§3.4基本不等式第2课时

§3.4基本不等式第2课时
§3.4基本不等式第2课时

河北武中·宏达教育集团教师课时教案

人教A版高中数学必修一《2.2 基本不等式》优质课公开课课件、教案

2.2基本不等式 教材分析: “基本不等式”是必修1的重点内容,它是在系统学习了不等关系和不等式性质,掌握了不等式性质的基础上对不等式的进一步研究,同时也是为了以后学习选修教材中关于不等式及其证明方法等内容作铺垫,起着承上启下的作用.利用基本不等式求最值在实际问题中应用广泛.同时本节知识又渗透了数形结合、化归等重要数学思想,有利于培养学生良好的思维品质. 教学目标 【知识与技能】 1.学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等; 2.掌握基本不等式;会应用此不等式求某些函数的最值;能够解决一些简单的实际问题 【过程与方法】 通过实例探究抽象基本不等式; 【情感、态度与价值观】 通过本节的学习,体会数学来源于生活,提高学习数学的兴趣. 教学重难点 【教学重点】 应用数形结合的思想理解不等式,并从不同角度探索不等式的证明过程;【教学难点】 1.基本不等式等号成立条件; 2.利用基本不等式求最大值、最小值. 教学过程 1.课题导入 前面我们利用完全平方公式得出了一类重要不等式: 一般地,,有 a2+b2≥2ab, 当且仅当a=b时,等号成立 特别地,如果a>0,b>0,我们用,分别代替上式中的a,b,可得

① 当且仅当a=b时,等号成立. 通常称不等式(1)为基本不等式(basic inequality).其中,叫做正数a,b的算术平均数,叫做正数a,b的几何平均数. 基本不等式表明:两个正数的算术平均数不小于它们的几何平均数. 思考:上面通过考察a2+b2=2ab的特殊情形获得了基本不等式,能否直接利用不等式的性质推导出基本不等式呢?下面我们来分析一下. 2.讲授新课 1)类比弦图几何图形的面积关系认识基本不等式 特别的,如果a>0,b>0,我们用分别代替a、b,可得, 通常我们把上式写作: 2)从不等式的性质推导基本不等式 用分析法证明: 要 证 (1) 只要证a+b ≥(2) 要证(2),只要证a+b- ≥0 (3) 要证(3),只要证(- )2≥0 (4) 显然,(4)是成立的.当且仅当a=b时,(4)中的等号成立.

高中数学《基本不等式》优质课教学设计

《基本不等式》教学设计 一、教学内容解析: 1、本节内容选自《普通高中课程标准实验教科书》(人教A版教材)高中数学必修5第三章第4节基本不等式,是在学习了不等式的性质、一元二次不等式的解法、线性规划的基础上对不等式的进一步的研究,本节是教学的重点,学生学习的难点,内容具有条件约束性、变通灵活性、应用广泛性等的特点; 2、本节主要学习基本不等式的代数、几何背景及基本不等式的证明和应用,为选修4-5进一步学习基本不等式和证明不等式的基本方法打下基础,也是体会数形结合、分类讨论等数学思想,提升数学抽象、直观想象、逻辑推理等数学核心素养的良好素材; 3、在学习了导数之后,可用导数解决函数的最值问题,但是,借助基本不等式解决某些特殊类型的最值问题简明易懂,仍有其独到之处; 4、在高中数学中,不等式的地位不仅特殊,而且重要,它与高中数学很多章节都有联系,尤其与函数、方程联系紧密,因此,不等式才自然而然地成为高考中经久不衰的热点、重点,有时也是难点. 二、学情分析: 1、学生已经掌握的不等式的性质和作差比较法证明不等式对本节课的学习有很大帮助; 2、学生逻辑推理能力有待提高,没有系统学习过证明不等式的基本方法,尤其对于分析法证明不等式的思路以前接触较少; 3、对于最值问题,学生习惯转化为一元函数,根据函数的图像和性质求解,对于根据已知不等式求最值接触较少,尤其会忽略取等号的条件。 三、教学目标: 1、知识与技能:会从不同角度探索基本不等式,会用基本不等式解决简单的最值问题; 2、过程与方法:经历基本不等式的推导过程,体会数形结合、分类讨论等数学思想,提升数学抽象、直观想象、逻辑推理等数学核心素养; 3、情感态度价值观:培养学生主动探索、勇于发现的科学精神,并在探究的过

人教课标版高中数学必修5《基本不等式》第二课时参考学案

§3.4 2a b +≤ (2) 2a b +≤ ,并会用此定理求某些函数的最大、最小值. 一、课前准备 复习1:已知0m >,求证: 24624m m +≥. 复习2:若0x >,求9()4f x x x =+的最小值 二、新课导学 ※ 学习探究 探究1:若0x <,求9()4f x x x =+的最大值. 探究2:求9()45f x x x =+ -(x>5)的最小值. ※ 典型例题 例1某工厂要建造一个长方体无盖贮水池,其容积为4800m 3,深为3m ,如果池底每1m 2的造价为150元,池壁每1m 2的造价为120元,问怎样设计水池能使总造价最低,最低总造价是多少元? 评述:此题既是不等式性质在实际中的应用,应注意数学语言的应用即函数解析

