线性规划方法总结(自)

线性规划方法总结(自)
线性规划方法总结(自)

.【方法总结】

1.最优解问题

如果可行域是一个多边形,那么目标函数一般在某顶点处取得最大值或最小值,最优解就是该点的坐标,到底哪个顶点为最优解,只要将目标函数的直线平行移动,最先通过或最后通过的顶点便是.特别地,当表示线性目标函数的直线与可行域的某条边平行时(k=k1),其最优解可能有无数个.

【方法总结】常见的目标函数有

(1)截距型:形如z=ax+by.

求这类目标函数的最值常将函数z=ax+by转化为直线的斜截式:y=-abx+zb,通过求直线的截距zb的最值间接求出z的最值.

(2)距离型:形如z=(x-a)2+(y-b)2.

(3)斜率型:形如z=y-bx-a.

【方法总结】解答线性规划应用题的一般步骤可归纳为:

(1)审题——仔细阅读,明确有哪些限制条件,目标函数是什么?

(2)转化——设元.写出约束条件和目标函数;

(3)求解——关键是明确目标函数所表示的直线与可行域边界直线斜率间的关系;

(4)作答——就应用题提出的问题作出回答.

体现考纲中要求会从实际问题中抽象出二元线性规划.来年需要注意简单的线性规划求最值问题.

三.规律总结

一种方法

确定二元一次不等式表示的平面区域时,经常采用“直线定界,特殊点定域”的方法.

(1)直线定界,即若不等式不含等号,则应把直线画成虚线;若不等式含有等号,把直线画成实线.

(2)特殊点定域,即在直线Ax+By+C=0的某一侧取一个特殊点(x0,y0)作为测

试点代入不等式检验,若满足不等式,则表示的就是包括该点的这一侧,否则就表示直线的另一侧.特别地,当C ≠0时,常把原点作为测试点;当C =0时,常选点(1,0)或者(0,1)作为测试点.

一个步骤

利用线性规划求最值,一般用图解法求解,其步骤是:

(1)在平面直角坐标系内作出可行域;

(2)考虑目标函数的几何意义,将目标函数进行变形;

(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解;

(4)求最值:将最优解代入目标函数即可求出最大值或最小值.

两个防范

(1)画出平面区域.避免失误的重要方法就是首先使二元一次不等式标准化.

(2)求二元一次函数z =ax +by(ab ≠0)的最值,将函数z =ax +by 转化为直线的斜截式:y =-abx +zb ,通过求直线的截距zb 的最值间接求出z 的最值.要注意:当b >0时,截距zb 取最大值时,z 也取最大值;截距zb 取最小值时,z 也取最小值;当b <0时,截距zb 取最大值时,z 取最小值;截距zb 取最小值时,z 取最大值.

(经典习题)已知平面直角坐标系xOy 上的区域D 由不等式组??? 0≤x ≤

2,y ≤2,

x ≤ 2y

给定.若M (x ,y )为D 上的动点,点A 的坐标为(2,1)则z =OM →·O A →的最大值为

( B ).

A .3

B .4

C .3 2

D .4 2

线性规划计算方法

线性规划法的数学模型如下: 设X1,X2,X3,…,X n为各变量,n为变量个数,m为约束条件数,a ij(i=1,2…,m;j=1,2…,n)为各种系数,b1,b2,b3,…,b m为常数,C1,C2,C3,…C n为目标函数系数,Z为目标值,则线性规划模型如下: a11X1+a12X2+…+a1n X n≥(=≤)b1 a21X1+a22X2+…+a2n X n≥(=≤)b2 ………………… a m1X1+a m2X2+…+a mn X n≥(=≤) b m X1,X2,…,X n≥0 目标函数Zmin(max)=C1X1+C2X2十…+C n X n 线性规划计算方法: 鲜花店向李大民预定两种花卉——百合、玫瑰。其中每株收购价百合为4元,玫瑰为3元,鲜花店需要百合在1100~1400株之间,玫瑰在800~1200株之间,李大民只有资金5000元, 要去购买良种花苗, 在自家902m的温室中培育,每株苗价百合为2.5元,玫瑰为2元,由于百合与玫瑰生长所需采光条件的不同,百合每株大约占地0.052m,玫瑰每株大约占地0.032m,应如何配置才能使李大民获利最大? 数学建模:设种百合x1 株,玫瑰x2 株,则 2. 5 x1 + 2 x2 ≤5000 0. 05 x1 + 0. 03 x2 ≤90 x1 ≥1100 x1 ≤1400 x2 ≥800

x2 ≤1200 目标函数求最大值(即获利)Max z = (4 - 2. 5) x1 + (3 - 2) x2 = 1. 5 x + x1 可以看出,变量数为2,约束方程数为6,目标函数求最大值,打开线性规划计算软件,输入如下所示: 输入完成后点“计算”按纽,即可完成计算结果如下图:

线性规划总结

线性规划总结 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

线性规划题型总结 知识点 (1)在坐标系中画不等式Ax+By+C>0(或<0)所表示的区域时,把直线Ax+By+C=0画成虚线以表示区域不包括边界直线;而画不等式Ax+By+C≥0(或≤0)所表示的平面区域时,要把直线画成实线以表示区域包括边界直线. (2)简单线性规划问题是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其解题步骤为:一是寻求线性约束条件与线性目标函数;二是由二元一次不等式表示的平面区域作出可行域;三是在可行域内求目标函数的最优解. (3).确定不等式Ax+By+C>0(<0,≥0,≤0)表示直线Ax+By+C=0的哪一侧时,常用下面的方法:先由等式定直线,然后在直线的某一侧任取一点(x0,y0),把它代入Ax+By+C>0,若不等式成立,则和(x0,y0)同侧的点都满足不等式,从而平面区域被找到,否则,直线的另一侧区域为不等式Ax+By+C>0所表示的区域,当C≠0时,常取特殊点(0,0)为代表,当C=0时,直线过(0,0),常选(1,0)或(0,1)加以判断.这种方法可称为“直线定界,特殊点定域”. (4).求在线性约束条件下的线性目标函数t=ax+by的最值问题时,应先作出线性约束条件所表示的平面区域即可行域,再作出直线ax+by=0,平移直线ax+by=0,此时,在经过可行域内

