人是大二的师兄师姐,所以在当时出于身为少数理科生的骄傲和一点点身为师姐的骄傲对这门课的自信又多了一层(虽然其中没有什么联系,但在当时我还真就这么想了,现在想想当时还真幼稚)。在上了3、4 节课的时候吧,紧张感开始出现了,在当时老师其实讲课是讲的很慢的,而我们差不多学到了胶体溶液那一节,当时在听胶团结构的时候,真的就只感觉眼前是一个个熟悉又陌生的字符在眼前飞舞,脑袋中是一片空白,感觉平时都听得懂得字怎么现在就不明白了呢?直到后来在课下复习的时候才渐渐的弄明白。比如:AgNO3 溶液与过量的KI 溶液反应制备AgI 溶胶,其反应的方程式为: AgNO3+KI=AgI+KNO3 又因为过量的KI 溶液和固体AgI 粒子在溶液中选择吸附了与自身组成相关的I -,因此胶粒带负电。而此时形成的AgI 溶胶的胶团结构 - + x- + 为:【(Agl) m? nI ?( n-x)K 】?XK 此时,(AgI) m为胶核,I-为电位离子,一部分K+为反离子,而且电位离子和反离子一起形成吸附层,吸附层与胶核一起组成胶粒。由于胶粒中反离子数比电位离子少,故胶粒所带电荷与电位离子符号相同,为负电荷。其余的反离子则分散在溶液中,形成扩散层,胶 粒与扩散层的整体成为胶团,胶团内反离子和电位离子的电荷总数

无机化学总结

无机化学总结 在学习方法上要求: 一、要掌握基本概念、基础知识 1 基础知识,例如元素名称,符号,周期表,重要的方程式,重要单质的制备、 性质及用途,重要化合物的制备、性质及用途; 例如:重要的氧化剂:KMnO4、K2Cr2O7、PbO2、H2O2、Cl2、NaClO、KClO3等 还原剂:SnCl2、H2C2O4、Na2SO3、H2S、KI、 沉淀剂:C2O42-、CrO42-、S2-、CO32-、OH- 配合剂:NH3、H2O 、CN-、SCN-、S2O32- 显色剂等; 2、一些重要的基本理论:如:化学键理论: ①VBT:经典的价键理论、价层电子对互斥理论、杂化理论、 ②CFT: ③MOT: 原子结构理论 酸碱理论 氧化还原理论 3、各种概念的具体定义,来源,使用范围;各种定律、定理、规则及使用条件 等;例如:PV=nRT 使用条件为高温低压;配合物的定义、K稳的定义等。 镧系收缩、 4、一些伟大科学家的重要贡献; 例如:1893年瑞士年仅26岁的化学家维尔纳(Wrener,A)提出PV=nRT 使用条件为高温低压理论,成为化学的奠基人。 Pauling 阿累尼乌斯(Arrhenius,S.) 5、一些科学方法,例如测定分子量的方法(四种)、测定原子量的方法;使自己 在科学思维能力,科学方法上得到提高。特别是实验方法,动手操作能力上得到提高。 6、掌握学习方法。例如:演绎法,归纳法。 按照自己的习惯,建立一套适应自己的学习方法。 二、要系统总结所学过的知识 1、整个无机化学:一个气体定律(四个定律)两个基础知识(热力学、动力学)三个结构(原子结构、分子结构和晶体结构)四大平衡(酸碱平衡、沉淀溶解平衡、氧化还原平衡和配合平衡)及各种元素的性质。

大学无机化学知识点总结.

无机化学,有机化学,物理化学,分析化学 无机化学 元素化学、无机合成化学、无机高分子化学、无机固体化学、配位化学(即络合物化学)、同位素化学、生物无机化学、金属有机化学、金属酶化学等。 有机化学 普通有机化学、有机合成化学、金属和非金属有机化学、物理有机化学、生物有机化学、有机分析化学。 物理化学 结构化学、热化学、化学热力学、化学动力学、电化学、溶液理论、界面化学、胶体化学、量子化学、催化作用及其理论等。 分析化学 化学分析、仪器和新技术分析。包括性能测定、监控、各种光谱和光化学分析、各种电化学分析方法、质谱分析法、各种电镜、成像和形貌分析方法,在线分析、活性分析、实时分析等,各种物理化学性能和生理活性的检测方法,萃取、离子交换、色谱、质谱等分离方法,分离分析联用、合成分离分析三联用等。