式的建立,又是不等式性质在求最值中的应用,应注意不等式性质的适用条件. 归纳:用均值不等式解决此类问题时,应按如下步骤进行: (1)先理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数; (2)建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题; (3)在定义域内,求出函数的最大值或最小值; (4)正确写出答案. 例2 已知0,0x y >>,满足21x y +=,求11x y + 的最小值. 总结:注意“1”妙用. ※ 动手试试 练1. 已知a ,b ,c ,d 都是正数,求证:()()4ab cd ac bd abcd ++≥. 练2. 若0x >,0y > ,且281x y +=,求xy 的最小值. 三、总结提升 ※ 学习小结 规律技巧总结:利用基本不等式求最值时,各项必须为正数,若为负数,则添负号变正. ※知识拓展 1. 基本不等式的变形: 222()_____2a b a b ++;222()____22a b a b ++;22___2a b ab +;2___()2a b ab +;2()____4a b ab + 2. 一般地,对于n 个正数12,,,(2)n a a a n ≥,都有, 121n n a a a a n ++≥(当 且仅当12n a a a ===时取等号) 3. 222(,,)a b c ab ac bc a b c R ++≥++∈当且仅当a b c ==时取等号)

基本不等式教案第一课时

第 周第 课时 授课时间:20 年 月 日(星期 ) 课题: §3.4 2 a b + 第1课时 授课类型:新授课 【学习目标】 1.知识与技能:学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等; 2.过程与方法:通过实例探究抽象基本不等式; 3.情态与价值:通过本节的学习,体会数学来源于生活,提高学习数学的兴趣 【能力培养】 培养学生严谨、规范的学习能力,辩证地分析问题的能力,学以致用的能力,分析问题、解决问题的能力。 【教学重点】 2 a b +≤的证明过程; 【教学难点】 2 a b +≤等号成立条件 【板书设计】

【教学过程】 1.课题导入 2 a b +≤的几何背景: 如图是在北京召开的第24界国际数学家大会的会标,会标是根据 中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风 车,代表中国人民热情好客。你能在这个图案中找出一些相等关系或不 等关系吗? 教师引导学生从面积的关系去找相等关系或不等关 系。 2.讲授新课 1.问题探究——探究图形中的不等关系。 将图中的“风车”抽象成如图,在正方形ABCD 中右个全等的直角三角形。设直角三角 形的两条直角边长为a,b 。这样,4个直角三角形的面积的和是2ab ,正方形的面积为22a b +。由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式:222a b ab +≥。 当直角三角形变为等腰直角三角形,即a=b 时,正方形EFGH 缩为一个点,这时有222a b ab +=。 2.总结结论:一般的,如果)""(2R,,22号时取当且仅当那么==≥+∈b a ab b a b a 结论的得出尽量发挥学生自主能动性,让学生总结,教师适时点拨引导。 3.思考证明:你能给出它的证明吗? 证明:因为 2 22)(2b a ab b a -=-+ 当22,()0,,()0,a b a b a b a b ≠->=-=时当时 所以,0)(2≥-b a ,即.2)(22ab b a ≥+

3.4基本不等式(第一课时)

3.4 基本不等式: 2b a a b + ≤(第一课时) 教学设计 一、教学内容解析 (一)教材的地位和作用 本节课是人教版《数学》必修5第三章第四节(第一课时),基本不等式是高中数学中一个非常重要的不等式,它是解决一些简单的最大(小)值问题的最基本也是最重要的方法。在前几节课刚刚学习了不等式的性质、一元二次不等式、二元一次不等式组与线性规划问题,这些内容为本节课打下了坚实的基础,同时基本不等式的学习为今后解决最值问题提供了新的方法。 本节内容是在系统的复习了不等关系和不等式性质,掌握了不等式性质的基础上展开的。教材通过赵爽弦图回顾基本不等式,在代数证明的基础上,通过“探究”引导学生回顾基本不等式的几何意义,并给出在解决函数最值和实际问题中应用,在知识体系中起着承上启下的作用;从知识的应用价值上看,基本不等式是从大量数学问题和现实问题中抽象出来的一个模型,在公式推导中所蕴涵的数学思想方法(如数形结合、抽象归纳、演绎推理、分析法证明等)在各种不等式的研究中均有着广泛的应用;从内容的人文价值上看,基本不等式的探究、推导和应用需要学生观察、分析、猜想、归纳和概括等,有助于培养学生思维能力和探索精神,是培养学生数形结合意识和提高数学能力的良好载体. (二)教学目标 1. 通过实例探究,引导学生从几何图形中获得重要不等式,并通过类比的和代换的思想得到基本不等式,让体会数形结合的思想,经历从特殊到一般的思维过程,进一步提高学生学习数学、研究数学的兴趣; 2. 从结构、形式等方面进一步认识基本不等式; 3. 经历由实际问题推导出基本不等式,在回归实际问题的解决这一过程,体会数学源于生活、高于生活、用于生活的道理,让学生体验到发现数学、运用数学的过程。 (三)教学重点与难点 重点:应用数形结合的思想理解不等式,并从不同角度认识基本不等式。 难点:在几何背景下抽象出基本不等式的过程;使用基本不等式解决求最值问题时的条件的认识。 二、学生学情分析: 在初中阶段,学生学习了平方、开方、勾股定理、圆、射影定理等概念,高中阶段学生学习了基本初等函数及其性质,加上刚学过的不等关系与不等式的性质,学生对不等式有了初步的了解和应用,但本节内容,变换灵活,应用广泛,条件有限制,考察了学生属性结合、转化化归等数学思想,对学生能灵活应用数

