冶金过程控制技术(上)

冶金过程控制技术(上)
冶金过程控制技术(上)

第一章 自动检测技术基础

1.自动检测技术主要介绍工业过程控制中温度、压力、流量、物位、成分、机械量等的检测原理、方法与检测仪表。

2.检测:检测即测量,是为准确获取表征被测对象特征的某些参数的定量信息,利用专门的技术工具,运用适当的实验方法,将被测量与同种性质的标准量(即单位量)进行比较,确定被测量对标准量的倍数,找到被测量数值大小的过程。

3.检测的基本方法:①接触式与非接触式;②直接、间接与组合测量;③偏差式、零位式与微差式测量。

4.检测仪表的组成:被测对象、传感器、变送器、显示、记录装置。

5.传感器:其作用是感受被测量的变化并产生一个与被测量呈某种函数关系的输出信号。

6.变送器:其作用是将敏感元件输出信号变换成既保存原始信号全部信息又更易于处理、传输及测量的变量。

7.显示(记录)仪表:其将测量信息转变成人感官所能接受的形式,是实现人机对话的主要环节。

8.检测仪表的分类:①按被测参数性质分类:过程参数(温度、压力、流量、物位、成份)、电气参数(电能、电流、电压)与机械量(位移、速度、振动)检测仪表;②按使用性质分类:实用型、范型和标准型仪表;③按工作原理分类:模拟式、数字式和图像式仪表。

9.测量范围: ymin ~ ymax ,测量量程: yFS=ymax-ymin 。

10.准确度:准确度也称精确度,是指测量结果与实际值相一致的程度,是测量的一个基本特征。

11. Δmax —仪表所允许的误差界限,即最大绝对误差;yFS —仪表量程。

12.通常用准确度(精度)等级来表示仪表的准确度,其值为准确度去掉“±符号”及“%”后的数字再经过圆整取较大的约定值。(0.5、1.0、1.5、2.5)

13.线性度: Δm —最大偏差;yFS —仪表量程。 14. 变差产生的原因:检测装置中的弹性元件、机械传动中的间隙和内摩擦、磁性材料的磁滞。 15.检测仪表的主要性能指标:测量范围与量程、准确度与准确度等级、线性度、max FS

100%100%Δy =?=?仪表的允许误差准确度仪表的量程FS

100%m y δ?=?线性度max FS Hmax FS

100% 100%y y y y -=??=?上行下行变差

变差、重复性、分辨力。

16.绝对误差Δ:被测量的测量值(x i)与真值(x o)之差,即Δ=x i- x o

17.相对误差:①实际相对误差:约定值为被测量的真值,δ实=Δ/x o×100%;

②给出值相对误差:约定值可选测量值、标称值、实验值、示值、刻度值等,δ给=Δ/x i×100%;

③引用误差:约定值为仪表量程yFS,δ引=Δ/yFS×100%,仪表的最大引用误差即为仪表的量程。

18.误差分类:①按误差出现规律分类:系统误差、随机误差和粗大误差;②按仪表工作条件分类:基本误差和附加误差。

第二章温度检测与仪表

1.温标:温度的数值表示称为温标。温标三要素:温度计、固定点和内插方程。

2.测温方法分类:①按测量方法可类:接触式和非接触式;②按工作原理分类:膨胀式、电阻式、热电式、辐射式等;③按输出方式分类:自发电型、非电测型等;④按用途分类:基准温度计和工业温度计。

3.非接触式测温:通过热辐射进行热交换,或测温元件接收被测对象的部分热辐射能,由热辐射能大小推出被测对象的温度。

4.热电偶温度计特点:结构简单,测量范围宽,准确度高,热惯性小,输出信号为电信号便于远传或信号转换。

5.热电效应:当两种不同的导体或半导体材料A和B组成闭合回路,如果两个结合点处的温度不相等,则回路中就会有电流产生,即回路中会有电动势存在,这种现象叫做热电效应。

6.回路中所产生的电动势,叫热电势。热电势由两部分组成,即温差电势和接触电势。

7.闭合回路总热电动势应为接触电势和温差电势的代数和。

8.①只有用两种不同性质的材料才能组成热电偶,且两端温度必须不同;②热电势的大小,只与组成热电偶的材料和材料两端连接点处的温度有关,与热电偶丝的大小尺寸及沿程温度分布无关。

9.均质材料定律:由一种均质材料组成的闭合回路,不论沿材料长度方向各处温度如何分布,回路中均不产生热电势。

10.中间导体定律:在热电偶测温回路中插入第三种(或多种)导体,只要其两端温度相同,则热电偶回路的总热电势与串联的中间导体无关。(应用:金属熔体温度与金属表面温度测量)

11.中间温度定律:在热电偶测温回路中,测量端的温度为T,连接导线各端点的温度分别为T n和T0,如果A与A’、B与B’的热电性质相同,则总的热电动

势等于热电偶的热电动势E AB(T,T n)与连接导线的热电动势E A’B’(T n ,T0)的代数和,其中Tn为中间温度,即:

E ABB’A’(T,T n,T0)=E AB(T,T n)+ E A’B’(T n,T0)=E AB(T,T n)+ E AB(T n,T0)

12.热电偶结构:一般由热电极、绝缘套管、保护管和接线盒组成。

13.标准热电偶:①贵金属热电偶S、R、B;②廉价金属热电偶K、N、T、E、J。

14.铠装热电偶特点:热惰性小,反应快,机械强度高,挠性好,耐高温,耐强烈震动和耐冲击;适用场合:用于快速测温或热容量很小的物体的测温部位,还可用于高压设备上测温。

15.快速微型热电偶(消耗式热电偶)适用场合:高温熔体(钢水、铁液等金属熔体)的温度测量(快速铂铑热电偶、快速钨铼热电偶)。

16.薄膜式热电偶适用场合:壁面温度≤300℃的快速测量。

17.钨铼热电偶是最成功的难熔金属热电偶,可以测到2400—2800℃高温,但在高温下易氧化,只能用于真空和惰性气氛中。

18.冷端温度补偿的原因:①要尽量得到热电势E和被测温度t的单值函数关系;

②实际使用的热电偶分度表中热电势和温度的对应值是以t0=0℃为基础的,但在实际测温中由于环境和现场条件等原因,参比端温度t0往往不稳定,也不一定恰好等于0℃。

19.常用的冷端补偿方法:冰点法、计算法、冷端补偿器法、补偿导线法。

20.热电偶正向串联→提高仪表的灵敏度;热电偶反相串联→测量温度变化的速度;热电偶并联→测量温场的平均温度。

21.热电阻温度计:热电阻温度计是基于热电阻效应(电阻体阻值随温度变化而

变化的性质)而工作的。

22.热电阻:铂热电阻、铜热电阻、镍热电阻、铠装热电阻、薄膜铂热电阻、厚膜铂热电阻、热敏电阻。

23.热电阻温度计的测量电路:最常用的是电桥电路,为提高其测量精度,常采用三线制或四线制接法。

24.辐射温度计:把能对被测物体热辐射能量进行检测,进而确定被测物体温度的仪表,通称为辐射式温度计。

25.辐射测温原理:普朗克定律、维恩公式、四次方定律。

26.亮度温度:若某物体的辐射亮度E(l,T)与温度为T L的绝对黑体的亮度E0(l,T L)相等,则称T L为这个物体在波长为l时的亮度温度。亮度温度总是低于真实温度:T L < T。

27.灯丝隐灭式光学高温计:利用人眼观察,光电高温计:用光电器件作为敏感元件感受辐射源的亮度变化。

28.光电高温计与光学高温计相比,主要优点有:①灵敏度高;②精确度高;③使用波长范围不受限制;④光电探测器的响应时间短;⑤便于自动测量与控制。第三章压力检测与仪表

1.绝对压力、表压、负压(真空度)的关系:

2.压力检测方法:①弹性力平衡法;②重力平衡方法;③机械力平衡方法;④物性测量方法。

3.弹性元件:弹簧管、弹性膜片、膜盒、波纹管。

4.弹簧管横截面呈非圆形(椭圆形或扁形)的原因:弹簧管测压是通过弹簧管位移和中心角改变量来测量的。弹簧管受压后有变圆的趋势,变形后中心角减小,自由端移动,弹簧管将压力转换为位移。如果将弹簧管截面做成圆形,则刚度增强,不易变形,中心角不变,位移不变,不能用于压力检测。

5.霍尔效应:把一块霍尔片元件置于均匀磁场中,并使霍尔片与磁感应强度B

的方向垂直,在沿着霍尔片的左右两个纵向端面上通入恒定的控制电流I,则会在霍尔片的两个横向端面之间形成电位差,这种现象称为霍尔效应,此电位差称

为霍尔电势U H。

6.电容式压力传感器:通过弹性膜片位移引起电容量的变化从而测出压力(或差压)。

7.压电效应:压电材料在沿一定方向受到压力或拉力作用时而发生变形,并在其表面上产生电荷;而且在去掉外力后,它们又重新回到原来的不带电状态,这种现象就称为压电效应。

8.应变效应:当金属导体受力(拉伸或压缩),导体的几何尺寸及其电阻率都会发生变化,从而引起电阻值的相对变化,且阻值变化与应变成正比。

9.压阻效应:当单晶半导体受到应力作用,其载流子的迁移率发生变化,而改变其电阻率ρ,从而引起电阻值的相对变化,这种现象称为半导体的压阻效应。10.压阻式压力传感器特点:精度高、工作可靠、动态响应好、迟滞小、尺寸小、重量轻、结构简单,可在恶劣的环境条件下工作,便于实现显示数字化。

11.仪表量程的选择:①在被测压力比较平稳的情况下,最大工作压力不应超过仪表满量程的3/4;②在压力波动较大的测量场合,最大工作压力不应超过仪表满量程的2/3;③为保证测量准确度,最小工作压力不应低于满量程的1/3。12.仪表类型的选择:①仪表输出信号的要求;②被测介质的性质;③仪表使用环境;④被测介质压力大小。

第四章流量检测与仪表

1.流量:指单位时间内流过管道或特定通道横截面的流体数量,称为瞬时(平均)流量。(体积流量、质量流量)

2.速度式流量计:通过测量流体在管道内的流速来计算流量。(节流式流量计、转子流量计、均速管流量计、电磁流量计、涡街流量计、超声波流量计)

3.容积式流量计:以单位时间内根据所推出流体固定容积数作为测量依据来计算流量。(转轮式流量计、刮板式流量计、活塞式流量计、湿式气体流量计)

4.标准节流装置:在国家标准规定的使用极限范围内,根据该标准所提供的数据和要求进行设计、制造和安装使用的节流件,称为标准节流装置(标准孔板、标准喷嘴、标准文丘里管)。

5. 标准孔板取压方式:常用角接取压法和法兰取压法;角接取压包括单独钻孔和环室取压两种。

6.标准节流装置的使用条件:①只适于测量圆形截面管道内的流体;②流束应与管轴平行,不得有旋转流或旋涡;③流体流量基本上不随时间而变化;④流体可以是可压缩的气体或不可压缩的流体;⑤流体必须是牛顿流体;⑥制造和使用符合国家标准。

7.V锥流量计:适用于任何流体介质,容易结垢的脏污介质或气液两相流的流量

测量也适用,适用管道内径范围大,具有长期稳定性。

8.内文丘里管:适于测量各种液体、气体和蒸汽,特别适用于测量各种煤气、非洁净天然气、高含湿气体以及其它各种脏污流体。

9.内藏孔板:适用于测量清洁气体和液体的小流量。

10.含悬浮物和高粘度流体的流量测量:①楔形孔板;②圆缺孔板;③偏心孔板。

11.圆缺孔板:主要用于脏污介质含有固体微粒的液体和气体的流量测量。开孔一般位于下方,但对于含气泡的液体,其开孔位于上方。测量时管道应水平安装。

12.节流装置的选择:①允许的压力损失;②加工的难易;③被测介质的侵蚀性;

④现场安装条件。

13.使用节流装置应注意的问题:①被测流体参数的变化;②原始数据不正确;

③节流装置安装不正确;④维护工作疏忽。

14.均速管又称为均速流量传感器或均速探头,它通过测量管道内流动流体的速度压力—流速来测量流量,适于测量气体、蒸汽和液体的流量。

15.阿牛巴流量计属于差压式流量测量仪表,用来测量一般气体、液体和蒸汽的流量。

16.威尔巴流量计主要特点:①子弹头形探头,减少阻力损失,强度高,耐高温,可用于高温高压的场合;②差压信号稳定,防堵性能好,基本免维护;③流量系数不受管道雷诺数的影响,流量系数稳定,测量精度高;④适用范围广泛,可用于测量气体、液体、蒸汽、腐蚀性介质和高温高压介质等流体;⑤安装方便。17.威尔巴流量计适用于空气、煤气、天然气、烟气,自来水、工业用水、锅炉给水、含腐溶液,饱和蒸气、过热蒸汽等的测量。

18.电磁流量计工作原理:当被测流体垂直于磁力线方向流动而切割磁力线时,在与流体流向和磁力线垂直方向上产生感应电势,利用传感器测量管上对称配置的电极引出感应电势,经放大和转换处理后,仪表指示出流量值。

19.电磁流量传感器结构:电磁流量传感器由测量管,励磁系统(励磁线圈、磁轭等)、电极,内衬和外壳等组成。

20.电磁流量计的特点①测量导管内无可动部件,几乎没有压力损失,也不会发生堵塞理象;②无机械惯性,反应灵敏,可以测量脉动流量;③测量范围很宽,精度较高;④被测介质温度有限制,被测介质必须具有导电性能。

21.容积式流量计:应用容积法测量流体流量的仪表,称为容积式流量计最常见的有椭圆齿轮流量计和腰轮流量计。

22.容积式流量计选用:①应注意实际应用时的测量范围,保持在所选仪表的量程范围以内;②流量计前应装配筛网过滤器,并注意定期清洗和更换过滤网;③在流量计前方应装气液分离器,以免气体进入流量计形成气泡而影响测量准确

度;④在精密测量中应考虑被测介质的温度变化对流量测量的影响。

23.容积式流量计测量准确度高,被测介质的粘度,温度及密度等的变化对测量准确度影响小,测量过程与雷诺数无关,尤其适用于高粘度流体的流量测量。

24.转子流量计:在一个向上略为扩大的均匀锥形管内,放一个较被测流体密度稍大的转子,当流体自下而上流动时,浮子受到流体的作用力而上升,流体的流量愈大,浮子上升愈高,浮子上升的高度就代表一定的流量。

