矩形悬臂结构骨传导耳机的设计

矩形悬臂结构骨传导耳机的设计
矩形悬臂结构骨传导耳机的设计

TrekStor

矩形悬臂结构骨传导耳机的设计

矩形悬臂结构的压电振子具有振动位移大,谐振频率低等优点,所以以矩形悬臂支撑结构的压电振子为元件,设计一款压电式骨传导耳机。

矩形悬臂结构的骨传导耳机由上壳、下壳、压电振子、传导柱、顶盖、支承座等部分组成。由于是悬臂支撑,其一端需要进行固定,而另一端处于悬置状态。外壳由上下两部分组成,设计成比压电振子尺寸稍大的矩形结构,在上下壳体需要分别留有一个孔,上壳的孔用作传导柱的输出,下壳的孔用作导线的引出,并且在上壳和下壳留有一个接触面,以使压电振子实现固定,在下壳的接触面留有一个凹槽,压电振子放入其中。此外,为了能够使悬臂压电振子固定,将使用AB胶把压电振子粘接到凹槽内,上面用上壳的接触面将压电振子压紧。

矩形骨传导耳机上壳的设计

矩形悬臂结构骨传导耳机的上壳主要是与下壳构成骨传导耳机的外壳,所以其结构并没有特殊要求。矩形悬臂结构骨传导耳机因为压电振子是悬臂布置的,所以压电振子的一端需要固定,因此上壳的一端要留有和压电振子接触的平面,以使压电振子实现固定,而上壳的另一端应该加工成空壳,这样的话既不会对压电振子的振动产生干涉,还可以减轻骨传导耳机的重量,在上壳的一端留有一个孔,用来使传导柱伸出。具体的结构如图4.1所示。

矩形骨传导耳机下壳的设计

矩形悬臂结构骨传导耳机的下壳结构和上壳很相似,以与上壳进行吻合,共同组成矩形悬臂结构骨传导耳机的外壳。与上壳不同的是,下壳需要对压电振子进行准确的定位,所以需要在和压电振子接触的平面加工一个和压电振子厚度相同,宽度略大的槽,在安装时用AB胶将压电振子粘到槽内,此外,还应该在底部留有一个孔,用来引出压电振子上的导线,在引出导线后,用胶对孔进行密封,以防止声音的泄露。下壳的具体结构如图4.2所示。

TrekStor

矩形骨传导耳机传导柱和顶盖的设计

传导柱和顶盖的结构都比较简单,传导柱的作用是把振动的输出位移传递出来,然后再传递到顶盖上,传导柱用一个圆柱体来实现,直径要尽量小一些,以减轻其质量,矩形骨传导耳机的传导柱选择直径为2mm的圆柱体。根据骨传导耳机的国家标准:①骨传导耳机应为圆形接触平面,直径要求为13 . 8mm

矩形骨传导耳机支承座和接触膜的设计

当佩戴骨传导耳机时,夹紧力会通过传导柱传递到压电振子上,如果夹紧力太大,会使压电振子产生变形,并且也会影响压电振子的振动,所以在设计压电式骨传导耳机时,设计了一个支承座来承受夹紧力,这样夹紧力就不会施加到压电振子上,支承座在直径上只要稍微比顶盖大一些既可,具体的结构如图4.5所示。由于骨传导耳机传递的是振动信号,需要皮肤直接接触传递振动,佩戴时间长了可能会造成不适感,所以在顶盖的表面蒙上一层接触膜,接触膜的材质不可太硬,太硬了会影响佩戴的舒适性,但也不能太柔软,太软了会衰减

TrekStor

振动信号,影响传声效果。

(完整版)排桩支护设计与计算

排桩支护设计与计算 8.7.1概述 基坑开挖事,对不能放坡或由于场地限制而不能采用搅拌桩支护,开挖深度在6~10米左右时,即可采用排桩支护。排桩支护可采用钻孔灌注桩、人工挖孔桩、预制钢筋混凝土板桩或钢板桩。 图8-4排桩支护的类型 排桩支护结构可分为: (1)柱列式排桩支护当边坡土质尚好、地下水位较低时,可利用土拱作用,以稀疏钻孔灌注桩或挖孔桩支挡土坡,如图8-4a所示。 (2)连续排桩支护(图8-4b)在软土中一般不能形成土拱,支挡结构应该连续排。 密排的钻孔桩可互相搭接,或在桩身混凝土强度尚未形成时,在相邻桩之间做一根素混凝土树根桩把钻孔桩排连起来,如图8-4c所示。也可采用钢板桩、钢筋混凝土板桩,如图8-4d、e所示。 (3)组合式排桩支护在地下水位较高搭软土地区,可采用钻孔灌注排桩与水泥土桩防渗墙组合的方式,如图8-4f所示。 按基坑开挖深度及支挡结构受力情况,排桩支护可分为一下几种情况。 (1)无支撑(悬臂)支护结构:当基坑开挖深度不大,即可利用悬臂作用挡住墙后土体。 (2)单支撑结构:当基坑开挖深度较大时,不能采用无支撑支护结构,可以在支护结构顶部附近设置一单支撑(或拉锚)。 (3)多支撑结构:当基坑开挖深度较深时,可设置多道支撑,以减少挡墙挡压力。根据上海地区的施工实践,对于开挖深度<6m的基坑,在场地条件允许的情况下,可采用重力式深层搅拌桩挡墙较为理想。当场地受限制时,也可采用φ600mm密排悬臂钻孔桩,桩与桩之间可用树根桩密封,也可采用灌注桩后注浆或打水泥搅拌桩作防水帷幕;对于开挖深度在4~6m的基坑,根据场地条件和周围环境可选用重力式深层搅拌桩挡墙,或打入预制混凝土板桩或钢板桩,其后注浆或加搅拌桩防渗,设一道檩和支撑也可采用φ600mm钻孔桩,后面用搅拌桩防渗,顶部设一道圈梁和支撑;对于开挖深度为6~10米的基坑,以往采用φ800~1000mm的钻孔桩,后面加深层搅拌桩或注浆放水,并设2~3道支撑,支撑道数视土质情况、周围环境及围护结构变形要求而定;对于开挖深度大于10m的基坑,以往常采用地下连续墙,设多层支撑,虽然安全可靠,但价格昂贵。近来上海常采用φ800~1000mm 大直径钻孔桩代替地下连续墙,同样采取深层搅拌桩放水,多道支撑或中心岛施工法,这种支护结构已成功用于开挖深度达到13米的基坑。

