南京鼓楼实验学校数学平面图形的认识(一)单元培优测试卷

南京鼓楼实验学校数学平面图形的认识(一)单元培优测试卷
南京鼓楼实验学校数学平面图形的认识(一)单元培优测试卷

一、初一数学几何模型部分解答题压轴题精选(难)

1.如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F

(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为________;(2)当△PMN所放位置如图②所示时,求证:∠PFD?∠AEM=90°;

(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.

【答案】(1)∠PFD+∠AEM=90°

(2)过点P作PG∥AB

∵AB∥CD,

∴PG∥AB∥CD,

∴∠AEM=∠MPG,∠PFD=∠NPG

∵∠MPN=90°

∴∠NPG-∠MPG=90°

∴∠PFD-∠AEM=90°;

(3)设AB与PN交于点H

∵∠P=90°,∠PEB=15°

∴∠PHE=180°-∠P-∠PEB=75°

∵AB∥CD,

∴∠PFO=∠PHE=75°

∴∠N=∠PFO-∠DON=45°.

【解析】【解答】(1)过点P作PH∥AB

∵AB∥CD,

∴PH∥AB∥CD,

∴∠AEM=∠MPH,∠PFD=∠NPH

∵∠MPN=90°

∴∠MPH+∠NPH=90°

∴∠PFD+∠AEM=90°

故答案为:∠PFD+∠AEM=90°;

【分析】(1)过点P作PH∥AB,然后根据平行于同一条直线的两直线平行可得PH∥AB∥CD,根据平行线的性质可得∠AEM=∠MPH,∠PFD=∠NPH,然后根据∠MPH+∠NPH=90°和等量代换即可得出结论;(2)过点P作PG∥AB,然后根据平行于同一条直线的两直线平行可得PG∥AB∥CD,根据平行线的性质可得∠AEM=∠MPG,∠PFD=∠NPG,然后根据∠NPG-∠MPG=90°和等量代换即可证出结论;(3)设AB与PN 交于点H,根据三角形的内角和定理即可求出∠PHE,然后根据平行线的性质可得∠PFO=∠PHE,然后根据三角形外角的性质即可求出结论.

2.已知点C在线段AB上,AC=2BC,点D、E在直线AB上,点D在点E的左侧

(1)若AB=18,DE=8,线段DE在线段AB上移动

①如图1,当E为BC中点时,求AD的长;

②点F(异于A,B,C点)在线段AB上,AF=3AD,CE+EF=3,求AD的长;

(2)若AB=2DE,线段DE在直线AB上移动,且满足关系式,则

________.

【答案】(1)解:①

又 E为BC中点

②设,因点F(异于A、B、C点)在线段AB上,可知:

,和

当时,

此时可画图如图2所示,代入得:

解得:,即AD的长为3

当时,

此时可画图如图3所示,代入得:

解得:,即AD的长为5

综上,所求的AD的长为3或5;

(2) .

【解析】【解答】(2)①若DE在如图4的位置

设,则

(不符题设,舍去)

②如DE在如图5的位置

设,则

代入得:

解得:

则 .

【分析】(1)①根据AB的长和可求出AC和BC,根据中点的定义可得CE,再由可得CD,最后根据计算即可得;②设,因点F(异于A、B、C点)在线段AB上,可知,和,所以需分2种情况进行讨论:和,如图2、3(见解析),先根据已知条件判断点

E、F位置,再将EF和CE用含x的式子表示出来,最后代入求解即可;(2)设,先判断出DE在AB上的位置,再根据得出x和y 满足的等式,然后将其代入化简即可得.

3.数轴上A, B, C, D四点表示的有理数分别为1, 3, -5, -8

(1)计算以下各点之间的距离:①A、B两点, ②B、C两点,③C、D两点,

(2)若点M、N两点所表示的有理数分别为m、n,求M、N两点之间的距离.

【答案】(1)AB=3-1=2;BC=3-(-5)=8;CD=-5-(-8)=-5+8=3.

(2)MN=

【解析】【分析】(1)数轴上两点间的距离等于数值较大的数减去数值较小的数,据此计算即可;

(2)因为m、n的大小未知,则M、N两点间的距离为它们所表示的有理数之差的绝对值.

