楼盖结构舒适度实用设计方法

楼盖结构舒适度实用设计方法
楼盖结构舒适度实用设计方法

楼盖结构舒适度实用设计方法

摘要:《高层建筑混凝土结构技术规程》JGJ3-2010、《混凝土结构设计规范》GB50010-2010和《组合楼板设计与施工规范》CECS273:2010中增加了楼盖结构舒适度验算的要求,楼盖结构舒适度控制已成为我国建筑结构设计中又一重要工作内容。本文介绍了楼盖结构舒适度的控制指标,并基于PKPM系列软件的SLABFIT模块,介绍了楼盖结构竖向自振频率和竖向振动加速度峰值的计算方法。

关键词:舒适度;自振频率;峰值加速度;SLABFIT

Abstract : The verification of floor slab comfort index has been required by the following structure design codes: Technical Specification for Concrete Structures of Tall Building JGJ3-2010, Code for Design of Concrete Structures GB50010-2010, and Code for Composite Slabs Design and Construction CECS273:2010. Therefore, the control of floor slab comfort has become an important part of structure design in our country. The controlling standard for floor slab comfort is introduced and based on SLABFIT module of PKPM software, the calculation methods of vertical self-vibration frequency and the peak acceleration of vertical vibration are also presented in the paper.

Key words: comfort index, self-vibration frequency, peak acceleration,SLABFIT

1 引言

随着我国社会经济的发展和人民生活水平的提高,人们不仅考虑楼板振动带来的结构安全性问题,而且也开始逐步考虑到生活在该建筑里的人的舒适性问题。由于结构分析和设计技术的进步、施工技术的发展、新的高强轻质材料的运用、结构质量和阻尼的减少以及大空间结构在办公室、商场、体育馆、车站、展览馆等公共场所的运用,导致了现代建筑楼板结构更轻、更柔、跨度更大,楼板体系的竖向自振频率越来越低。楼盖结构在外界作用下,例如人行走、机械振动等,很容易产生较为显著的动力响应,这些动力响应将给人的工作、休息乃至身体健康带来巨大的影响,导致建筑中人的不舒适感,极大影响了建筑的使用功能[1]。

楼盖结构舒适度控制近20年来已引起世界各国广泛关注,英美等国进行了大量实测研究,颁布了多种版本规程、指南[2][3]。我国《高层建筑混凝土结构技术规程》JGJ3-2010(以下简称《高规》)的3.7.7条规定楼盖结构应具有适宜的舒适度,并提出了对楼盖结构竖向振动频率和加速度峰值的要求[4];《混凝土结构设计规范》GB50010-2010(以下简称《混凝土规范》)的3.4.6条规定了不同使用功能的混凝土楼盖结构的最小竖向自振频率[5];《组合楼板设计与施工规范》CECS273:2010的4.2.4条也规定了楼盖结构竖向振动频率和加速度峰值的限

建筑结构设计的优化方法及应用分析 (2)

建筑结构设计的优化方法及应用分析 在建筑造价中,结构造价的比例非常大。因此,研究建筑结构设计的优化方法并将其应用于实践具有非常积极的现实意义。文章分析了建筑结构设计的优化方法和应用。 标签:建筑结构设计;优化;方法;应用 引言:伴随我国建筑业的快速发展,对建筑设计进行优化也是设计者的一个重要研究课题。为了解决建筑面积与土地面积的矛盾,建筑本身的性质与理论知识与实际情况之间的矛盾,优化了建筑结构。 1、建筑结构设计优化的内容及意义 建筑结构的优化主要体现在两个方面。一是建筑工程整体结构的优化设计;二是建筑工程局部结构的优化设计。其中,局部结构优化设计的目标主要包括以下几个方面:基本结构方案、屋面系统方案、围护结构方案、结构细节等。当对上述目标进行优化时,往往涉及到选择、受力分析和成本分析。总之,在优化建筑结构设计过程中,不仅要严格执行设计规范,而且要充分结合施工项目的具体情况,从而最终提高建筑工程的综合经济效益。建筑结构优化的重要性主要是两点,一是提高建筑工程的安全性和可靠性,二是降低建筑工程的总造价。通过对比分析发现,在适当的应用下,建筑结构设计优化方法能最大限度地降低建筑工程总造价30%。通过优化方法的有效应用,一方面可以最大限度地提高材料的性能,另一方面可以为实际的规划执行提供一系列有用的工作。 2、建筑结构设计的优化方法 2.1概念设计优化 建筑结构的概念设计是设计者将自己的理论知识和设计要求和建筑环境结合起来设计建筑结构。在设计时,应考虑许多非唯一的数值和不可预测的不可抗拒因素。例如,在设计建筑物时,需要考虑其抗震性能。地震不能通过预测和针对性的设计发生,所以在设计中,应加强地震多发区域内每一栋建筑物的抗震性能,尤其要注意建筑物的抗震性能,是设计优化的这些因素的设计优化的概念。 2.2模型设计优化 在优化设计概念后,还应优化模型的结构。首先,在设计变量的选择中,需要选择的变化内容越来越少,但作为参考标准的基本价值,减少了优化设计的难度,提高了设计的可靠性;其次,针对较大的接触因素,建立相应的功能结构设计和分析,降低建筑成本,减少错误概率的设计,加强建筑整体性优化,减少设计和施工工作的工作量;第三是衡量建筑结构的工作条件,工作环境通常是复杂多变的,具体的建设需要考虑的各个部分稳定、结构应力极限,整体结构刚性和