高中数学 3.4 基本不等式(第1课时)练习

【成才之路】2015版高中数学 3.4 基本不等式(第1课时)练习 一、选择题 1.函数f(x)=x x +1的最大值为 ( ) A.2 5 B .1 2 C.2 2 D .1 [答案] B [解析] 令t =x (t≥0),则x =t2, ∴f(x)=x x +1=t t2+1. 当t =0时,f(x)=0; 当t>0时,f(x)=1t2+1t =1t +1t . ∵t +1t ≥2,∴0<1t +1t ≤1 2. ∴f(x)的最大值为1 2. 2.若a≥0,b≥0,且a +b =2,则 ( ) A .ab≤1 2 B .ab≥1 2 C .a2+b2≥2 D .a2+b2≤3 [答案] C [解析] ∵a≥0,b≥0,且a +b =2, ∴b =2-a(0≤a≤2), ∴ab =a(2-a)=-a2+2a =-(a -1)2+1. ∵0≤a≤2,∴0≤ab≤1,故A 、B 错误; a2+b2=a2+(2-a)2=2a2-4a +4 =2(a -1)2+2. ∵0≤a≤2,∴2≤a2+b2≤4.故选C. 3.设0<a <b ,且a +b =1,则下列四个数中最大的是 ( ) A.1 2 B .a2+b2 C .2ab D .a [答案] B [解析] 解法一:∵0<a <b ,∴1=a +b >2a ,∴a <1 2, 又∵a2+b2≥2ab ,∴最大数一定不是a 和2ab ,

∵1=a +b >2ab , ∴ab <14, ∴a2+b2=(a +b)2-2ab =1-2ab >1-12=12, 即a2+b2>12.故选B. 解法二:特值检验法:取a =13,b =23,则 2ab =49,a2+b2=59, ∵59>12>49>13,∴a2+b2最大. 4.(2013·湖南师大附中高二期中)设a >0,b >0,若3是3a 与3b 的等比中项,则1a +1b 的最小 值为 ( ) A .8 B .4 C .1 D .14 [答案] B [解析] 根据题意得3a·3b =3,∴a +b =1, ∴1a +1b =a +b a +a +b b =2+b a +a b ≥4. 当a =b =12时“=”成立.故选B. 5.设a 、b ∈R +,若a +b =2,则1a +1b 的最小值等于 ( ) A .1 B .3 C .2 D .4 [答案] C [解析] 1a +1b =12??? ?1a +1b (a +b) =1+12??? ?b a +a b ≥2,等号在a =b =1时成立. 6.已知x>0,y>0,x 、a 、b 、y 成等差数列,x 、c 、d 、y 成等比数列,则 a + b 2cd 的最小值是 ( ) A .0 B .1 C .2 D .4 [答案] D [解析] 由等差、等比数列的性质得 a + b 2cd =x +y 2xy =x y +y x +2≥2y x ·x y +2=4.当且仅当x =y 时取等号,∴所求最小值为4. 二、填空题

《基本不等式》第2课时教学设计

《基本不等式 2a b ab +≤》第2课时教学设计 授课类型:新授课 【教学目标】 1.知识与技能:进一步掌握基本不等式2 a b ab +≤ ;会应用此不等式求某些函数的最值;能够解决一些简单的实际问题 2.过程与方法:通过两个例题的研究,进一步掌握基本不等式2a b ab +≤ ,并会用此定理求某些函数的最大、最小值。 3.情态与价值:引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德。 【教学重点】 基本不等式2 a b ab +≤的应用 【教学难点】 利用基本不等式2 a b ab +≤求最大值、最小值。 【教学过程】 1.课题导入 1.重要不等式: 如果)""(2R,,22号时取当且仅当那么==≥+∈b a ab b a b a 2.基本不等式:如果a,b 是正数,那么).""(2 号时取当且仅当==≥+b a ab b a b a b a , 2 为+的算术平均数,称b a ab ,为 ab b a a b b a ≥+≥+2222和成立的条件是不同的:前者只要求a,b 都是实 数,而后者要求a,b 都是正数。 2.讲授新课 例1(1)用篱笆围成一个面积为100m 2的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短。最短的篱笆是多少? (2)段长为36 m 的篱笆围成一个一边靠墙的矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少? 解:(1)设矩形菜园的长为x m ,宽为y m ,则xy=100,篱笆的长为2(x+y ) m 。由2 x y xy +≥, 可得 2100x y +≥, 2()40x y +≥。等号当且仅当x=y 时成立,此时