4.如图(1),在△ABC和△EDC中,D为△ABC边AC上一点,CA平分∠BCE,BC=CD,AC=CE.

(1)求证:△ABC≌△EDC;

(2)如图(2),若∠ACB=60°,连接BE交AC于F,G为边CE上一点,满足CG=CF,连接DG交BE于H.

①求∠DHF的度数;

②若EB平分∠DEC,试说明:BE平分∠ABC.

【答案】(1)证明:∵CA平分∠BCE,

∴∠ACB=∠ACE.

在△ABC和△EDC中.

∵BC=CD,∠ACB=∠ACE,AC=CE.

∴△ABC≌△EDC(SAS).

(2)解:①在△BCF和△DCG中

∵BC=DC, ∠BCD=∠DCE,CF=CG,

∴△BCF≌△DCG(SAS),

∴∠CBF=∠CDG.

∵∠CBF+∠BCF=∠CDG+∠DHF

∴∠BCF=∠DHF=60°.

②∵EB平分∠DEC,

∴∠DEH=∠BEC.

∵∠DHF=60°,

∴∠HDE=60°-∠DEH.

∵∠BCE=60°+60°=120°,

∴∠CBE=180°-120°-∠BEC=60°-∠BEC.

∴∠HDE=∠CBE. ∠A=∠DEG.

∵△ABC≌△EDC, △BCF≌△DCG(已证)

∴∠BFC=∠DGC,

∵∠ABF=∠BFC-∠A, ∠HDE=∠DGC-∠DEG,

∴∠ABF=∠HDE,

∴∠ABF=∠CBE,

∴BE平分∠ABC.

【解析】【分析】(1)由角平分线定义得出∠ACB=∠ACE,由ASA证明△ABC≌△EDC即可.

(2)①由ASA证明△BCF≌△DCG,得出∠CBF=∠CDG;在△BCF,△DHF中,由三角形内角和定理得出∠BCF=∠DHF=60°.

②由全等三角形的性质得出∠A=∠DEG,∠ABF=∠BFC-∠A, ∠HDE=∠DGC-∠DEG,从而得出∠ABF=∠HDE,∠ABF=∠CBE,即BE平分∠ABC.

5.如图,EF⊥AB于F,CD⊥AB于D,点在AC边上,且∠1=∠2= .

(1)求证:EF∥CD;

(2)若∠AGD=65°,试求∠DCG的度数.

【答案】(1)证明:∵EF⊥AB于F,CD⊥AB于D,

∴∠BFE=∠BDC=90°,

∴EF∥CD.

(2)解:∵EF∥CD,

∴∠2=∠DCE=50°,

∵∠1=∠2,

∴∠1=∠DCE,

∴DG∥BC,

∴∠AGD=∠ACB=65°,

∴∠DCG=

【解析】【分析】(1)由垂直的定义,可求得∠BFE=∠CDF=90°,可证明EF∥CD;

(2)利用(1)的结论,结合条件可证明DG∥BC,利用平行线的性质可得∠AGD=∠ACB= ,则∠DCG=∠ACB-∠2即可求得.

6.如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.

(1)将图1中的三角板绕点O按每秒10°的速度沿逆时针方向旋转一周.在旋转的过程中,假如第t秒时,OA、OC、ON三条射线构成相等的角,求此时t的值为多少?

(2)将图1中的三角板绕点O顺时针旋转图2,使ON在∠AOC的内部,请探究:∠AOM 与∠NOC之间的数量关系,并说明理由.

【答案】(1)解:∵三角板绕点O按每秒10°的速度沿逆时针方向旋转,

∴第t秒时,三角板转过的角度为10°t,

当三角板转到如图①所示时,∠AON=∠CON

∵∠AON=90°+10°t,∠CON=∠BOC+∠BON=120°+90°﹣10°t=210°﹣10°t

∴90°+10°t=210°﹣10°t

即t=6;

当三角板转到如图②所示时,∠AOC=∠CON=180°﹣120°=60°

∵∠CON=∠BOC﹣∠BON=120°﹣(10°t﹣90°)=210°﹣10°t

∴210°﹣10°t=60°

即t=15;

当三角板转到如图③所示时,∠AON=∠CON= ,

∵∠CON=∠BON﹣∠BOC=(10°t﹣90°)﹣120°=10°t﹣210°

∴10°t﹣210°=30°

即t=24;

当三角板转到如图④所示时,∠AON=∠AOC=60°

∵∠AON=10°t﹣180°﹣90°=10°t﹣270°

∴10°t﹣270°=60°

即t=33.