结构化分析设计与面向对象分析设计比较研究

结构化分析设计与面向对象分析设计比较研究 重庆工商大学计算机科学与技术08软件龚霞 指导老师康世瀛 中文摘要:解析了结构化方法和面向对象方法这两种软件开发方法具有的分析设计过程,讨论了各自在不同软件开发中的应用及局限性,提出了在选用面向对象开发大型软件系统的同时可结合结构化方法。 关键词:软件开发;结构化方法;面向对象方法 Abstract:This paper anatomizes the analysis and design process of Structural method and objected-oriented method,discusses their applications and disadvantages and proposes that structural method can also be used while developing the large-scale software systems in selecting the objected-oriented method. Key words:software-development;objected-oriented method;structural method 一、引言 结构化方法由E.Yourdon和L.L.Constantine在1978年提出,结构化方法又可称为面向功能的软件开发方法或面向数据流的软件开发方法。结构化方法是建立在软件生存周期的模型基础上的一种软件开发方法,相对于早期的个体化开发方法无疑是前进了一大步。 由于传统的生命周期开发学存在下面的问题:生产率提高的幅度远不能满足需求,软件的重用度很低,软件难以维护,软件往往不能满足用户的需求。所以出现了面向对象软件开发方法。这是一种自底向上和自顶向下相结合的方法,而且它以对象建模为基础,从而不仅考虑了输入、输出数据结构,实际上也包含了所有对象的数据结构,所以面向对象的软件开发方法彻底实现了PAM没有完全实现的目标。不仅如此,面向对象技术在需求分析、可维护性和可靠性这三个软件开发的关键环节和质量指标上有了

机械结构优化设计

机械结构优化设计 ——周江琛2013301390008 摘要:机械优化设计是一门综合性的学科,非常有发展潜力的研究方向,是解决复杂设计问题的一种有效工具。本文重点介绍机械优化设计方法的同时,对其原理、优缺点及适用范围进行了总结,并分析了优化方法的最新研究进展。关键词:优化方法约束特点函数 优化设计是一门新兴学科,它建立在数学规划理论和计算机程序设计基础上,通过计算机的数值计算,能从众多的设计方案中寻到尽可能完善的或最适宜的设计方案,使期望的经济指标达到最优,它可以成功地解决解析等其它方法难以解决的复杂问题,优化设计为工程设计提供了一种重要的科学设计方法,因而采用这种设计方法能大大提高设计效率和设计质量。优化设计主要包括两个方面:一是如何将设计问题转化为确切反映问题实质并适合于优化计算的数学模型,建立数学模型包括:选取适当的设计变量,建立优化问题的目标函数和约束条件。目标函数是设计问题所要求的最优指标与设计变量之间的函数关系式,约束条件反映的是设计变量取得范围和相互之间的关系;二是如何求得该数学模型的最优解:可归结为在给定的条件下求目标函数的极值或最优值的问题。机械优化设计就是在给定的载荷或环境条件下,在机械产品的形态、几何尺寸关系或其它因素的限制范围内,以机械系统的功能、强度和经济性等为优化对象,选取设计变量,建立

目标函数和约束条件,并使目标函数获得最优值一种现代设计方法,目前机械优化设计已广泛应用于航天、航空和国防等各部门。优化设计是20世纪60年代初发展起来的,它是将最优化原理和计算机技术应用于设计领域,为工程设计提供一种重要的科学设计方法。利用这种新方法,就可以寻找出最佳设计方案,从而大大提高设计效率和质量。因此优化设计是现代设计理论和方法的一个重要领域,它已广泛应用于各个工业部门。优化方法的发展经历了数值法、数值分析法和非数值分析法三个阶段。20世纪50年代发展起来的数学规划理论形成了应用数学的一个分支,为优化设计奠定了理论基础。20世纪60年代电子计算机和计算机技术的发展为优化设计提供了强有力的手段,使工程技术人员把主要精力转到优化方案的选择上。最优化技术成功地运用于机械设计还是在20世纪60年代后期开始,近年来发展起来的计算机辅助设计(CAD),在引入优化设计方法后,使得在设计工程中既能够不断选择设计参数并评选出最优设计方案,又可加快设计速度,缩短设计周期。在科学技术发展要求机械产品更新日益所以今天,把优化设计方法与计算机辅助设计结合起来,使设计工程完全自动化,已成为设计方法的一个重要发展趋势。 优化设计方法多种多样,主要有以下几种:1无约束优化设计法;无约束优化设计是没有约束函数的优化设计,无约束可以分为两类,一类是利用目标函数的一阶或二阶导数的无约束优化方法,如最速下降法、共轭梯度法、牛顿法及变尺度法等。另一类是只利用目标函数值的无约束优化方法,如坐标轮换法、单形替换法及鲍威尔法等。此法具有计算

结构化分析方法

结构化分析方法 ? 1.“所有蔬菜都特价;土豆是种蔬菜;所以土豆也特价。”这段话运用的分析方法是()。(单选题6分)得分:6分 o A.演绎 o B.归纳 o C.对比 o D.举例 ? 2.()是总结现有情况,形成一般化结论。(单选题6分)得分:6分 o A.演绎 o B.归纳 o C.对比 o D.举例 ? 3.“虚心使人进步,骄傲使人落后。”是运用了()的分析方法。(单选题6分)得分:6分 o A.演绎 o B.归纳 o C.对比 o D.举例 ? 4.()是最为常见的演绎形式。(单选题6分)得分:6分 o A.选言推理 o B.假言推理

o C.三段论演绎 o D.关系推理 ? 5.()就是从普遍性的理论知识出发,去认识个别的、特殊的现象的一种逻辑推理方法。(单选题6分)得分:6分 o A.演绎 o B.归纳 o C.对比 o D.举例 ? 6.演绎包括的具体形式有()。(多选题8分)得分:0分 o A.三段论演绎 o B.选言推理 o C.假言推理 o D.关系推理 ?7.对比包括()。(多选题8分)得分:0分 o A.正面对比 o B.反面对比 o C.正物对比 o D.反物对比 ?8.归纳可分为()。(多选题8分)得分:8分 o A.完全归纳 o B.分层归纳 o C.整体归纳

o D.不完全归纳 ?9.归纳是指从许多个别的事物中概括出一般性()的思维方法。(多选题8分)得分:8分 o A.概念 o B.原则 o C.结论 o D.内容 ?10.对比是把两个()的事物放在一起,用比较的方法加以描述或说明。(多选题8分)得分:8分 o A.相反 o B.一致 o C.相对 o D.相符 ?11.演绎是从一般原则到具体事实的过程。(判断题6分)得分:6分 o正确 o错误 ?12.归纳就是从普遍性的理论知识出发,去认识个别的、特殊的现象的一种逻辑推理方法。(判断题6分)得分:6分 o正确 o错误