无机化学 第一章:气体 第一节:理想气态方程 1、气体具有两个基本特性:扩散性和可压缩性。主要表现在: ⑴气体没有固定的体积和形状。⑵不同的气体能以任意比例相互均匀的混合。⑶气体是最容易被压缩的一种聚集状态。 2、理想气体方程:nRT PV = R 为气体摩尔常数,数值为R =8.31411--??K mol J 3、只有在高温低压条件下气体才能近似看成理想气体。 第二节:气体混合物 1、对于理想气体来说,某组分气体的分压力等于相同温度下该组分气体单独占有与混合气体相同体积时所产生的压力。 2、Dlton 分压定律:混合气体的总压等于混合气体中各组分气体的分压之和。 3、(0℃=273.15K STP 下压强为101.325KPa = 760mmHg = 76cmHg) 第二章:热化学 第一节:热力学术语和基本概念 1、 系统与环境之间可能会有物质和能量的传递。按传递情况不同,将系统分为: ⑴封闭系统:系统与环境之间只有能量传递没有物质传递。系统质量守恒。 ⑵敞开系统:系统与环境之间既有能量传递〔以热或功的形式进行〕又有物质传递。 ⑶隔离系统:系统与环境之间既没有能量传递也没有物质传递。 2、 状态是系统中所有宏观性质的综合表现。描述系统状态的物理量称为状态函数。状态函 数的变化量只与始终态有关,与系统状态的变化途径无关。 3、 系统中物理性质和化学性质完全相同而与其他部分有明确界面分隔开来的任何均匀部 分叫做相。相可以由纯物质或均匀混合物组成,可以是气、液、固等不同的聚集状态。 4、 化学计量数()ν对于反应物为负,对于生成物为正。 5、反应进度νξ0 )·(n n sai k e t -==化学计量数 反应前反应后-,单位:mol 第二节:热力学第一定律 0、 系统与环境之间由于温度差而引起的能量传递称为热。热能自动的由高温物体传向低温 物体。系统的热能变化量用Q 表示。若环境向系统传递能量,系统吸热,则Q>0;若系统向环境放热,则Q<0。 1、 系统与环境之间除热以外其他的能量传递形式,称为功,用W 表示。环境对系统做功, W>O ;系统对环境做功,W<0。 2、 体积功:由于系统体积变化而与环境交换的功称为体积功。 非体积功:体积功以外的所有其他形式的功称为非体积功。 3、 热力学能:在不考虑系统整体动能和势能的情况下,系统内所有微观粒子的全部能量之 和称为热力学能,又叫内能。 4、 气体的标准状态—纯理想气体的标准状态是指其处于标准压力θ P 下的状态,混合气体 中某组分气体的标准状态是该组分气体的分压为θP 且单独存在时的状态。 液体(固体)的标准状态—纯液体(或固体)的标准状态时指温度为T ,压力为θP 时的状态。

高考化学中常见的电子式大全

高考化学中常见的电子式大全

————————————————————————————————作者:————————————————————————————————日期:

中学化学中常见的电子式大全原子 离子 单质分子 共价化合物

离子化合物 形成过程 电子式书写的常见错误及纠正措施 物质的电子式可体现其构成元素之间的结合方式,也决定着该物质的化学性质;对于简单微粒还可以通过电子式推导其空间结构。因此电子式是近几年高考的考查热点之一。但由于高中教材中未涉及电子亚层、分子轨道等理论知识,学生难以较系统理解微粒最外层电子的排布,而只能靠记忆、知识积累来处理这一类问题,错误率较高, 如将氧原子的电子式写成(正确应为)。典型错误归纳有以下两类:一、无法正确排列微粒中原子或离子的顺序。例如HClO的电子式写 O O H Cl O Mg2+ Cl 2

成: ; MgCl 2的电子式写成: 。二、不能正确表达共价键的数目。例如混淆O 2和H 2O 2中氧原子间的共用电子对数目。针对以上问题,笔者总结了三种书写短周期元素形成的微粒的电子式的小技巧,供大家参考。 一:“异性相吸、电荷交叉”让原(离)子快乐排队。 “异性相吸、电荷交叉”是指在书写电子式时让微粒中带(部分)正电荷的离(原)子与带负电荷的离(原)子交错排列。如次氯酸的分子式常被约定俗成为HClO ,但根据H 、Cl 、O 个三原子的氧化性(或电负性)差异可知该分子中H 、Cl 带部分正 电荷,O 带部分负电荷,因此HClO 的电子式应为 :。对于离子化合 物Mg 3N 2,先可判断出式中Mg 为+2价,N 为-3价,根据“异性相吸、电荷交叉” 的规律其电子式为 。 这条规律几乎适用于所有的离子化合物,运用时要求大家首先能正确判断化学式含有的微粒种类和它们所带的电荷的正负。如MgCl 2由Mg 2+和Cl -以1:2的比例构成,Na 2O 2由Na +和O 22-以2:1的比例构成。而对于共价微粒、只有少数氧化性(电负性)相差很小的非金属原子形成的共价体有例外,例如HCN (其中C 为+4价、N 为-3价,电子式为 )。高中阶段涉及的常见共价微粒(由短周期元素原子形成的共价微粒)的电子式基本都可以采用该规律来解决。 二、“电子分配求差量”揭开共用电子对数目的面纱。 该方法的理论依据来源于配位化学中的“18电子规则”。(参见《中级无机化学》唐宗熏主编,2003,高等教育出版社)虽然该方法仅适用于计算共用键的数目,对配位键则爱莫能助。但在高中阶段要求掌握的配位化合物较少,典型代表为 Fe(SCN)3、[Ag(NH 3)2]OH 、 , 。该方法在高中阶段应用较广。具体算法以例说明: H C N H O Cl [Fe( —O - Mg 2+ N Mg 2+ N Mg 2+