故t的值为6、15、24、33.

(2)解:∵∠MON=90°,∠AOC=60°,

∴∠AOM=90°﹣∠AON,∠NOC=60°﹣∠AON,

∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°

【解析】【分析】(1)根据已知条件可知,在第t秒时,三角板转过的角度为10°t,然后按照OA、OC、ON三条射线构成相等的角分四种情况讨论,即可求出t的值;

(2)根据三角板∠MON=90°可求出∠AOM、∠NOC和∠AON的关系,然后两角相加即可求出二者之间的数量关系.

7.根据下图回答问题:

(1)如图1,CM平分∠ACD,AM平分∠BAC,∠MAC+∠ACM=90°,请判断AB与CD的位置关系并说明理由;

(2)如图2,当∠M=90°且AB与CD的位置关系保持(1)中的不变,当直角顶点M移动时,问∠BAM与∠MCD是否存在确定的数量关系?并说明理由;

(3)如图3,G为线段AC上一定点,点H为直线CD上一动点且AB与CD的位置关系保持(1)中的不变,当点H在射线CD上运动时(点C除外)∠CGH+∠CHG与∠BAC有何数量关系?猜想结论并说明理由.

【答案】(1)∵CM平分∠ACD,AM平分∠BAC,

∴∠BAC=2∠MAC,∠ACD=2∠ACM,

∵∠MAC+∠ACM=90°,

∴∠BAC+∠ACD=180°,

∴AB∥CD;

(2)∠BAM+∠MCD=90°,

理由:如图,过M作MF∥AB,

∵AB∥CD,

∴MF∥AB∥CD,

∴∠BAM=∠AMF,∠FMC=∠DCM,

∵∠M=90°,

∴∠BAM+∠MCD=90°;

(3)∠BAC=∠CHG+∠CGH.

理由:过点G作GP∥AB,

∵AB∥CD

∴GP∥CD,

∴∠BAC=∠PGC,∠CHG=∠PGH,

∴∠PGC=∠CHG+∠CGH,

∴∠BAC=∠CHG+∠CGH.

【解析】【分析】(1)已知CM平分∠ACD,AM平分∠BAC,根据角平分线的定义可得∠BAC=2∠MAC,∠ACD=2∠ACM,再由∠MAC+∠ACM=90°,即可得∠BAC+∠ACD=180°,根据同旁内角互补,两直线平行即可得AB∥CD;(2)∠BAM+∠MCD=90°,过M作MF∥AB,即可得MF∥AB∥CD,根据平行线的性质可得∠BAM=∠AMF,∠FMC=∠DCM,再由∠M=90°,即可得∠BAM+∠MCD=90°;(3)∠BAC=∠CHG+∠CGH,过点G作GP∥AB,即可得GP∥CD,根据平行线的性质可得∠BAC=∠PGC,∠CHG=∠PGH,所以PGC=∠CHG+∠CGH,即可得∠BAC=∠CHG+∠CGH.

8.如图,四边形ABCD的内角∠DCB与外角∠ABE的平分线相交于点F.

(1)若BF∥CD,∠ABC=80°,求∠DCB的度数;

(2)已知四边形ABCD中,∠A=105o,∠D=125o,求∠F的度数;

(3)猜想∠F、∠A、∠D之间的数量关系,并说明理由.