第二章 2.2 第二课时基本不等式的应用

第二课时 基本不等式的应用 课标要求 素养要求 1.进一步熟练掌握基本不等式,能够通过拼凑、变形等利用基本不等式求最值. 2.能够利用基本不等式解决实际问题. 通过学习掌握基本不等式及其应用,重点提升数学运算、逻辑推理、数学建模素养. 教材知识探究 (1)某养殖场要用100米的篱笆围成一个矩形的鸡舍,怎样设计才能使鸡舍面积最大? (2)某农场主想用篱笆围成一个10 000平方米的矩形农场,怎样设计才能使所用篱笆最省呢? 问题 实例中两个问题的实质是什么?如何求解? 提示 这两个都是求最值问题.第一个问题是矩形周长一定,即长x 与宽y 的和一定,求xy 的最大值,xy ≤? ????x +y 22 =252=625,即鸡舍为正方形,长与宽各为25米时鸡舍面积最大.第二个问题是矩形面积一定,求矩形长x 与宽y 之和最小问题,x +y ≥2xy =210 000=200,当且仅当x =y =100时,即当农场为正方形,边长为100米时,所用篱笆最省. 1.基本不等式与最大(小)值 口诀:和定积最大,积定和最小 两个正数的和为常数时,它们的积有最大值;两个正数的积为常数时,它们的和有最小值. (1)已知x ,y 都是正数,如果和x +y 等于定值S ,那么当x =y 时,积xy 有最大值14S 2.

(2)已知x,y都是正数,如果积xy等于定值P,那么当x=y时,和x+y有最小 值 2.基本不等式在解决实际问题中有广泛的应用,是解决最大(小)值问题的有力工具. 教材拓展补遗 [微判断] 1.对于实数a,b,若a+b为定值,则ab有最大值.(×) 提示a,b为正实数. 2.对于实数a,b,若ab为定值,则a+b有最小值.(×) 提示a,b为正实数. 3.若x>2,则x+1 x的最小值为2.(×) 提示当且仅当x=1时才能取得最小值,但x>2. [微训练] 1.已知正数a,b满足ab=10,则a+b的最小值是________. 解析a+b≥2ab=210,当且仅当a=b=10时等号成立. 答案210 2.已知m,n∈R,m2+n2=100,则mn的最大值是________. 解析由m2+n2≥2mn,∴mn≤m2+n2 2=50.当且仅当m=n=±52时等号成立. 答案50 [微思考] 1.利用基本不等式求最大值或最小值时,应注意什么问题呢?提示利用基本不等式求最值时应注意:一正,二定,三相等. 2.已知x,y为正数,且1 x+ 4 y=1,求x+y的最小值. 下面是某同学的解题过程: 解:因为x>0,y>0,所以1=1 x+ 4 y≥2× 2 xy = 4 xy ,所以xy≥4.从而x+y≥2xy ≥2×4=8.故x+y的最小值为8. 请分析上面解法是否正确,并说明理由.

高二人教A版必修5系列教案:3.4基本不等式3

3.4基本不等式2b a ab +≤ 一、三维目标: 1、知识与技能: 理解基本不等式的内容及其证明,能应用基本不等式解决求最值、证明不等式、比较大小、求取值范围等问题 2、过程与方法: 能够理解并建立不等式的知识链 3、情感、态度与价值观: 通过运用基本不等式解答实际问题,提高用数学手段解答现实生活中的问题的能力和意识 4、本节重点: 应用数形结合的思想,理解基本不等式,并从不同角度探索基本不等式的证明过程 5、本节难点: 应用基本不等式求最值 二、课程引入: 第24届世界数学家大会在北京召开,会标设计如图: 四个以a ,b 为直角边的直角△ABC ,组成正方形ABCD 则22b a DA CD BC AB +==== 22b a S ABCD += ab S ABE 2 1=? 如图可知:ABE ABCD S S ?≥4 即ab b a 222≥+ 当且仅当小正方形EFGH 面积为0时取等号,即b a b a ==-,0时取得等号 三、新课讲授: (一)基本不等式的推证: 1、重要不等式与基本不等式 由引入中提到的重要不等式ab b a 222≥+,将其中的b a ,用b a ,代换, 得到基本不等式2 b a ab +≤,当且仅当b a =时,即b a =时取得等号。 特别注意,重要不等式ab b a 222≥+的适用范围是全体实数, 而基本不等式2 b a ab +≤的使用需要0,0>>b a 2、基本不等式的几种表述方式 平均数角度:两正数的算术平均数不小于它们的几何平均数(均值不等式定理) 数列角度:两正数的等差中项不小于它们的等比中项 探究:基本不等式的几何表示:半径不小于半弦长 3、分析法推证基本不等式 要证2 b a ab +≤,只需证明ab b a 2≥+(2)。要证明(2)只需证明02≥-+ab b a (3)。

高中数学基本不等式(第一课时)教案

课题:§3.4 2a b +≤(第1课时) 数学组 2009-3-18 授课类型:新授课 教学目标: 1、知识与技能目标:(12 a b +≤,认识其运算结构; (2)了解基本不等式的几何意义及代数意义; (3)能够利用基本不等式求简单的最值。 2、过程与方法目标:(1)经历由几何图形抽象出基本不等式的过程; (2)体验数形结合思想。 3、情感、态度和价值观目标(1)感悟数学的发展过程,学会用数学的眼光观察、分析事物; (2)体会多角度探索、解决问题。 教学重点:应用数形结合的思想,并从不同角度探索和理解基本不等式。 教学难点:2 a b +≤ 求最值的前提条件。 教学过程: 一、创设情景,引入新课 1.勾股定理的背景及推导 赵爽弦图 引导学生从赵爽弦图中各图形的面积关系得到勾股定理,了解勾股定理的背景。 2.(1)问题探究——探究赵爽弦图中的不等关系 如图是在北京召开的第24界国际数学家大会的会标,比较4个直角三角形的面积和与大正方形的面积,你会得到怎样的不等式? 引导学生从面积关系得到不等式:a 2+b 2≥ 2ab ,当直角三角形变为等腰直角三角形,即正 方形EFGH 缩为一个点时,有222a b ab += (2)总结结论:一般的,如果)""(2R,,2 2号时取当且仅当那么==≥+∈b a ab b a b a

