【施工用电】配电柜上电流表与互感器的接线图

【施工用电】配电柜上电流表与互感器的接线图
【施工用电】配电柜上电流表与互感器的接线图

电流互感器比率是200∕5,就是说如果一次流过200A的电流,二次就相应有5A的电流,它的“变流比”是200÷5=40(倍)。因此该电度表的实际用电量,以电表读数电量(当月减上月)×40即是。

配电柜上电流表与互感器的接线图

接线图如下:

1、上图是三个电流互感器的接线图;

2、下图是两个电流互感器的接线图。

根据:Ia+Ib+Ic=0

所以:Ia+Ic=-Ib

故:绿色电流表指示B相电流。

这种电路在你用的电表盖上就有。

电流互感器简单易懂的原理讲解

一、电流互感器结构原理 1 普通电流互感器结构原理 电流互感器的结构较为简单,由相互绝缘的一次绕组、二次绕组、铁心以及构架、壳体、接线端子等组成。其工作原理与变压器基本相同,一次绕组的匝数(N1)较少,直 接串联于电源线路中,一次负荷电流()通过一次绕组时,产生的交变磁通感应产生按 比例减小的二次电流();二次绕组的匝数(N 2 )较多,与仪表、继电器、变送器等电流线圈的二次负荷(Z)串联形成闭合回路,见图1。 图1 普通电流互感器结构原理图 由于一次绕组与二次绕组有相等的安培匝数,I 1N 1 =I 2 N 2 ,电流互感器额定电流比: 。电流互感器实际运行中负荷阻抗很小,二次绕组接近于短路状态,相当于一个短路运行的变压器。 2 穿心式电流互感器结构原理 穿心式电流互感器其本身结构不设一次绕组,载流(负荷电流)导线由L1至L2穿过由硅钢片擀卷制成的圆形(或其他形状)铁心起一次绕组作用。二次绕组直接均匀地缠绕在圆形铁心上,与仪表、继电器、变送器等电流线圈的二次负荷串联形成闭合回路,见图2。

图2 穿心式电流互感器结构原理图 由于穿心式电流互感器不设一次绕组,其变比根据一次绕组穿过互感器铁心中的匝数确定,穿心匝数越多,变比越小;反之,穿心匝数越少,变比越大,额定电流比:。 式中I1——穿心一匝时一次额定电流; n——穿心匝数。 3特殊型号电流互感器 3.1 多抽头电流互感器。这种型号的电流互感器,一次绕组不变, 在绕制二次绕组时,增加几个抽头,以获得多个不同变比。它具有一

个铁心和一个匝数固定的一次绕组,其二次绕组用绝缘铜线绕在套装于铁心上的绝缘筒上,将不同变比的二次绕组抽头引出,接在接线端子座上,每个抽头设置各自的接线端子,这样就形成了多个变比,见图3。 图3 多抽头电流互感器原理图 例如二次绕组增加两个抽头,K1、K2为100/5,K1、K3为75/5,K1、K4为50/5等。此种电流互感器的优点是可以根据负荷电流变比,调换二次接线端子的接线来改变变比,而不需要更换电流互感器,给使用提供了方便。 3.2 不同变比电流互感器。这种型号的电流互感器具有同一个铁心和一次绕组,而二次绕组则分为两个匝数不同、各自独立的绕组,以满足同一负荷电流情况下不同变比、不同准确度等级的需要,见图4。 图4 不同变比电流互感器原理图 例如在同一负荷情况下,为了保证电能计量准确,要求变比较小一些(以满足负荷电流在一次额定值的2/3左右),准确度等级高一些

常用的电流互感器二次接线

电力变压器差动保护误动的原因及处理方法 变压器的差动保护,主要用来保护变压器内部以及引出线和绝缘套管的相间短路,并且也可用来保护变压器的匝间短路,保护区在变压器两侧所装电流互感器之间。 但是,在现场多次出现在变压器差动保护范围以外发生短路时,差动保护误动作,导致事故范围扩大,影响正常供电。 变压器差动保护误动作的原因及处理方法如下: 一、差动保护电流互感器二次接线错误 (一)常用的电流互感器二次接线 图1-101 常用的电流互感器二次接线 图1-101是工程上常用的一种接线方式。图中I A、I B、I c及I a、I b、I c分别为变压器高压测及低压侧电流互感器三次绕组三相电流。 对图l-101进行相量分析如下: 现假定变压器高、低压侧电流均从其两侧电流互感器的极性端子兀流入,T1流入。T2流出。 在正常运行情况下,先画出I A、I B、I c相量如图1-102(a)所示.根据图1-101可得: I A1=I A-I B;I`B=I B-I C;I`C=I C-I A.再作出I`A、I`B、I`C相量,如图l-102(b)所示。由图1-102(a)和图1-102(b)可以看出I`A、I`B、I`C分别当变压器组别为YN,dll时,变压器低压侧电流相图1-101常用的电流互感器二次接线位将超前高压侧电流相位30°,可作出c相量如图l-102(C)所示。 由图1-101可知,I a= I a`、I b= I b`、I c= I C `,故图 l-102(C)同样也适用于 I a`、I b`和I C `。 在上面的分析中,是假定一次电流均从变压器两侧电流互感器的T1流人、T2流出。如果变压器高压侧电流互感器的一次电流是从T1流入、T2流出,而低压侧电流互感器一次电流从T2流入、T1流出。那么图1-101中的I a(I a`)、I b(I`b)、I c(I `c)将与图l-