【答案】(1)解:∵∠ABC=80°,

∴∠ABE=180°-∠ABC=100°,

∵BF平分∠ABE,

∴∠EBF= ∠ABE=50°,

∵BF∥CD

∴∠BCD=∠EBF=50°

(2)解:∵∠FBE是△EBC的外角,

∴∠F=∠EBF-∠ECF

∵BF平分∠ABE、CF平分∠BCD,

∴∠EBF= ∠ABE=,∠ECF= ∠BCD,

∵∠ABE=180°-∠ABC,

∴∠F= (180°-∠ABC)- ∠BCD= [180°-(∠ABC+∠BCD)],

∵在四边形ABCD中,∠ABC+∠BCD=360°-∠A-∠D,

∴∠F= [180°-(360°-∠A-∠D)],

∴∠F= (∠A+∠D-180°),

∵∠A=105o,∠D=125o,

∴∠F= (105o +125o -180°)=25°

(3)解:结论:∠F= (∠A+∠D-180°)

理由如下:∵∠FBE是△EBC的外角,

∴∠F=∠EBF-∠ECF

∵BF平分∠ABE、CF平分∠BCD,

∴∠EBF= ∠ABE=,∠ECF= ∠BCD,

∵∠ABE=180°-∠ABC,

∴∠F= (180°-∠ABC)- ∠BCD= [180°-(∠ABC+∠BCD)],

∵在四边形ABCD中,∠ABC+∠BCD=360°-∠A-∠D,

∴∠F= [180°-(360°-∠A-∠D)],

∴∠F= (∠A+∠D-180°)

【解析】【分析】(1)由角平分线的性质和邻补角的定义可得:∠FBE=∠FBA= ∠ABE=(180°-∠ABC);由平行线的性质可得∠BCD=∠FBE可求解;

(2)由平行线的性质可得:∠ABC+∠A=180°;∠BCD+∠D=180°;由已知条件可得:

∠ABC=180°-∠A;∠BCD=180°-∠D;由角平分线的性质和邻补角的定义可得:

∠FBE=∠FBA= ∠ABE=(180°-∠ABC);∠BCF=∠BCD,由三角形外角的性质可得∠FBE=∠F+∠BCF,于是∠F=∠FBE-∠BCF,把求得的∠FBE和∠BCF的度数代入计算即可求解;

(3)结合(1)和(2)的结论可求解:∠F=(∠A+∠D-180°)。

9.已知直线AB//CD,P是两条直线之间一点,且AP⊥PC于P.

(1)如图1,求证:∠BAP+∠DCP=90°;

(2)如图2,CQ平分∠PCG,AH平分∠BAP,直线AH、CQ交于Q,求∠AQC的度数;

【答案】(1)证明:过P作PQ∥AB,

∴∠BAP=∠APQ

∵AB//CD

∴PQ//CD

∴∠DCP=∠CPQ

∴∠BAP+∠DCP=∠APQ+∠CPQ=∠APC

又∵AP⊥PC于P

∴∠APC=90°

∴∠BAP+∠DCP=90°

(2)解:过Q作QM∥AB,

∵CQ平分∠PCG ,AH平分∠BAP,

设∠PCQ=∠QCG=a ,∠BAH=∠HAP=b,

∵QM∥AB,∠BAQ=180° b

∴∠BAQ=∠AQM=180°

又∵AB//CD,

∴MQ//CD,

∴∠CQM=180° a

∴∠AQC=(180° b)(180° a)=a b

又∵由(1)得∴∠BAP+∠DCP=90°

∵∠DCP=180° 2a ,∠BAP=2b

∴2b+180° 2a=90°

∴a b=45°

∴∠AQC=45°

【解析】【分析】(1)过P作PQ∥AB,根据平行线的判定定理得出PQ//CD,由平行线的性质,得到∠BAP=∠APQ,∠DCP=∠CPQ,结合AP⊥PC,即可得到答案;

(2)过Q作QM∥AB,由平行线的性质和角平分线的性质,得到角度之间的关系,即可得到答案.

10.如图,在△ ABC中,∠ ABC、∠ ACB的平分线交于点O.

(1)若∠ABC=40°,∠ ACB=50°,则∠BOC=________

(2)若∠ABC+∠ ACB=lO0°,则∠BOC="________"

(3)若∠A=70°,则∠BOC=________

(4)若∠BOC=140°,则∠A=________

(5)你能发现∠ BOC与∠ A之间有什么数量关系吗?写出并说明理由.