(3)推理证明:作差法 二、讲授新课 1.思考:如果用222a b ab +≥中的a ,b 能得到什么结论?a ,b 要满足什么条 件? 2 a b +(0,0>>b a ),当且仅当b a =时取等号。 2.推理证明:作差法 3.(1)探究:(课本P98) 如图所示:AB 是圆的直径,点C 是AB 上一点,AC =a ,BC =b 。 过点C 作垂直于AB 的弦DE ,连接AD 、BD 。 引导学生发现: 2 a b +CD,得到 2a b +(0,0>>b a ) 几何意义:半弦长不大于半径长。 (2),a b 的几何平均数,称2 a b +为正数,a b 的算术平均数。 代数意义:几何平均数小于等于算术平均数 三、例题讲解 例1:若0>x ,求1y x x =+ 的最小值。 变1:若0x >,求123y x x =+的最小值。 变2:若0,0a b >>,求b a y a b =+的最小值。 变3:若3x >,求13 y x x =+-的最小值。 例2:若01x <<,求(1)y x x =-的最大值。 变:若102x <<,求(12)y x x =-的最大值。 设计意图:发现运算结构,应用基本不等式求最值,把握基本不等式成立的前提条件 四、课时小结 1.知识要点:(1)基本不等式的条件及结构特征 (2)基本不等式在几何、代数两方面的意义 2.思想方法技巧:(1)数形结合思想 (2)换元法、作差法 (3)配凑等技巧 五、作业 自编的练习

基本不等式第一课时

基本不等式(第一课时) 授课教师:浙江省温州市第十四高级中学陈芝飞 教材:人教版高中数学必修5第三章 一、教学目标 1.通过两个探究实例,引导学生从几何图形中获得基本不等式,培养学生用数学的眼光观察世界的素养------数学抽象与直观想象。 2.进一步提炼、完善基本不等式,并从代数角度给出不等式的证明,组织学生分析证明方法,加深对基本不等式的认识,培养学生用数学思维分析世界的素养----逻辑推理论与数学运算。 3.通过“赵爽弦图”的引入传播数学文化,感受数学魅力;从直观猜想到严格论证体现数学的理性精神;通过不同角度理解基本不等式,发现数学的和谐美、对称美、简洁美。 4.借助例题尝试用基本不等式解决简单的最值问题,引导学生领会运用基本不等式 2b a a b + ≤的三个限制条件(一正二定三相等)在解决最值中的作用,提升解决问题的能力,体会方法与策略. 二、教学重点和难点 重点:应用数形结合的思想理解基本不等式,并从不同角度探索不等式 2b a a b + ≤的证明过程. 难点:在探究基本不等式的过程中培养学生的数学核心素养,并能应用基本不等式求最大值与最小值. 三、教学过程: 1.由形及数,发现新知 师:先给大家展示一幅图。(展示北京国际数学家大会会标) 问题1:同学们见过这个图形吗?它告诉我们什么信息? 师:这个是什么图形?你感觉它像什么呀? 这是由四个全等的直角三角形所围成的一个正方形,颜色的明暗使它看 上去像一个“风车”,代表中国人民热情好客。这种像“风车”一样的图标是2002年8月20—28在北京召开的第24届国际数学家大会会标,会标是根据我国古代数学家赵爽的“弦图”设计的。该图给出了迄今为止对勾股定理最早、最简洁的证明,体现了以形证数、形数统一、代数和几何是紧密结合、互不可分的.

《基本不等式》第二课时参考教案

§3.42a b +≤ 第2课时 授课类型:新授课 【教学目标】 12 a b +≤ ;会应用此不等式求某些函数的最值;能够解决一些简单的实际问题 22a b +,并会用此定理求某些函数的最大、最小值。 3.情态与价值:引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德。 【教学重点】 2a b +≤ 的应用 【教学难点】 2a b +≤ 求最大值、最小值。 【教学过程】 1.课题导入 1.重要不等式: 如果)""(2R,,22号时取当且仅当那么==≥+∈b a ab b a b a 2.基本不等式:如果a,b 是正数,那么 ).""(2号时取当且仅当==≥+b a ab b a 我们称b a b a ,2 为+的算术平均数,称b a ab ,为的几何平均数 ab b a a b b a ≥+≥+2222和成立的条件是不同的:前者只要求a,b 都是实数, 而后者要求a,b 都是正数。 2.讲授新课 例1(1)用篱笆围成一个面积为100m 2的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短。最短的篱笆是多少?