电流互感器接线图

电流互感器接线图 我们从使用功能上将电流互感器分为测量用电流互感器和保护用电流互感器两类,各种电流互感器的原理类似,本文总结各种电流互感器接线图,供参考使用。 一测量用电流互感器接线方法 测量用电流互感器的作用是指在正常电压范围内,向测量、计量装置提供电网电流信息。 1普通电流互感器接线图 电流互感器的一次侧电流是从P1端子进入,从P2端子出来;即P1端子连接电源侧,P2端子连接负载侧。 电流互感器的二次侧电流从S1流出,进入电流表的正接线柱,电流表负接线柱出来后流入电流互感器二次端子S2,原则上要求S2端子接地。

注:某些电流互感器一次标称,L1、L2,二次侧标称K1、K2。 2穿心式电流互感器接线图 穿心式电流互感器接线与普通电流互感器类似,一次侧从互感器的P1面穿过,P2面出来,二次侧接线与普通互感器相同。 二电流互感器接线图 电流互感器接线总体分为四个接线方式: 1.单台电流互感器接线图 只能反映单相电流的情况,适用于需要测量一相电流的情况。 单台电流互感器接线图 2.三相完全星形接线和三角形接线形式电流互感器接线图 三相电流互感器能够及时准确了解三相负荷的变化情况。(三相完全星形电流互感器接线图)

3.两相不完全星形接线形式电流互感器接线图 在实际工作中用得最多,但仅限于三相三线制系统。它节省了一台电流互感器,根据三相矢量和为零的原理,用A、C相的电流算出B相电流。 两相不完全星形接线形式电流互感器接线图 4.两相差电流接线形式电流互感器接线图 也仅用于三相三线制电路中,这种接线的优点是不但节省一块电流互感器,而且也可以用一块继电器反映三相电路中的各种相间短路故障,亦即用最少的继电器完成三相过电流保护,节省投资。 两相差电流接线形式电流互感器接线图 5.其它接线方式 5.1 原边串联、副边串联 电流互感器原边串联、副边串联接线图如下所示,串联后效果:互感器变比不变,二次额定负荷增大一倍。 电流互感器原边串联、副边串联接线图

电流互感器接线原理及使用注意事项

龙源期刊网 https://www.360docs.net/doc/b43201323.html, 电流互感器接线原理及使用注意事项 作者:王平东 来源:《商品与质量·学术观察》2013年第09期 摘要:本文对电流互感器的结构原理、接线原则及使用注意事项进行了详细分析,为实际工作提供了可靠的参考依据。 关键词:电流互感器结构原理接线原则注意事项 为了保证电力系统安全经济运行,必须对电力设备的运行情况进行监视和测量,但一般的测量和保护装置不能直接接入一次高压设备,需要将一次系统的大电流按比例变换成小电流,供给测量仪表和保护装置使用。 在测量交变电流的大电流时,为便于二次仪表测量,需要转换为比较统一的电流(我国规定电流互感器的二次额定为5A或1A),另外线路上的电压都比较高,如直接测量是非常危 险的,电流互感器就起到变流和电气隔离作用,它是电力系统中测量仪表、继电保护等二次设备获取电气一次回路电流信息的传感器。电流互感器将高电流按比例转换成低电流,电流互感器一次侧接在一次系统,二次侧接测量仪表、继电保护等。 电气调试是电力工作中一项重要的内容,在电气调试工作中,二次回路检查又是一项重要的调试内容,它是关系到电力系统的测量、保护、通讯等功能能否发挥作用的前提。在二次回路中,电流互感器的接线是否正确又是电流二次回路是否正确的基础,所以电流互感器的接线正确性非常重要。很多电气调试人员对它没有深刻的理解,经常搞错,造成诸如差动保护误动作、电度表反转等。下面对这个问题做一个全面、细致的论述。 1、电流互感器结构原理 电流互感器的结构较为简单,由相互绝缘的一次绕组、二次绕组、铁心以及构架、壳体、接线端子等组成。其工作原理与变压器基本相同,一次绕组的匝数(N1)较少,直接串联于 电源线路中,一次负荷电流(L1)通过一次绕组时,产生的交变磁通感应产生按比例减小的二次电流(L2);二次绕组的匝数(N2)较多,与仪表、继电器、变送器等电流线圈的二次负荷(Z)串联形成闭合回路,见图1。 图1 电流互感器结构原理图 由于一次绕组与二次绕组有相等的安培匝数,I1N1=I2N2,电流互感器额定电流比。电流互感器实际运行中负荷阻抗很小,二次绕组接近于短路状态,相当于一个短路运行的变压器。 2、电流互感器的接线原则