心得体会 轴系结构设计实验心得体会

轴系结构设计实验心得体会 轴系结构设计实验心得体会第二篇、实验二、轴系结构设计实验 轴系结构设计实验心得体会 实验二、轴系结构设计实验 一、实验目的 1、熟悉常用轴系零部件的结构; 2、掌握轴的结构设计基本要求; 3、掌握轴承组合结构设计的基本方法。 二、实验设备 ①各种轴; ②轴上零件:齿轮、蜗杆、带轮、联轴器、轴承、轴承座、端盖、套杯、套筒、圆螺母、止退垫圈、轴端挡板、轴用弹性垫圈、孔用弹性垫圈、螺钉、螺母等。 ③工具包括活搬手、游标卡尺、胀钳。 ④铅笔、三角尺等绘图工具自备。 三、概述 轴系结构是机械的重要组成部分,也是机械设计课程的核心教学内容。由于轴系结构设计的问题多、实践性强、灵活性大,因此既是教师讲授的难点,也是学生学习中最不易掌握的内容。本实验通过学生自己动手,经过装配、调整、拆卸等全过程,不仅可以增强学生对轴系零部件结构的感性认识,还能帮助学生深入理解轴的结构设计、轴承组合结构设计的基本要领,达到提高设计能力和工程实践能力的目

的。 四、实验内容 1、每组同学根据轴系简图装配轴系部件; 2、分析并测绘部件,在简图上标出零、部件尺寸; 3、编写实验报告,并画出轴系部件装配草图。 五、实验步骤 ①根据轴系结构设计装配草图,选择相应的零件实物,按装配工艺要求顺序装在轴上,完成轴系结构设计; ②分析轴系结构方案的合理性。分析时应考虑以下问题: a.轴上各键槽是否在同一条母线上; b.轴上各零件是否处于指定位置; c.轴上各零件的轴向、周向固定是否合理、可靠,如防松、轴承拆卸等; d.轴系能否实现回转运动,运动是否灵活; e.轴系沿轴线方向的位置是否确定,轴向力能否传到机座上; f.轴系的轴向位置是否需要调整,需要时,如何调整。 ③在确认实际装配结构无误时,测绘各零件的实际尺寸(底板不测绘,轴承座只测量轴向宽度); ④将实验零件放回箱内,排列整齐,工具放回原处; ⑤在实验报告上,按1∶1比例完成轴系结构装配图(只标出各段轴的直径和长度,公差配合及其余尺寸不标注,零件序号、标题栏可省略)。 注意:因实验条件限制,本实验忽略过盈配合的松紧程度、轴肩过渡

悬臂梁结构设计

梁、柱、墙、板筋的一般计算规则 一、梁 (1)框架梁 一、首跨钢筋的计算 1、上部贯通筋 上部贯通筋(上通长筋1)长度=通跨净跨长+首尾端支座锚固值 2、端支座负筋 端支座负筋长度:第一排为Ln/3+端支座锚固值;第二排为Ln/4+端支座锚固值 3、下部钢筋 下部钢筋长度=净跨长+左右支座锚固值 以上三类钢筋中均涉及到支座锚固问题,那么总结一下以上三类钢筋的支座锚固判断问题:支座宽≥Lae且≥0.5Hc+5d,为直锚,取Max{Lae,0.5Hc+5d}。 钢筋的端支座锚固值=支座宽≤Lae或≤0.5Hc+5d,为弯锚,取Max{Lae,支座宽度-保护层+15d }。 钢筋的中间支座锚固值=Max{Lae,0.5Hc+5d} 4、腰筋 构造钢筋:构造钢筋长度=净跨长+2×15d;抗扭钢筋:算法同贯通钢筋 5、拉筋 拉筋长度=(梁宽-2×保护层)+2×11.9d(抗震弯钩值)+2d;拉筋根数:如果我们没有在平法输入中给定拉筋的布筋间距,那么拉筋的根数=(箍筋根数/2)×(构造筋根数/2);如果给定了拉筋的布筋间距,那么拉筋的根数=布筋长度/布筋间距。 6、箍筋 箍筋长度=(梁宽-2×保护层+梁高-2×保护层)×2+2×11.9d+8d 箍筋根数=(加密区长度/加密区间距+1)×2+(非加密区长度/非加密区间距-1)+1 注意:因为构件扣减保护层时,都是扣至纵筋的外皮,那么,我们可以发现,拉筋和箍筋在每个保护层处均被多扣掉了直径值;并且我们在预算中计算钢筋长度时,都是按照外皮计算的,所以软件自动会将多扣掉的长度在补充回来,由此,拉筋计算时增加了2d,箍筋计算时增加了8d。 7、吊筋 吊筋长度=2×锚固(20d)+2×斜段长度+次梁宽度+2×50,其中框梁高度>800mm夹角=60°≤800mm夹角=45° 二、中间跨钢筋的计算 1、中间支座负筋 中间支座负筋:第一排为:Ln/3+中间支座值+Ln/3;第二排为:Ln/4+中间支座值+Ln/4 注意:当中间跨两端的支座负筋延伸长度之和≥该跨的净跨长时,其钢筋长度: 第一排为:该跨净跨长+(Ln/3+前中间支座值)+(Ln/3+后中间支座值); 第二排为:该跨净跨长+(Ln/4+前中间支座值)+(Ln/4+后中间支座值)。 其他钢筋计算同首跨钢筋计算。LN为支座两边跨较大值。 2、其他梁 一、非框架梁 在03G101-1中,对于非框架梁的配筋简单的解释,与框架梁钢筋处理的不同之处在于: 1、普通梁箍筋设置时不再区分加密区与非加密区的问题; 2、下部纵筋锚入支座只需12d; 3、上部纵筋锚入支座,不再考虑0.5Hc+5d的判断值。

骨传导耳机有什么危害【新知识】

骨传导耳机有什么危害 文章导读 今天来介绍一种‘耳机’上的黑科技,如果你觉得是蓝牙耳机,那就大错特错了,这就是一个最近特别火的-骨传导耳机。是不是听起来很陌生,简单的介绍就是通过骨头 传播声音,避免了戴耳机的不适感,也避免了戴耳机运动出汗的卫生和健康问题。同时也 保证了危险场景下耳机使用的可能性,打开双耳,使用耳机的同时也能注意到周围环境的 变化。那么这么神奇的耳机有没有危害呢。 骨传导耳机 骨传导是一种声音传导方式,即将声音转化为不同频率的机械振动,通过人的颅骨、 骨迷路、内耳淋巴液传递、螺旋器、听神经、听觉中枢来传递声波。相对于通过振膜产生 声波的经典声音传导方式,骨传导省去了许多声波传递的步骤,能在嘈杂的环境中实现清 晰的声音还原,而且声波也不会因为在空气中扩散而影响到他人。骨传导技术分为骨传导 扬声器技术和骨传导麦克风技术: (1)骨传导扬声器技术用于受话,受话即听取声音。气导扬声器是把电信号转化为 声波(振动信号)传至听神经。而骨传导扬声器则是电信号转化的声波(振动信号)直接 通过骨头传至听神经。声波(振动信号)的传递介质不同。 (2)骨传导麦克风技术用于送话,送话即收集声音。气导送话是声波通过空气传至 麦克风,而骨传导送话则直接通过骨头传递。 利用这些骨传导技术制造的耳机,称之为骨传导耳机,也被称作骨导耳机、骨感耳机、骨传耳机和骨传感耳机。 分类 骨传导耳机分为骨传导扬声器技术耳机、骨传导麦克风技术耳机(一)骨传导扬声器 技术耳机: 利用骨传导技术受话,紧贴骨头,声波直接通过骨头传至听神经。因此可以开放双耳,不伤害鼓膜。军民领域,一般都是利用面部颊骨直接传导声音。