的点且平行于ax +by =0的直线中,找出对应于t 最大(或最小)时的直线,最后求其最值.生产实际中的许多问题都可以归结为线性规划问题来求解. 题型一:给出具体的变量,x y 满足约束条件,求线性目标函数的最值。常用的方法:(1)画出变量所满足的可行区域,将目标函数变形,平行移动找出目标函数的最值;(2)直接找出这几条线的的交点,直接代入即可,这个方法只适用于封闭区域,若非封闭区域,只能采用第一用方法,画图。 例1、已知变量,x y 满足约束条件241y x y x y ≤?? +≥??-≤? ,则3z x y =+的最大值为( ) 【解析】选B 约束条件对应ABC ?边际及内的区域:53 (2,2),(3,2),(,)22 A B C 则3[8,11]z x y =+∈ 例2、若,x y 满足约束条件:02323x x y x y ≥?? +≥??+≤?;则x y -的取值范围为_____ 【解析】x y -的取值范围为_____[3,0]- 约束条件对应ABC ?边际及内的区域:3 (0,3),(0,),(1,1)2 A B C 则[3,0]t x y =-∈- 练习题: 1、设变量,x y 满足-100+20015x y x y y ≤?? ≤≤??≤≤? ,则2+3x y 的最大值为(D ). A .20 B .35 C .45 D .55 2、若,x y 满足约束条件10 30330x y x y x y -+≥??? +-≤??+-≥??,则3z x y =-的最小值为 。 答案:1-

线性规划所有类型总结(很全的)

线性规划,想说懂你很容易 线性规划是近两年高考的必考内容。学习简单线性规划的有关知识其最终目的就是运用它们去解决在线性约束条件下目标函数的最值(最大值或最小值)问题。而有关的题型种类较多,变化多样,应用线性规划的思想解题不能完全拘泥于课本中的z=ax+by 的形式,下面就从规划思想出发探讨常见的简单线性规划求最值问题。 1、目标函数形如z=ax+by 型: 例1(2008.全国Ⅱ)设变量x y ,满足约束条件:222y x x y x ?? +??-? ,,.≥≤≥,则 y x z 3-=的最小值是( ) A .2- B .4- C .6- D .8- 解:画出可行域(如图1),由y x z 3-=可得331z x y -=,所以3 z -表示直线 331z x y -=的纵截距,由图可知当直线过点A (-2,2)时,z 的最小值是-8,选 D. 2、目标函数形如a x b y z --=型: 例2(2007.辽宁)已知变量x y ,满足约束条件20170x y x x y -+?? ??+-? ≤,≥,≤, 则 y x 的取值范围是( ) A .]6,59[ B .[)965??-∞+∞ ??? ,, C .(][)36-∞+∞ ,, D .[36], 解:画出可行域(如图2), y x 表示可行域内的点(x,y )与原点连线的斜率,求得A (1,6),C (29 ,25), 且求得K OA =6,K OC =5 9, 所以659≤≤x y ,选A. 3、目标函数形如z=a bx+cy 型: 例3.(2008.北京)若实数x y ,满足1000x y x y x ?-+? +???, ,,≥≥≤则23x y z +=的 最小值是( )A .0 B .1 C D .9 图1 图2 图3

线性规划总结

线性规划总结 Last revised by LE LE in 2021

线性规划题型总结 知识点 (1)在坐标系中画不等式Ax +By +C >0(或<0)所表示的区域时,把直线Ax +By +C =0画成虚线以表示区域不包括边界直线;而画不等式Ax +By +C ≥0(或≤0)所表示的平面区域时,要把直线画成实线以表示区域包括边界直线. (2是以什么实际问题提出,其解题步骤为:一是寻求线性约束条件与线性目标函数;二是由二元一次不等式表示的平面区域作出可行域;三是在可行域内求目标函数的最优解. (3).确定不等式Ax +By +C >0(<0,≥0,≤0)表示直线Ax +By +C =0的哪一侧时,常用下面的方法:先由等式定直线,然后在直线的某一侧任取一点(x 0,y 0),把它代入Ax +By +C >0,若不等式成立,则和(x 0,y 0)同侧的点都满足不等式,从而平面区域被找到,否则,直线的另一侧区域为不等式Ax +By +C >0所表示的区域,当C ≠0时,常取特殊点(0,0)为代表,当C =0时,直线过(0,0),常选(1,0)或(0,1)加以判断.这种方法可称为“直线定界,特殊点定域”. (4).求在线性约束条件下的线性目标函数t =ax +by 的最值问题时,应先作出线性约束条件所表示的平面区域即可行域,再作出直线ax +by =0,平移直线ax +by =0,此时,在经过可行域内的点且平行于ax +by =0的直线中,找出对应于t 最大(或最小)时的直线,最后求其最值.生产实际中的许多问题都可以归结为线性规划问题来求解. 题型一:给出具体的变量,x y 满足约束条件,求线性目标函数的最值。常用的方法:(1)画出变量所满足的可行区域,将目标函数变形,平行移动找出目标函数的最值;(2)直接找出这几条线的的交点,直接代入即可,这个方法只适用于封闭区域,若非封闭区域,只能采用第一用方法,画图。 例1、已知变量,x y 满足约束条件241y x y x y ≤?? +≥??-≤? ,则3z x y =+的最大值为( ) 【解析】选B 约束条件对应ABC ?边际及内的区域:53 (2,2),(3,2),(,)22 A B C