结构化分析和设计方法

3.1.2结构化方法的基本思想 结构化方法是“结构化分析”(Structured Analysis,SA)和“结构化设计”(Structured Design,SD)的总称,结构化方法是目前最成熟、应用最广泛的信息系统开发方法之一,他的优点是有一套严格的开发程序,各开发阶段都要求有完整的文档纪录,国内外已有许多成功开发的例子。 3.1.2.1结构化分析 1.结构化系统分析思想 结构化分析方法是由美国Yourdon公司在20世纪70年代提出的,其基本思想是将系统开发看成工程项目,有计划、有步骤地进行,是一种应用很广的开发方法,适用于分析大型信息系统。 结构化分析方法采用“自顶向下,逐层分解”的开发策略。按照这种策略,再复杂的系统也可以有条不紊的进行,只要将复杂的系统适当分层,每层的复杂程度即可降低,这就是结构化分析的特点。 2.结构化分析方法的内容 结构化分析之后获得的文档是系统分析报告,系统分析报告是由下面几个部分组成的:组织结构及其分析,现行业务流程及其分析,现有数据和数据流程及其分析,新系统地初步方案和补充材料,如开发计划等。 3.结构划分此方法的特点 结构化分析方法有以下特点 结构化分析方法简单,易于掌握和使用。 结构化分析方法将分析的结果用图形表示,如业务流程图,数据流程图等,这些图形都有一套标准图符组成,从而将分析结果简明易懂的展示在用户面前。 结构化分析的实施步骤实现分析实现环境中已存在的系统,在此基础上再构思即将开发的目标系统,从而大大降低了问题的复杂程度,符合人们认识世界、改造世界的一般规律。 4.结构化分析方法的局限 结构化分析方法是一种行之有效的方法,但也有一定的局限性。局限性可以概括成以下几个方面: 结构化分析方法要求对系统有完整确切的需求定义,而实际上这是非常困难的。

机械结构设计准则汇总

机械结构设计准则汇总 第一部分、塑料件 1、概述: 注塑件设计的一般原则: z 充分考虑塑料件的成型工艺性,如流动性; z 塑料件的形状在保证使用要求的前提下,应有利于充模,排气,补缩, 同时能适应高效冷却硬化; z 塑料设计应考虑成型模具的总体结构,特别是抽芯与脱出制品的复杂程 度,同时应充分考虑到模具零件的形状及制造工艺,以便使制品具有较 好的经济性: z 塑料件设计主要内容是零件的形状、尺寸、壁厚、孔、圆角、加强筋、 螺纹、嵌件、表面粗糙度的设计。 1.1、常用塑料介绍 常用的塑料主要有 ABS、AS、PC、PMMA、PS、HIPS、PP、POM 等,其 中常用的透明塑料有 PC、PMMA、PS、AS。高档电子产品的外壳通常采用 ABS+PC;显示屏采用 PC,如采用 PMMA 则需进行表面硬化处理。日常生活中 使用的中底挡电子产品大多使用 HIPS 和 ABS 做外壳,HIPS 因其有较好的抗老 化性能,逐步有取代 ABS 的趋势。 1.2、常见表面处理介绍 表面处理有电镀、喷涂、丝印、移印。ABS、HIPS、PC 料都有较好的表面处 理效果。而 PP 料的表面处理性能较差,通常要做预处理工艺。近几年发展起来 的模内转印技术(IMD)、注塑成型表面装饰技术(IML)、魔术镜(HALF MIRROR)制造技术。 IMD 与 IML 的区别及优势: 1、 IMD 膜片的基材多数为剥离性强的 PET,而 IML 的膜片多数为 PC。 2、 IMD 注塑时只是膜片上的油墨跟树脂接合,而 IML 是整个膜片履在树 脂上。 9 3、 IMD 是通过送膜机器自动输送定位,IML 是通过人工操作手工挂。 1.3、外形设计 对于塑料件,如外形设计错误,很可能造成模具报废,所以要特别小心。外 形设计要求产品外观美观、流畅,曲面过渡圆滑、自然,符合人体工程。 现实生活中使用的大多数电子产品,外壳主要都是由上、下壳组成,理论上 上下壳的外形可以重合,但实际上由于模具的制造精度、注塑参数等因素影响, 造成上、下外形尺寸大小不一致,即面刮(面壳大于底壳)或底刮(底壳大于面壳)。可接受面刮<0.15mm,可接受底刮<0.1mm。所以在无法保证零段差时,尽 量使产品:面壳>底壳。 一般来说,上壳因有较多的按键孔,成型缩水较大,所以缩水率选择较大, 一般选 0.5%。 底壳成型缩水较小,所以缩水率选择较小,一般选 0.4%。

结构化分析方法

结构化分析方法 一、需求分析与需求分析方法 需求阶段是软件开发的关键阶段。 需求分析的任务:准确地定义未来系统的目标,确定为了满足用户的需求系统必须做什么;用《需求规格说明书》规范的形式准确地表达用户的需求。 需求分析阶段的工作(四方面): ◆需求获取:确定系统各方面需求;全面地提炼出系统的功能性与非功能性需求。 ◆需求分析:对获取的需求分析和综合,给出系统解决方案和逻辑模型。 ◆编写需求规格说明书:为用户、设计人员的交流提供方便,还可作为控制软件开发进程的依据。 ◆需求审评:复审需求分析阶段的工作,验证需求文档的一致性、可行性等。 1、需求获取的目的 清楚地理解所要解决的问题、完整地获取用户需求。 2、需求获取的内容 用户需求分类: (1)功能性需求 定义了系统做什么(描述系统必须支持的功能和过程)。 (2)非功能性需求(技术需求) 定义了系统工作时的特性(描述操作环境和性能目标)。 3、需求分析的步骤 需求分析的步骤 当前系统目标系统 物理 模型 逻辑 模型 逻辑 模型 物理 模型 模型化抽象化 具体化实例化 怎 么 做 做 什 么 当前 目标 系统 需 求 定 义 4、需求分析过程示意