第5章物位检测仪表

1.零点迁移:同时改变差压变送器的测量范围,不改变量程的大小,使得测量值为最小值时变送器输出最小值,测量值为最大值时变送器输出最大值。

六西格玛管理方法的特点

六西格玛管理方法的特点 六西格玛管理方法之所以能被诸多国际一流企业所追捧和使用,是因为其在众多实践过的企业中得到证明,这种先进的管理方法有显著优越性,而且经证明是行之有效的。 六西格玛管理方法,简单的说,它的基本思路就是:以数据为基础,以顾客为中心,以流程为核心,采用DMAIC方法,运用统计工具找出过程中影响结果的关键因素,又称关键质量特性,然后通过测量评估目前的质量水平,分析出与标杆间的差距,采取措施改进流程,从而消灭问题,并保持质量改进绩效。它的主要特点是: 一、以数据为基础,注重量化管理 六西格玛管理注重量化,强调用数据说话。从项目的第一个阶段,定义阶段开始,就要求必须充分收集数据,分析清楚目前现状水平,同时找出标杆水平,明确定义顾客的需求,确定合理改善幅度,从而准确定义出项目的目标。不仅定义阶段如此,测量、分析、改进、控制,每个阶段都注重“以事实为依据”,对相关数据的进行收集、测量和分析,利用因果矩阵找出关键因素,从而进行有针对性实施改进和控制,以达到对过程和产品的改进。 二、以顾客为中心,充分关注顾客 六西格玛管理所进行的质量改进,都是从顾客的需要出发,强调关注顾客呼声,顾客既包括内部顾客,也包括外部顾客。顾客需求不是静态的,而是动态的,因此应该动态地定义顾客需求,对当前感到不满的顾客、满意的顾客、竞争对手的顾客、潜在的顾客进行调查和访谈,并通过顾客投诉及市场反馈,了解顾客的需求是什么,针对这些需求来设定企业目标,衡量绩效;对需要改进的质量特性所进行的测量和分析也必须站在顾客的角度去思考;做出的改进设计也是以向顾客提供严格的质量保证为目标;对改进的成果保证也是为了提高顾客满意度,扩大市场占有率。所有这一切,都是为了满足顾客的需求,充分体现了“以顾客为中心”的管理原则。 三、以流程为核心,注重持续改进

生化过程的检测与控制(西农)

因为上传问题,特别添加了三个无关的图片,不然没法让其他人阅读 自己下完后删除即可 多打些无感的字,减小与另一个的相似率 一、绪论 1、基本概念 生化过程:即(发酵过程),利用微生物细胞或酶转化基本原料合成目的产物的过程。 状态变量:可显示过程状态及其特征的参数,一般指反应生物浓度、生物活性及反应速率的参数。 测量变量:指那些可以测量的状态变量。 操作变量:所谓的环境因子或操作条件,而改变这些环境因子和操作条件,可以造成生化过程状态变量的改变。 构造模型:包含胞内代谢网络在内,细致到考虑细胞内构成成分变化的数学模型。非构造模型:介于构造模型和状态模型之间,把生物过程的理论定理与经验公式结合起来,生化过程控制和优化中使用最广泛的模型。 状态模型:完全基于生物过程状态变量和操作变量时间序列数据的模型。 2、简答题 1、简述生化过程的控制特点。 答:(1)不需太高的控制精度,除温度、pH感受强的菌株发酵过程外,控制指标

不需精确也不可能100%地控制在某一水平; (2)生物过程的各状态变量之间存在一定的连带关系,难以检测的生物量在一定程度上可通过易检测的物理化学量间接检测,因此相当部分的生化过程控制是一种间接的优化和控制; (3)相当数量的工业规模或实验室规模的生物过程,没有合适的定量数学模型可循,控制和优化操作必须依靠操作人员的经验和知识。 2、实现发酵过程的优化与控制,必须解决的5个问题 答:(1)系统动力学; (2)生物模型; (3)传感器技术; (4)适用于生物过程的最优化技术; (5)计算机─检测系统─发酵罐之间的接口技术(如神经网络、专家系统) 3、生化过程控制理论存在的难点。 答:(1)无论是前馈还是反馈控制,都必须建立在在线监测的各种参数上,但适用于生化反应过程的传感器的研究大大落后于生物工业的发展。 (2)各种微生物具有独特的生理特性、生产各种代谢产物又有各自的代谢途径,应用于生化反应过程的控制理论不具有普适性。 (3)控制理论自身的局限,至今不能模拟生化反应过程的高度非线性的多容量特性。 (4)在具体的控制模型构建时,缺乏以细胞代谢流为核心的过程分析,采用以动力学为基础的最佳工艺控制点为依据的静态操作方法实质上是化学工程动力学概念在发酵工程上的延伸。 (5)目前发酵动力学模型主要通过经验法、半经验法或简化法得到,一般为非结构动力学模型,如Monod、Moser、Tessier、Contois等模型方程。 二、生化过程参数中物理参数检测技术

过程检测与控制仪表培训课件

过程检测与控制仪表知识 员工培训教材 马仁

过程控制与检测仪表课件 一、过程控制仪表: 1)是实现工业生产过程自动化的重要工具。控制检测仪表可分为八大单元:变动单元、调节单元、计算单元、显示单元、转换单元、给定单元、执行单元和辅助单元。(理论以“够用为度”,实践以“实用为主”) LT 控制系统方框图 说明:图中控制对象代表生产过程中的某个环节,控制对象输出的是被控变量(如压力、流量、温度、液位等温度变量)。这些工艺变量经变动单元转换成相应的电信号或气压信号后,一方面送显示单元供指示和记录,同时又送到调节单元中与给定单元送来的给定值进行比较,调节单元将比较后的偏差值进行一定的运算后,发出控制信号,控制执行单元的动作,将阀门开大或关小。改变控制量(如燃料油、蒸汽等介质流量的多少)直至被控变量与给定值相等为止,此时阀门会

平衡在某一位置,使工艺介质达到工艺要求。 ①LT—检测锅炉汽包水位的变化并将汽包水位高低这一物理量转换成仪表间的标准统一信号。 ②LC—接受液位测量变送器的输出标准信号,与工艺控制调节(控制器)器要求的水位信号相比较得出偏差信号的大小和方向,并按一定的规律运算后输送一个对应的标准统一信号。 ③LV—接受控制器的输出信号后,根据信号的大小和方向控制阀门的开度,从而改变给水量,经过反复测量和控制使锅炉汽包水位达到工艺要求。 一个控制系统基本由给定单元、控制对象、变送单元、调节(控制)单元、执行单元组成。 锅炉汽包水位控制系统原理图 二、检测与过程控制仪表(通常称自动化仪表)分类方法很多,根据不同原则可以进行相应的分类,如: 按照能源(所使用的):气动仪表、电动仪表、液动仪表。 根据是否引入微处理机可分为:智能仪表和非智能仪表。 根据信号形式可分为:模拟仪表和数字仪表。 检测与过程控制仪表最通用的分类是按照仪表在测量与控制系统中的作用划分的:

热处理过程控制

热处理过程控制 热处理过程中的质量控制,实际上是贯彻热处理相关标准的过程,包括热处理设备及仪表哦那个之、工艺材料及槽液控制、工艺过程控制等,只有严格执行标准,加强工艺纪律,才能将热处理缺陷消灭在质量的形成过程中,获得高质量的热处理零件。 1、相关热处理工艺及质量控制要求标准 GB/T16923-1997 钢的正火与退火处理;GB/T16924-1997 钢的淬火和回火处理;GB/T18177-1997 钢的气体渗氮;JB/T3999-1999 钢件的渗碳与碳氮共渗淬火回火;JB/T4155—1999 气体氮碳共渗;JB/T9201—1999 钢铁件的感应淬火回火处理 JB/T6048—1992 盐浴热处理;JB/T10175—2000 热处理质量控制要求 2、加热设备及仪表要求: 2.1、加热设备要求: 2.1.1加热炉需按有效加热区保温精度(炉温均与性)要求分为六类,其控温精度、仪表精度和 允许用修改量程的方法提高分辨力 温仪表。其中一个仪表应具有报警的功能。 2.1.3 每台加热炉必须定期检测有效加热区,检测方法按GB/T9452和JB/T6049的规定,其保温精度应符合表7要求。应在明显位置悬挂带有有效加热区示意图的检验合格证。加热炉只能 记录表热电偶的热距离应靠近。校验应在加热炉处于热稳定状态下进行,当超过上述允许温度