(完整版)基坑支护结构的计算

第二部分 基坑支护结构的计算 支护结构的设计和施工,影响因素众多,不少高层建筑的支护结构费用已超过工程桩基的费用。为此,对待支护结构的设计和施工均应采取极慎重的态度,在保证施工安全的前提下,尽量做到经济合理和便于施工。 一、支护结构承受的荷载 支护结构承受的荷载一般包括 –土压力 –水压力 –墙后地面荷载引起的附加荷载。 1 土压力 ⑴主动土压力: 若挡墙在墙后土压力作用下向前位移时随位移增大,墙后土压力渐减小。当位移达某一数值时,土体内出现滑裂面,墙后土达极限平衡状态,此时土压力称为主动土压力,以Ea表示。 ⑵静止土压力: 若挡墙在土压力作用下墙本身不发生变形和任何位移(移动或滑动),墙后填土处于弹性平衡状态,则此时作用在挡墙上的土压力成为静止土压力。以E0表示。

(3)被动土压力: 若挡墙在外力作用下墙向墙背向移动,随位移增大,墙所受土的反作用力渐增大,当位移达一定数值时,土体内出现滑裂面,墙后土处被动极限平衡状态,此时土压力称为被动土压力,以Ep表示。 主动土压力计算 ?主动土压力强度

?无粘性土 粘性土 土压力分布 对于粘性土按计算公式计算时,主动土压力在土层顶部(H=0处)为负值,即

表明出现拉力区,这在实际上是不可能发生的。只计算临界高度以下的主动土压力。 土压力分布 可计算此种情况下的临界高度Zc,进而计算临界高度以下的主动土压力。

被动土压力计算 被动土压力强度?无粘性土粘性土

计算土压力时应注意 ?不同深度处土的内聚力C不是一个常数,它与土的上覆荷重有关,一般随深度的加大而增大,对于暴露时间长的基坑,土的内聚力可由于土体含水量的变化和氧化等因素的影响而减小甚至消失。 ?、C 值是计算侧向土压力的主要参数,但在工程桩打设前后的、C值是不同的。在粘性土中打设工程桩时,产生挤土现象,孔隙水压力急剧升高, 对、C值产生影响。另外,降低地下水位也会使、C值产生变化。 水压力 作用于支护结构上的水压力一般按静水压力考虑。有稳态渗流时按三角形分布计算。 在有残余水压力时, 水压力按梯形分布。

轴系结构设计实验指导与参考答案图

轴系结构的分析与测绘 一、实验目的 1.通过拼装和测绘,熟悉并掌握轴的结构设计以及轴承组合设计 的基本要求和方法。 2.了解并掌握轴系结构的基本形式,熟悉轴、轴承和轴上零件的结构、功能和工艺要求。掌握轴系零、部件的定位和固定、装配与调整、润滑与密封等方面的原理和方法。 二、实验内容 1. 根据选定的轴系结构设计实验方案,按照预先画出的装配草图进行轴系结构拼装。检查原设计是否合理,并对不合理的结构进行修改。 2.测量一种轴系各零、部件的结构尺寸,并绘出轴系结构的装配图,

标注必要的尺寸及配合,并列出标题栏及明细表。 三、实验设备和用具 1.模块化轴段(可组装成不同结构形状的阶梯轴)。 2. 轴上零件:齿轮、蜗杆、带轮、联轴器、轴承、轴承座、端盖、套杯、套筒、圆螺母、轴端挡板、止动垫圈、轴用弹性挡圈、孔用弹性挡圈、螺钉、螺母等。 3. 工具:活搬手、胀钳、内、外卡钳、钢板尺、游标卡尺等。 四、实验步骤 1. 利用模块化轴段组装阶梯轴,该轴应与装配草图中轴的结构尺寸一致或尽可能相近。 2. 根据轴系结构设计装配草图,选择相应的零件实物,按装配工艺要求顺序装到轴上,完成轴系结构设计。 3. 检查轴系结构设计是否合理,并对不合理的结构进行修改。合理的

轴系结构应满足下述要求: 1)轴上零件装拆方便,轴的加工工艺性良好。 2)轴上零件固定(轴向周向)可靠。 4.轴系测绘 1)测绘各轴段的直径、长度及轴上零件的相关尺寸。 2)查手册确定滚动轴承、螺纹联接件、键、密封件等有关标准件的尺寸。 5. 绘制轴系结构装配图 1) 测量出的各主要零件的尺寸,对照轴系实物绘出轴系结构装配图。 2)图幅和比例要求适当(一般按1:1),要求结构清楚合理,装配关系正确,符合机械制图的规定。 3)在图上标注必要的尺寸,主要有:两支承间的跨距,主要零件的配合尺寸等。 4)对各零件进行编号。并填写标题栏及明细表(标题栏及明细表可参阅配套教材《机械设计课程设计》)。

悬臂梁桥分析与设计说明

悬臂梁桥分析与设计说明 1. 概要 本桥为30+50+30三跨混凝土悬臂梁桥,其中中跨为挂孔结构,挂孔梁为普通钢筋混凝土梁,梁长16m。墩为钢筋混凝土双柱桥墩,墩高15m。 (注:本例题并非实际工程,仅作为软件功能介绍的参考例题。) 在简化过程中省略了边跨合龙段模拟、成桥温度荷载模拟。 通过本例题重点介绍MIDAS/Civil软件的施工阶段分析功能、钢束预应力荷载的输入方法、移动荷载的输入方法和查看分析结果的方法等。 阶段01--双悬臂 阶段02--最大悬臂 阶段03--边跨满堂施工 阶段04--挂梁 阶段05--收缩徐变 图1. 分析模型 桥梁概况及一般截面 桥梁形式:三跨混凝土悬臂梁