(1)通过对现实环境的调查,获得当前系统的物理模型。 (2)去掉具体模型中的非本质因素,抽象出当前系统的逻辑模型。 (3)分析当前系统与目标系统的差别,建立目标系统的逻辑模型。 5、需求分析的方法 结构化分析(传统建模方法)、面向对象分析。 计算机世界 现实世界 结构化开发方法 结构化 分析结构化设计结构化编程 OOA OOD OOP 面向 对象开发 方法 二、结构化分析方法 1、结构化分析方法(Structure Analysis---SA ) (1) 定义 是面向数据流进行需求分析的方法,采用自顶向下,逐层分解,建立系统的处理流程,以数据流图和数据字典为主要工具,建立系统的逻辑模型。 (2)结构化分析的主要步骤 通过对用户的调查,以软件的需求为线索,获取当前系统的具体模型;去掉具体模型中非本质因素,抽象出当前系统的逻辑模型;根据计算机的特点分析当前系统与目标系统的差别,建立目标系统的逻辑模型;完善目标系统并补充细节,写出目标系统的软件需求规格说明。 2、结构化分析方法使用的常用工具 (1)数据流图(DFD —Data Flow Diagram ) ① 作用 从数据传递和加工的角度,在需求分析阶段以图形的方式描述数据流从输入到输出的移动变换过程,为系统建立逻辑模型。 ◆ 注意:数据流图中的箭头表示的是数据流。程序流程图中的箭头表示的是控制流。 ② 数据流图中的基本图形符号意义

结构化设计方法

结构化设计方法 刘凤祥

目录 第一模块软件工程和软件过程 (3) 瀑布模型 (4) 快速原型模型 (5) 增量模型(渐增模型) (6) 螺旋模型 (7) 喷泉模型 (8) 第二模块结构化分析 (9) 概述 (9) 与用户通信的技术 (9) 分析建模与规格说明 (10) 实体——关系图 (11) 数据流图 (11) 状体转换图 (12) 数据字典 (13) 练习 (14) 第三模块结构化设计 (14) 第四模块结构化实现 (31) 第五模块软件项目管理 (31) 第六模块案例分析 (32)

第一模块 软件工程和软件过程 一、 概述 1. 谁有软件开发的经验?软件开发的大概过程是什么?曾遇到过什么问题? 2. 计算机系统的发展所经历的四个阶段 3. 软件危机:在计算机软件的开发和维护过程中所遇到的一系列严重问题 4. 产生软件危机的原因 5. 消除或减少软件危机的途径 二、 软件工程 ①把系统化的、规范化的、可度量的途径应用于软件开发、运行和维护的过程,也就是把工程化应用于软件中;②研究①中提到的途径。 三、 软件工程的基本原理 1. 用分阶段的生命周期计划严格管理 2. 坚持进行阶段评审 3. 实行严格的产品控制 4. 采用现代程序设计技术 5. 结果应能清楚地审查 6. 开发小组的人员应该少而精 7. 承认不断改进软件工程实践的必要性 1)60年代中期以前 无软件设计的文档资料 2)出现了软件作坊,“软件危机”出现,1968年提出“软件工程”的概念 3)20世纪70年代中期开始,10年。主要特点是出现了微处理器 4)软硬件的综合效果

五、生命周期模型 瀑布模型 图1.2传统的瀑布模型 1. 阶段间具有顺序性和依赖性 2. 推迟实现的观点(尽量晚的开始程序的编写) 3. 质量保证的观点 优点:可强迫可发人员采用规范化的方法;严格地规定了每个阶段必须提交的文档;要求每个阶段交出的所有产品都必须经过质量保证小组的仔细验证。 缺点:软件产品交付用户前,用户仅仅通过写在纸上的静态的规格说明,很难全面正确地认识动态的软件产品

结构化需求分析方法

结构化分析(SA)方法 结构化开发方法(Structured Developing Method)是现有的软件开发方法中最成熟,应用最广泛的方法,主要特点是快速、自然和方便。结构化开发方法由结构化分析方法(SA法)、结构化设计方法(SD 法)及结构化程序设计方法(SP 法)构成的。 结构化分析(Structured Analysis,简称SA 法)方法是面向数据流的需求分析方法,是70 年代末由Yourdon,Constaintine 及DeMarco 等人提出和发展,并得到广泛的应用。它适合于分析大型的数据处理系统,特别是企事业管理系统。 SA 法也是一种建模的活动,主要是根据软件内部的数据传递、变换关系,自顶向下逐层分解,描绘出满足功能要求的软件模型。 1 SA 法概述 1.SA 法的基本思想 结构化分析(Structured Analysis,简称SA 法)是面向数据流的需求分析方法,是70年代由Yourdon,Constaintine 及DeMarco 等人提出和发展,并得到广泛的应用。 结构化分析方法的基本思想是“分解”和“抽象”。

分解:是指对于一个复杂的系统,为了将复杂性降低到可以掌握的程度,可以把大问题分解成若干小问题,然后分别解决。 图4 是自顶向下逐层分解的示意图。顶层抽象地描述了整个系统,底层具体地画出了系统的每一个细节,而中间层是从抽象到具体的逐层过渡。 抽象:分解可以分层进行,即先考虑问题最本质的属性,暂把细节略去,以后再逐层添加细节,直至涉及到最详细的内容,这种用最本质的属性表示一个自系统的方法就是“抽象”。 2.SA 法的步骤 ⑴建立当前系统的“具体模型”; 系统的“具体模型”就是现实环境的忠实写照,即将当前系统用DFD 图描述出来。这样的表达与当前系统完全对应,因此用户容易理解。 ⑵抽象出当前系统的逻辑模型;