2.1.5保护气氛炉和化学热处理炉的炉内气氛应能控制和调节。进入加热炉的气氛不允许直接冲刷零件。 2.1.6 对气体渗碳(含碳氮共渗)炉,渗氮(含氮碳共渗(软氮化))炉,在有效加热区检验合格后还应进行渗层深度均匀性检验,试样放置位置参照有效加热区保温精度检测热电偶布点位置,检验方法按GB/T9450和GB/T11354的规定。气体渗碳炉、渗氮炉中有效硬化层深度偏差,见表11和表12: 2.1.7 炉内的加热介质不应使被加热工件表面产生超过技术文件规定深度的脱碳、增碳、增氮和腐蚀等现象。 2.1.8 感应热处理加热电源及淬火机床: 2.1.8.1 感应加热电源输出功率及频率必须满足热处理要求,输出功率控制在±5%,或输出电压在±2.5%范围内。感应热处理机床和限时装置应满足工艺要求。 2.1.8.3限时装置:感应加热电源或淬火机床应根据需要装有控制加热、延迟、冷却时间的限时 2.2 淬火槽要求: 2.2.1 淬火槽的设置应满足技术文件条件对工件淬火转移时间的规定。 2.2.2淬火槽的容积要适应连续淬火和工件在槽中移动的需求。 2.2.3淬火过程中,油温一般保持在10——80℃,水温一般保持在10——40℃。 2.2.4 淬火槽一般应有循环搅拌和冷却装置,可选用循环泵、机械搅拌或喷射对流装置。必要时,淬火槽可配备加热装置。 2.2.5 淬火槽应装有分辨力不大于5℃的测温。 2.3 仪表要求: 2.3.1 现场使用的控温和记录仪表等级应符合表7要求,检定周期按表9执行。 2.3.2 现场系统校验用的标准电位差计精度应不低于0.05级,分辨力不低于1Uv,检定周期为6个月。

过程装备控制技术及应用习题参考答案

过程装备控制技术 及应用习题及参考答案 第一章控制系统的基本概念 1?什么叫生产过程自动化?生产过程自动化主要包含了哪些内容? 答:利用自动化装置来管理生产过程的方法称为生产过程自动化。主要包含: ①自动检测系统②信号联锁系统③自动操纵系统④自动控制系统。 2. 自动控制系统主要由哪几个环节组成?自动控制系统常用的术语有哪些?答:一个自动控制系统主要有两大部分组成:一部分是起控制作用的全套自动控制装置,包括测量仪表,变送器,控制仪表以及执行器等;另一部分是自动控制装置控制下的生产设备,即被控对象。 自动控制系统常用的术语有: 被控变量y――被控对象内要求保持设定数值的工艺参数,即需要控制的工艺参数,如锅炉汽包的水位,反应温度; 给定值(或设定值)y s――对应于生产过程中被控变量的期望值; 测量值y m 由检测原件得到的被控变量的实际值; 操纵变量(或控制变量)m――受控于调节阀,用以克服干扰影响,具体实现控制作用的变量称为操纵变量,是调节阀的输出信号; 干扰f――引起被控变量偏离给定值的,除操纵变量以外的各种因素;偏差信号(e) 被控变量的实际值与给定值之差,即e=y m - y s 控制信号u――控制器将偏差按一定规律计算得到的量。 3. 什么是自动控制系统的方框图?它与工艺流程图有什么不同? 答:自动控制系统的方框图上是由传递方块、信号线(带有箭头的线段)、综合点、分支点构成的表示控制系统组成和作用的图形。其中每一个分块代表系统中的一个组成部分,方块内填入表示其自身特性的数学表达式;方块间用带有箭头的线段表示相互间的关系及信号的流向。采用方块图可直观地显示出系统中各组成部分以及它们之间的相互影响和信号的联系,以便对系统特性进行分析和研究。而工艺流程图则是以形象的图

六西格玛管理程序

六西格玛管理程序 延锋伟世通编号:YFV-SSXX 版本:1/0 第1页共8页 版本号修订日期生效日期修订内容 1/0 2012 年4 月22 日首次发布 1.0目的 1.1为了使公司六西格玛项目得以有效规范地开展和实施,固化流程、强化制度落实,特制订本程 序。六西格玛6sigma可根据需要选择不同方法,如DFSS追求倾听并理解客户心声,将之转化为优秀的产品设计,DMAIC则解决现有产品、工艺、流程中的问题并消除,使产品和服务的质量达到更高的水平。本程序以DMAIC为例展开论述。 1.2通过6sigma队伍的培养和六西格玛项目的实施和推广,提升企业寻找突破性改进机会和解决复 杂问题的整体水平。 1.3重视日常运作的基础数据收集、分析和管理,逐渐培养以数据、事实驱动的管理模式。 2.0范围 本程序适用于公司总部、技术中心、上海公司、金桥公司、重庆公司、北京公司及非内饰子公司总部和母体。 3.0引用文件和程序 3.1.经营目标管理程序 YFV-SS02 4.0术语 4.1.DMAIC 通过定义(define)、测量(measure)、分析(analyze)、改进(improve)、控制(control)5个阶段,使 6sigma成为有效的管理模式,即解决问题的工具和方法论。 5.0流程/程序

延锋伟世通编号:YFV-xxxx 版本:1/0 第2页共8页 5.1 6sigma组织和职责 5.1.1 总部6sigma管理部门 5.1.1.1协助公司管理层建立6sigma期望和愿景,引导员工重视6sigma工作的质量; 5.1.1.2 指导子公司结合BSC和公司战略进行项目选择,并对典型项目进行跟踪与管理,提供培 训、项目辅导和项目评审; 5.1.1.3 负责6sigma相关制度的建立、定期组织和召开项目交流会,总结推行过程中经验教训并给 予及时纠偏; 5.1.2 各子、运营公司6sigma管理部门 5.1.2.1 负责建立本公司6sigma相关制度和策略,负责6sigma项目运作的总协调和推进工作; 5.1.2.2 协助本公司管理层制定六西格玛年度目标,根据公司战略支持各部门进行项目选择,跟踪和 管理; 5.1.2.3 组织和协调本公司6sigma培训、项目辅导和项目评审等工作; 5.1.3 各子、运营公司部门经理 作为6sigma倡导者,制定项目选择标准,特许项目展开,核准改进方案,为6sigma项目团队提供或争取必须的资源,建立奖励制度,推进活动展开。 5.1.4黑带大师 编制6sigma黑带和champion培训教材,并提供培训,为项目开展提供辅导和技术支持。 5.1.5黑带 组织、管理、激励、指导6sigma团队开展工作、管理项目进展,最终使项目获得成功。 5.1.6绿带 担任本职工作的同时,兼任6sigma项目团队负责人。 5.1.7过程所有者 提供必要的支持和配合,协调和帮助黑带、绿带完成相关项目。 5.2 6sigma培训和资质认定

过程装备与来控制技术及应用复习资料概要

1. 什么是被控对象的控制通道?什么是干扰通道? 答:对一个被控对象来说,输入量是扰动量和操纵变量,而输出是被控变量。由对象的输入变量至输出变量的信号联系称为通道。操纵变量至被控变量的信号联系称为控制通道;扰动量至被控变量的信号联系称为扰动通道 2. 被控对象的特性是由生产工艺过程和工艺设备决定的,在控制系统的设计中是无法改变的。 3. 被控对象数学描述推导依据的:物料平衡和力学平衡. 4. 传感器的主要组成部分:敏感元件、转换元件、测量电路与其他辅助部件组成. 5. 力平衡式压差变送器主要组成部分:测量部分、放大器和反馈部分。 6,. 温度变送器类型:直流毫伏、电阻体温度和热电偶温度变送器. 7.试分析四线制变送器与两线制变送器与电源的连接方式并画出示意图。 答:电动变送器输出信号与电源的连接方式有两种:四线制和两线制,四线制中, 供电电源通过两根导线接入,另两根导线与负载电阻R2相连,输出0~10mA DC 信号。这种连线方式中,同变送器连接的导线共有4根,成为四线制,如图(a所示。如图b中所示,同变送器连接的导线只有两根,同时传送变送器所需的电源电压和4~20mA DC输出电流,称为两线制。 8.何为基型调节器?它具有哪些主要特点? 答:基型调节器是一种具有PID运算功能,并能对被调参数,给定值及阀门位置进行显示的调节器。 特点:①采用了高增益、高阻抗线性集成电路组件,提高万仪表的精度,稳定性和可靠性,降低了能耗。