大学无机化学知识点总结

无机化学,有机化学,物理化学,分析化学无机化学 元素化学、无机合成化学、无机高分子化学、无机固体化学、配位化学(即络合物化学)、同位素化学、生物无机化学、金属有机化学、金属酶化学等。 有机化学 普通有机化学、有机合成化学、金属和非金属有机化学、物理有机化学、生物有机化学、有机分析化学。 物理化学 结构化学、热化学、化学热力学、化学动力学、电化学、溶液理论、界面化学、胶体化学、量子化学、催化作用及其理论等。 分析化学 化学分析、仪器和新技术分析。包括性能测定、监控、各种光谱和光化学分析、各种电化学分析方法、质谱分析法、各种电镜、成像和形貌分析方法,在线分析、活性分析、实时分析等,各种物理化学性能和生理活性的检测方法,萃取、离子交换、色谱、质谱等分离方法,分离分析联用、合成分离分析三联用等。

无机化学 第一章:气体 第一节:理想气态方程 1、气体具有两个基本特性:扩散性和可压缩性。主要表现在: ⑴气体没有固定的体积和形状。⑵不同的气体能以任意比例相互均匀的混合。⑶气体是最容易被压缩的一种聚集状态。 2、理想气体方程:nRT PV = R 为气体摩尔常数,数值为 R =8.31411--??K mol J 3、只有在高温低压条件下气体才能近似看成理想气体。 第二节:气体混合物 1、对于理想气体来说,某组分气体的分压力等于相同温度下该组分气体单独占有与混合气体相同体积时所产生的压力。 2、Dlton 分压定律:混合气体的总压等于混合气体中各组分气体的分压之和。 3、(0℃=273.15K STP 下压强为101.325KPa = 760mmHg = 76cmHg) 第二章:热化学 第一节:热力学术语和基本概念 1、 系统与环境之间可能会有物质和能量的传递。按传递情况不同, 将系统分为: ⑴封闭系统:系统与环境之间只有能量传递没有物质传递。系统质量守恒。 ⑵敞开系统:系统与环境之间既有能量传递〔以热或功的形式进行〕又有物质传递。 ⑶隔离系统:系统与环境之间既没有能量传递也没有物质传递。 2、 状态是系统中所有宏观性质的综合表现。描述系统状态的物理量 称为状态函数。状态函数的变化量只与始终态有关,与系统状态

无机化学_知识点总结

无机化学(上) 知识点总结 第一章 物质存在的状态 一、气体 1、气体分子运动论的基本理论 ①气体由分子组成,分子之间的距离>>分子直径; ②气体分子处于永恒无规则运动状态; ③气体分子之间相互作用可忽略,除相互碰撞时; ④气体分子相互碰撞或对器壁的碰撞都是弹性碰撞。碰撞时总动能保持不变,没有能量损失。 ⑤分子的平均动能与热力学温度成正比。 2、理想气体状态方程 ①假定前提:a 、分子不占体积;b 、分子间作用力忽略 ②表达式:pV=nRT ;R ≈8.314kPa 2L 2mol 1-2K 1- ③适用条件:温度较高、压力较低使得稀薄气体 ④具体应用:a 、已知三个量,可求第四个; b 、测量气体的分子量:pV=M W RT (n=M W ) c 、已知气体的状态求其密度ρ:pV=M W RT →p=MV WRT →ρMV RT =p 3、混合气体的分压定律 ①混合气体的四个概念 a 、分压:相同温度下,某组分气体与混合气体具有相同体积时的压力; b 、分体积:相同温度下,某组分气体与混合气体具有相同压力时的体积 c 、体积分数:φ= 2 1 v v d 、摩尔分数:xi= 总 n n i ②混合气体的分压定律 a 、定律:混合气体总压力等于组分气体压力之和; 某组分气体压力的大小和它在混合气体中体积分数或摩尔数成正比 b 、适用范围:理想气体及可以看作理想气体的实际气体 c 、应用:已知分压求总压或由总压和体积分数或摩尔分数求分压、 4、气体扩散定律 ①定律:T 、p 相同时,各种不同气体的扩散速率与气体密度的平方根成反比: 2 1 u u =21p p =2 1 M M (p 表示密度) ②用途:a 、测定气体的相对分子质量;b 、同位素分离 二、液体