基于OptiStruct的结构优化设计方法

基于OptiStruct的结构优化设计方法 作者:张胜兰 优化设计是以数学规划为理论基础,将设计问题的物理模型转化为数学模型,运用最优化数学理论,以计算机和应用软件为工具,在充分考虑多种设计约束的前提下寻求满足预定目标的最佳设计。有限元法(FEM)被广泛应用于结构分析中,采用这种方法,任意复杂的问题都可以通过它们的结构响应进行研究。最优化技术与有限元法结合产生的结构优化技术逐渐发展成熟并成功地应用于产品设计的各个阶段。 一、OptiStruct结构优化方法简介 OptiStruct是以有限元法为基础的结构优化设计工具。它提供拓扑优化、形貌优化、尺寸优化、形状优化以及自由尺寸和自由形状优化,这些方法被广泛应用于产品开发过程的各个阶段。概念设计优化――用于概念设计阶段,采用拓扑(Topology)、形貌(Topography)和自由尺寸(Free Sizing)优化技术得到结构的基本形状。详细设计优化――用于详细设计阶段,在满足产品性能的前提下采用尺寸(Size)、形状(Shape)和自由形状(Free Shape)优化技术改进结构。拓扑、形貌、自由尺寸优化基于概念设计的思想,作为结果的设计空间需要被反馈给设计人员并做出适当的修改。经过设计人员修改过的设计方案可以再经过更为细致的形状、尺寸以及自由形状优化得到更好的方案。最优的设计往往比概念设计的方案结构更轻,而性能更佳。表1简单介绍各种方法的特点和应用。

OptiStruct提供的优化方法可以对静力、模态、屈曲、频响等分析过程进行优化,其稳健高效的优化算法允许在模型中定义成千上万个设计变量。设计变量可取单元密度、节点坐标、属性(如厚度、形状尺寸、面积、惯性矩等)。此外,用户也可以根据设计要求和优化目标,方便地自定义变量。 在进行结构优化过程中,OptiStruct允许在有限元计算分析时使用多个结构响应,用来定义优化的目标或约束条件。OptiStruct支持常见的结构响应,包括:位移、速度、加速度、应力、应变、特征值、屈曲载荷因子、结构应变能、以及各响应量的组合等。 OptiStruct提供丰富的参数设置,便于用户对整个优化过程及优化结果的实用性进行控制。这些参数包括优化求解参数和制造加工工艺参数等。用户可以设定迭代次数、目标容差、初始步长和惩罚因子等优化求解参数,也可以根据零件的具体制造过程添加工艺约束,从而得到正确的优化结果并方便制造。此外,利用OptiStruct软件包中的OSSmooth工具,可以将拓扑优化结果生成为IGES等格式的文件,然后输入到CAD系统中进行二次设计。

机械结构设计的原则和特点

5.1.1机械结构设计的任务 机械结构设计的任务是在总体设计的基础上,根据所确定的原理方案,确定并绘出具体的结构图,以体现所要求的功能。是将抽象的工作原理具体化为某类构件或零部件,具体内容为在确定结构件的材料、形状、尺寸、公差、热处理方式和表面状况的同时,还须考虑其加工工艺、强度、刚度、精度以及与其它零件相互之间关系等问题。所以,结构设计的直接产物虽是技术图纸,但结构设计工作不是简单的机械制图,图纸只是表达设计方案的语言,综合技术的具体化是结构设计的基本内容。 5.1.2机械结构设计特点 机械结构设计的主要特点有:(1)它是集思考、绘图、计算(有时进行必要的实验)于一体的设计过程,是机械设计中涉及的问题最多、最具体、工作量最大的工作阶段,在整个机械设计过程中,平均约80%的时间用于结构设计,对机械设计的成败起着举足轻重的作用。(2)机械结构设计问题的多解性,即满足同一设计要求的机械结构并不是唯一的。(3)机械结构设计阶段是一个很活跃的设计环节,常常需反复交叉的进行。为此,在进行机械结构设计时,必须了解从机器的整体出发对机械结构的基本要求 5.2机械结构件的结构要素和设计方法 5.2.1结构件的几何要素 机械结构的功能主要是靠机械零部件的几何形状及各个零部件之间的相对位置关系实现的。零部件的几何形状由它的表面所构成,

一个零件通常有多个表面,在这些表面中有的与其它零部件表面直接接触,把这一部分表面称为功能表面。在功能表面之间的联结部分称为联接表面。 零件的功能表面是决定机械功能的重要因素,功能表面的设计是零部件结构设计的核心问题。描述功能表面的主要几何参数有表面的几何形状、尺寸大小、表面数量、位置、顺序等。通过对功能表面的变异设计,可以得到为实现同一技术功能的多种结构方案。 5.2.2结构件之间的联接 在机器或机械中,任何零件都不是孤立存在的。因此在结构设计中除了研究零件本身的功能和其它特征外,还必须研究零件之间的相互关系。 零件的相关分为直接相关和间接相关两类。凡两零件有直接装配关系的,成为直接相关。没有直接装配关系的相关成为间接相关。间接相关又分为位置相关和运动相关两类。位置相关是指两零件在相互位置上有要求,如减速器中两相邻的传动轴,其中心距必须保证一定的精度,两轴线必须平行,以保证齿轮的正常啮合。运动相关是指一零件的运动轨迹与另一零件有关,如车床刀架的运动轨迹必须平行于于主轴的中心线,这是靠床身导轨和主轴轴线相平行来保证的,所以,主轴与导轨之间位置相关;而刀架与主轴之间为运动相关。 多数零件都有两个或更多的直接相关零件,故每个零件大都具有两个或多个部位在结构上与其它零件有关。在进行结构设计时,两零件直接相关部位必须同时考虑,以便合理地选择材料的热处理方式、