有功电度表电流互感器接线原理图

三相有功电度表经电流互感器的接线图有三相三线式(三相两元件)和三相四线式(三相三元件)两种。 按图接线(实做) 选件及接线要求 1.电度表的额定电压应与电源电压一致,额定电流应是5A的。 2.要按正相序接线。 3.电流互感器要和LQG型的,精度应不低于 0.5级。电流互感器的极性要用对。三相四线式(三相三元件)电度表经电流互感器接线原理图 三相三线式(三相两元件)电度表经电流互感器接线原理图 4.二次线应使用绝缘铜导线,中间不得有接头。其截面: 电压回路应不小于 1.5mm2;电流回路应不小于 2.5mm2。 5.二次线应排列整齐,两端穿带有回路标记和编号的“标志头”。 6.当计量电流超过250A时,其二次回路应经专用端子接线,各相导线在专用端子上的排列顺序: 自上至下,或自xx为U、V、W、N。 7.三相四线有功电度表(DT型),可对三相四线对称或不对称负载作有功电量的例某三相四线负荷电流为361A,经电流互感器接线的三相有功电度表作有功是量计量。 可选DT86型3×6A的有功电度表。用LQZ—

0.5的电流互感器。 接线检查 1低压三相电能表的接线检查 1.1直接接入或经低压电流互感器接入三相二元件电能表的接线检查。 1.1.1断开A相电压进表线,观察铝盘之转向;恢复A相电压,断开C相电压进表线,观察铝盘之转向,若接线正确则有: cosφ> 0.5时,电能表铝盘皆正转,且断开A相电压时的转速慢于断开C相电压时的转速。 cosφ= 0.5时,断开UA铝盘正转,断开UC停转。 cosφ< 0.5时,断开UA铝盘正转,断开UC反转。 1.1.2断开B相电压进表线,观察铝盘之转向,若接线正确,断开UB后的转速应为断开前转速的。 1.1.3恢复B相电压,将 A、C电压进表线调换,若接线正确,调换后铝盘应停转或稍有蠕动。 1.2直接接入或经低压电流互感器接入三相二元件电能表的接线检查。 1.2.1将任一相电流进表线短路或从电流互感器二次侧短路,正常情况电能表铝盘转速应为短路前的。 1.2.2恢复电流进线,再将另外任意一相电压断开,正常情况下铝盘转速应为断开前的。 2.1检查电流回路

三相电能表及互感器安装施工方案知识交流

三相电能表及互感器安装施工方案

目录 一、安装前准备 (3) 1、准备工作安排 (3) 2、人员要求 (3) 3、主要仪器仪表和工具 (3) 二、现场作业注意事项 (4) 1、危险点分析 (4) 2、安全措施 (4) 3、事故预想及异常情况处理 (5) 4、文明施工细则 (5) 三、现场安装工序及时间预算 (6) 1、直接接入式低压三相电能表安装 (6) 2、低压带电流互感器三相电能表安装 (6) 3、现场带电装(换)直接接入式三相电能表 (7) 4、现场带电装(换)低压带电流互感器的三相电能表 (8) 5、电表安装竣工检查 (8) 6、三相表安装时间预算 (9)

一、安装前准备 1、准备工作安排 1.1根据工程量清单,确定工作内容。使全体施工人员熟悉工作内容、进度 要求、作业标准、安全注意事项。由工作负责人监督检查。 1.2了解现场作业环境条件,分析可能遇到的问题,提出有效的预防措施。 1.3携带的工具和材料能够满足安装作业的需求。 2、人员要求 2.1现场作业人员应身体健康、精神状态良好 2.2现场工作负责人必须具备相关工作经验,且熟悉电气设备安全知识。 2.3工作班成员不得少于 2 人。 2.4工作人员必须具备必要的电气专业(或电工基础)知识,掌握本专业作 业技能,必须持有电工证等证件。 2.5工作班人员必须熟悉熟悉现场安全作业要求,并经安规考试合格。 3、主要仪器仪表和工具 序号名称单位备注 1 绝缘手套双 2 绝缘鞋双 3 低压验电笔只 4 接地线组 5 低压短路环组短接二次电流回路专用 6 低压短接线组 7 钳形电流表只 8 平口螺丝刀把(螺丝刀金属裸露部分用绝缘胶带 缠绕、螺丝刀口带磁)

电流互感器接线图

电流互感器接线图公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

电流互感器接线图 我们从使用功能上将电流互感器分为测量用电流互感器和保护用电流互感器两类,各种电流互感器的原理类似,本文总结各种电流互感器接线图,供参考使用。 测量用电流互感器接线方法 测量用电流互感器的作用是指在正常电压范围内,向测量、计量装置提供电网电流信息。 1普通电流互感器接线图 电流互感器的一次侧电流是从P1端子进入,从P2端子出来;即P1端子连接电源侧,P2端子连接负载侧。