多目标线性规划的若干解法及MATLAB实现

多目标线性规划的若干解法及MATLAB 实现 一.多目标线性规划模型 多目标线性规划有着两个和两个以上的目标函数,且目标函数和约束条件全是线性函 数,其数学模型表示为: 11111221221122221122max n n n n r r r rn n z c x c x c x z c x c x c x z c x c x c x =+++??=+++?? ??=+++? (1) 约束条件为: 1111221121122222112212,,,0 n n n n m m mn n m n a x a x a x b a x a x a x b a x a x a x b x x x +++≤??+++≤?? ??+++≤?≥?? (2) 若(1)式中只有一个1122i i i in n z c x c x c x =+++ ,则该问题为典型的单目标线性规划。我们记:()ij m n A a ?=,()ij r n C c ?=,12(,,,)T m b b b b = ,12(,,,)T n x x x x = , 12(,,,)T r Z Z Z Z = . 则上述多目标线性规划可用矩阵形式表示为: max Z Cx = 约束条件:0 Ax b x ≤?? ≥? (3) 二.MATLAB 优化工具箱常用函数[3] 在MA TLAB 软件中,有几个专门求解最优化问题的函数,如求线性规划问题的linprog 、求有约束非线性函数的fmincon 、求最大最小化问题的fminimax 、求多目标达到问题的fgoalattain 等,它们的调用形式分别为: ①.[x,fval]=linprog(f,A,b,Aeq,beq,lb,ub) f 为目标函数系数,A,b 为不等式约束的系数, Aeq,beq 为等式约束系数, lb,ub 为x 的下 限和上限, fval 求解的x 所对应的值。 算法原理:单纯形法的改进方法投影法 ②.[x,fval ]=fmincon(fun,x0,A,b,Aeq,beq,lb,ub ) fun 为目标函数的M 函数, x0为初值,A,b 为不等式约束的系数, Aeq,beq 为等式约束

重磅-八种经典线性规划例题最全总结(经典)

线性规划常见题型及解法 由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。 一、求线性目标函数的取值范围 例1、若G、P满足约束条件,则z=G+2P的取值范围是() A、[2,6] B、[2,5] C、[3,6] D、(3,5] 解:如图,作出可行域,作直线l:G+2P=0,将 l向右上方平移,过点A(2,0)时,有最小值 2,过点B(2,2)时,有最大值6,故选A 二、求可行域的面积 例2、不等式组表示的平面区域的面积为() A、4 B、1 C、5 D、无穷大 解:如图,作出可行域,△ABC的面积即为所求,由梯形OMBC的面积减去梯形OMAC的面积即可,选B 三、求可行域中整点个数 例3、满足|G|+|P|≤2的点(G,P)中整点(横纵坐标都是整数)有() A、9个 B、10个 C、13个 D、14个 解:|G|+|P|≤2等价于 作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选D 四、求线性目标函数中参数的取值范围 取得最小值的最优解有无数个,则a的值为 ()

A 、-3 B 、3 C 、-1 D 、1 解:如图,作出可行域,作直线l :G+aP =0,要使目标函数z=G+aP(a>0)取得最小值的最优解有无数个,则将l 向右上方平移后与直线G+P =5重合,故a=1,选D 五、求非线性目标函数的最值 例5、已知G 、P 满足以下约束条件 ,则z=G 2+P 2的最大值和最小值分别是( ) A 、13,1 B 、13,2 C 、13, D 、, 解:如图,作出可行域,G 2+P 2是点(G ,P )到原点 的距离的平方,故最大值为点A (2,3)到原点的距 离的平方,即|AO|2=13,最小值为原点到直线2G +P -2=0的距离的平方,即为,选C 六、求约束条件中参数的取值范围 例6、已知|2G -P +m|<3表示的平面区域包含点(0,0)和(-1,1),则m 的取值范围是 ( ) A 、(-3,6) B 、(0,6) C 、(0,3) D 、(-3,3) 解:|2G -P +m|<3等价于 由右图可知,故0<m <3,选C 七、比值问题 当目标函数形如时,可把z 看作是动点与定点连线的斜率,这样目标函数的最值就转化为PQ 连线斜率的最值。 例已知变量G ,P 满足约束条件?????x -y +2≤0,x ≥1,x +y -7≤0,则y x 的取值范围是(). (A )[95,6](B )(-∞,95 ]∪[6,+∞) (C )(-∞,3]∪[6,+∞)(D )[3,6] 解析y x 是可行域内的点M (G ,P )与原点O

线性规划题型总结

线性规划题型总结 1. “截距”型考题 在线性约束条件下,求形如(,) =+∈的线性目标函数的最值问题,通常转 z ax by a b R 化为求直线在y轴上的截距的取值. 结合图形易知,目标函数的最值一般在可行 域的顶点处取得.掌握此规律可以有效避免因画图太草而造成的视觉误差. 1.(2017天津)设变量x,y满足约束条件,则目标函数z=x+y的最大值为()A.B.1 C.D.3 答案:D 解:变量x,y满足约束条件的可行域如图: 目标函数z=x+y结果可行域的A点时,目标函数取得最大值,由可得A(0,3),目标函数z=x+y的最大值为:3. 2.(2017新课标Ⅲ)若x,y满足约束条件,则 z=3x﹣4y的最小值为. 答案:﹣1. 解:由z=3x﹣4y,得y=x﹣,作出不等式对应的可行域(阴影部分), 平移直线y=x﹣,由平移可知当直线y=x﹣, 经过点B(1,1)时,直线y=x﹣的截距最大,此时z取得最小值, 将B的坐标代入z=3x﹣4y=3﹣4=﹣1,