(2)段长为36 m 的篱笆围成一个一边靠墙的矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少? 解:(1)设矩形菜园的长为x m ,宽为y m ,则xy=100,篱笆的长为2(x+y ) m 。由2 x y +≥ 可得x y +≥ 2()40x y +≥。等号当且仅当x=y 时成立,此时x=y=10. 因此,这个矩形的长、宽都为10m 时,所用的篱笆最短,最短的篱笆是40m. (2)解法一:设矩形菜园的宽为x m ,则长为(36-2x )m ,其中0<x <21,其面积S =x (36-2x )=21·2x (36-2x )≤212 2236236()28 x x +-=当且仅当2x =36-2x ,即x =9时菜园面积最大,即菜园长9m ,宽为9 m 时菜园面积最大为81 m 2 解法二:设矩形菜园的长为x m.,宽为y m ,则2(x+y)=36, x+y=18,矩形菜园 的面积为xy m 218922 x y +≤==,可得 81xy ≤ 当且仅当x=y,即x=y=9时,等号成立。 因此,这个矩形的长、宽都为9m 时,菜园的面积最大,最大面积是81m 2 归纳:1.两个正数的和为定值时,它们的积有最大值,即若a ,b ∈R +,且a +b =M ,M 为定值,则ab ≤4 2 M ,等号当且仅当a =b 时成立. 2.两个正数的积为定值时,它们的和有最小值,即若a ,b ∈R +,且 ab =P ,P 为定值,则a +b ≥2P ,等号当且仅当a =b 时成立. 例2 某工厂要建造一个长方体无盖贮水池,其容积为4800m 3,深为3m ,如果池底每1m 2的造价为150元,池壁每1m 2的造价为120元,问怎样设计水池能使总造价最低,最低总造价是多少元? 分析:此题首先需要由实际问题向数学问题转化,即建立函数关系式,然后求函数的最值,其中用到了均值不等式定理。 解:设水池底面一边的长度为x m ,水池的总造价为l 元,根据题意,得

基本不等式教学设计-教学教材

基本不等式教学设计-

《基本不等式》教学设计 刘敏 教材分析: 这节课是必修5第三章第四节的第一课时,主要内容是使学生了解基本不等式的代数、几何背景及基本不等式的证明及应用。不等关系和相等关系都是客观事物的基本数量关系,是数学研究的重要内容,建立不等观念,处理不等关系与处理等量问题是同样重要的。 学情分析: 现阶段大部分学生学习的自主性较差,主动性不够,逻辑能力不强,很难用数学的观点和思想提炼生活中的实际问题。所以这节课应通过一系列的具体问题情境,使学生感受到在现实世界和日常生活中存在着大量的不等关系,在学生了解一些不等式产生的实际背景的前提下,学习基本不等式的有关内容使学生感受到不等式的广泛应用,增强学习的兴趣,动员学生实际参与能力。 教学目标:1.理解并掌握基本不等式的证明及其应用。 2. 探索基本不等式的证明过程,进一步领悟不等式 2b a a b + ≤ 成立的条件,会用基本不等式解决简单最大(小)值问题。 3.体验探究的乐趣,培养学生主动运用数形结合的思想,去分析问题,解决问题和应用问题的能力。 教学重点:应用数形结合的思想理解基本不等式,并从不同的角度 探索基本不等式 2b a a b + ≤的证明过程。

教学难点:用基本不等式求最大值和最小值。 教学方法:引导,启发与讲授相结合 教学过程: 一、 问题情境(5分钟) 北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表ab 2中国人民热情好客,你能在这个图中找出一些相等关系或不等关系吗? 在正方形中有4个全等的直角三角形。设直角三角形的两条直角边的长为,那么正方形的边长为)(,b a b a ≠,这样,4个直角三角形的面积和为ab 2,正方形的面积为22b a +。由于正方形大于4个直角三角形的面积和,我们就得到了一个不等式ab b a 222>+。当直角三角形为等腰直角三角形,即b a =,正方形中空白处缩为一个点。这是有ab b a 222=+。 一般的,对于任意实数b a ,,我们有ab b a 222≥+,当且仅当b a =时,等号成立。

2019-2020年高中数学 第三章不等式3.4基本不等式第二课时教案 新人教A版必修5

2019-2020年高中数学 第三章不等式3.4基本不等式第二课时教案 新人教 A 版必修5 授课类型:新授课 【教学目标】 1.知识与技能:进一步掌握基本不等式;会应用此不等式求某些函数的最值;能够解决一些简单的实际问题 2.过程与方法:通过两个例题的研究,进一步掌握基本不等式,并会用此定理求某些函数的最大、最小值。 3.情态与价值:引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德。 【教学重点】 基本不等式的应用 【教学难点】 利用基本不等式求最大值、最小值。 【教学过程】 1.课题导入 1.重要不等式: 如果)""(2R,,22号时取当且仅当那么==≥+∈b a ab b a b a 2.基本不等式:如果a,b 是正数,那么).""(2 号时取当且仅当==≥+b a ab b a 3.我们称的算术平均数,称的几何平均数. ab b a ab b a ≥+≥+2222和 成立的条件是不同的:前者只要求a,b 都是实数,而后者要 求a,b 都是正数。 2.讲授新课 例1(1)用篱笆围成一个面积为100m 的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短。最短的篱笆是多少? (2)段长为36 m 的篱笆围成一个一边靠墙的矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少? 解:(1)设矩形菜园的长为x m ,宽为y m ,则xy=100,篱笆的长为2(x+y ) m 。由, 可得 , 。等号当且仅当x=y 时成立,此时x=y=10. 因此,这个矩形的长、宽都为10m 时,所用的篱笆最短,最短的篱笆是40m. (2)解法一:设矩形菜园的宽为x m ,则长为(36-2x )m ,其中0<x <,其面积S =x (36-2x )=·2x (36-2x )≤ 当且仅当2x =36-2x ,即x =9时菜园面积最大,即菜园长9m ,宽为9 m 时菜园面积最大为81 m 2 解法二:设矩形菜园的长为x m.,宽为y m ,则2(x+y)=36, x+y=18,矩形菜园的面积为xy m 。由