电流互感器的二次侧电流从S1流出,进入电流表的正接线柱,电流表负接线柱出来后流入电流互感器二次端子S2,原则上要求S2端子接地。 注:某些电流互感器一次标称,L1、L2,二次侧标称K1、K2。 2穿心式电流互感器接线图 穿心式电流互感器接线与普通电流互感器类似,一次侧从互感器的P1面穿过,P2面出来,二次侧接线与普通互感器相同。 二电流互感器接线图 电流互感器接线总体分为四个接线方式: 1.单台电流互感器接线图 只能反映单相电流的情况,适用于需要测量一相电流的情况。 单台电流互感器接线图 2.三相完全星形接线和三角形接线形式电流互感器接线图 三相电流互感器能够及时准确了解三相负荷的变化情况。(三相完全星形电流互感器接线图)

3.两相不完全星形接线形式电流互感器接线图 在实际工作中用得最多,但仅限于三相三线制系统。它节省了一台电流互感器,根据三相矢量和为零的原理,用A、C相的电流算出B相电流。 两相不完全星形接线形式电流互感器接线图 4.两相差电流接线形式电流互感器接线图 也仅用于三相三线制电路中,这种接线的优点是不但节省一块电流互感器,而且也可以用一块继电器反映三相电路中的各种相间短路故障,亦即用最少的继电器完成三相过电流保护,节省投资。 两相差电流接线形式电流互感器接线图 5.其它接线方式

电流互感器接线方式

电流互感器接线方式 电流互感器在交流回路中使用,在交流回路中电流的方向随时间在改变。电流互感器的极性指的是某一时刻一次侧极性与二次侧某一端极性相同,即同时为正、或同时为负,称此极性为同极性端或同名端,用符号"*"、"-" 或"."表示。(也可理解为一次电流与二次电流的方向关系)。按照规定,电流互感器一次线圈首端标为L1,尾端标为L2;二次线圈的首端标为K1,尾端标为K2。在接线中L1 和K1 称为同极性端,L2 和K2 也为同极性端。其三种标注方法如图1 所示。电流互感器同极性端的判别与耦合线圈的极性判别相同。较简单的方法例如用 1.5V 干电池接一次线圈,用一高内阻、大量程的直流电压表接二次线圈。当开关闭合时,如果发现电压表指针正向偏转,可判定 1 和 2 是同极性端,当开关闭合时,如果发现电压表指针反向偏转,可判定1 和2 不是同极性端。 3 电流互感器的极性与常用电流保护以及易出错的二次接线 3.1 一相接线

图 1 电流互感器的三种极性标注 图 2 一相接线 一相式电流保护的电流互感器主要用于测量对称三相负载或相负荷平衡度小的三相装置中的一相电流。电流互感器的接线与极性的关系不大,但需注意的是二次侧要有保护接地,防止一次侧发生过电流现象时,电流互感器被击穿,烧坏二次侧仪表、继电设备。但是严禁多点接地。两点接地二次电流在继电器前形成分路,会造成继电器无动作。因此在《继电保护技术规程》中规定对于有几组电流互感器连接在一起的保护装置,则应在保护屏上经端子排接地。如变压器的差动保护,并且几组电流互感器组合后只有一个独立的接地点。 3.2 两相式不完全星形接线 两相式不完全星形接线用于相负荷平衡和不平衡的三相系统中。如图 3 所示。若有一相二次极性那么流过3KA 的电流为I A I

电流互感器的作用及接线方法 图文 民熔

电流互感器的作用及接线方法 从通过大电流的电线上,按照一定的比例感应出小电流供测量使用,也可以为继电保护和自动装置提供电源。 比如说现在有一条非常粗的电缆,它的电流非常大。如果想要测它的电流,就需要把电缆断开,并且把电流表串联在这个电路中。 由于它非常粗,电流非常大,需要规格很大的电流表。但是实际上是没有那么大的电流表,因为电流仪表的规格在5A 以下。那怎么办呢?这时候就需要借助电流互感器了。 先选择合适的电流互感器,然后把电缆穿过电流互感器。这时电流互感器就会从电缆上感应出电流,感应出来的电流大小刚好缩小了一定的倍数。把感应出

来的电流送给仪表测量,再把测量出来的结果乘以一定的倍数就可以得到真实结果。 我们从使用功能上将电流互感器分为测量用电流互感器和保护用电流互感器两类,各种电流互感器的原理类似,本文总结各种电流互感器接线图,供参考使用。 测量用电流互感器的作用是指在正常电压范围内,向测量、计量装置提供电网电流信息。

电流互感器的一次侧电流是从P1端子进入,从P2端子出来;即P1端子连接电源侧,P2端子连接负载侧。 电流互感器的二次侧电流从S1流出,进入电流表的正接线柱,电流表负接线柱出来后流入电流互感器二次端子S2,原则上要求S2端子接地。 注:某些电流互感器一次标称,L1、L2,二次则标称K1、K2。 穿心式电流互感器接线与普通电流互感器类似,一次侧从互感器的P1面穿过,P2面出来,二次侧接线与普通互感器相同。