桥梁长度:L = 30+50+30 = 110.0 m,其中中跨为挂孔结构,挂梁长16m,为钢筋混凝土结构 施工方法:悬臂施工T构部分,满堂支架施工边跨现浇段,边跨合龙时,中跨体系转换为简支单悬臂结构,拆除施工支架,然后施工中跨挂梁, 挂梁与中跨主梁铰接,施工桥面铺装,并考虑3650天收缩徐变。 预应力布置形式:T构部分配置顶板预应力,边跨配置底板预应力 截面形式如下 图2. 跨中箱梁截面 图3. 墩顶箱梁截面 梁桥分析与设计的一般步骤 1. 定义材料和截面 2. 建立结构模型 3. 输入非预应力钢筋 4. 输入荷载 ①.恒荷载 ②.钢束特性和形状 ③.钢束预应力荷载 5. 定义施工阶段 6. 输入移动荷载数据 ①.选择移动荷载规范 ②.定义车道 ③.定义车辆 ④.移动荷载工况 7. 运行结构分析 8. 查看分析结果

使用的材料 ?混凝土 主梁采用JTG04(RC)规范的C50混凝土,桥墩采用JTG04(RC)规范的C40混凝土 ?钢材 采用JTG04(S)规范,在数据库中选Strand1860 荷载 ?恒荷载 自重,在程序中按自重输入,由程序自动计算 ?预应力 钢束(φ15.2 mm×31) 截面面积: Au = 4340 mm2 孔道直径: 130 mm 钢筋松弛系数(开),选择JTG04和0.3(低松弛) 超张拉(开) 预应力钢筋抗拉强度标准值(fpk):1860N/mm^2 预应力钢筋与管道壁的摩擦系数:0.25 管道每米局部偏差对摩擦的影响系数:1.5e-006(1/mm) 锚具变形、钢筋回缩和接缝压缩值: 开始点:6mm 结束点:6mm 张拉力:抗拉强度标准值的75%,张拉控制应力1395MPa ?徐变和收缩 条件 水泥种类系数(Bsc): 5 (5代表普通硅酸盐水泥) 28天龄期混凝土立方体抗压强度标准值,即标号强度(fcu,f):50N/mm^2 t5天 长期荷载作用时混凝土的材龄:= o t3天 混凝土与大气接触时的材龄:= s 相对湿度: % RH = 70 构件理论厚度:程序计算 适用规范:中国规范(JTG D62-2004) 徐变系数: 程序计算 混凝土收缩变形率: 程序计算 ?移动荷载 适用规范:公路工程技术标准(JTG B01-2003) 荷载种类:公路I级,车道荷载,即CH-CD

骨传导耳机

目录 一、骨传导耳机原理 (1) 二、骨传导耳机VS普通耳机 (2) 三、骨传导耳机产品 (3) AfterShokz(韶音)骨传导耳机Bluez2 (3) 微软骨传导耳机 (3) Damson公司骨传导耳机HeadBones (4) 摩托罗拉蓝牙骨传导耳机Moto Hint (4) Jawbone骨传导蓝牙耳机Jawbone Icon HD和ERA shadowbox (5) 松下骨传导耳机RP-BTGS10 (5) WALSON骨传导耳机E-free (6) EVERGREEN骨传导耳机DN-68611 (6) 上海傲石电子智能全骨导眼镜AOS Glasses (7) 一、骨传导耳机原理 骨传导原理:声波通过头骨振动直接传至内耳而不经过鼓膜。 利用这种骨传导原理制造的耳机,就称之为骨传导耳机。 骨传导技术主要应用在军警专业耳机、助听器、运动耳机等领域。

二、骨传导耳机VS普通耳机 优点: ●具有降噪的功能,还能保护听力,防止受损,使用很长时间,也不会引起不适。 ●因为无需遮挡耳道,使用者在听到耳机声音的同时,依然可以完整的听到周围环境音, 这有利于安全。比如在公路上跑步或者骑车,可以更早的知道后方是否有车。 ●无需塞到耳廓或是耳道中,没有了卫生问题的困扰。 缺点: ●功能型耳机,无隔音效果,音质不如普通耳机。 ●由于骨传导耳机的发声单元必须紧贴头部皮肤,如果耳机的框架把耳机箍得很紧,难免 会有“夹头”的感觉。 ●由于骨头的密度远比空气的大,所以在传导的过程中需要消耗大量的能量。 ●另外骨传导耳机最大的问题是再低频或高频中常常会有谐振峰,这将极大的影响音质,

悬臂支护结构设计界面参数表

悬臂支护结构设计界面参数表 一、基本参数 支护桩材料 钢筋混凝土桩 支护桩间距b a (m) 0.1 支护桩嵌入土深度l d (m) 15 基坑开挖深度h(m) 5 基坑外侧水位深度h a (m) 0.5 基坑内侧水位深度h p (m) 6 支护桩在坑底处的水平位移量υ(mm) 12 地下水位面至坑底的土层厚度 D 1(m) 3 基坑内外的水头差△h(m) 6 二、土层参数 第1土层类型 填土 第1土厚度h(m) 2.15 第1土重度γ(kN/m 3 ) 19 第1粘聚力c(kPa) 10 第1内摩擦角φ(°) 8 第1饱和土重度γsat (kN/m 3 ) 20 第1水土分算 否 第2土层类型 淤泥 第2土厚度h(m) 3.9 第2土重度γ(kN/m 3 ) 16.1 第2粘聚力c(kPa) 10.1 第2内摩擦角φ(°) 7.9 第2饱和土重度γsat (kN/m 3 ) 22 第2水土分算 否 第3土层类型 淤泥质二 第3土厚度h(m) 6.4 第3土重度γ(kN/m 3 ) 17.6 第3粘聚力c(kPa) 11.8 第3内摩擦角φ(°) 9.2 第3饱和土重度γsat (kN/m 3 ) 22 第3水土分算 否 第4土层类型 粘性土 第4土厚度h(m) 1.85 第4土重度γ(kN/m 3 ) 19 第4粘聚力c(kPa) 30.4 第4内摩擦角φ(°) 14.4 第4饱和土重度γsat (kN/m 3 ) 22 第4水土分算 否 第5土层类型 粘性土 第5土厚度h(m) 5.05 第5土重度γ(kN/m 3 ) 18.8 第5粘聚力c(kPa) 25.1

悬臂梁结构设计

骨干杯 斜拉式悬臂梁设计报告 一、题目 设计域如图,固定端和整个结构宽度不限制,允许在在固定端开孔;材料体积用量≤35ml; 载荷为圆形(直径D=15 mm)均布载荷,方向为垂直向下;

二、设计概述 根据大赛题目的要求,为达到悬臂梁承重最大的目的,在保证材料体积用量在规定范围内,我们采取了简单而又稳定的楔形结构,设计思路来源于生活中常见的斜拉桥。 三、设计方案 ① 斜撑式 设计思路来源于常见的支撑结构 ② 斜拉式 设计来源于斜拉桥经过讨论,与计算分析,最终确定选择斜拉式,并用CAD绘制了初步工程图