大学无机化学方程式整理

第一章氢及稀有气体 1.氢气的制备 实验室:Zn+2HCl=ZnCl2+H2↑ 军事上:CaH2 +2H2O → Ca(OH)2 + 2H2↑ 2.稀有气体化合物 ①第一个稀有气体化合物:Xe + PtF6 → Xe+[ PtF6] (无色)(红色)(橙黄色) ②氙的氟化物水解: 2XeF2+2H2O →2Xe↑+4HF+ O2↑ 6XeF4 + 12H2O == 2XeO3 + 4Xe↑+3O2↑ +24HF XeF6+3H2O →XeO3+6HF ③氙的氟化物为强氧化剂: XeF2 + H2─→ Xe + 2HF XeF2 + H2O2─→ Xe + 2HF + O2↑ 第二章碱金属与碱土金属元素 一、碱金属与碱土金属(铍、镁除外)元素溶于液氨,生成溶剂合电子和阳离子成具有导电性的深蓝色溶液。 碱金属M(S) + (x+y)NH3 M+(NH3)x + e-(NH3)y 碱土金属M(S) + (x+2y)NH3 M2+(NH3)x +2e-(NH3)y 二、氢化物

氢化物共分为离子型、共价型、过渡型 离子型氢化物是极强的还原剂:TiCl 4+4NaH Ti +4NaCl +2H 2↑ LiH 能在乙醚中同B 3+ Al 3+ Ga 3+ 等的无水氯化物结合成复合氢化物,如氢化铝锂的生成。 4LiH + AlCl 3 乙醚 Li[AlH 4] + 3LiCl 氢化铝锂遇水发生猛烈反应Li[AlH 4]+4H 2O=LiOH↓+Al(OH)3↓+4H 2↑ 三、 氧化物 1、正常氧化物 碱金属中的锂和所有碱土金属在空气中燃烧时,分别生成正常氧化物Li 2O 和MO 。其他碱金属正常的氧化物是用金属与他们的过氧化物或硝酸盐相作用制得。 Na 2O 2+2Na=2Na 2O 2KNO 3+10K=6K 20+N 2↑ 碱土金属氧化物也可以由他们的碳酸盐或硝酸盐加热分解得到。 CaCO 3 CaO +CO 2↑ 2Sr(NO 3)2 2SrO +4NO 2+O 2↑ 1、 过氧化物与超氧化物 过氧化物是含有过氧基(—O —O —)的化合物,可看作是H 2O 2的衍生物。除铍外,所有碱金属和碱土金属都能形成离子型过氧化物。 2Na +O 2 Na 2O 2 除锂、铍、镁外,碱金属和碱土金属都能形成超氧化物。 K +O 2=KO 2 2、 臭氧化物 300℃~500℃ 高温 △

中级无机化学课程和教材建设 唐宗熏

中级无机化学课程和教材建设 一、开设中级无机化学课是学科发展的需要 无机化学作为重要的化学分支学科,涉及周期表的100多个元素和数以万计的化合物,并渗透到化学学科内、外许多相关学科,产生了生物无机化学、无机固体化学、金属有机化学等新领域和新知识。即使是无机元素化学本身的研究和教学也正在从描述向推理、定性向定量、宏观向微观发展。而理科大学化学系本科各专业的教学计划按无机、分析、有机、物化开设基础课的传统延续了数十年,传统的在大学一年级开设的无机化学课程,基本上是建立在中学数、理、化基础之上。它分为两大块:前一块普通化学原理既是为基础元素化学的学习做好理论准备,又是为其他后续化学课程起先导作用;后一块基础元素化学是对元素及其化合物的性质进行介绍。这种课程设置对我国理科化学系学生的知识结构和无机化学的学术水平的提高产生了一定程度的不利影响。由于数、理及化学基础理论知识的局限性,要从结构化学、化学热力学及动力学等理论结合上对无机化学的问题进行深入阐述显然是不可能的,因之无机化学的教学显得不足。一些学校在大四开设无机化学专题来补充,但挂一漏万。所以化学系本科生的无机化学知识水平仍得不到根本提高。打破旧传统,代之以无机化学分段设置课程的结构改革,实施无机化学课程分段教学,开设中级无机化学课,这是新形势的需要。在教学内容上,中级无机化学应该系统介绍现代无机化学所涉及的新理论、新领域、新知识和无机新型化合物。在教学方法上突出结构化学、配位化学及热力学等基础理论在无机化学中的应用。 西北大学化学系自1988年开始在全国较早实施无机化学课程分段教学,在一年级开设初等无机化学,在三年级下学期开设“中级无机化学”课程。中级无机化学课程关注化学系课程体系的总体改革,除了要把握住中级无机化学在无机化学总教学计划中的准确位置,选择的内容应反映无机化学学科发展的现状之外,还要把握住中级无机化学在化学学科整体教学计划中的准确位置。在课堂教学中,体现“结构—反应—性能”一体化的讲授主线,根据课程要求对讲授的内容作精心的选择、创造性组织和深入浅出地介绍,以启迪学生,使其能在时代发展水平上超前和创造思维。这样的中级无机化学课程既能真正讲授无机化学本身的内容,又能用结构化学、热力学和反应理论来统一阐述无机元素化学,更便于新知识和新领域的介绍。克服了传统的在大学一年级开设的无机化学中讲授了一些不该由自己承担的化学基本原理的知识内容,而对应该由自己讲授的一些无机化学的基本内容却因学生的基础和学时的限制而舍弃的弊病。 二、恰当定位,构建中级无机化学课程