【答案】(1)135°

(2)130°

(3)125°

(4)100°

(5)解:BO平分∠ABC, CO平分∠ABC ∴∠OBC=0.5∠ABC ∠OCB=0.5∠ACB ∴∠OBC+∠OCB=0.5∠ABC+0.5∠ACB= 0.5(180-∠A)=90-0.5∠A ∴∠O=180-(∠OBC+∠OCB)=180-(90-0.5∠A)=90°+0.5∠A

【解析】【解答】解:(1)∵∠ABC=40°,∠ACB=50°,在△ABC中,∠ABC、∠ACB的平分线交于点O.

∴∠OBC= ∠ABC=20°,∠OCB= ∠ACB=25°,

∴∠BOC=180°-∠OBC-∠OCB=180°-20°-25°=135°,

故答案是:135°;

( 2 )在△ABC中,∠ABC、∠ACB的平分线交于点O.

∴∠OBC= ∠ABC,∠OCB= ∠ACB,

∴∠OBC+∠OCB= (∠ABC+∠ACB)=50°,

∴∠BOC=180°- (∠ABC+∠ACB)=180°-50°=130°,

故答案是130°.

( 3 )在△ABC中,∠ABC、∠ACB的平分线交于点O.

∴∠OBC= ∠ABC,∠OCB= ∠ACB,

∴∠OBC+∠OCB= (∠ABC+∠ACB)=55°,

∴∠BOC=180°- (∠ABC+∠ACB)=180°-55°=125°,

故答案是125°;

( 4 )∵∠BOC=140°,

∴∠OBC+OCB=40°,

∵∠OBC= ∠ABC,∠OCB= ∠ACB,

∴∠ABC+∠ACB=2(∠OBC+OCB)=80°,

∴∠A=100°,

故答案是:100°;

【分析】根据角平分线的性质以及三角形内角和定理得出∠OBC和∠OCB与∠A之间的关系,然后根据△BOC的内角和定理得出∠BOC与∠A的关系.

11.已知:∠1=∠2,EG 平分∠AEC.

(1)如图1,∠MAE=50°,∠FEG=15°,∠NCE=80°.试判断EF 与CD 的位置关系,并说明理由.

(2)如图2,∠MAE=135°,∠FEG=30°,当 AB∥CD 时,求∠NCE 的度数;

(3)如图2,试写出∠MAE、∠FEG、∠NCE 之间满足什么关系时,AB∥CD.

【答案】(1)解:

∵EG 平分∠AEC

∴;

(2)解:∵

∵∠MAE=135°

∵∠FEG=30°

∵EG 平分∠AEC

∴;

(3)解:

∵EG 平分∠AEC

∴ .

【解析】【分析】(1)根据可得,根据角的和差关系和角平分线的性质可得,从而得证;(2)根据可得,根据平行线的性质以及角平分线的性质可得;(3)根据可得,根据平行线的性质可得

,再根据角平分线的性质可得

,再根据平行线的性质即可得

.

12.如图1,将一副直角三角板的两顶点重合叠放于点O,其中一个三角板的顶点C落在另一个三角板的边OA上,已知∠ABO=∠DCO=90°,∠AOB=45°,∠COD=60°作∠AOD的平分线交边CD于点E。

(1)求∠BOE的度数。

(2)如图2,若点C不落在边OA上,当∠COE=15°时,求∠BOD的度数。

【答案】(1)解:∵∠COD=60°,OE为∠COD的平分线,

∴∠COE=30°,

∴∠BOE=∠AOB+∠COE

=45°+30°

=75°;

(2)解:∵∠COE=15°,

∴∠DOE=∠DOC-∠OCE=60°-15°=45°,

∵OE平分∠AOD,

∴∠AOD=2∠DOE=2×45°=90°,

∴∠BOD=∠AOD+∠AOB=90°+45°=135°.

【解析】【分析】(1)OE为∠COD的平分线,求出∠COE的度数,则∠BOE的度数等于∠AOB和∠COE的度数之和;

(2)现知∠COE的度数,则∠DOE度数可求,结合OE平分∠AOD,则∠AOD可求,于是∠BOD的度数可得;

相关主题
相关文档
最新文档