CATIA绘制出四种结构三维图

应力校核 ABAQUS分析对比分析多种结构

S, MiSeS (Avg: 75%) ÷1.215e+08 + 1.114e+08 + 1.012e+08 +9.111e+07 +8.099e+07 +7.087e+07 +6.074e+07 +5.062θ+07 +4.050e+07 +3.0388+07 +2.026e+07 + 1.014e÷07 + 1.519e+04 ÷1.112e+08 + 1.019e+08 ÷9.269e÷07 +8.344e -t07 +7.418e÷07 +6.493e+07 +5.568e+07 +4.643θ+07 +3.717e+07 +2.792e+07 + 1.867e+07 +9.418e+06 + 1.654e+05 ODB: n7.odb AbaqUS/Standard 6.13-1 Mon OCt 12 20:56:42 GMT+08:OO 2015 Step: SteP-I InCrement 1: SteP Time ■ 1.000 Primary Var: S, MiSeS ∩αfnrmpri ?∕ΛΓ? I I ∏pf∩rn∩Λtinn Q ΓΛI P PΛctnr ?亠A 9QP P -∩1 S, MiSeS (Avg: 75%) Z PrImary Var: S, MlSeS DefOrmed Var: U DefOrmatlOn SCale Factor: +6.60Ie-OI S B Z

骨传导、骨传导原理与未来蓝牙耳机发展趋势

骨传导、骨传导原理与未来蓝牙耳机发展趋势 的琴声,从而继续进行创作的.. 骨传导原理 听觉中枢),我们或多或少还都有些感性认识,但是对骨传导,则有些不知所云了。也许举个例子你就明白了:用双手捂住耳朵,自言自语,无论多么小的声音,我们都能听见自己说什么,这就是骨传导作用的结果。 骨传导的实例 请你想一想,我们挠脑袋时,吃饼干时,刷牙时所发出的各种声音是怎样传进大脑的?有没有感觉到这些声音不是通过耳朵而是通过其它途径直接传入大脑的?对,这就是通过骨传导原理所听到的声音。据说,生活在海洋里的蛇

过指挥棒把钢琴所发出的声音转入听觉器官,这些都是骨传导原理。我们已经在无意识当中亲身体验着它们。 骨传导的方式 耳的病变使声波传递受阻时,则可以利用骨传导来弥补听力。如骨传导式助听器、骨传导式耳机等,就是利用骨传导来感受声音的。 例如用两个棉花球塞住耳朵。取一根音叉,用橡皮锤敲击多次,使音叉振动,但它的振动声很轻,这时你的耳朵 声音马上消失。 骨科概念 骨传导:是指来自植床周边的宿主骨表面和骨髓中的定向成骨前体细胞通过增殖伸延长入植入骨及其腔隙的表面,产生成骨细胞形成新骨。 传给听觉神经的,加上大脑的加工处理后形成的另一种听觉。 也就是说,前者通过空气传播的方式,让别人听到声音;后者通过颅骨传播,让自己听到声音。 为什么两种传播方式会有那么大的差别?其实这是因为通过空气传播的声音受环境影响,其能量会大量衰减,导致音色发生很大的变化,而且在声音到达其他人的内耳时,还要通过外耳,耳膜,中耳,这个过程也会对声音的能量和音色效果产生影响。通过颅骨传播的声音则是经过喉管与耳朵之间的骨头直接到达内耳的,声音的能量和音色的衰减、变化自然相对较小。因此,所引起的听觉不太一样~ 录音呢则就跟别人听到你的声音一样,其实别人很习惯你这样的声音,而你又因为长期习惯于听从通过颅骨传播途径传来的自己的声音,所以别人不会觉得你的语音的音色有什么变化,而是你自己觉得难听和陌生~

悬臂钢筋混凝土排桩支护结构设计计算书

悬臂支护结构设计计算书计算依据: 1、《建筑基坑支护技术规程》JGJ120-2012 2、《建筑施工计算手册》江正荣编著 3、《实用土木工程手册》第三版杨文渊编著 4、《施工现场设施安全设计计算手册》谢建民编著 5、《土力学与地基基础》 一、参数信息 1、基本参数

条形局部荷载 3.5 4 4 / 0 矩形局部荷载 4 5 5 6 2 结构重要性系数γ0 1 综合分项系数γF 1.25 嵌固稳定安全系数K e 1.2 圆弧滑动稳定安全系数K s 1.3 突涌稳定安全系数K h 1.1 土压力分布示意图

附加荷载布置图 1、主动土压力计算 1)主动土压力系数 K a1=tan2(45°- φ1/2)= tan2(45-12/2)=0.656; K a2=tan2(45°- φ2/2)= tan2(45-12/2)=0.656; K a3=tan2(45°- φ3/2)= tan2(45-18/2)=0.528; K a4=tan2(45°- φ4/2)= tan2(45-18/2)=0.528; K a5=tan2(45°- φ5/2)= tan2(45-18/2)=0.528; K a6=tan2(45°- φ6/2)= tan2(45-18/2)=0.528; 2)土压力、地下水产生的水平荷载 第1层土:0-0.8m H1'=[∑γ0h0+∑q1]/γi=[0+3]/19=0.158m P ak1上=γ1H1'K a1-2c1K a10.5=19×0.158×0.656-2×10×0.6560.5=-14.229kN/m2 P ak1下=γ1(h1+H1')K a1-2c1K a10.5=19×(0.8+0.158)×0.656-2×10×0.6560.5=-4.258kN/m2 第2层土:0.8-2m H2'=[∑γ1h1+∑q1]/γsati=[15.2+3]/20=0.91m P ak2上=γsat2H2'K a2-2c2K a20.5=20×0.91×0.656-2×10×0.6560.5=-4.26kN/m2 P ak2下=γsat2(h2+H2')K a2-2c2K a20.5=20×(1.2+0.91)×0.656-2×10×0.6560.5=11.484kN/m2 第3层土:2-4m

高速轴轴系部件设计

机械设计作业设计计算说明书 题目:设计齿轮传动高速轴的轴系部件系别: 班号: 姓名: 日期:2014.11.29

机械设计作业任务书 题目:设计带式运输机中的齿轮传动 设计原始数据: 带式运输机传动方案如图1所示。 原始数据见表1 表1 带式运输机设计中的已知数据 电动机工作功率Pd (kW)电动机满载转 速 (/min) m n r 工作机的转 速 (/min) w n r 第一 级传 动比 1 i 轴承中 心高H (mm) 最 短 工 作 年 工作环境 3 960 90 1.8 150 1班室外、有尘 图1 带式运输机运动方案及各轴名称