即目标函数z=3x﹣4y的最小值为﹣1. 3.(2017浙江)若x、y满足约束条件,则z=x+2y的取值范围是()A.[0,6] B.[0,4] C.[6,+∞)D.[4,+∞) 答案:D. 解:x、y满足约束条件,表示的可行域如图: 目标函数z=x+2y经过C点时,函数取得最小值, 由解得C(2,1), 目标函数的最小值为:4 目标函数的范围是[4,+∞). 4.(2016河南二模)已知x,y∈R,且满足,则z=|x+2y|的最大值为() A.10 B.8 C.6 D.3 答案:C. 解:作出不等式组,对应的平面区域如图: (阴影部分) 由z=|x+2y|, 平移直线y=﹣x+z, 由图象可知当直线y=﹣x﹣z经过点A时,z取得最大 值,

线性规划的方法及应用

线性规划的方法及应用 1 引言 运筹学最初是由于第二次世界大战的军事需要而发展起来的,它是一种科学方法,是一种以定量的研究优化问题并寻求其确定解答的方法体系.线性规划(Linear Progromming ,简称LP )是运筹学的一个重要分支,其研究始于20世纪30年代末,许多人把线性规划的发展列为20世纪中期最重要的科学进步之一.1947年美国的数学家丹泽格提出了一般的线性规划数学模型和求解线性规划问题的通用方法――单纯形法,从而使线性规划在理论上趋于成熟.此后随着电子计算机的出现,计算技术发展到一个高阶段,单纯形法步骤可以编成计算机程序,从而使线性规划在实际中的应用日益广泛和深入.目前,从解决工程问题的最优化问题到工业、农业、交通运输、军事国防等部门的计划管理与决策分析,乃至整个国民经济的综合平衡,线性规划都有用武之地,它已成为现代管理科学的重要基础之一. 2 线性规划的提出 经营管理中如何有效地利用现有人力物力完成更多的任务,或在预定的任务目标下,如何耗用最少的人力物力去实现.这类问题可以用数学语言表达,即先根据问题要达到的目标选取适当的变量,问题的目标通常用变量的函数形式(称为目标函数),对问题的限制条件用有关变量的等式或不等式表达(称为约束条件).当变量连续取值,且目标函数和约束条件为线性时,称这类模型为线性规划的模型.有关对线性规划问题建模、求解和应用的研究构成了运筹学中的线性规划分支.线性规划实际上是:求一组变量的值,在满足一组约束条件下,求得目标函数的最优解.从而线性规划模型的基本结构为: ①变量:变量又叫未知数,它是实际系统的位置因素,也是决策系统中的可控因素,一般称为决策变量,常引用英文字母加下标来表示,如n x x x ,,,21 等. ②目标函数:将实际系统的目标用数学形式表示出来,就称为目标函数,线性规划的目标函数是求系统目标的数值,即极大值(如产值极大值,利润极大值)或极小值(如成本极小值,费用极小值等等). ③约束条件:约束条件是指实现系统目标的限制因素.它涉及到企业内部条件和外部环境的各个方面,如原材料供应设备能力、计划指标.产品质量要求和市场销售状态等等,这些因素都对模型的变量起约束作用,故称其为约束条件.约束条件的数学表示有三种,即 ,,,线性规划的变量应为非负值,因为变量在实际问题中所代表的均为实物,所以不能为负. 线性规划问题有多种形式,函数有的要求实现最大化,有的要求最小化;约束条件可以是“ ”,

线性规划知识总结

线性规划知识总结 1. 二元一次不等式(组)表示的平面区域 (1)直线0:=++C By Ax l 把平面内不在直线上的点分成两部分,对于同一侧所有点的坐标代入Ax +By +C 中所得的值的符号都相同,异侧所有点的坐标代入Ax +By +C 所得的值的符号都相反。 (2)对于直线:l Ax +By +C =0,当B ≠0时,可化为:y =kx +b 的形式。对于二元一次不等式b kx y +≥表示的平面区域在直线y =kx +b 的上方(包括直线y =kx +b )。对于二元一次不等式b kx y +≤表示的平面区域在直线y =kx +b 的下方(包括直线y =kx +b )。 注意:二元一次不等式)0(0<>++或C By Ax 与二元一次不等式)0(0≤≥++C By Ax 所表示的平面区域不同,前者不包括直线Ax +By +C =0,后者包括直线Ax +By +C =0。 2. 线性规划 我们把求线性目标函数在线性目标条件下的最值问题称为线性规划问题。解决这类问题的基本步骤是: (1)确定好线性约束条件,准确画出可行域。 (2)对目标函数z =ax +by ,若b >0,则 b z 取得最大值(或最小值)时,z 也取得最大值(或最小值);若b <0,则反之。 (3)一般地,可行域的边缘点有可能是最值点,有些问题可直接代入边缘点找最值。 (4)注意实际问题中的特殊要求。 说明:1. 线性目标函数的最大值、最小值一般在可行域的顶点处取得; 2. 线性目标函数的最大值、最小值也可在可行域的边界上取得,即满足条件的最优解有无数个。 知识点一:二元一次不等式(组)表示的平面区域 例1:基础题 1. 不等式组201202 y x x y -->?? ?-+≤??表示的平面区域是 ( ) A B C D 2. 如图,不等式组50 03x y x y x -+≥?? +≥??≤? 表示的平面区域面积是 ________________。