电流互感器接线总体分为四个接线方式: 1.单台电流互感器接线图 只能反映单相电流的情况,适用于需要测量一相电流的情况。 单台电流互感器接线图 2.三相完全星形接线和三角形接线形式电流互感器接线图 三相电流互感器能够及时准确了解三相负荷的变化情况。

电流互感器的几种接线方法

电流互感器的接线方法及形式 1、是单台电流互感器的接线形式。 只能反映单相电流的情况,适用于需要测量一相电流或三相负荷平衡,测量一相就可知道三相的情况,大部分接用电流表。 2、三相完全星形接线和三角形接线形式。 三相电流互感器能够及时准确了解三相负荷的变化情况,多用在变压器差动保护接线中。只使用三相完全星形接线的可在中性点直接接地系统中用于电能表的电流采集。三相三继电器接线方式不仅能反应各种类型的相间短路,也能反应单相接地短路,所 以这种接线方式用于中性点直接接地系统中作为相间短路保护和单相接地短路的保护。 3、两相不完全星形接线形式。 在实际工作中用得最多。它节省了一台电流互感器,用A、C相的合成电流形成反 相的B相电流。二相双继电器接线方式能反应相间短路,但不能完全反应单相接地短路,所以不能作单相接地保护。这种接线方式用于中性点不接地系统或经消弧线圈接 地系统作相间短路保护。 4、两相差电流接线形式。 也仅用于三相三线制电路中,中性点不接地,也无中性线,这种接线的优点 是不但节省一块电流互感器,而且也可以用一块继电器反映三相电路中的各种 相间短路故障,亦即用最少的继电器完成三相过电流保护,节省投资。但故障 形式不同时,其灵敏度不同。这种接线方式常用于 10kV 及以下的配电网作相 间短路保护。由于此种保护灵敏度低,现代已经很少用了。

有人问我,爱情是什么?我不知道,也无从回答,我只知道,为了遇到那个人,我等待了很多年,甚至快要忘了自己到底寻找的是什么? 是心灵的寄托还是真实的感受,我不知道,也不在乎,我执着于这份寻觅,我也不怕世事沧桑,更不怕容颜老去,哪怕还有一丝微弱的光,我都会朝着光芒勇敢的追逐。 爱情的世界里,究竟是什么样子?我曾经问了自己无数遍,我想象着,却给不出任何答案。我只知道:我要遇见你,我渴望见到你 ,我要把全部的爱给予你!我为什么如此渴望爱情?因为我相信我们的爱情早已命中注定。 都说,住在爱情世界里的人会变傻,她的欢喜和忧愁都会牵动着你的心,她哭了,你会心疼不已;她高兴,你会开心一整天。 你会无时无刻的关注她的喜怒哀乐,第一时间回复她的消息,只要有时间,你的脑海里都是她的影子,为了让她开心快乐,做什么都是值得的。从此,你的世界里最重要的人就变成了她。 有时候,你们也会吵架,可你从来不生气,因为你爱她,换作别人你会置之不理,而她的一句玩笑话你都会深思半天,到底是自己哪里做的不够好。 因为你怕她生气,怕她伤身,怕她不够幸福,你只想把全世界的爱都给她,这样的吵架让你更心疼、更深爱她。 而他也和你一样,小心翼翼的呵护你们的爱情,都愿意为对方付出,都愿意对方是那个被爱多一点的人。 爱情的世界里,没有对与错,只有爱与被爱,两个人都想多爱对方一点点 ,都想做那个爱的最深的人 ,她会把你放在心底,让你聆听她想你时的心跳,让你感受连呼吸的空气都有你的味道。

三相四线电表接线与互感器接线方法 (图文),民熔

电表的接线形式有很多种,包括单相电表接线和三相电表接线;有直接接线,也有电流互感器和电压互感器接线。其中,三相表主要测量三根380V电压带电导线的“功耗之和”。三相表包括三相三线表和三相四线表。接下来,让我们知道如何连接三相四线安培计接线和三相四线安培计变压器。 三相四线安培计接线图 有多种接线形式,但一般来说,只有两种电路:电压电路和电流电路。电表接线的一般原则是:电流线圈与负载串联,或与电流互感器二次侧连接,电压线圈与负载并联或与电压互感器二次侧连接。

三相四线有功电表由三个驱动部件组成,称三元件电表,和单相及三相三线电表外观上最大的不同是其共有11个这么多接线端,此电表常用在动力和照明混合的供电电路。接线图如下: 上图(左)为三相四线有功电表直接接入,火线U、V、W分别接在1、4、7端,3、6、9端接负载,零线接10号端,11号端接负载另一端。 上图(右)为三相四线制有源安培计通过电流互感器连接,带电导线u、V、W分别与电流互感器一次侧第一端L1连接,一次侧L2端与负载连接,端子1,电度表的4、7分别与电流互感器二次侧的第一端K1相连,3、6、9号端子分别与二次侧的K2端相连,电流互感器的2、5、8号端子分别与电流互感器的第一端L1相连,拆下它们的连接件。为保证安全,电流互感