②有软、硬两种手动操作方式,软手动与自动之间由于有保持状态而使调节器输出能够长期保持,因而在互相切换时具有双向无平衡无抗扰特性,提高了操作性能。 ③采用集成电路便于各种功能的扩展。 ④采用标准信号制,接受1-5V DC测量信号,输出4~20mA DC信号,由于空气受点不是从零点开始的,故容易识别断电、断线等故障 ⑤能与计算机联用。 9.什么是自动控制系统的方框图?它与工艺流程图有什么不同? 答:自动控制系统的方框图上是由传递方块、信号线(带有箭头的线段、综合点、分支点构成的表示控制系统组成和作用的图形。其中每一个分块代表系统中的一个组成部分,方块内填入表示其自身特性的数学表达式;方块间用带有箭头的线段表示相互间的关系及信号的流向。采用方块图可直观地显示出系统中各组成部分以及它们之间的相互影响和信号的联系,以便对系统特性进行分析和研究。而工艺流程图则是以形象的图形、符号、代号,表示出工艺过程选用的化工设备、管路、附件和仪表自控等的排列及连接,借以表达在一个化工生产中物料和能量的变化过程,即原料→成品全过程中物料和能量发生的变化及其流向。10.在自动控制系统中,什么是干扰作用?什么是控制作用?两者有什么关系?答:干扰作用是由干扰因素施加于被控对象并引起被控变量偏离给定值的作用;控制作用是由控制器或执行器作用于被控对象,通过改变操纵变量克服干扰作用,使被控变量保持在给定值,两者的相同之处在于都是施加于被控对象的作用,不同之处在于干扰作用是使被控变量偏离给定值,而控制作用是使被控变量接近给定值。 11.什么是自动控制系统的过度过程?在阶跃干扰作用下有哪几种基本形式? 其中哪些能满足自动控制的要求,哪些不能,为什么?

冶金工程项目进度和质量的过程控制对策

冶金工程项目进度和质量的过程控制对策 在冶金工程发展的现阶段中,新建冶金工程项目也逐渐增多,如何在竞争激烈的行业中将冶金工程项目进度和质量提高,是现阶段面临的重要问题,所以本文重点分析了控制的冶金工程项目进度和质量过程的有效策略。 标签:冶金工程;进度;质量;过程控制 随着冶金工程逐渐壮大和发展,工程建设日益趋向自动化、规模化、集中化,但是在发展的同时也面临各种挑战,因此要在冶金工程项目过程中控制其进度和质量,从而提高质量并且降低风险。 一、冶金工程项目施工需注意的要点 (一)设置基准线 冶金设备安装时要注意的问题是,要依照工程设备的设计、安装以及将来设备维修的需要,将需求与设备设计图结合从而找出参考点和中心板,设置一个长久的基准线和中心标板,为安装设备和调整设备提供便利条件,必须要在设备周围设置沉降基准点,方便了解和观察设备的沉降问题;如有特殊要求,就需要依据实际问题的情况增添或减少基准点或者基准线;必须留意的是基准点和中心标板,一定要采用较为坚固的材质。 (二)应用垫板 在冶金工程设备安装过程中,通常应用的施工方法是坐浆法,这种施工方法主要是应用的是无收缩且强度大水泥进行施工;在施工安装前做好准备工作,要确定设备设计图、设备螺栓、设备负荷等情况处于正常状态,根据实际情况确立垫板尺寸与使用数量。 (三)安装结束的验收工作 在冶金设备安装完工后,要着重清理一下设备的表面和保留空区内斗,在设备安装情况下,给予基本的中间切换数据信息;冶金设备安装之前,必须要查验、检测由土建施工完成的设施,要依据相应的图纸数据信息和验收标准对中心线和几何尺寸进行检验。设备的基本水平度与相应的尺寸、垂直误差都必须达到相关标准规范;确保预埋件达到相应标准,如螺栓的高低、尺寸、型号等,如遇到预埋地脚螺栓,还要查验其中心位置、垂直度和标高,要确保足够的完整性。 二、现阶段冶金工程项目进度和质量所遇的挑战 (一)冶金工程项目进度

过程装备控制技术及应用习题及参考答案.

第一章控制系统的基本概念 1.什么叫生产过程自动化?生产过程自动化主要包含了哪些内容? 答:利用自动化装置来管理生产过程的方法称为生产过程自动化。主要包含: ①自动检测系统②信号联锁系统③自动操纵系统④自动控制系统。 2.自动控制系统主要由哪几个环节组成?自动控制系统常用的术语有哪些?答:一个自动控制系统主要有两大部分组成:一部分是起控制作用的全套自动控制装置,包括测量仪表,变送器,控制仪表以及执行器等;另一部分是自动控制装置控制下的生产设备,即被控对象。 自动控制系统常用的术语有: 被控变量y——被控对象内要求保持设定数值的工艺参数,即需要控制的工艺参数,如锅炉汽包的水位,反应温度; 给定值(或设定值)y s——对应于生产过程中被控变量的期望值; 测量值y m——由检测原件得到的被控变量的实际值; 操纵变量(或控制变量)m——受控于调节阀,用以克服干扰影响,具体实现控制作用的变量称为操纵变量,是调节阀的输出信号; 干扰f——引起被控变量偏离给定值的,除操纵变量以外的各种因素; 偏差信号(e)——被控变量的实际值与给定值之差,即e=y m - y s 控制信号u——控制器将偏差按一定规律计算得到的量。 3.什么是自动控制系统的方框图?它与工艺流程图有什么不同? 答:自动控制系统的方框图上是由传递方块、信号线(带有箭头的线段)、综合点、分支点构成的表示控制系统组成和作用的图形。其中每一个分块代表系统中的一个组成部分,方块内填入表示其自身特性的数学表达式;方块间用带有箭头的线段表示相互间的关系及信号的流向。采用方块图可直观地显示出系统中各组成部分以及它们之间的相互影响和信号的联系,以便对系统特性进行分析和研究。而工艺流程图则是以形象的图形、符号、代号,表示出工艺过程选用的化工设备、管路、附件和仪表自控等的排列及连接,借以表达在一个化工生产中物料和能量的变化过程,即原料→成品全过程中物料和能量发生的变化及其流向。 4.在自动控制系统中,什么是干扰作用?什么是控制作用?两者有什么关系?

过程装备控制技术及应用课后习题答案)