线性规划总结 (1)

线性规划题型总结 知识点 (1)在坐标系中画不等式Ax+By+C>0(或<0)所表示的区域时,把直线Ax+By+C=0画成虚线以表示区域不包括边界直线;而画不等式Ax+By+C≥0(或≤0)所表示的平面区域时,要把直线画成实线以表示区域包括边界直线. (2 际问题提出,其解题步骤为:一是寻求线性约束条件与线性目标函数;二是由二元一次不等式表示的平面区域作出可行域;三是在可行域内求目标函数的最优解. (3).确定不等式Ax+By+C>0(<0,≥0,≤0)表示直线Ax+By+C=0的哪一侧时,常用下面的方法:先由等式定直线,然后在直线的某一侧任取一点(x0,y0),把它代入Ax+By+C>0,若不等式成立,则和(x0,y0)同侧的点都满足不等式,从而平面区域被找到,否则,直线的另一侧区域为不等式Ax+By+C>0所表示的区域,当C≠0时,常取特殊点(0,0)为代表,当C=0时,直线过(0,0),常选(1,0)或(0,1)加以判断.这种方法可称为“直线定界,特殊点定域”.(4).求在线性约束条件下的线性目标函数t=ax+by的最值问题时,应先作出线性约束条件所表示的平面区域即可行域,再作出直线ax+by=0,平移直线ax+by=0,此时,在经过可行域内的点且平行于ax+by=0的直线中,找出对应于t最大(或最小)时的直线,最后求其最值.生产实际中的许多问题都可以归结为线性规划问题来求解. 题型一:给出具体的变量,x y满足约束条件,求线性目标函数的最值。常用的方法:(1)画出变量所满足的可行区域,将目标函数变形,平行移动找出目标函数的最值;(2)直接找出这几条线的的交点,直接代入即可,这个方法只适用于封闭区域,若非封闭区域,只能采用第一用方法,画图。 例1、已知变量,x y满足约束条件 2 4 1 y x y x y ≤ ? ? +≥ ? ?-≤ ? ,则3 z x y =+的最大值为( ) 【解析】选B约束条件对应ABC ?边际及内的区域: 53 (2,2),(3,2),(,) 22 A B C 则3[8,11] z x y =+∈

线性规划常见题型及解法(上课)

线性规划常见题型及解法 温故 1.不在3x+ 2y < 6 表示的平面区域内的一个点是()A.(0,0)B.(1,1)C.(0,2)D.(2,0) 2.已知点(3 ,1)和点(-4 ,6)在直线3x–2y + m = 0 的两侧,则()A.m<-7或m>24 B.-7<m<24 C.m=-7或m=24 D.-7≤m≤24 3.在△ABC中,三顶点坐标为A(2 ,4),B(-1,2),C(1 ,0 ),点P(x,y)在△ABC内部及边界运动,则z= x– y 的最大值和最小值分别是() A.3,1 B.-1,-3 C.1,-3 D.3,-1 4.在直角坐标系中,满足不等式x2-y2≥0 的点(x,y)的集合(用阴影部分来表示)的是() 5.如图所示,表示阴影部分的二元一次不等式组是()A. 2 3260 y x y x ≥- ? ? -+> ? ?< ? B. 2 3260 y x y x >- ? ? -+≥ ? ?≤ ? C. 2 3260 y x y x >- ? ? -+> ? ?≤ ? D. 2 3260 y x y x >- ? ? -+< ? ?< ?

由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。 一、求线性目标函数的取值范围 例1、若x、y满足约束条件 2 2 2 x y x y ≤ ? ? ≤ ? ?+≥ ? ,则z=x+2y的取值范围是() A、[2,6] B、[2,5] C、[3,6] D、(3,5] 解:如图,作出可行域,作直线l:x+2y=0,将l向右上方平移,过点A(2,0)时,有最小值

线性规划的常见题型及其解法(教师版,题型全,归纳好)

线性规划问题是高考的重点,而线性规划问题具有代数和几何的双重形式,多与函数、平面向量、数列、三角、概率、解析几何等问题交叉渗透,自然地融合在一起,使数学问题的解答变得更加新颖别致. 归纳起来常见的命题探究角度有: 1.求线性目标函数的最值. 2.求非线性目标函数的最值. 3.求线性规划中的参数. 4.线性规划的实际应用. 本节主要讲解线性规划的常见基础类题型. 【母题一】已知变量x ,y 满足约束条件???? ? x +y ≥3,x -y ≥-1, 2x -y ≤3,则目标函数z =2x +3y 的取值范围为( ) A .[7,23] B .[8,23] C .[7,8] D .[7,25] 求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-a b x +z b ,通过求 直线的截距z b 的最值,间接求出z 的最值. 【解析】画出不等式组???? ? x +y ≥3,x -y ≥-1, 2x -y ≤3, 表示的平面区域如图中阴影部分所示, 由目标函数z =2x +3y 得y =-23x +z 3,平移直线y =-2 3 x 知在点B 处目标函数取到最小值,解方程组 ????? x +y =3,2x -y =3,得????? x =2, y =1,所以B (2,1),z min =2×2+3×1=7,在点A 处目标函数取到最大值,解方程组????? x -y =-1,2x -y =3,得????? x =4,y =5, 所以A (4,5),z max =2×4+3×5=23. 【答案】A