目录 1 轴材料的选择 (3) 2 初算轴径 (3) 3 结构设计 (3) 3.1 确定轴的轴向固定方式 (4) 3.2 确定轴承类型及其润滑和密封方式 (4) 3.3 确定各段轴的径向尺寸 (4) 3.4 确定轴承端盖的尺寸 (5) 3.5 确定各段轴的轴向尺寸 (5) 3.6 确定各段轴的跨距 (6) 3.7 确定箱体的尺寸 (6) 3.8 确定键的尺寸 (7) 4 轴的受力分析 (7) 4.1 画出轴的受力简图 (7) 4.2 计算轴承的支承反力 (7) 4.3 画出轴的弯矩图 (7) 4.4 画出轴的转矩图 (9) 5 校核轴的强度 (9) 5.1 按弯扭合成强度计算 (9) 5.2 轴的安全系数校核计算 (9) 6 校核键连接的强度 (11) 7 轴承寿命计算 (11) 8 绘制高速轴装配图 (12) 9参考文献 (12)

1 轴材料的选择 因传递功率不大,且对质量及结构尺寸无特殊要求,故需选用常用材料45钢,并调质处理。 2 初算轴径 由V 带传动的设计计算和齿轮传动的设计计算可得各轴的运动参数和动力参数见表2。 表2 各轴的运动及动力参数 高速轴作为转轴,这里按照扭转强度初算轴径 3n P C d ?≥ 式中: P ——高速轴(即I 轴)传递的功率,kW ,由表2可知,kW P 88.2=; n ——高速轴的转速,min /r ,由表2可知,min /533r n =; C ——由许用扭转剪应力确定的系数,查参考文献[1]表10.2得106~118=C ,取112=C 。 由上述数据计算轴径得 mm d 7.19533 88.21123=?≥ 由于轴上有一个键槽,因此,轴径需要增大5%,即 mm d 7.207.1905.1min =?= 根据GB/T 2822—200520a R 系列圆整得mm d 22min =。 3 结构设计 轴名 功率P/ kW 转矩T/ (N ·m) 转速n/ (r/min) 传动比i 效率η 电机轴 3 29.8 960 1.8 0.96 Ⅰ轴 2.88 51.49 533 5.9 0.96 Ⅱ轴 2.77 291.73 90 1 0.98 卷筒轴 2.71 285.92 90

骨传导耳机有什么危害

骨传导耳机有什么危害 今天来介绍一种‘耳机’上的黑科技,如果你觉得是蓝牙耳机,那就大错特错了,这就是一个最近特别火的-骨传导耳机。 是不是听起来很陌生,简单的介绍就是通过骨头传播声音,避免了戴耳机的不适感,也避免了戴耳机运动出汗的卫生和健康问题。同时也保证了危险场景下耳机使用的可能性,打开双耳,使用耳机的同时也能注意到周围环境的变化。那么这么神奇的耳机有没有危害呢。 ★骨传导耳机 骨传导是一种声音传导方式,即将声音转化为不同频率的机械振动,通过人的颅骨、骨迷路、内耳淋巴液传递、螺旋器、听神经、听觉中枢来传递声波。相对于通过振膜产生声波的经典声音传导方式,骨传导省去了许多声波传递的步骤,能在嘈杂的环境中实现清晰的声音还原,而且声波也不会因为在空气中扩散而影响到他人。骨传导技术分为骨传导扬声器技术和骨传导麦克风技术:

★(1)骨传导扬声器技术用于受话,受话即听取声音。气导扬声器是把电信号转化为声波(振动信号)传至听神经。而骨传导扬声器则是电信号转化的声波(振动信号)直接通过骨头传至听神经。声波(振动信号)的传递介质不同。 ★(2)骨传导麦克风技术用于送话,送话即收集声音。气导送话是声波通过空气传至麦克风,而骨传导送话则直接通过骨头传递。 利用这些骨传导技术制造的耳机,称之为骨传导耳机,也被称作骨导耳机、骨感耳机、骨传耳机和骨传感耳机。 ★分类 骨传导耳机分为骨传导扬声器技术耳机、骨传导麦克风技术耳机(一)骨传导扬声器技术耳机:

利用骨传导技术受话,紧贴骨头,声波直接通过骨头传至听神经。因此可以开放双耳,不伤害鼓膜。军民领域,一般都是利用面部颊骨直接传导声音。 ★(二)骨传导麦克风技术耳机: 利用骨传导技术收集声音,声波通过骨头传至麦克风。民用领域中,一般都是采用骨传导技术降噪。 由于军事场景需要,有时不能大声讲话,而声音在骨头传导的损失率远远低于空气传导,而骨传导麦克风技术耳机主要是利用喉咙骨头传导。由于距离近,损耗低。士兵只需要发出很小的声音就能准确传递想表达的指令。 ★总结 其实骨传导耳机对耳膜还是听力都没有太大的影响,只要是

2016基坑支护设计计算书模板(1)讲解

第一章工程概要 1.1 工程概况 工程概况,附上基坑周边环境平面图 1.2场区工程地质条件 附上典型的地质剖面图 1.3 水文地质条件 1.4 主要设计内容 分析评价了场地的岩土工程条件。 根据场地的工程地质条件、水文地质条件,充分考虑到周边地层条件,选择技术上可行,经济上合理,并且具有整体性好、水平位移小,同时便于基坑开挖及后续施工的可靠支护措施,通过分析论证选择合适的基坑支护方案。 对基坑支护结构进行了具体设计计算,其中包括土压力计算、钻孔灌注桩的设计计算及锚杆的设计计算、稳定性验算(根据具体选择的支护方式,按照规范的要求进行设计,计算,和验算)。当不能满足稳定性要求的时候,需要重新设计计算或者做必要的处理,直至达到稳定性的安全要求。 选择经济、实效、合理的基坑降水与止水方案。 基坑支护工程的施工组织设计与工程监测设计。 1.5 设计依据 (1)甲方提供资料,岩土工程勘察报告(列出详细的清单) (2)现行规范、标准、图集等(按照规定的格式列出详细的清单,必须是现行规范)

第二章基坑支护方案设计 2.1 设计原则(摘自规范) 2.1.1 基坑支护结构应采用以分项系数表示的极限状态设计表达式进行设计 2.1.2 基坑支护结构极限状态可分为下列两类: a. 承载能力极限状态:对应于支护结构达到最大承载能力或土体失稳、过大变形导致支护结构或基坑周边环境破坏; b.正常使用极限状态:对应于支护结构的变形已妨碍地下结构施工或影响基坑周边环境的正常使用功能。 2.1.3 基坑支护结构设计应根据表3选用相应的侧壁安全等级及重要性系数。 表2.1 基坑侧壁安全等级及重要性系数 安全等级破坏后果 1.10 一级支护结构破坏,土体失稳或过大变形对基坑周边环境及地 下结构施工影响很严重 1.00 二级支护结构破坏,土体失稳或过大变形对基坑周边环境及地 下结构施工影响一般 0.90 三级支护结构破坏,土体失稳或过大变形对基坑周边环境及地 下结构施工影响不严重 注:有特殊要求的建筑基坑侧壁安全等级可根据具体情况另行决定 2.1.4 支护结构设计应考虑其结构水平变形、地下水的变化对周边环境的水平与竖向变形的影响,对于安全等级为一级和对周边环境变形有限定要求的二级建筑基坑侧壁,应根据周边环境的重要性、对变形的适应能力及土的性质等因素确定支护结构的水平变形限值。 2.1.5 当场地内有地下水时,应根据场地及周边区域的工程地质条件、水文地质条件、周边环境情况和支护结构与基础型式等因素,确定地下水控制方法。当场地周围有地表水汇流、排泻或地下水管渗漏时,应对基坑采取保护措施。 2.1.6 根据承载能力极限状态和正常使用极限状态的设计要求,基坑支护应按下列规定进行计算和验算:

骨传导耳机简介

骨传导耳机简介 骨传导是一种声音传导方式,即将声音转化为不同频率的机械振动,通过人的颅骨、骨迷路、内耳淋巴液传递、螺旋器、听神经、听觉中枢来传递声波。 相对于通过振膜产生声波的经典声音传导方式,骨传导省去了许多声波传递的步骤,能在嘈杂的环境中实现清晰的声音还原,而且声波也不会因为在空气中扩散而影响到他人。骨传导技术分为骨传导扬声器技术和骨传导麦克风技术:(1)骨传导扬声器技术用于受话,受话即听取声音。气导扬声器是把电信号转化为声波(振动信号)传至听神经。而骨传导扬声器则是电信号转化的声波(振动信号)直接通过骨头传至听神经。声波(振动信号)的传递介质不同。 (2)骨传导麦克风技术用于送话,送话即收集声音。气导送话是声波通过空气传至麦克风,而骨传导送话则直接通过骨头传递。 利用这些骨传导技术制造的耳机,称之为骨传导耳机,也被称作骨导耳机、骨感 耳机、骨传耳机和骨传感耳机。 骨传导耳机优点 1、使用更安全 相比普通耳机,骨传导耳机在使用的时候是放在耳朵前部的颧骨上,直接将声音通过颅骨传导到内耳,双耳一直处于开放状态,不会影响任何外界的环境声音进入耳

朵,使用者甚至能在听音乐的同时与身边的朋友聊天,因此,在户外场合、公交地铁上、以及路上漫步时都可以听到外界的声音,从而骨传导耳机能提供更高的安全系数。 2、不会造成闷热现象 不论是头戴式耳机还是入耳或耳塞式耳机,都会在使用时捂住我们的耳朵,也就直接造成闷热现象,所以子凡夏天是拒绝使用耳机的,那闷热潮湿的滋味儿别提有多难受了,而入耳式耳机当然要塞入耳廓或者耳道,而这就会造成细菌在耳朵内部的滋生,尤其是耳道被堵后内部会变得潮湿发热,细菌的滋生也就更为疯狂,这也是现在很多年轻人耳道发炎的重要原因之一。然而骨传导耳机呢?因为基本不会接触到耳朵, 当然也就没有了这些问题了。 骨传导耳机缺点 骨传导耳机真正的释放了双耳,在带来一些比传统耳机优势的同时,也将失去传统耳机的“隔音”或降噪的效果,所以在极其嘈杂的环境下,骨传导耳机也就将变得很 无力了,打电话听音乐就放一边去吧! 入耳式耳机 入耳式耳机,又名耳道式耳机、入耳式耳塞、或者入耳式监听器(即IEM的英文全称:In-Ear-Monitor),是一种用在人体听觉器官内部的耳机,根据其设计,会在使用时密封住使用者的耳道。耳机上面写着 L和R L是left表示左声道R是right表示 右声道。

第三章基坑支护结构设计计算

第三章基坑支护结构设计计算 3.1土压力计算 为计算简便,土压力计算采用简化的兰肯主动土压力计算公式,即采用加权平均之后的内摩擦角、粘聚力值进行计算。 3.1.1加权平均值计算 各层土的物理指标如下表所示: 基坑开挖的深度为16.3m ,即到粉土夹粉砂层为止。 (1)土层加权平均重度为: )/(68.1797 .052.111.95.115.105.219 97.09.1752.11711.98.175.15.1815.14.1905.230 m KN h h i i i =+++++?+?+?+?+?+?= = ∑∑γγ 土层物理参数表 土层序号及名称 土层厚度L (m ) 天然含 水量 W(%) 液限指数IL 塑性指数Ip 天然重 度 粘聚力C(kpa) 内摩擦角φ(°) ①1填土 2.05 0.75 11.8 19.4 16.5 19.6 ①2黏土 1.15 36 0.68 19.5 18.5 20.5 13.1 ②1黏土 1.5 39.9 0.98 18.7 17.8 15.3 11 ②2淤泥质黏土 9.11 52.3 1.55 19.4 17 11.5 8.4 ②3淤泥质粉质黏 土 1.52 41.6 0.45 14.6 17.9 13.5 10.2 ③1粉土夹粉砂 3.28 28.9 1.16 9.3 19 11.6 20 ③2粉质黏土夹粉 砂 10.04 31.8 1.16 11.4 18.8 12.2 15.2 ④1淤泥质粉质黏 土 5.3 38.2 1.28 13.4 18.2 13.2 12.1 ④2黏土 7.18 36.8 0.99 17.6 18.2 17.2 12.7 ⑥2粉质黏土 6.25 34.2 0.84 14.4 18.6 20.7 14.5 ⑥4粉土 2.04 25.4 0.98 9.6 19.4 12.3 26.6 ⑦1粉质黏土 2.93 27 0.56 13.6 19.6 31.2 18.3 注:表中仅列出本车站有分布布的底层。

悬臂梁结构分析

悬臂梁结构分析 摘要:以某型自升式钻井平台的悬臂梁为例建立相应结构分析模型,给出了分析的载荷及边界条件,并对不同载荷条件下的计算结果进行了分析和评估,可作为此类结构设计的参考。 关键词:悬臂梁,结构分析. Abstract: to a certain type of jack-up drilling platform as an example of the cantilever beam establish corresponding structure analysis model, and gives out the analysis of load and boundary conditions, and under the conditions of different load calculation results are analyzed and evaluated, and can be used for this kind of structure design of the reference. Keywords: cantilever beam and structure analysis. 正文: 1 引言 陆上可利用的资源和能源越来越少,许多国家都把开发利用海洋资源和能源作为国家战略[1]。经过近几十年的高速发展,我国的能源问题日益严峻。我国的海域辽阔,海上资源的开发潜力巨大,是未来我国能源可持续发展的重点[2~4]。 海上作业平台是进行海上资源开发的重要装备,目前我国在海上钻井平台的开发设计方面与技术先进国家尚有较大差距。移动式海上平台在我国海上油气勘探开发中发挥着重要作用[5],开展海上平台关键技术研究对保障我国能源安全和推动我国装备制造业的发展具有重要意义。 自升式钻井平台属于海上移动式平台,适宜于近浅海作业,是目前被广泛使用的海上钻井装备之一。本文以某型自升式钻井平台的悬臂梁为例,对其进行结构分析和强度评估,为此类结构的设计提供参考方法。 2 悬臂梁分析模型 大型通用有限元程序MSC.Patran/Nastran被广泛应用于船舶及海洋工程领域,并且通过多数主要船级社的认可,本文采用该程序对悬臂梁进行建模和结构分析。