1. 过程装备的三项基本要求过程装备的三项基本要求:安全性、经济性和稳定性. A.安全性:指整个生产过程中确保人身和设备的安全 B.经济性:指在生产同样质量和数量产品所消耗的能量和原材料最少,也就是要求生产成本低而效率高 C.稳定性:指系统应具有抵抗外部干扰,保持生产过程长期稳定运行的能力. 2. 过程装备控制的主要参数:温度、压力、流量、液位(或物位)、成分和物性等. 3. 流程工业四大参数:温度、压力、流量、液位(或物位) 4. 控制系统的组成控制系统的组成:(1)被控对象 (2)测量元件和变送器 (3)调节器 (4)执行器 5. 控制系统各参量及其作用:1.被控变量 y 指需要控制的工艺参数,它是被控对象的输出信号 2.给定值(或设定值) ys 对应于生产过程中被控变量的期望值 3.测量值 ym 由检测元件得到的被控变量的实际值 4.操纵变量(或控制变量)m 受控于调节阀,用以克服干扰影响,具体实现控制作用的变量称为操纵变量,它是调节阀的输出信号 5.干扰(或外界扰动)f 引起被控变量偏离给定值的,除操纵变量以外的各种因素 6.偏差信号 e 在理论上应该是被控变量的实际值与给定值之差 7.控制信号u 控制器将偏差按一定规律计算得到的量。 6. 控制系统的分类(1)控制系统的分类:按给定值 a 定值控制系统;随动控制系统;程序控制系统(2) b c 按输出信号的影响 a 闭环控制;b 开环控制(3)按系统克服干扰的方式 a 反馈控制系统;b 前馈控制系统;c 前馈-反馈控制系统 7. 控制系统过度过程定义:从被控对象受到干扰作用使被控变量偏离给定值时起,调节器开始发挥作用,使被控变量回复到给定值附近范围内,然而这一回复并不是瞬间完成的,而是要经历一个过程,这个过程就是控制系统的过渡过程。 8. 阶跃干扰下过渡过程的基本形式及其使用特点(1)发散振荡过程:这是一种不稳定的阶跃干扰下过渡过程的基本形式及其使用特点:过渡过程,因此要尽量避免(2)等幅振荡过程:被控变量在某稳定值附近振荡,而振荡幅度恒定不变,这意味着系统在受到阶跃干扰作用后,就不能再稳定下来,一般不采用(3)衰减振荡过程:被控变量在稳定值附近上下波动,经过两三个周期就稳定下来,这是一种稳定的过渡过程(4)非振荡的过渡过程:是一个稳定的过渡过程,但与衰减振荡相比,其回复到平衡状态的速度慢,时间长,一般不采用。 9. 评价控制系统的性能指标(1)以阶跃响应曲线形式表示的质量指标: A.最大偏差 A(或评价控制系统的性能指标:超调量σ) B.衰减比 n C. 过渡时间 ts D.余差 e E.振荡周期 T (2)偏差积分性能指标: A.平方误差积分指标(ISE) B.时间乘平方误差积分指标(ITSE)C.绝对误差积分指标(IAE) D.时间乘绝对误差积分指标(ITAE) 10. 被控对象特性的定义被控对象特性的定义:就是当被控对象的输入变量发生变化时,其输出变量随时间的变化规律(包括变化的大小,速度等)。 11. 连续生产过程所遵守的两个最基本的关系:物料平衡和能量平衡。即静态条件下,单位时间流入对象的物料(或能量)等于从系统中流出的物料(或能量);动态条件下,单位时间流入对象的物料(或能量)与从系统中流出的物料(或能量)之差等于系统内物料(或能量)存储量的变化率。 12. 有自衡作用和无自衡作用单容液位对象的区别有自衡作用和无自衡作用单容液位对象的区别:A.自衡特性有利于控制,在某些情况下,使用简单的控制系统就能得到良好的控制质量,甚至有时可以不用设置控制系统。B.无自衡特性被控对象在受到扰动作用后不能重新恢复平衡,因此控制要求较高。对这类被控对象除必须施加控制外,还常常设有自动报警系统。 13. 一阶被控对象一阶被控对象:它是一个一阶常系数微分方程,具有该特性的被控对象叫一阶被控对象. 14. 描述被控对象特性的参数及其对对象控制质量的影响(1)放大系数 K 对控制通道,K 描述被控对象特性的参数及其对对象控制质量的影响:值大,控制灵敏,但被控变量不易控制,系统不稳定;对干扰通道,K 值越小,相同干扰产生的作用越小,利于控制。(2)时间常数 T 不同通道,时间常数对系统的影响:对控制通道,若时间常数 T 大,则被控变量的变化比较缓和,一般来讲,这种对象比较稳定,容易控制,但缺点是控制过于缓慢;若时间常数 T 小,则被控变量的速度变化快,不易控制。因此,时间常数太大或太小,对过程控制都不利;对干扰通道,时间常数大有明显的好处,使干扰对系统的影响变得比较缓和,被控变量的变化平稳,对象容易控制。(3)滞后时间不同通道、不同滞后对控制性能的影响:对控制通道,滞后的存在不利于控制;对于干扰通道,作用不一,纯滞后是只是推迟了干扰作用的时间,因此对控制质量没有影响;容量滞后则可以缓和干扰对被控对象的影响,因而对控制系统是有利的。 15. 单回路控制系统参数选择的原则(1)被控变量的选择基本原则;被控变量信号最好是单回路控制系统参数选择的原则:能够直接测量获得,并且测量和变送环节的滞后也要比较小。若被控变量信号无法直接获取,可选择与之有单值函数关系的间接参数作为被控变量。被控变量必须是独立变量。变量的数目一般可以用物理化学中的相律关系来确定。被控变量必须考虑工艺合理性,以及目前仪表的现状能否满足要求。(2)操纵变量的选择;使被控对象控制通道的放大系数较大,时间常数较小,纯滞后时间越小越好;使被控对象干扰通道的放大系数尽可能小,时间常数越大越好。(3)检测变送环节:检测变送环节在控制系统中起着获取信息和传送信息的作用。①减小纯滞后的方法,正确选择安装检测点位置,使检测元件不要安装在死角或容易结焦的地方。当纯滞后时间太大时,就必须考虑使用复杂控制方案。②克服测量滞后的方法,一是对测量元件时间常数进行限定。尽量选用快速测量元件,以测量元件的时间常数为被控对象的时间常数的十分之一以下为宜;二是在测量元件后引入微分环节,达到超前补偿。在调节器中加入微分控制作用,使调节器在偏差产生的初期,根据偏差的变化趋势发出相应的控制信号。③减小信号传递滞后的方法,尽量缩短气压信号管线长度,一般不超过 300m;较长距离的传输尽量转换成电信号;在气压管线上加气动继电器,以增大输出功率;按实际情况尽量采用基地式仪表等。 16. 基本调节规律:A.断续调节:位式;B.连续调节:比例、积分、微分。 17. PID 调节器的参数整定:整定内容;调节器的比例度δ,积分时间 T1 和微分时间 TD。整定方法;①经验试凑法,②临界比例度法,③衰减曲线法。 18. 复杂控制系统的分类分类:①为提高响应曲线的性能指标而开发的控制系统; ②为某些特殊目的而开发的控制系统。 19. 串级控制系统的工作原理:串级控制系统由两套检测变送器,两个调节器,两个被控对象和一个调节阀组成,其中两个调节器串联起来工作,前一个调节器的输出作为后一个调节器的给定值,后一个调节器的输出才送往调节阀。串级控制系统与简单控制系统有一个显著的区别,它在结构上形成了两个闭环,一个闭环在里面,成为副环或副回路,在控制过程中起着“初调”的作用,一个闭环在外面,称为主环或主回路,用来完成“细调”任务,以保证被控变量满足工艺要求。 20. 串级控制系统的工作特点控制系统的工作特点:①能迅速克服进入副回路的干扰②能改善被控变量的特性,提高系统克服干扰的能力③主回路对副对象具有“鲁棒性”,提高了系统的控制精度。 21. 