中级无机化学线上考试总结

中级无机化学线上考试总结 2019-2020-2 冯锡兰,王淑涛 中级无机化学是面向化学专业二年级学生开设的限选课,本学期共46名同学选修本课程。总学时32,由王淑涛老师(前四周)和冯锡兰老师(后四周)共同讲授。以往考试形式为线下开卷考试,总成绩构成为:平时成绩30%+期末成绩70%。本学期针对疫情下的特殊情况,我们共同商讨了在线教学模式和考试模式,并与学生进行沟通确定。成绩构成调整为平时成绩50%+期末成绩50%,加大了过程考核的权重,以有效督促学生平时的在线学习。平时成绩构成两位老师根据自己的教学模式单独制定。王淑涛老师的平时成绩计算方式:雨课堂出勤及八次作业取平均值。冯锡兰老师的平时成绩计算方式:作业50%+雨课堂(出勤+测试)50%+弹幕额外加分(一条弹幕0.5分)。总的平时成绩由两位任课教师的平时成绩汇总后取平均值。在线考试最终确定使用雨课堂平台进行,依然为开卷形式。 本课程已于第八周结课,4月25日19:00~21:20完成在线考试,目前已完成试卷批改及成绩统计,现将本课程考评模式及线上考试情况总结如下。 1、过程考核实施方案: (1)灵活选择教学平台,保证过程考核的即时性和有效性 这次在线授课两位老师均选择了腾讯为主要平台。事实证明,平台始终运行稳定,直播、在线交流没有出现过卡顿或者崩溃的情况,并且作业的功能也非常强大。直播的同时使用了雨课堂的签到和在线测试、弹幕等功能,学生的出勤和答题情况可以即时查看、保留和传送,保证了过程考核的全面、客观、有效。

雨课堂弹幕和答题情况图示 (2)合理精简教学内容,增加课堂练习和随堂测试时间 为了提高学生的听课效率、保证教学效果,必须对教学内容进行调整和精简,突出主线和重点难点,其它知识引导学生进行线下自学,这样留出足够的时间开展在线测试和互动交流。一般每次课可以设计1~2次在线测试,外加1~2次弹幕答题,答题频率和时间节点的设置要合理,以有效抓住学生的注意力、调节课堂氛围、巩固教学效果。 (3)重新编排课后作业,布置、提交、批改全部在线完成 根据教学内容安排复习思考题和作业。复习思考题作为学生总结复习教学内容的提纲,不需要提交;作业发布在雨课堂或以图片形式发布在作业里,让学生线下完成后,拍照提交,并限制截止时间。教师在线批阅完成后,平台有即时提醒学生查看的功能。

无机化学总结笔记

《无机化学》各章小结 第一章绪论 平衡理论:四大平衡 理论部分原子结构1.无机化学结构理论:,分子结构, 晶体结构 元素化合物 2.基本概念:体系,环境,焓变,热化学方程式,标准态 古代化学 3.化学发展史:近代化学 现代化学 第二章化学反应速率和化学平衡 1.化学反应速率 υ=Δc(A)Δt 2.质量作用定律 元反应aA + Bb Yy + Zz υ = k c (A) c (B) a b 3.影响化学反应速率的因素: 温度, 浓度, 催化剂, 其它. 温度是影响反应速率的重要因素之一。温度升高会加速反应的进行;温度降低又会减慢反应的进行。 浓度对反应速率的影响是增加反应物浓度或减少生成物浓度,都会影响反应速率。 催化剂可以改变反应速率。 其他因素,如相接触面等。在非均匀系统中进行的反应,如固体和液体,固体和气体或液体和气体的反应等,除了上述的几种因素外,还与反应物的接触面的大小和接触机会有关。超声波、紫外线、激光和高能射线等会对某些反应的速率产生影响 4.化学反应理论: 碰撞理论, 过渡态理论 碰撞理论有两个要点:恰当取向,足够的能量。 过渡态理论主要应用于有机化学。