【母题二】变量x ,y 满足???? ? x -4y +3≤0,3x +5y -25≤0, x ≥1, (1)设z =y 2x -1,求z 的最小值; (2)设z =x 2+y 2,求z 的取值范围; (3)设z =x 2+y 2+6x -4y +13,求z 的取值范围. 点(x ,y )在不等式组表示的平面区域内,y 2x -1=12·y -0 ??? ? x -12表示点(x ,y )和????12,0连线的斜率;x 2+y 2表示点(x ,y )和原点距离的平方;x 2+y 2+6x -4y +13=(x +3)2+(y -2)2表示点(x ,y )和点(-3,2)的距离的平方. 【解析】(1)由约束条件???? ? x -4y +3≤0,3x +5y -25≤0, x ≥1, 作出(x ,y )的可行域如图所示. 由 ????? x =1,3x +5y -25=0,解得A ????1,22 5. 由????? x =1, x -4y +3=0,解得C (1,1). 由? ???? x -4y +3=0,3x +5y -25=0,解得B (5,2). ∵z = y 2x -1 =y -0x -12 ×12 ∴z 的值即是可行域中的点与????12,0连线的斜率,观察图形可知z min =2-05- 12×12=29 . (2)z =x 2+y 2的几何意义是可行域上的点到原点O 的距离的平方. 结合图形可知,可行域上的点到原点的距离中, d min =|OC |=2,d max =|OB |=29. ∴2≤z ≤29. (3)z =x 2+y 2+6x -4y +13=(x +3)2+(y -2)2的几何意义是: 可行域上的点到点(-3,2)的距离的平方. 结合图形可知,可行域上的点到(-3,2)的距离中, d min =1-(-3)=4, d max =(-3-5)2+(2-2)2=8 ∴16≤z ≤64.

高中数学解题方法谈线性规划求最值问题

线性规划求最值问题 一、与直线的截距有关的最值问题 例1 已知点()P x y ,在不等式组2010220x y x y -??-??+-? ,,≤≤≥表示的平面区域上运动,则z x y =-的 取值范围是( ). (A )[-2,-1] (B )[-2,1] (C )[-1,2] (D )[1,2] 解析:由线性约束条件画出可行域如图1,考虑z x y =-, 把它变形为y x z =-,这是斜率为1且随z 变化的一族平行 直线.z -是直线在y 轴上的截距.当直线满足约束条件且 经过点(2,0)时,目标函数z x y =-取得最大值为2; 直线经过点(0,1)时,目标函数z x y =-取得最小值为-1.故选(C ). 注:本题用“交点法”求出三个交点坐标分别为(0,1),(2,1),(2,0),然后再一一代入目标函数求出z=x-y 的取值范围为[-1,2]更为简单.这需要有最值在边界点取得的特殊值意识. 二、与直线的斜率有关的最值问题 例2 设实数x y ,满足20240230x y xc y y --??+-??-? ,,,≤≥≤,则y z x =的最大值是__________. 解析:画出不等式组所确定的三角形区域ABC (如图2),00y y z x x -==-表示两点(00)()O P x y ,,,确定的直线的斜率,要求z 的最大值,即求可行域内的点与原点连线的斜率的最大值.由图2可以看出直线OP 的斜率最大,故P 为240x y +-=与230y -=的交点,即A 点. ∴312P ?? ???,.故答案为32 . 注:解决本题的关键是理解目标函数00y y z x x -= =-的 几何意义,当然本题也可设y t x =,则y tx =,即为求 y tx =的斜率的最大值.由图2可知,y tx =过点A 时, t 最大.代入y tx =,求出32 t =, 即得到的最大值是32 . 三、与距离有关的最值问题

线性规划化问题的简单解法

简单线性规划问题的几种简单解法 依不拉音。司马义(吐鲁番市三堡中学,838009) “简单的线性规划问题”属于高中数学新课程必修5,进入了高考试题,并且保持了较大的考察比例,几乎是每年高考的必考内容,也是高中数学教学的一个难点。 简单的线性规划是指目标函数只含两个自变量的线性规划。简单线性规划问题的标准型为: 1112220(0)0(0),(),0(0) m m m A x B y C A x B y C m N z Ax By A x B y C +++≥≤??++≥≤?∈=+???++≥≤?L 约束条件 目标函数 , 下面介绍简单线性规划问题的几种简单解法。 1. 图解法 第一步、画出约束条件表示的可行区域,这里有两种画可行区域的方法。 ⑴代点法:直线Ax+By+C=0(c 不为0)的某侧任取一点,把它的坐标代入不等式,若不等式成立,则不等式表示的区域在该点的那一侧;若不成立,则在另一侧。 ⑵B 判别法:若B>0(<0),则不等式Ax+By+C >0(<0)表示的区域在直 线Ax+By+C =0的上方;若B>0(<0),则不等式Ax+By+C <0(>0)表示的区域在直线Ax+By+C =0的下方。(即若B 与0的大小方向跟不等式的方向相同,则可行区域是边界线的上方;若B 与0的大小方向与不等式的方向相反,则可信分区域是边界线的下方) 用上面的两种方法画出可行区域是很简单,所以这里不必举例说明。 第二步、在画出的可行区域内求最优解(使目标函数取最大值或最小值的点),这 个可以用下面的两种办法解决。 ⑴y 轴上的截距法:若b >0,直线y a b x z b =- +所经过可行域上的点使其y 轴上的截距最大(最小)时,便是z 取得最大值(最小值)的点;若b <0,直线y a b x z b =-+所经过可行域上的点使其y 轴上的截距最大(最小)时,是z 取得最小值(最小值)的点(提醒:截距不是距离,截距可以取正负)。 例1.设x,y 满足约束条件x y y x y +≤≤≥???? ?10,,,求z x y =+2的最大值、最小值。 解:如图1作出可行域,因为y 的系数1大于0,目标函数z x y =+2表示直线 y x z =-+2在y 轴上的截距, 当直线过A (1,0)时,截距值最大z max =?+=2102,当直线过点O (0,0)时,截距值最小min 2000z =?+=。