器二次侧K2单独接地。右边的图是电路图的模拟演示。请注意电流互感器和电流表之间的接线。 三相四线是什么 一。三相输电接线方式 三相四线制是指a、B、C和N,其中N线是中性线,也称为零线。N线设计为从380v相电压中获得220v 相电压。在某些情况下,它还可以用于零序电流检测,从而监测三相电源的平衡。a线为黄色,B线为蓝色,C线为红色,N线为棕色,PE线为黄绿色。 2。单相三线,三相四线和三相五线有什么区别?单相双线----------1根火线1根零线

电流互感器结构及原理

电流互感器结构及原理 Revised as of 23 November 2020

一、电流互感器结构原理 1普通电流互感器结构原理 电流互感器的结构较为简单,由相互绝缘的一次绕组、二次绕组、铁心以及 构架、壳体、接线端子等组成。其工作原理与变压器基本相同,一次绕组的匝 数(N1)较少,直接串联于电源线路中,一次负荷电流()通过一次绕组时,产 生的交变磁通感应产生按比例减小的二次电流();二次绕组的匝数(N2)较 多,与仪表、继电器、变送器等电流线圈的二次负荷(Z)串联形成闭合回路,见 图1。 图1普通电流互感器结构原理图 由于一次绕组与二次绕组有相等的安培匝数,I1N1=I2N2,电流互感器额定电 流比:。电流互感器实际运行中负荷阻抗很小,二次绕组接近于短路状 态,相当于一个短路运行的变压器。 2穿心式电流互感器结构原理 穿心式电流互感器其本身结构不设一次绕组,载流(负荷电流)导线由L1至 L2穿过由硅钢片擀卷制成的圆形(或其他形状)铁心起一次绕组作用。二次绕组 直接均匀地缠绕在圆形铁心上,与仪表、继电器、变送器等电流线圈的二次负 荷串联形成闭合回路,见图2。 图2穿心式电流互感器结构原理图 由于穿心式电流互感器不设一次绕组,其变比根据一次绕组穿过互感器铁 心中的匝数确定,穿心匝数越多,变比越小;反之,穿心匝数越少,变比越 大,额定电流比:。 式中I1——穿心一?匝时一次额定电流;n——穿心匝数。 3特殊型号电流互感器 多抽头电流互感器。这种型号的电流互感器,一次绕组不变,在绕制二次绕组时,增加几个抽头,以获得多个不同变比。它具有一个铁心和一个匝数固定的一次绕组,其二

电能表正确接线

电能表正确接线与错误接线 221.试绘出单相、三相电能表的正确接线和注意事项。 答:(1)绘出单相电能表的正确接线,如图7—1所示。 负荷 单相电能表接线应注意事项如下: 1)用验电笔确认相线和零线; 2)相线接单相电能表第一个接线孔,如图7—1所示; 3)零线接单相电能表第三个接线孔,如图7—1所示; 4)负荷线接第二和第四个出线孔,如图7—1所示。 (2)绘出三相三线有功电能表的正确接线图,如图7—2所示。 222.试画出三相四线有功电能表正确接线图和注意事项。 答:三相四线有功电能表的接线图,如图7—3所示。 三相四线有功电能表接线应注意事项如下: 豪? W T接零线上 负荷 图7—3

(1)三相四线有功电能表的零线T接到电源的零线上; (2)电源的零线不能剪断直接接入用户的负荷开关,以防止断零线和烧坏用户的设备; (3)注意电压的连接片要上紧以防止松脱,造成断压故障。 223.试画出单相电能表相线和零线接反的错误接线图,有何缺点? 答:单相电能表相线和零线接反的错误接线图,如图7—4 所示。 电零线源相线 这种错误接线的缺点有如下几点: (1)其错误是将相线和零线接错,造成相线没有通过电能表的电流线圈,方便了用电户偷电。 (2)相线接在零线的接线孔,容易误碰造成触电人身事故。 (3)这种接错线容易使电能表计量不准。 224.试画出三相三线有功电能表第一相电流极性接反的错误接线图,并求更正系数。 答:三相三线有功电能表接错线是电能表第一相电流的极性反接,其接线如图7—5所示。 图7—5 三相三线有功电能表的第一相电流极性接反造成电能表慢转,产生负误差。其负误差计算公式如下 即三相三线有功电能表正转,但是产生负误差。当cos∮=0.866时.电能表变慢66.6%。 225.试绘出单相电能表的相线进出线接反的错误接线图,有何问题? 答:单相电能表的相线进出线接反的错误接线图,如图7—6所示。