5.化学平衡: 标准平衡常数, 多重平衡规则, 化学平衡移动及其影响因素 (1)平衡常数为一可逆反应的特征常数,是一定条件下可逆反应进行程度的标度。对同类反应而言,K值越大,反应朝正向进行的程度越大,反应进行的越完全 (2)书写和应用平衡常数须注意以下几点 a. 写入平衡常数表达式中各物质的浓度或分压,必须是在系统达到平衡状态时相应的值。生成物为分子项,反应物为分母项,式中各物质浓度或分压的指数,就是反应方程式中相应的化学计量数。气体只可以用分压表示,而不能用浓度表示,这与气体规定的标准状态有关。 b.平衡常数表达式必须与计量方程式相对应,同一化学反应以不同计量方程 式表示时,平衡常数表达式不同,其数值也不同。 c.反应式中若有纯故态、纯液态,他们的浓度在平衡常数表达式中不必列出。在稀溶液中进行的反应,如反应有水参加,由于作用掉的水分子数与总的水分子数相比微不足道,故水的浓度可视为常数,合并入平衡常数,不必出现在平衡关系式中。 由于化学反应平衡常数随温度而改变,使用是须注意相应的温度 (3)平衡移动原理如以某种形式改变一个平衡系统的条件(如浓度、压力、温度),平衡就会向着减弱这个改变的方向移动。 a 浓度对化学平衡的影响 增大反应物的浓度或减小生成物的浓度,平衡向右移动,减小反应物的浓度或增大生成物的浓度,平衡逆向移动。 b 压力对化学平衡的影响 压力变化只对反应前后气体分子数有变化的反应平衡系统有影响 在恒温下增大压力,平衡向气体分子数减少的方向移动;减小压力,平衡向气体分子数的方向移动 c 温度对化学平衡的影响 温度变化时,主要改变了平衡常数,从而导致平衡的移动。 对于放热反应,升高温度,会使平衡常数变小。此时,反应商大于平衡常数,平衡将向左移动。反之,对于吸热反应,升高温度,平衡常数增大。此时,反应商小于平衡常数,平衡将向右移动。 d 催化剂能够降低反应的活化能,加快反应速率,缩短达到平衡的时间。由

大学无机化学知识点总结

大学无机化学知识点总结 无机化学,有机化学,物理化学,分析化学无机化学元素化学、无机合成化学、无机高分子化学、无机固体化学、配位化学(即络合物化学)、同位素化学、生物无机化学、金属有机化学、金属酶化学等。 有机化学普通有机化学、有机合成化学、金属和非金属有机化学、物理有机化学、生物有机化学、有机分析化学。 物理化学结构化学、热化学、化学热力学、化学动力学、电化学、溶液理论、界面化学、胶体化学、量子化学、催化作用及其理论等。 分析化学化学分析、仪器和新技术分析。包括性能测定、监控、各种光谱和光化学分析、各种电化学分析方法、质谱分析法、各种电镜、成像和形貌分析方法,在线分析、活性分析、实时分析等,各种物理化学性能和生理活性的检测方法,萃取、离子交换、色谱、质谱等分离方法,分离分析联用、合成分离分析三联用等。 无机化学 第一章:气体 第一节:理想气态方程

1、气体具有两个基本特性:扩散性和可压缩性。主要表现在:⑴气体没有固定的体积和形状。⑵不同的气体能以任意比例相互均匀的混合。⑶气体是最容易被压缩的一种聚集状态。 2、理想气体方程:为气体摩尔常数,数值为= 8、314 3、只有在高温低压条件下气体才能近似看成理想气体。 第二节:气体混合物 1、对于理想气体来说,某组分气体的分压力等于相同温度下该组分气体单独占有与混合气体相同体积时所产生的压力。 2、Dlton分压定律:混合气体的总压等于混合气体中各组分气体的分压之和。 3、(0℃=273、15K STP下压强为101、325KPa =760mmHg =76cmHg) 第二章:热化学 第一节:热力学术语和基本概念 1、系统与环境之间可能会有物质和能量的传递。按传递情况不同,将系统分为:⑴封闭系统:系统与环境之间只有能量传递没有物质传递。系统质量守恒。 ⑵敞开系统:系统与环境之间既有能量传递〔以热或功的形式进行〕又有物质传递。 ⑶隔离系统:系统与环境之间既没有能量传递也没有物质传递。