基本不等式公开课教案

基本不等式 2 a b + 授课人:祁玉瑞授课类型:新授课 一、知识与技能: 使学生了解基本不等式的代数、几何背景,学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;学会应用基本不等式解决简单的数学问题。 过程与方法: 通过探索基本不等式的过程,让学生体会研究数学问题的基本思想方法,学会学习,学会探究。 情感态度与价值观: 在探索过程中,鼓励学生大胆尝试,大胆猜想,并能对猜想进行证明,增强学生的信心,获得探索问题的成功情感体验。逐步养成学生严谨的科学态度及良好的思维习惯。同时通过本节内容的学习,让学生体会数学来源于生活,提高学习数学的兴趣。 二、重点及难点 重点:应用数形结合的思想理解不等式,2a b +≤ 的证明过程。 难点:2a b +≤ 等号成立条件。 三、教学过程

1.课题导入 2a b ab +≤的几何背景: 如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。你能在这个图案中找出一些相等关系或不等关系吗? 教师引导学生从面积的关系去找相等关系或不等关系。 2.讲授新课 1.探究图形中的不等关系 将图中的“风车”抽象成如图,在正方形ABCD 中右个全等的直角三角形。设直角三角 形的两条直角边长为a,b 那么正方形的边长为22a b +。这样,4个直角三角形的面积的和 是2ab ,正方形的面积为22a b +。由于4个直角三角形的面积小于正方形的面积,我们就 得到了一个不等式:222a b ab +≥。 当直角三角形变为等腰直角三角形,即a=b 时,正方形EFGH 缩为一个点,这时有222a b ab +=。 2.得到结论:一般的,如果 ) ""(2R,,22号时取当且仅当那么==≥+∈b a ab b a b a 3.思考证明:你能给出它的证明吗? 证明:因为222)(2b a ab b a -=-+

2019-2020年高中数学第一章不等关系与基本不等式4第二课时放缩法、几何法与反证法教学案北师大版选修4-5

2019-2020年高中数学第一章不等关系与基本不等式4第二课时放缩法、几何法与反证法教学案北师大版选修4-5 1.放缩法 通过缩小(或放大)分式的分母(或分子),或通过放大(或缩小)被减式(或减式)来证明不等式的方法,称为放缩法. 2.几何法 通过构造几何图形,利用几何图形的性质来证明不等式的方法称为几何法. 3.反证法 通过证明命题结论的否定不能成立,来肯定命题结论一定成立的方法叫做反证法,其证明的步骤是: (1)作出否定结论的假设; (2)进行推理,导出矛盾; (3)否定假设,肯定结论. [合作探究] 1.运用放缩法证明不等式的关键是什么? 提示:运用放缩法证明不等式的关键是放大(或缩小)要适当.如果所要证明的不等式中含有分式,那么我们把分母放大时相应分式的值就会缩小;反之,如果把分母缩小,则相应分式的值就会放大.有时也会把分子、分母同时放大,这时应该注意不等式的变化情况,可以与相应的函数相联系,以达到判断大小的目的,这些都是证明中常用方法技巧,也是放缩法中的主要形式. 2.运用几何法证明不等式的关键是什么? 提示:结合待证不等式的特征构造出几何图形,最终将待证不等式转化为几何图形的长、面积、体积等大小比较问题,从而求证. 3.用反证法证不等式应把握哪些问题? 提示:用反证法证明不等式要把握好以下三点: (1)必须先否定结论,对于结论的反面出现的多种可能要逐一论证,缺少任何一种可能,证明都是不完全的. (2)反证法必须从否定结论进行推理,且必须根据这一条件进行论证;否则,仅否定结论,不从结论的反面出发进行论证,就不是反证法. (3)推导出来的矛盾可以是多种多样的,有的与已知条件相矛盾,有的与假设相矛盾,有的与定理、公理相违背,有的与已知的事实相矛盾等,但推导出的矛盾必须是明显的. [对应学生用书P21]

高一数学教案:苏教版高一数学基本不等式3

第十课时基本不等式(三) 教学目标: 通过这节课,使学生能够运用均值不等式定理来讨论与不等式有关的各类问题。 教学重点、难点:均值不等式定理的灵活运用。 教学过程: 1复习回顾 2 ?例题讲解: 例 1 已知 a>1, 00 1 T 1 一 logab + —》2 ,( — log ab ) - log a b = 2 1 --log a b + 砸 ab w — 2 即 log a b + log b a <— 2 1 2 当且仅当一log a b = ―l ~ , log a b = 1, log a b =— 1 时,等号成立,此时 ab = 1。 —log a b 2 例2:已知x , y 为正实数,且x 2+专=1,求x,1 + y 2的最大值. 解题思路分析: 因条件和结论分别是二次和一次,故采用公式 2 1 y 前面的系数为 1 =.2 x 例3:已知x , y 为正实数,3x + 2y = 10,求函数 W = 3x + 2y 的最值. 解题思路分析: ,3x + _2y w 2 ( 3x ) 2+( . 2y ) 2b w a 2 +b 2 ab < 同时还应化简,1 +y 2中 分别看成两个因式 若利用算术平均与平方平均之间的不等关系, a + b 2 a 2+ b 2 w_ ,本题很简单 =\/2 , 3x + 2y = 2\! 5 X 1 + y 2 = x 2 ? 1 2 2 +与 2 号r X. 下将x , 2 x ? x 2+ ( w 1 + :