建筑结构设计的优化方法及应用分析 何彬

建筑结构设计的优化方法及应用分析何彬 摘要:文章以建筑结构设计的优化方法及应用分析为研究对象,首先对建筑结 构设计优化必要性进行了阐述分析,随后简单介绍了建筑结构优化设计方法步骤,最后以装配式工艺为例,对建筑结构设计的优化应用进行了分析研究以供参考。 关键词:建筑结构;设计优化方法;应用分析 前言:建筑结构作为整体建筑核心组成部分,针对于建筑结构的设计不仅关系到建筑建 设经济适用性,同时对于建筑整体功能性发挥具有重要的影响意义。在低碳环保理念、可持 续发展理念日益深入人心的当下,需要进一步加强对建筑结构设计优化方法的应用与分析, 从而有效提升建筑节能效率,最大限度地降低对环境的负面影响,促进建筑建设质量提升, 推动我国建筑行业实现可持续发展。 一、建筑结构设计优化必要性 随着我国城市建设进程不断加快,国民经济水平不断提升,有效带动了我国建筑行业的 发展。当下人们对于建筑建设提出了更高的要求,其不仅要求在建筑质量方面更加稳定,同 时要求具备良好的建筑功能性,建筑造型设计要独特、新颖,整体建筑外观结合自身功能性 不同具有一定艺术特质,给人以美的感受;还要响应国家关于绿色建筑的政策号召,能够减 少建筑施工中不必要的资源浪费,提升建筑的低碳、环保性能,经济适用性更强,从而带给 人更好的居住体验。建筑结构作为建筑的核心组成部分,在满足上述要求上发挥着关键性作用。首先,建筑整体结构合理与否,决定着建筑的抗震性能、质量及稳定性实现,是提升建 筑建设水平与质量的关键;其次,建筑结构与建筑的整体造型设计也具有密切的联系,在建 筑造型设计方面发挥着重要的作用。最后,建筑结构建设关系到建筑的用材、施工技术选择、等因素,而上述这些因素决定着建筑资源的利用率的高低,能够有效减少不必要的建筑资源 浪费,使得建筑施工建设更加低碳环保。 基于以上种种分析,很有有必要加强对建筑结构设计的优化,进一步推广建筑结构设计 优化应用,从而有效实现建筑成本的节约,提升建筑建设质量,确保建筑节能标准得到有效 落实,有效减少建筑施工建设过程中各种违法、资源浪费、破坏问题的发生,从而推动建筑 行业实现绿色健康可持续发展。 二、建筑结构优化设计方法步骤 (一)构建建筑结构优化模型 在建筑结构优化过程中,首先需要借助数学函数关系,通过构建建筑结构设计约束条件 与可变条件之间的关系式,从而实现建筑结构应用模型的建立,在此基础之上,借助相应模 型对影响建筑结构优化的因素进行全面的分析,从中获得最佳的优化方式,为整体建筑结构 优化奠定坚实的基础。例如结合对建筑墙体保温板与墙体受压能力的分析,通过构建相应模 型进行全面的数据分析,从而推动建筑结构的优化得到有效实现。 (二)制定科学合理的建筑结构优化设计方案 在数据模型运行阶段,通过对房屋建筑的模型相关条件进行处理分析,在有效保证建筑 结构在实际实施中功能性得到良好的发挥的基础之上,通常对线性分析加以应用,做好线性 条件的检验,通过对数学模型中的函数进行变置转化应用,以此为依据,实现建筑结构优化 设计的实施方案制定,有效提升建筑结构优化设计的可实施性及可操作性,保证建筑结构设 计优化得到全面有效的落实。 (三)综合应用分析建筑程序 通过利用现代测量技术与建筑结构设计相结合,进一步将抽象的数据资源转化为房屋建 筑中的实际执行操作,确保建筑结构在优化后,发挥出应有的作用价值。例如在房屋墙体设 计上应用建筑结构设计优化方法,以墙体建设各种因素为依据,全面分析外墙和内墙建设实施,最终形成专门针对于建筑中墙体施工实际方案,发挥建筑结构设计优化方法的引导作用,提升建筑结构优化设计水平与质量。 三、建筑结构设计优化应用,以装配式工艺为例 在建筑结构设计建造方面,相对于传统的现浇施工工艺,装配式建筑工艺作为新型建筑

需求分析(传统结构化方法)

2.2需求分析 需求分析是通过开发人员的分析概括,抽象为完整的需求定义,再形成一系列文档的过程。 2.2.1需求分析的目的与意义 需求分析是一个非常重要的过程,它完成的好坏直接影响后续软件开发的质量。有效的需求分析通常都具有一定的难度。需求分析不仅仅是属于软件开发生命周期早期的一项工作,而且还应该贯穿于整个生命周期中,它应该随着项目的深入而不断地变化。此外,为了方便后续的评审和测试等工作,需求的描述应该尽量做到:具体、详细、可以测量和可以实现,并且基于时间。 2.2.2需求分析的步骤 2-3所示。 需求涉及的方面: 在功能方面,需求包括系统要做什么,相对于原系统目标系统需要进行哪些修改,目标用户有哪些,以及不同用户需要通过系统完成何种操作等。 在性能方面,需求包括用户对于系统执行速度、响应时间、吞吐量和并发度等指标的要求。在运行环境方面,需求包括目标系统对于网络设置、硬件设备、温度和湿度等周围环境的要求,以及对操作系统、数据库和浏览器等软件配置的要求。 在界面方面,需求涉及数据的输入/输出格式的限制及方式、数据的存储介质和显示器的分辨率要求等问题。 1. 获取需求,识别问题 开发人员从功能、性能、界面和运行环境等多个方面识别目标系统要解决哪些问题,要满足哪些限制条件,这个过程就是对需求的获取。开发人员通过调查研究,要理解当前系统的工作模型和用户对新系统的设想与要求。 遗漏需求是最难修订的需求错误。 获取需求是需求分析的基础。为了能有效地获取需求,开发人员应该采取科学的需求获取方法。在实践中,获取需求的方法有很多种,比如,问卷调查、访谈、实地操作、建立原型和研究资料等。 问卷调查法是采用调查问卷的形式来进行需求分析的一种方法。通过对用户填写的调查问卷进行汇总、统计和分析,开发人员便可以得到一些有用的信息。采用这种方法时,调查问卷