中级无机化学[第三章配位化学] 山东大学期末考试知识点复习

第三章配位化学 1.配合物 配合物:由提供孤对电子或多个不定域电子的一定数目的离子或分子(配体)和接受孤对电子或多个不定域电子的原子或离子(统称中心原子)按一定组成和空间构型所形成的化合物。其中,与中心原子直接相连的原子称为配位原子,与同一中心原子连接的配位原子数目称为配位数;由中心金属离子和配体构成的络合型体称为内界,通常用“[]”标出。 配合物的命名:配体名称在先,中心原子名称在后。阴离子名称在先,阳离子名称在后,两者间用“化”或“酸”相连。不同配体名称的顺序与化学式的书写顺序相同,相互间以圆点隔开,最后一种配体名称之后加“合”字。配体个数在配体名称前用中文数字表示。中心原子的氧化态在元素名称之后用括号内的罗马数字表示。 2.配合物的异构 立体异构:包括几何异构和旋光异构。配合物内界中两种或两种以上配体在空间的排布方式不同所产生的异构现象称为几何异构。若由配体在空间的排布方式不同所产生的异构体之间互为对映体,则这种异构现象称为旋光异构。 电离异构:配合物在溶液中电离时,由于内界和外界配体发生交换而生成不同配离子的异构现象称为电离异构。 键合异构:含有多种配位原子的单齿配体用不同的配位原子参与配位而产生的异构现象称为键合异构。 配位异构:在配阴离子与配阳离子形成的配合物盐中,配阴离子与配阳离子中配体与中心离子出现不同组合的现象称为配位异构。 3.配合物的常用制备方法 加成反应:路易斯酸碱之间直接反应,得到酸碱加合型配合物。加成后配位

数增大。 取代反应:用一种适当的配体(通常是位于光谱化学序列右边的配体)取代配合物中的某些配体(通常是位于光谱化学序列左边的配体)。取代后配位数通常不变。 氧化还原反应:伴随有中心金属氧化态变化的制备反应,在许多情况下同时伴随有配体的取代反应。 热解反应:在升高温度时,配合物中易挥发的配体失去,外界阴离子占据失去配体的配位位置,相当于固相取代反应。 4.配合物的化学键理论 (1)晶体场理论理论要点: (a)中心金属离子具有电子结构,配体视为无电子结构的阴离子或偶极子,二者之间存在的静电吸引作用产生配位键。 (b)中心金属离子的电子与配体电子之间存在排斥作用。由于配体在中心离子周围的分布具有方向性,配体的静电场作用使中心离子的d轨道发生能级分裂。分裂的方式与分裂的程度取决于配位场的类型及配体、中心离子的性质。 (c)中心离子的电子在配位场能级中的占据结果,使配合物获得一个晶体场稳定化能(CFSE)。 晶体场理论可以定性解释配合物的吸收光谱、稳定性、磁性、结构畸变等,但无法解释金属与配体间的轨道重叠作用,不能很好地解释光谱化学序列。 (2)配位场理论理论要点:配体的存在使中心金属离子与配体之间存在的化学键作用既包括静电作用也包括共价作用(既有σ成键作用也有π成键作用)。金属离子的d电子局限在金属原子核附近运动,不进入配体范围,但是配位场负电荷的影响使中心金属离子的d轨道能级分裂。在配位场中,分裂能既决定于静电作用,又决定于共价作用(其中首先包括σ成键作用,其次包括π成键作用)。

大学无机化学实验报告

大学无机化学实验报告 篇一:大学化学1实验报告 贵州大学 《大学化学》实验报告册 实验报告的基本内容及要求 实验报告应体现预习、实验记录和实验报告,要求这三个过程在一个实验报告中完成。 1、实验预习 在实验前每位同学都需要对本次实验进行认真的预习,并写好预习报告,在预习报告中要写出实验目的、要求,需要用到的仪器设备、物品资料以及简要的实验步骤,形成一个操作提纲。对实验中的安全注意事项及可能出现的现象等做到心中有数,但这些不要求写在预习报告中。 设计性实验要求进入实验室前写出实验方案。 2、实验记录 学生开始实验时,应该将记录本放在近旁,将实验中所做的每一个词组、观察到的现象和所测得的数据及相关条件如实地记录下来。实验记录中应有指导教师的签名。 3、实验总结 主要内容包括对实验数据、实验中的特殊学校、实验操