第一课时 基本不等式

2.2基本不等式 第一课时 基本不等式 课标要求素养要求 1.掌握基本不等式ab≤ a+b 2(a>0,b>0). 2.能灵活应用基本不等式解决一些证 明、比较大小问题. 通过学习掌握基本不等式及其简单应 用,重点发展数学运算、逻辑推理素养. 新知探究 如图,是2002年8月在北京召开的第24届国际数学家大会 的会标.它依据我国著名数学家赵爽为研究勾股定理作的弦 图进行设计,颜色的明暗使其看起来像一个风车. 问题依据会标,你能找到一些相等或不等关系吗? 提示由图可知 ①a2+b2=(a-b)2+2ab; ②a2+b2≥2ab,当且仅当a=b时,取“=”. 1.?a,b∈R,有a2+b2≥2ab,当且仅当a=b时,等号成立.特别地,如果a>0, b>0,我们用a,b分别代替上式中的a,b,可得ab≤ a+b 2,当且仅当a=b

时等号成立.通常称此不等式为基本不等式,其中,a +b 2叫做正数a ,b 的算术平均数,ab 叫做正数a ,b 的几何平均数. 2.基本不等式表明:两个正数的算术平均数不小于它们的几何平均数. 拓展深化 [微判断] 1.a +b 2≥ab 对任意实数a ,b 都成立.(×) 提示 只有当a >0且b >0时,a +b 2≥ab 才能成立. 2.若a >0,b >0且a ≠b ,则a +b >2ab .(√) 3.若a >0,b >0,则ab ≤? ????a +b 22 .(√) [微训练] 当a ,b ∈R 时,下列不等关系成立的是________(填序号). ①b a +a b ≥2;②a -b ≥2ab ;③a 2+b 2≥2ab ;④a 2-b 2≥2ab . 解析 根据a 2+b 22≥ab ,a +b 2≥ab 成立的条件判断,知①②④错,只有③正确. 答案 ③ [微思考] 1.不等式a 2+b 22≥ab 和a +b 2≥ab 中“=”成立的条件相同吗? 提示 不相同.前者仅需a =b 即可,后者要求a =b ≥0. 2.“当且仅当a =b 时,等号成立”的含义是什么? 提示 a =b ?a 2+b 22=ab ;a =b >0?a +b 2=ab .

(基本不等式)公开课教案

基本不等式 2 a b +≤ 授课人:祁玉瑞 授课类型:新授课 一、知识与技能: 使学生了解基本不等式的代数、几何背景,学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;学会应用基本不等式解决简单的数学问题。 过程与方法: 通过探索基本不等式的过程,让学生体会研究数学问题的基本思想方法,学会学习,学会探究。 情感态度与价值观: 在探索过程中,鼓励学生大胆尝试,大胆猜想,并能对猜想进行证明,增强学生的信心,获得探索问题的成功情感体验。逐步养成学生严谨的科学态度及良好的思维习惯。同时通过本节内容的学习,让学生体会数学来源于生活,提高学习数学的兴趣。 二、重点及难点 重点:应用数形结合的思想理解不等式,2 a b +的证明过程。 难点:2 a b +≤ 等号成立条件。 三、教学过程 1.课题导入 2a b +≤ 的几何背景: 如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。你能在这个图案中找出一些相等关系或不等关系吗? 教师引导学生从面积的关系去找相等关系或不等关系。 2.讲授新课 1.探究图形中的不等关系

将图中的“风车”抽象成如图,在正方形ABCD 中右个全等的直角三角形。 设直角三角形的两条直角边长为a,b 那么正方形的边长为22 a b +。这样,4个直角三角形的面积的和是2ab ,正方形的面积为22 a b +。由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式:22 2a b ab +≥。 当直角三角形变为等腰直角三角形,即a=b 时,正方形EFGH 缩为一个点,这时 有22 2a b ab +=。 2.得到结论:一般的,如果)""(2R,,2 2号时取当且仅当那么==≥+∈b a ab b a b a 3.思考证明:你能给出它的证明吗? 证明:因为 222)(2b a ab b a -=-+ 当 22 ,()0,,()0,a b a b a b a b ≠->=-=时当时 所以,0)(2≥-b a ,即 .2)(2 2ab b a ≥+ 4.12a b ab +≤ 特别的,如果a>0,b>0,我们用分别代替a 、b ,可得2a b ab +≥, (a>0,b>0)2a b ab +≤ 2)从不等式的性质推导基本不等式2a b ab +≤ 用分析法证明: 32a b ab +≤ 的几何意义 探究:课本第98页的“探究” 在右图中,AB 是圆的直径,点C 是AB 上的一点,AC=a,BC=b 。过点C 作垂直于AB 的弦DE ,连接AD 、BD 。你能利用这个图形得出基本 2a b ab +≤ 的几何解释吗?

相关文档
最新文档