高考数学中的线性规划问题的总结分析

线性规划问题的专题研究 新教材试验修订本中简单的线性规划是新增的内容,在线性约束条件下研究目标函数的最值问题是一类常见的问题,在近几年高考试题中均有出现,而且灵活多变。本文结合08年高考出现的几个线性规划问题,对常见的线型规划问题作以专题总结研究。 一、08年高考中的线性规划问题的总结分析 1.基本问题 (1)(08年安徽理)如果实数x y 、满足条件101010x y y x y -+≥??+≥??++≤? ,那么2x y -的最大值为( ) A .2 B .1 C .2- D .3- 解:本题为较基本的线性规划问题,解决方式应该是: 画定可行域;做目标函数对应平行线束;找到最 大值,如图所示显然是平行线过A 点时取 最大值,将A 点坐标代入有 max 1Z =,故选择B (2)(08年福建文) 已知实数x 、y 满足1,1,y y x ≤???≥-?? 则2x y +的最大值是____ 解:本题也是一个基本题型,但从给定的约束条件来看,难度加大了,解法如图所示 当平行线过点()2,1B 时,2x y + 区的最大值为4

(3)(08年山东理)某公司招收男职员x 名,女职员y 名,x 和y 须 满足约束条件?? ???≤≥+-≥-.112,932,22115x y x y x 则z =10x +10y 的最大值是 (A)80 (B) 85 (C) 90 (D)95 解:本题是一个应用性的线性规划问题,经转化实质上是一个整点问题,实际的约束条件应为 51122,239,211, ,x y x y x x N y N -≥-??+≥??≤??∈∈?,画出区域如右图 过A 点时z 值最大,但由于A 点不是整点 故不能取到,所以应该是图中过整点(5,4)的直线使z 取最大值90 整点问题是线性规划部分的一个难点,但本题由于只是求最大值,唯有涉及到取整点是什么,所以难度降低了,但鉴于它是个应用题,还是比较灵活的。 (4)(08年辽宁理)双曲线224x y -=的两条渐近线与直线3x =围成一个三角形区域,表示该区域的不等式组是 (A)0003x y x y x -≥??+≥??≤≤? (B)0003x y x y x -≥??+≤??≤≤? (C) 0003x y x y x -≤??+≤??≤≤? (D) 0003x y x y x -≤??+≥??≤≤? 解:本题是一个综合性问题,既考查了线性规划又考查了双曲线的渐近线问题,但从难度上来说不大,但从此题可以看出,线性规划题型的灵活性,此题结果如下:双曲线224x y -=的两条渐近线方程为

高中数学线性规划题型总结

高考线性规划归类解析 一、已知线性约束条件,探求线性目标关系最值问题 例1、设变量x 、y 满足约束条件?? ???≥+-≥-≤-1122y x y x y x ,则y x z 32+=的最大值为 。 解析:如图1,画出可行域,得在直线2x-y=2与直 线x-y=-1的交点A(3,4)处,目标函数z 最大值为18 点评:本题主要考查线性规划问题,由线性约束条件画出 可行域,然后求出目标函数的最大值.,是一道较为简单的送 分题。数形结合是数学思想的重要手段之一。 二、已知线性约束条件,探求非线性目标关系最值问题 例2、已知1,10,220x x y x y ≥??-+≤??--≤? 则22x y +的最小值是 . 解析:如图2,只要画出满足约束条件的可行域,而22x y +表 示可行域内一点到原点的距离的平方。由图易知A (1,2)是满 足条件的最优解。22x y +的最小值是为5。 点评:本题属非线性规划最优解问题。求解关键是在挖掘目 标关系几何意义的前提下,作出可行域,寻求最优解。 三、约束条件设计参数形式,考查目标函数最值范围问题。 例3、在约束条件0 024x y y x s y x ≥??≥??+≤??+≤?下,当35s ≤≤时,目标函数32z x y =+的最大值的变化范围是() A.[6,15] B. [7,15] C. [6,8] D. [7,8] 解析:画出可行域如图3所示,当34s ≤<时, 目标函数 32z x y =+在(4,24)B s s --处取得最大值, 即 max 3(4)2(24)4[7,8)z s s s =-+-=+∈;当45s ≤≤时, 目标函数 32z x y =+在点 (0,4)E 处取得最大值,即max 30248z =?+?=,故[7,8]z ∈,从而选D; 点评:本题设计有新意,作出可行域,寻求最优解条件,然后转化为目标函数Z 关于S 的函数关系是求解的关键。 四、已知平面区域,逆向考查约束条件。 例4、已知双曲线22 4x y -=的两条渐近线与直线3x =围成一个三 角形区域,表示该区域的不等式组是() (A)0003x y x y x -≥??+≥??≤≤? (B) 0003x y x y x -≥??+≤??≤≤? (C) 0003x y x y x -≤??+≤??≤≤? (D) 图2 图 C