钣金结构设计准则

1 引言 薄板指板厚和其长宽相比小得多的钢板。它的横向抗弯能力差,不宜用于受横向弯曲载荷作用的场合。薄板就其材料而言是金属,但因其特殊的几何形状厚度很小,所以薄板构件的加工工艺有其特殊性。和薄板构件有关的加工工艺有三类:(1)下料:它包括剪切和冲裁。(2)成形:它包括弯曲、折叠、卷边和深拉。(3)连接:它包括焊接、粘接等。薄板构件的结构设计主要应考虑加工工艺的要求和特点。此外,要注意构件的批量大小。 薄板构件之所以被广泛采用是因为薄板有下列优点: (1)易变形,这样可用简单的加工工艺制造多种形式的构件。 (2)薄板构件重量轻。 (3)加工量小,由于薄板表面质量高,厚度方向尺寸公差小,板面不需加工。(4)易于裁剪、焊接,可制造大而复杂的构件。 (5)形状规范,便于自动加工。 2 结构设计准则 在设计产品零件时,必须考虑到容易制造的问题。尽量想一些方法既能使加工容易,又能使材料节约,还能使强度增加,又不出废品。为此设计人员应该注意以下制造方面事项。 钣金件的工艺性是指零件在冲切、弯曲、拉伸加工中的难易程度。良好的工艺应保证材料消耗少,工序数目少,模具结构简单,使用寿命高,产品质量稳定。在一般情况下,对钣金件工艺性影响最大的是材料的性能、零件的几何形状、尺寸和精度要求。

如何在薄板构件结构设计时充分考虑加工工艺的要求和特点,这里推荐几条设计准则。 2.1 简单形状准则 切割面几何形状越简单,切割下料越方便、简单、切割的路径越短,切割量也越小。如直线比曲线简单,圆比椭圆及其它高阶曲线简单,规则图形比不规则图形简单(见图1)。 (a)不合理结构(b)改进结构 图1 图2a的结构只有在批量大时方有意义,否则冲裁时,切割麻烦,因此,小批量生产时,宜用图b所示结构。 (a)不合理结构(b)改进结构 图2 2.2 节省原料准则(冲切件的构型准则) 节省原材料意味着减少制造成本。零碎的下角料常作废料处理,因此在薄板构件的设计中,要尽量减少下脚料。冲切弃料最少以减少料的浪费。特别在批量大的构件下料时效果显著,减少下角料的途径有:

结构化分析方法答案

结构化分析方法答案 (单选题6分)得分: 1?“虚心使人进步,骄傲使人落后。”是运用了()的分析方法。 r o A.演绎 r o B.归纳 o C.对比 r o D.举例?2?“所有蔬菜都特价;土豆是种蔬菜;所以土豆也特价。”这段话运用的分析方法是()。 (单选题6分)得分:6分 o " A.演绎 o "B.归纳 o 广 C.对比 D.举例 ?3.()是最为常见的演绎形式。(单选题6分)得分:6分 r o A.选言推理 r o B.假言推理 o C.三段论演绎 r o D.关系推理 * 4.()是总结现有情况,形成一般化结论。(单选题6分)◎得分:6分r o A.演绎 o B.归纳 r o C.对比

r o D.举例 ?5.()就是从普遍性的理论知识出发,去认识个别的、特殊的现象的一种逻辑推理方法。(单选题6分)O得分:6分 o苗A.演绎 r o B.归纳 r “ o C.对比 r o D.举例 * 6.演绎包括的具体形式有()。(多选题8分)◎得分:8分 |7 o _ A.三段论演绎 o B.选言推理 17 o C.假言推理 |7 o D.关系推理 * 7.对比包括()。(多选题8分)◎得分:8分 o A.正面对比 17 o B.反面对比 o 厂C.正物对比 p o D.反物对比 * 8.归纳是指从许多个别的事物中概括出一般性()的思维方法。(多选题8分)得分:8分 o A.概念 17 o 一B.原则

o C.结论 o厂D.内容 * 9.对比是把两个()的事物放在一起,用比较的方法加以描述或说明。(多选题8分)得分:8分 |7 o —A.相反 o 厂B. 一致 |7 o C.相对 o厂D.相符 ? 10.归纳可分为()。(多选题8分)得分:8分 |7 o A.完全归纳 o 厂B.分层归纳 o 厂C.整体归纳 o D.不完全归纳 * 11.演绎是从一般原则到具体事实的过程。(判断题6分)◎得分:6分 o 正确 r o 错误 * 12.结构化分析方法一一三段论演绎中,做总体概念陈述的是第一段内容。(判断题6分)O得分:6分 o 正确 r o 错误 * 13.归纳就是从普遍性的理论知识出发,去认识个别的、特殊的现象的一种逻辑推理方法。 (判断题6分)◎得分:6分

结构设计优化方法简介

结构设计优化方法简介 1.简单解法当优化问题的变量较少时,可用下列简单解法。 (1)图解法。在设计空间中作出可行域和目标函数等值面,再从图形上找出既在可行域内(或其边界内),又使目标函数值最小的设计点的位置。 (2)解析法。当问题比较简单时,可用解析法求解。 2.准则法 准则法是从工程和力学观点出发,提出结构达到优化设计时应满足的某些准则(如同步失效准则、满应力准则、能量准则等),然后用迭代的方法求出满足这些准则的解。该方法的主要特点是收敛快,重分析次数与设计变量数目无直接关系,计算量不大,但适用有局限性,主要适用于结构布局及几何形状已定的情况。尽管准则法有它的缺点,但从工程应用的角度来看,它比较方便,习惯上易于接受,优点仍是主要的。最简单的准则法有同步失效准则法和满应力准则法。 (1)同步失效准则法。其基本思想可概括为:在荷载作用下,能使所有可能发生的破坏模式同时实现的结构是最优的结构。同步失效准则设计有许多明显的缺点。由于要用解析表达式进行代数运算,同步失效设计只能用来处理非常简单的元件优化;当约束数大于设计变量数时,必须设法确定那些破坏模式应当同时发生才给出最优设计,这通常是一件十分困难的工作;当约束数和设计变量数相等时,并不能保证这样求得的解是最优解。 (2)满应力准则法。该法认为充分发挥材料强度的潜力,可以算是结构优化的一个标志,以杆件满应力作为优化设计的准则。这一方法在杆件系统如桁架的优化设计中用得较多。在此基础上又发展了与射线步结合的齿行法以及框架等复杂结构的满应力设计。 3.数学规划法 将结构优化问题归纳为一个数学规划问题,然后用数学规划法来求解。结构优化中常用