串级控制系统的适用对象:凡是可以利用上述特点之一来提高系统的控制品质的场合,都可以采用串级控制系统,特别是在被控对象的容量滞后大,干扰强,要求高的场合,采用串级控制可以获得明显的效果。 22. 主副回路的选择依据主副回路的选择依据:让主要干扰位于副回路。23. 前馈控制相较于反馈控制的特点:在反馈控制中,信号的传递形成了一个闭环系统,而在前馈控制中,则只有一个开环系统,闭环系统存在一个稳定性的问题,调节器参数的整定首先要考虑这个稳定性问题,但是,对于开环控制系统来讲,这个稳定性问题是不存在的,补偿的设计主要是考虑如何获得最好的补偿效果。在理想情况下,可以把补偿器设计到完全补偿的目的,即在所考虑的扰动作用下,被控变量始终保持不变,或者说兑现了“不变性”原理。 24. 前馈-反馈控制系统:在工程上往往将前馈与反馈结合起来应用,既发挥了前馈校正作用及时的优点,又保持了反馈控制能克服多种扰动及对被控变量最终检验的长处,是一种适合化工过程控制的控制方法。 25. 系统误差:指在相同条件下,多次测量同一被测量值的过程中出现的一种误差,它的绝对值和符号或者保持不变,或者在条件变化时按某一规律变化。 26. 随机误差:又称偶然误差,它是在相同条件下多次测量同一被测量值的过程中所出现的绝对值和符号以不可预计的方式变化的误差。 27. 粗大误差:明显的歪曲测量结果的误差称为粗大误差,这种误差时由于测量操作者的粗心,不正确的操作,实验条件的突变或实验状况尚未达到预想的要求而匆忙实验等原因所造成的。 28. 减小误差的方法:①标准法:预先测出系统误差,然后对测量值进行修正。由于修正值本身存在一定误差,因此这种方法只适用于工程测量,②零示法:测量误差与读数误差无关,主要取决于已知的标准量,但要求指示器灵敏度足够高,如电位差计(平衡式电桥)。③代替法:用已知量来代替被测量的测量方法。④交换法:将引起系统误差的某些条件相互交换以达到减小或消除误差的方法。(例如等臂天平称量物体时),此外还有对称法、微差法、比较法等。 29. 仪表的绝对误差:仪表指示值与被测变量真值之间的代数差. 30. 仪表的相对误差:测量的绝对误差与被测变量的约定真值(实际值)之比. 31. 仪表的引用误差:绝对误差与仪表的量程之比. 32. 仪表的精度等级:工业自动化仪表通常根据引用误差来评定其精确度等级,并规定用允许引用误差限去掉百分号后的数字来表示精度等级。如精度等级为 1.0 级的仪表其允许引用误差为 1.0%。精密等级值越低的仪表其精确度越高。 33. 流量的概念:流量是指单位时间内流过某一截面的流体数量的多少。 34. 流量计的分类:A 压差式流量计,B 转子式流量计、C 电磁式流量计 35. 压差式流量计的工作原理:当充满管道的流体流经节流装置时,流束收缩,流速提高,静压减小,在节流装置前后会产生了一定的压差。这个压差的大小与流量有关,根据它们之间的关系即可得到流量的大小。 36. 压差式流量计结构上的核心部件:核心部件是节流装置,包括节流元件,取压装置以及其前后管段。 37. 常见的节流装置分类:孔板,喷嘴,文都利管. 38. 液位的概念:液位是指液体介质液面的高低。 39. 液位计的分类:按工作原理可分为直读式、浮力式、静压式、电容式、光纤式、激光式、核辐射式。 40. 静压式液位计的工作原理:通过测量某点的压力或该点与另一参考点的压差来间接测量液位。 41. 变送器的作用:将测量元件的输出信号转换为一定的标准信号,送后续环节显示、记录或调节。 42. 变送器的分类:变送器按驱动能源不同的分类:气动变送器,电动变送器。 43. 气动变送器和电动变送器的区别:气动变送器是以压缩空气为驱动能源,电动变送器是以电力为能源。 44. 常用的标准信号:电压(1-5V DC),电流(4-20mA),气压(20-100kPa)信号。 45. 常见的气动元件和组件:1.气阻 2.气容 3.阻容耦合组件:(1)节流通室(2)节流盲室 4. 喷嘴-挡板机构 46. 安全火花的定义安全火花的定义:指该火花的能量不足以对其周围可燃介质构成点火源。 47. 自动化仪表的防爆结构类型及各自特点:①隔爆型,仪表的电路和接线端子全部置于隔爆壳体中,表壳的强度足够大,表壳接合面间隙足够深,最大的间隙宽度又足够窄,即使仪表因事故产生火花,也不会引起仪表外部的可燃性物质发生爆炸。②本质安全防爆型,防爆性能好,理论上适用于一切危险场所;安全性能不随时间而变化;可在线进行维修、调整。 48. 安全防爆系统的构成及工作原理:安装在危险场所中的本质安全电路及安装在非危险场所中的非本质安全电路。为了防止非本质安全电路中过大的能量传入危险场所中的本质安全电路中,在两者之间采用了防爆安全栅,使整个仪表系统具有本质安全防爆性能。 49. 执行器按工作能源的分类:气动执行器、电动执行器、液动执行器 50. 电动执行器的分类:1.按照输入位移的不同,电动执行机构可分为角行程(DKJ 型)和直行程(DKZ 型);2.按照特性不同,电动执行机构可分为比例式和积分式。 51. 调节阀的理想流量特性:在调节阀前后压差一定的情况下的流量特性称为调节阀理想流量特性,根据阀芯形状不同,主要有直线,等百分比(对数),抛物线及快开四种理想流量特性。 52. 调节阀的工作流量特性:在实际使用调节阀时,由于调节阀串联在管路中或与旁路阀并联,因此阀前后的压差总在变化,这时的流量特性称为调节阀的工作流量特性。 53. 常见的流量特性分类及其使用特性:A.理想流量特性①直线流量特性,在流量小时,流量的变化值大,而流量大时,流量变化的相对值小。因此具有直线流量特性的调节阀不宜用于负荷变化较大的场合。②对数流量特性,适应能力强,在工业过程控制中应用广泛。③快开流量特性,主要用于迅速启闭的切断阀或双位调节系统。④抛物线流量特性,介于直线流量特性与等百分比流量特性之间。 B.工作流量特性①串联管道工作流量特性②并联管道工作流量特性. 54. 串联管道工作流量特性:系统的总压差ΔP 等于管路系统的压差ΔP1 与调节阀的压差Δ Pv 之和.系统管道的压差与通过的流量的平方成正比,若系统的总压差ΔP 不变,调节阀一旦动作, ΔP1 将随着流量的增大而增加,调节阀两端的压差ΔPv 则相应减少.以 S 表示调节阀全开时阀上的压差ΔPv 与系统总压差ΔP 之比,S=1 时,工作特性与理想特性一致;随着 s 值减小,管道阻力损失增加,实际可调比减小,流量特性发生畸变,由直线趋于快开,等百分比趋于直线。实际使用中,S 过大或过小都不合适,通常希望介于 0.3-0.5. 55. 调节阀选型内容:口径、型式、固有流量特性、材质. 56. 调节阀的可调比:调节阀能够控制的最大流量与最小流量之比,即R=qvmax/qvmin . qvmin 不等于阀的泄漏量, qvmin 指阀能控制的流量下限,一般为(2%--4%)qvmin,而阀的泄漏量指阀处于关闭状态下的泄漏量,一般小于0.1%C(C 为流量系数). 57. 进行电-气或气-电转换的原因:控制系统中调节执行单元品种繁多,电、气信号常混合使用,需进行电-气或气-电转换. 58. 电-气转换器及电-气阀门定位器:A.电-气转换器作用:将从电动变送器来的电信号变成气信号,送气动调节器或气动显示仪表。工作原理:力矩平衡原理 B.电-气阀门定位器作用:将电动调节器输出信号变成气信号去驱动气动调节阀主要功能:电气转换+气动阀门定位工作原理:力矩平衡原理. 59. 计算机控制系统的组成:计算机控制系统是由工业对象和工业控制计算机两大