电流互感器接线方法 图文 民熔

我们从使用功能上将电流互感器分为测量用电流互感器和保护用电流互感器两类,各种电流互感器的原理类似,本文总结各种电流互感器接线图,供参考使用。 一、测量用电流互感器接线方法 测量用电流互感器的作用是指在正常电压范围内,向测量、计量装置提供电网电流信息。 民熔电流互感器 型号:LZZBJ9-10A 10kv高压电流互感器 变比:200/5 0.5级0.2S

1.普通电流互感器接线图 电流互感器的一次侧电流是从P1端子进入,从P2端子出来;即P1端子连接电源侧,P2端子连接负载侧。 电流互感器的二次侧电流从S1流出,进入电流表的正接线柱,电流表负接线柱出来后流入电流互感器二次端子S2,原则上要求S2端子接地。 注:某些电流互感器一次标称,L1、L2,二次则标称K1、K2。 2.穿心式电流互感器接线图

穿心式电流互感器接线与普通电流互感器类似,一次侧从互感器的P1面穿过,P2面出来,二次侧接线与普通互感器相同。 二、电流互感器接线图 电流互感器接线总体分为四个接线方式: 1.单台电流互感器接线图 只能反映单相电流的情况,适用于需要测量一相电流的情况。

单台电流互感器接线图 2.三相完全星形接线和三角形接线形式电流互感器接线图 三相电流互感器能够及时准确了解三相负荷的变化情况。 三相完全星形电流互感器接线图

三相完全角形电流互感器接线图 3.两相不完全星形接线形式电流互感器接线图 在实际工作中用得最多,但仅限于三相三线制系统。它节省了一台电流互感器,根据三相矢量和为零的原理,用A、C相的电流算出B相电流。 两相不完全星形接线形式电流互感器接线图 4.两相差电流接线形式电流互感器接线图

电流互感器接线图

电流互感器接线图 cty-100电流互感器的作用是可以把数值较大的一次电流通过一定的变比转换为数值较小的二次电流,cty-100 电流互感器用来进行保护、测量等用途。如变比为400/5的电流互感器,可以把实际为400a的电流转变为5a的电流。互感器研究报告显示:电流互感器安在开关柜内,是为了要接电流表之类的仪表和继电保护用。电流互感器接线图如下: CTY-100电流互感器接线图 每个仪表不可能接在实际值很大的导线或母线上,所以要通过cty-100 电流互感器将其转换为数值较小的二次值,在通过变比来反映一次的实际值。cty-130电流互感器工作原理、等值电路与一般变压器相同,只是其原边绕组串联在被测电路中,且匝数很少;副边绕组接电流表、继电器电流线圈等低阻抗负载,近似短路。原边电流(即被测电流)和副边电流取决于被测线路的负载,与电流互感器副边负载无关。 cty-130电流互感器运行时,副边不允许开路。因为在这种情况下,原边电流均成为励磁电流,将导致磁通和副边电压大大超过正常值而危及人身及设备安全。因此,cty-130电流互感器副边回路中不允许接熔断器,也不允许在运行时未经旁路就拆卸电流表及继电器等设备。 cty-130电流互感器的特点是: (1)一次线圈串联在电路中,并且匝数很少,因此,一次线圈中的电流完全取决于被测电路的负荷电流.而与二次电流无关;(2)电流互感器二次线圈所接仪表和继电器的电流线圈阻抗都很小,所以正常情况下,电流互感器在近于短路状态下运行。 电流互感器一、二次额定电流之比,称为电流互感器的额定互感比:kn=i1n/i2n 因为一次线圈额定电流i1n己标准化,二次线圈额定电流i2n统一为5(1或0.5)安,所以电流互感器额定互感比亦已标准化。kn还可以近似地表

电流互感器结构原理-串并联

电流互感器结构原理 1普通电流互感器结构原理 电流互感器的结构较为简单,由相互绝缘的一次绕组、二次绕组、铁心以及构架、壳体、接线端子等组成。其工作原理与变压器基本相同,一次绕组的匝数(N1)较少,直接串联于电 源线路中,一次负荷电流()通过一次绕组时,产生的交变磁通感应产生按比例减小的二次 电流();二次绕组的匝数(N2)较多,与仪表、继电器、变送器等电流线圈的二次负荷(Z) 串联形成闭合回路,见图5-1。 图5-1普通电流互感器结构原理图 由于一次绕组与二次绕组有相等的安培匝数,I1N1=I2N2,电流互感器额定电流比: 。电流互感器实际运行中负荷阻抗很小,二次绕组接近于短路状态,相当于一个短路运行的变压器。 2穿心式电流互感器结构原理 穿心式电流互感器其本身结构不设一次绕组,载流(负荷电流)导线由L1至L2穿过由硅钢片擀卷制成的圆形(或其他形状)铁心起一次绕组作用。二次绕组直接均匀地缠绕在圆形铁心上,与仪表、继电器、变送器等电流线圈的二次负荷串联形成闭合回路,见图5-2。