作的成败、实验的关键点等内容进行整理、解释、分析自己,回答思考题,提出实验结论或提出自己的看法等。 具体说明 1、实验报告册是由贵州大学化学与化工学院“大学化学”教学与实验中心《大学化学》教学小组设计,供全校开设《大学化学》实验的学生使 用。 2、“报告册”中的实验内容主要参考了华东理工大学无机化学教研组编《无机化学》实验、天津大学无机化学教研组编《无机化学实验》、贵 州工业大学无机化学教研组编《无机化学与普通化学实验》等实验指导书自编而成。实验前请参阅这些实验书。 3、“报告册”中“实验目的”、“实验原理”、制备实验中的“实验操作过程”和“产品纯度(或性能)检验”、实验中的“混合离子分离鉴定示 意图”要求学生在实验前的预习阶段完成,并写于报告中。 4、“报告册”中“实验内容”栏有若干空格,是留给学生自行设计的实验、要求学生在实验预习阶段自行设计出

第十章中级无机化学课后习题答案

第10章习题 1 简要回答问题 (1) 什么叫稀土元素? 什么叫镧系元素? 答:参见本书10.1节《概述》。 (2) 镧系收缩的原因是什么? 简述镧系收缩造成的影响。 答:关于镧系收缩的原因参见本书10.1.2节《原子半径和离子半径》。 由于镧系收缩的影响,使第二、三过渡系的Zr和Hf、Nb与Ta、Mo与W三对元素的半径相近,化学性质相似,分离困难。 (3) 为什么Eu、Yb原子半径比相邻元素大? 而Ce又小? 答:① Eu、Yb元素参与形成金属键的电子数为2,Ce为3.1,其余为3.0; ② Eu、Yb具碱土性; ③ Eu、Yb的f7、f14的半充满和全充满的结构能量低、稳定、屏蔽大,核对外面的6s电子吸引较弱。 (4) 为什么镧系元素的电子结构在固态和气态不同? 解:参见本书10.1.1节《镧系元素的价电子层结构》。 (5) 镧系离子的电子光谱同d区过渡金属离子相比有何不同? 为什么? 解:除La3+、Lu3+离子的4f电子层是全空(4f0)和全满(4f14)之外,其余Ln3+离子4f轨道上的电子数由1到14,这些电子可以在7条4f简并轨道上任意排布,这样就会产生各种光谱项和能级。4f 电子在不同能级间跃迁可以吸收或发射从紫外经可见直至红外区的各种波长的电磁辐射。通常具有未充满的4f电子壳层的原子或离子,可以观察到的光谱线大约有30 000条,而具有未充满d电子壳层的过渡金属元素的谱线约有7 000条。 在理论上,f→f跃迁产生的谱线强度不大。但是某些f→f跃迁的吸收带的强度,随镧系离子周围环境的变化而明显增大(这种跃迁称为超灵敏跃迁)。这可能是由于配体的碱性、溶剂的极性、配合物的对称性以及配位数等多种因素的影响,亦即离子周围环境的变化,再加上镧系离子本身的性质等诸因素的综合作用所引起的。镧系离子的吸收谱带范围较广且镧系离子光谱谱带狭窄,表明电子跃迁时并不显示激发分子振动,狭窄的谱带意味着电子受激发时分子势能面几乎没有变化,这与f 电子与配体只存在弱相互作用相一致。镧系离子光谱还有一个特征是化合物的吸收光谱和自由离子的吸收光谱基本一样,都是线光谱,这是由于4f轨道外面的5s2、5p6电子层的屏蔽作用,使4f轨道受化合物中其他元素或基团的势场(晶体场或配体场)影响较小的缘故,而d区过渡元素化合物的光谱,由于受势场影响,吸收光谱由气态自由离子的线状光谱变为化合物和溶液中的带状光谱。 (6) 镧系离子的磁性变化有什么规律性? 答:参见本书10.2.3节《镧系元素的磁学性质》。 2 试总结本章所介绍的镧系元素在性质上变化的规律性,并讨论其原因。 答:参见本书10.3节《镧系元素性质递变的规律性》中的单向变化、Gd断效应、峰谷效应(双峰效应)、奇偶变化、周期性变化、三分组效应、四分组效应、双-双效应和斜W效应。 3 结合实际情况讨论镧系元素的应用。 解:主要用于炼钢的除氧剂和除硫剂,改善钢铁的结构和可塑性。也用来制造完全无色或带有各种色彩的高级玻璃,例如在玻璃中加入Ce(Ⅳ)化合物不仅可以使其脱色,而且可防止紫外线和红外线的透过;加入氧化镧的玻璃,由于折射率增加的同时色散率减少,因而具有优良的光学性能,可以用来改进摄影机镜头的质量,扩大视场角,提高鉴别本领。 用镧系元素制得的Nd-Fe-B和Sm-Co磁性材料,磁性极强。 镧系元素有着特异的电子结构和线状发光性质,可产生高效率的激光,如掺有钕的玻璃就是一种很好的激光材料。 162

相关文档
最新文档