浅谈如何优化建筑结构设计的方法 姜建发

浅谈如何优化建筑结构设计的方法姜建发 发表时间:2019-11-06T14:15:17.653Z 来源:《建筑细部》2019年第11期作者:姜建发[导读] 为此,本文将具体介绍几种建筑结构优化设计的方法,以供参考。 中国联合工程有限公司 310000 摘要:对现代建筑建设来说,建筑不仅需要满足用户的使用需求,还需要同时满足用户的审美需求,具备一定的美感。在建筑结构设计过程中,安全、施工便捷、经济、实用和美观是必须要考虑的五个基本问题,这也要求设计者对建筑结构设计进行优化,使建筑不断趋于合理、安全和实用。为此,本文将具体介绍几种建筑结构优化设计的方法,以供参考。 关键词:建筑结构;设计;优化方法;数学模型 在建筑结构的设计环节中,设计者需要对建筑的布局、施工方案和验收环节进行把控,综合考虑并不断优化,才能做出科学的结构设计方案。在原有方案的基础之上,对结构设计方案进行改进,使其充分利用空间资源,并在最大程度上满足用户的实际需求,在实现其基本的建筑物使用功能的基础上,实现较好的美观功能,并在实际建设中节约建设成本,获得最佳经济效益。 1建筑结构设计优化的必要性 在房屋结构设计过程中,使用合理的优化设计方案,不仅能够提升建筑物的使用价值,还可以同时实现建筑物的经济价值和环保价值。在优化设计方案中,节省建筑单位的资金投入,降低建设成本。建筑优化设计与传统的建筑设计相比,能够为企业带来更好的经济效益、为用户提供更好的使用体验。通过优化配置建筑施工过程中的各种资源,如建筑材料、结构布局,实现结构布局的有效结合,共同发挥更优作用,建筑物的面积随着建筑物层数的增加而增加,而要想保证建筑物的良好设计效果、稳定性和可靠性,建筑物的单位面积造价也会随之升高。通过建筑结构优化设计,便可以在这些因素之间找到协调点,实现最佳的方案设计。 2建筑结构优化设计结构化建模的详细步骤 2.1目标函数的选择 设计人员在对房屋结构进行设计优化时,首先必须确定建筑结构的目标函数,通过建筑物的安全标准和面积参数共同确定,进而根据建筑物建设工程材料的情况准确定建筑物优化设计的工程造价。在这之后,设计人员需要对计算出的集中工程造价方案进行分析,选择工程造价最低的方案,以实现在满足建筑物各项需求的基础上经济效益的最大化。 2.2变量的选择 在对目标函数进行合理的选择之后,还需要对建筑物的变量进行选择。变量的选择具体是指设计人员分析出的可能影响建筑物结构设计的因素,对其进行分析和研究,选择其中影响程度最大的变量因素进行计算和控制,进而达到变量选择的实际作用。 2.3约束条件的选择 对建筑结构的可靠性进行优化和创新,可以对房屋建筑结构当中的定量与约束条件内容进行准确的判定,并将约束条件限定在建筑物的工程标准之内,借此实现建筑结构设计的最优化。例如,在对应力、尺寸大小和结构强度等因素的约束条件进行判定时,必须以建筑物结构的实际情况为基础进行选择。 3建筑结构设计优化新方法介绍 建筑物结构的优化设计体现在建筑物工程结构总体的优化设计和建筑物结构分部结构的优化设计两方面。在分部结构优化设计中,需要进行优化设计的内容有基础结构、屋盖层系统、围护结构以及结构细部方案的优化设计。对这些内容的优化设计涉及到选型、布置、造价分析和受力分析几个部分,并在满足其使用需求的前提下实现经济效益的最大化。并在满足建筑物结构的长期效益条件下,以减少近期投资为目的降低工程造价5%~30%。在优化技术的同时,通过合理利用不同材料的性能使建筑物内部结构的各个单元实现最佳协调。 3.1拓扑优化方法 拓扑优化方法需要设计人员在对建筑物进行设计优化过程中,找到准确的建筑结构理想化分布形式,并对建筑物结构的刚度等属性进行有效分析,通过拓扑优化方式实现减少建筑物结构重量的目的,进一步提升建筑物的性能。在使用拓扑优化方法时,设计者必须充分认识到拓扑优化方法的优点,通过拓扑优化方法将建筑物结构的设计转变为概念性的结构设计方法,提升建筑物结构设计的逻辑性。 3.2截面优化方法 建筑物结构的细节是最能体现其整体可靠性和安全性能的部分,在处理建筑物截面时,设计人员必须考虑到截面结构的安全性和可靠性,对建筑物的截面进行科学计算,提升其稳定性和美观度。对于建筑物截面的优化设计,设计人员可以利用有限元方法来计算设计变量的应力特点和结构位移情况,并通过信息化的设备验算和统计所获得的设计数据,再依据所得的结果判断需要调整的范围,并对该范围内的区域进行优化设计。 3.3外形优化方法 通过外形优化方法,设计人员可以在固有的截面优化方法基础上发对建筑物的结构框架和内部形状进行更进一步的调整、完善,以便提升建筑物的结构设计质量。首先,设计人员需要了解和掌握建筑物的整体情况,以我国现行的建筑物结构设计标准对其进行修正。通过外形优化方法划分建筑物结构的外形特征,在实际工作中,主要采用的是杆系结构和连续性结构。在使用干洗结构外形设计过程中,建筑物结构的节点坐标的选取是关键点,并将选取的节点坐标作为设计的变量,用以满足建筑物外形优化设计的需求。 3.4概念设计与细部结构设计优化相结合 在缺乏详细数据的情况下,我们可以通过概念设计的方法来实现设计的优化。例如,在对建筑物的抗震能力进行设计时,因为地震的强度是不确定因素,我们无法找到与之对应的计算方法,因此,就可以引入概念设计的方法,将数值作为辅助依据。并在设计过程中结合结构设计优化的方法,从而使优化设计达到最佳效果。此外,在设计过程中,设计人员必须对结构的西部进行优化设计,例如,在进行现浇混凝土施工中,异形板料的弯曲部位十分容易开裂,为此,我们可以将其简化为矩形板,再选择钢筋,这样就可以降低凝土开裂的概率,既能满足建筑物结构的基本需求,又能够实现安全和经济的目标。

相关文档
最新文档