骨传导耳机是一种新的耳机

骨传导耳机是一种新的耳机,它是通过耳机对头骨的振动传递声音到大脑,这样一来就保护了耳膜。因此,它是一种环保耳机,特别适合儿童使用,以及长时间使用耳机的人群,特别是青少年。协助由于残疾或高龄而丧失听力的人士接听电话,并且帮助没有听力障碍的用户在嘈杂的环境下轻松接听电话。 ◆骨传导问答 一、什么是骨传导? 它是一种以人体颅骨作为声源体的传播媒介来实现声音的传导方式。 声音传播有两种方式,一种是空气传导,简称气导,就是利用空气振动的原理,声音传到耳膜,再通过耳膜传到内部耳神经。人们之间的正常交流,大部分是利用气导的原理,将一个人说话的声音传到其他人的耳朵里。目前市场上大多数的耳机与助听器都是利用空气振动的原理做成的产品。 声音传播的另外一种方式就是骨传导,简称骨导,英文名称是BONE CONDUCTION。它利用骨头振动的原理,将声音传到自己的头骨上,通过头骨,直接传送到内部耳神经,不需要耳膜的振动。 对于一个听力正常的人来说,当说话的时候,自己听到的声音,其实是气导和骨导两种声音传播方式的叠加的结果。因为骨导的速度比气导的速度快,根据说话的音量大小,最终听到的骨导与气导的声音比例也不同。 以下2个生活中的现象可以让您更加直观理解骨传导的声音传播原理: 1、听自己的录音带好似不像是自己的声音? 利用高保真的录音设备,录下一个人的说话或者唱歌的声音,最后再播放出来,很多人会感觉这个声音不 太像自己的声音,就是因为,录音设备录下来的只是自己的气导音,而平时自己说话时,自己听到的是骨 导与气导两种途径传过来的声音。当你用大音量边听音乐边唱歌的时候,不通过耳朵也会听见自己的歌 声,这也是骨传导声音的原理。 2、你知道你是如何听到自己的咬牙、挠头、刷牙声的? 一个人嘴巴闭上,上下牙齿轻轻咬动,别人听不到任何声音,但自己能够听到自己的牙齿声音,就完全是 骨传导传到内耳的声音。另外,我们在挠头、刷牙、吃脆饼干的时候,听到的这些声音都是通过骨传导传入大脑的。

悬臂支护结构设计计算

悬臂支护结构设计计算书 计算依据: 1、《建筑基坑支护技术规程》JGJ120-2012 2、《建筑施工计算手册》江正荣编著 3、《实用土木工程手册》第三版杨文渊编著 4、《施工现场设施安全设计计算手册》谢建民编著 5、《土力学与地基基础》 一、参数信息 1、基本参数 2、土层参数 土层类型 土厚度h(m) 土重度γ(kN/m 3 ) 粘聚力c(kPa) 内摩擦角υ(°) 饱和土重度 γsat (kN/m 3 ) 水土分算 填土 1.5 18 10 15 20 否 粉土 2 19 16 18 25 是 圆砾 5 21 16 18 22 否 风化岩 10 21 30 35 22 否 3、荷载参数

4、计算系数 结构重要性系数γ0 1 综合分项系数γF 1.25 嵌固稳定安全系数K e 1.2 圆弧滑动稳定安全系数K s 1.3 二、土压力计算 土压力分布示意图 附加荷载布置图 1、主动土压力计算

1)主动土压力系数 K a1=tan2(45°- υ1/2)= tan2(45-15/2)=0.589; K a2=tan2(45°- υ2/2)= tan2(45-18/2)=0.528; K a3=tan2(45°- υ3/2)= tan2(45-18/2)=0.528; K a4=tan2(45°- υ4/2)= tan2(45-18/2)=0.528; K a5=tan2(45°- υ5/2)= tan2(45-18/2)=0.528; 2)土压力、地下水产生的水平荷载 第1层土:0-1.5m H1'=[∑γ0h0+∑q1]/γi=[0+3]/18=0.167m P ak1上=γ1H1'K a1-2c1K a10.5=18×0.167×0.589-2×10×0.5890.5=-13.579kN/m2 P ak1下=γ1(h1+H1')K a1-2c1K a10.5=18×(1.5+0.167)×0.589-2×10×0.5890.5=2.324kN/m2 第2层土:1.5-3.5m H2'=[∑γ1h1+∑q1]/γi=[27+3]/19=1.579m P ak2上=γ2H2'K a2-2c2K a20.5=19×1.579×0.528-2×16×0.5280.5=-7.412kN/m2 P ak2下=γ2(h2+H2')K a2-2c2K a20.5=19×(2+1.579)×0.528-2×16×0.5280.5=12.652kN/m2 第3层土:3.5-4m H3'=[∑γ2h2+∑q1]/γsati=[65+3]/22=3.091m P ak3上=γsat3H3'K a3-2c3K a30.5=22×3.091×0.528-2×16×0.5280.5=12.653kN/m2 P ak3下=γsat3(h3+H3')K a3-2c3K a30.5=22×(0.5+3.091)×0.528-2×16×0.5280.5=18.461kN/m2 第4层土:4-7m H4'=[∑γ3h3+∑q1+∑q1b1/(b1+2a1)]/γsati=[76+3+1.167]/22=3.644m P ak4上=γsat4H4'K a4-2c4K a40.5=22×3.644×0.528-2×16×0.5280.5=19.076kN/m2 P ak4下=γsat4(h4+H4')K a4-2c4K a40.5=22×(3+3.644)×0.528-2×16×0.5280.5=53.924kN/m2 第5层土:7-8m H5'=[∑γ4h4+∑q1+∑q1b1/(b1+2a1)+∑q1b1l1/((b1+2a1)(l1+2a1)]/γsati=[142+3+1.167+0.5]/22=6.66 7m P ak5上=γsat5H5'K a5-2c5K a50.5=22×6.667×0.528-2×16×0.5280.5=54.192kN/m2 P ak5下=γsat5(h5+H5')K a5-2c5K a50.5=22×(1+6.667)×0.528-2×16×0.5280.5=65.808kN/m2

相关文档
最新文档