高考数学线性规划题型总结

高考数学线性规划题型 总结 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

线性规划常见题型及解法 一、已知线性约束条件,探求线性目 标关系最值问题 例1、设变量x 、y 满足约束条件?? ? ??≥+-≥-≤-1122y x y x y x ,则y x z 32+=的最大值为 。 解析:如图1,画出可行域,得在直线2x-y=2与直线x-y=-1的交点A(3,4)处,目标函数 z 最大值为18 点评:本题主要考查线性规划问题,由线性约束条件画出可行域,然后求出目标函数的最大值.,是一道较为简单的送分题。数形结合是数学思想的重要手段之一。 习题1、若x 、y 满足约束条件222x y x y ≤?? ≤??+≥? ,则z=x+2y 的取值范围是 ( ) A 、[2,6] B 、[2,5] C 、[3,6] D 、(3,5] 解:如图,作出可行域,作直线l :x+2y =0,将 l 向右上方平移,过点A (2,0)时,有最小值 2,过点B (2,2)时,有最大值6,故选A 二、已知线性约束条件,探求非线性目标关系最值问题 例2、已知1,10,220x x y x y ≥?? -+≤??--≤? 则22x y +的最小值是 . 22x y +解析:如图2,只要画出满足约束条件的可行域,而表示可行域内一点到原点的距离的平方。由图易知A (1, 2)是满足条件的最优解。22x y +的最小值是为5。 点评:本题属非线性规划最优解问题。求解关键是在挖掘目标 关系几何意义的前提下,作出可行域,寻求最优解。 习题2、已知x 、y 满足以下约束条件 220240330x y x y x y +-≥??-+≥??--≤? ,则z=x 2+y 2 的最大值和最小值分别是( ) A 、13,1 B 、13,2 C 、13, 4 5 D 、13,25 图2 x y O 2 2 x=2 y =2 x + y =2 B A 2x + y - 2= 0 x – 2y + 4 = 0 3x – y – 3 = 0 O y x A

线性规划简单线性规划问题的向量解法

高二数学上学期简单的线性规划简单线性规划问题的向量解法 例题解析 ●教学目标 (一)教学知识点 1.线性规划问题,线性规划的意义. 2.线性约束条件、线性目标函数、可行解、可行域、最优解等基本概念. 3.线性规划问题的图解方法. (二)能力训练要求 1.了解简单的线性规划问题. 2.了解线性规划的意义. 3.会用图解法解决简单的线性规划问题. (三)德育渗透目标 让学生树立数形结合思想. ●教学重点 用图解法解决简单的线性规划问题. ●教学难点 准确求得线性规划问题的最优解. ●教学方法 讲练结合法 教师可结合一些典型例题进行讲解,学生再通过练习来掌握用图解法解决一些较简单的线性规划问题. ●教具准备 多媒体课件(或幻灯片) 内容:课本P60图7—23 记作§7.4.2 A 过程:先分别作出x=1,x-4y+3=0,3x+5y-25=0三条直线,再找出不等式组所表示的平面区域(即三直线所围成的封闭区域).再作直线l0:2x+y=0. 然后,作一组与直线的平行的直线: l:2x+y=t,t∈R (或平行移动直线l0),从而观察t值的变化. ●教学过程 Ⅰ.课题导入 上节课,咱们一起探讨了二元一次不等式表示平面区域,下面,我们再来探讨一下如何应用其解决一些问题. Ⅱ.讲授新课

首先,请同学们来看这样一个问题. 设z =2x +y ,式中变量x 、y 满足下列条件?? ???≥≤+-≤-1255334x y x y x 求z 的最大值和最小值. 分析:从变量x 、y 所满足的条件来看,变量x 、y 所满足的每个不等式都表示一个平面区域,不等式组则表示这些平面区域的公共区域. (打出投影片§7.4.2 A) [师](结合投影片或借助多媒体课件) 从图上可看出,点(0,0)不在以上公共区域内,当x =0,y =0时,z =2x +y =0. 点(0,0)在直线l 0:2x +y =0上. 作一组与直线l 0平行的直线(或平行移动直线l 0)l :2x +y =t ,t ∈R . 可知,当t 在l 0的右上方时,直线l 上的点(x ,y )满足2x +y >0, 即t >0. 而且,直线l 往右平移时,t 随之增大. (引导学生一起观察此规律) 在经过不等式组所表示的公共区域内的点且平行于l 的直线中,以经过点A (5,2)的直线l 2所对应的t 最大,以经过点B (1,1)的直线l 1所对应的t 最小. 所以:z m ax =2×5+2=12, z m in =2×1+3=3. 诸如上述问题中,不等式组是一组对变量x 、y 的约束条件,由于这组约束条件都是关于x 、y 的一次不等式,所以又可称其为线性约束条件.z =2x +y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,我们把它称为目标函数.由于z =2x +y 又是关于x 、y 的一次解析式,所以又可叫做线性目标函数. 另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示. 一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.例如:我们刚才研究的就是求线性目标函数z =2x +y 在线性约束条件下的最大值和最小值的问题,即为线性规划问题. 那么,满足线性约束条件的解(x ,y )叫做可行解,由所有可行解组成的集合叫做可行域.在上述问题中,可行域就是阴影部分表示的三角形区域.其中可行解(5,2)和(1,1)分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解. Ⅲ.课堂练习 [师]请同学们结合课本P 64练习1来掌握图解法解决简单的线性规划问题. (1)求z =2x +y 的最大值,使式中的x 、y 满足约束条件?? ???-≥≤+≤.1,1,y y x x y 解:不等式组表示的平面区域如图所示: 当x =0,y =0时,z =2x +y =0 点(0,0)在直线l 0:2x +y =0上. 作一组与直线l 0平行的直线 l :2x +y =t ,t ∈R . 可知,在经过不等式组所表示的公共区域内的点且平行于 l

相关文档
最新文档