最新控制技术及其应用知识点归纳

6执行器作用:接受调节器送来的控制信号,自动改变操纵变量,调节被控参数7变送器按驱动能源分为气动和电动式 8变送器作用:在测量元件将压力、温度、液位、流量参测后,将测量元件信号转换成一定标准信号送往显示仪表后调节仪表进行显示、记录或调节 15热电偶温度计原理:基于热电效应即,两种不同材料导体组成一个闭合回路。当回路两端温度不同时,回路产生电动势,形成电流,电流大小与导体材料性质和接点温度有关,对于给定的热电偶,其材料性质一定,热电势是其两端温度的函数,若其冷端温度固定,热电势大小与热端温度一一对应。16热电偶温度计组成:热电偶、电测仪表和连接导线 17热电偶优点:1测温精度高,性能稳定2结构简单,易于制造,互换性好3便于远程传输和实现多点切换测量4测温范围广,-200到2000度5形式多样适于多种测量条件 18热电偶结构形式:普通热电偶、铠装热电偶和特殊热电偶 19弹簧式压力计原理:弹性元件受压后产生的反作用力和被测压力平衡,弹性元件变形是被测压力的函数20弹性元件:弹簧管、弹簧片、膜片、膜盒、膜盒组和波纹管 21弹性元件不完全弹性因素:弹性滞后:由于弹性元件工作时分子间存在摩擦导致加载曲线与卸载曲线不重合的现象弹性后效:弹性元件受载改变后,不是立即完成相应变形,而是在一定时间内逐渐完成变形的现象22传感器组成:敏感元件、转换元件、测量电路和辅助电路23检测仪表组成:传感器、转换器、显示器和各环节传输通道 27测量分类:接触和非接触式、等精度和不等精度、间接和直接、静态和动态 28过渡过程:从被控对象受到干扰使被控变量偏离给定值开始到调节器发挥作用,使被控变量回复到给定值附近范围内所经历的过程。 发散振荡:系统在受到干扰后,被控变量不断偏离给定值,直至超出规定限度,造成事故。该过程不稳定,需要避免等幅振荡:被控变量在某稳定值附近振荡,但振幅保持不变,系统受到干扰后不再稳定,一般不采用。对于工艺上允许被控变量在一定范围内波动、控制要求不高的场合,可以使用 衰减振荡:被控变量在稳定值附近上下波动,经过两三个周期后稳定下来。在大多数控制中都希望得到这种稳定的过渡过程非振荡的单调过程:表明被控变量最终稳定下来、与衰减振荡相比,耗时长,速度慢,一般不采用29控制系统的性能指标:最大偏差(超调量)、衰减比、回复时间、余差和振荡周期详见图1-12 30被控对象的特性:当被控对象的输入变量发生变化时,其输出变量随时间的变化规律 31自衡特性:输入变量发生变化破坏了被控对象的平衡而引起输出变量变化时,在没有认为干预的情况下,被控对象自身重新回复到平衡的特性。有利于控制。 32被控对象的参数:放大系数:被控对象重新达到平衡时输出变化量与输入变化量的比值33时间常数:被控对象受到输入作用后,输出量达到新稳态值的快慢 34滞后时间:在受到输入量的作用后,其被控变量并不立即发生变化而是经过一段时间才发生变化的滞后现象。有传递

2013冶金反应工程学考题

2013冶金反应工程学考题 1、冶金反应工程学是(定量)的研究工业装置(反应器)中的(液体流动)、(传热)和(传质)过程,明确其对冶金反应过程的影响及其规律的科学。是运用解析手段分析所提出的数学模型;为改进(反应器)性能、提高(生产效率)、提高(生产质量)提供保证的“中观”的技术科学。 3、冶金反应工程学是以(实际冶金反应)为研究对象,以(解决工程问题)为目的,在明确冶金(基础科学理论)和各类(反应装置特性)的基础上,研究金属提炼过程中伴随的各种传递规律,并把二者密切结合起来形成自己独特的学科体系。 4、微观动力学研究的主要内容是研究机理和预测速度。反应速度的预测是通过测定反应的1)(反应机理)、2)(求反应速度常数k和反应级数n)、3)求反应活化能E、4)给出反应速度表达式来实现的。 5、冶金宏观动力学目的为:1)弄清化学反应本身的规律(热力学、动力学);2)弄清试验体系内物质的(“三传”)规律;3)用(物质、热量、动量平衡)平衡关系联立求解(1)、(2)之间的相互联系。 6、在实际反应中,反应速度受到压力、温度、物质的浓度、催化剂、(混合程度)、(三传)等因素影响,当温度、压力一定时,反应速度决定于(物质反应界面浓度)和催化剂的素影响。 7、在实际冶金过程的均相反应中,通常使用的反应器有(间歇反应器)、(活塞流反应器)、(全混流反应器)和(非理想流动反应器)等四种基本型式。 8、停留时间分布可用应答技术中的(脉冲法)和(阶跃法)测定;前者测定的是停留时间(分布密度),后者测定的是停留时间的(分布函数)。 9、物料混合分为(宏观尺度上的混合)和(微观尺度)的混合,后者是微元体之间均匀混合为一体,并达到(分子尺度上)的均匀;其形成原因为湍动、湍旋的分割加(分子扩散)。 10、冶金反应过程中的数学模型有(机理)、(半经验)和(黑箱)模型三种。 11、用(脉冲法)可直接检测出停留时间分布(密度曲线);用(阶跃法)可直接检测出停留时间(分布函数)。 12、一级反应的混合早晚对反应结果(无)影响;二级反应的混合早晚对反应结果(有)影响。 13、冶金过程中流体/流体之间的传质模型主要用(双膜)理论、(渗透)论、(表面更新)论和(湍流传质)等理论来描述。 1、间歇反应器及其特点 物质一次加入反应器中,反应物料的温度和浓度等操作参数随时间而变不随空间位置而变,所有物料质点在反应器内经历相同的反应时间,反应完成后,同时放出所有物料,完成一个生产周期。 其特点: 1)由于剧烈搅拌,反应器内物料浓度达到分子尺寸上的均匀,且反应器内浓度处处相等,因而排除了物质传递,(传质)对反应的影响; 2)具有足够强的传质条件,温度始终相等,无需考虑器内的热量传递问题; 3)物料同时加入并同时停止反应,所有物料具有相同的反应时间。 2、活塞流反应器的特点 1)连续稳定态下,各个截面上的各种参数只是位置的函数,不随时间变化; 2)径向速度均匀,径向也不存在浓度分布; 3)反应物料具有相同的停留时间。 3、全混流反应器的其特点 反应器内物料的浓度和温度处处相等,且等于反应器流出物料的浓度和温度。 4、停留时间 物料从进入反应器开始到离开反应器为止,在反应器中所经历的时间,它与化学反应时间直接相关,是影响反应结果的重要参数。 1.阐述冶金反应工程学的解析步骤 a、综合分析装置内发生的各种现象与子过程之间的相互作用关系;

过程控制系统习题解答教程文件

过程控制系统习题解 答

《过程控制系统》习题解答 1-1 试简述过程控制的发展概况及各个阶段的主要特点。 答:第一个阶段 50年代前后:实现了仪表化和局部自动化,其特点: 1、过程检测控制仪表采用基地式仪表和部分单元组合式仪表 2、过程控制系统结构大多数是单输入、单输出系统 3、被控参数主要是温度、压力、流量和液位四种参数 4、控制的目的是保持这些过程参数的稳定,消除或减少主要扰动对生产过程的影响 5、过程控制理论是以频率法和根轨迹法为主体的经典控制理论,主要解决单输入、单输出的定值控制系统的分析和综合问题 第二个阶段 60年代来:大量采用气动和电动单元组合仪表,其特点: 1、过程控制仪表开始将各个单元划分为更小的功能,适应比较复杂的模拟和逻辑规律相结合的控制系统 2、计算机系统开始运用于过程控制 3、过程控制系统方面为了特殊的工艺要求,相继开发和应用了各种复杂的过程控制系统(串级控制、比值控制、均匀控制、前馈控制、选择性控制) 4、在过程控制理论方面,现代控制理论的得到了应用 第三个阶段70年代以来:现代过程控制的新阶段——计算机时代,其特点: 1、对全工厂或整个工艺流程的集中控制、应用计算系统进行多参数综合控制 2、自动化技术工具方面有了新发展,以微处理器为核心的智能单元组合仪表和开发和广泛应用 3、在线成分检测与数据处理的测量变送器的应用 4、集散控制系统的广泛应用 第四个阶段 80年代以后:飞跃的发展,其特点: 1、现代控制理论的应用大大促进了过程控制的发展 2、过程控制的结构已称为具有高度自动化的集中、远动控制中心 3、过程控制的概念更大的发展,包括先进的管理系统、调度和优化等。 1-2 与其它自动控制相比,过程控制有哪些优点?为什么说过程控制的控制过程多属慢过程?

相关文档
最新文档