图5-2穿心式电流互感器结构原理图 由于穿心式电流互感器不设一次绕组,其变比根据一次绕组穿过互感器铁心中的匝数确 定,穿心匝数越多,变比越小;反之,穿心匝数越少,变比越大,额定电流比:。 式中I1——穿心一匝时一次额定电流; n——穿心匝数。 3特殊型号电流互感器 3.1多抽头电流互感器。这种型号的电流互感器,一次绕组不变,在绕制二次绕组时,增加几个抽头,以获得多个不同变比。它具有一个铁心和一个匝数固定的一次绕组,其二次绕组用绝缘铜线绕在套装于铁心上的绝缘筒上,将不同变比的二次绕组抽头引出,接在接线端子座上,每个抽头设置各自的接线端子,这样就形成了多个变比,见图5-3。 图5-3多抽头电流互感器原理图 例如二次绕组增加两个抽头,K1、K2为100/5,K1、K3为75/5,K1、K4为50/5等。此种电流互感器的优点是可以根据负荷电流变比,调换二次接线端子的接线来改变变比,而不需要更换电流互感器,给使用提供了方便。 3.2不同变比电流互感器。这种型号的电流互感器具有同一个铁心和一次绕组,而二次绕组则分为两个匝数不同、各自独立的绕组,以满足同一负荷电流情况下不同变比、不同准确度等级的需要,见图5-4。

三相电能表及互感器安装施工方案

三相电能表及互感器安装施工方案 目录 一、安装前准备 3 1、准备工作安排 3 2、人员要求 3 3、主要仪器仪表和工具 3 二、现场作业注意事项 4 1、危险点分析 4 2、安全措施 5 3、事故预想及异常情况处理 6 4、文明施工细则 6 三、现场安装工序及时间预算 6 1、直接接入式低压三相电能表安装 6 2、低压带电流互感器三相电能表安装 7 3、现场带电装(换)直接接入式三相电能表 8 4、现场带电装(换)低压带电流互感器的三相电能表 8

5、电表安装竣工检查 9 6、三相表安装时间预算 9 1、安装前准备 1、准备工作安排 1.1根据工程量清单,确定工作内容。使全体施工人员熟悉工作内容、进度要求、作业标准、安全注意事项。由工作负责人监督检查。 1.2了解现场作业环境条件,分析可能遇到的问题,提出有效的预防措施。 1.3携带的工具和材料能够满足安装作业的需求。 2、人员要求 2.1现场作业人员应身体健康、精神状态良好 2.2现场工作负责人必须具备相关工作经验,且熟悉电气设备安全知识。 2.3工作班成员不得少于 2 人。 2.4工作人员必须具备必要的电气专业(或电工基础)知识,掌握本专业作业技能,必须持有电工证等证件。 2.5工作班人员必须熟悉熟悉现场安全作业要求,并经安规考试合格。 3、主要仪器仪表和工具

二、现场作业注意事项 1、危险点分析

2、安全措施 2.1进入工作现场,工作人员必须戴安全帽,穿工作服,正确使用劳动保护用品。 2.2现场作业必须执行派工单制度,工作监护制度、工作间断、转移和终结制度 2.3开工前,工作负责人应对工作人员详细交代在工作区内的安全注意事项,进行危险点分析。 2.4工作现场应装设遮拦或围拦或标示牌或设置临时工作区等,操作必须有专人监护。 2.5检查实际接线与现场、要求是否一致,实际安装位是否与派工内容一致,如发现不一致,应及时进行报告、更正,确认无误后方可进行安装作业。 2.6在进行停电安装作业前,必须用试电笔验电,应确定表前(或低压电流互感器)、表后线(或低压电流互感器)是否带电,或者是否有明显的断开点,在确认无电、无误情况下方可进行安装工作。 2.7使用绝缘工具,做好安全防范措施。

民熔电流互感器结构及原理 图文

民熔电流互感器结构及原理(图文) 互感器结构原理1普通电流互感器的设计原理比较简单,由初始绕组、二次绕组、铁芯、框架、镀层、接线端子等组成继续。工作原理基本相同,就像变形金刚一样。一次绕组的转数(N1)较小,直接与电源线相连。当一次电流()通过一次湿度时,可变流量感应的结果是二次电流(H)成比例地减小;二次湿度的转数(N2)更接近于变压器。其他动力电池的货物,如仪器、发射器和发射器,如图1所示,串联起来形成一个闭合回路 例如二次绕组增加两个抽头,K1、K2为100/5,K1、K3为75/5,K3、K4为50/5等。此种电流互感器的优点是可以根据负荷电流变比,调换二次接线端子的接线来改变变比,而不需要更换电流互感器,给使用提供了方便。 2穿心式电流互感器结构原理穿心式电流互感器其本身结构不设一次绕组,载流(负荷电流)导线由L1至L2穿过由硅钢片擀卷制成的圆形(或其他形状)铁心起一次绕组作用。二次绕组直接均匀地缠绕在圆形铁心上,与仪表、继电器、变送器等电流线圈的二次负荷串联形成闭合回路,见图2。由于一次绕组与二次绕组有相等的安培匝数,IN=IN2,电流互感器额定电LM 流比:万一。电流互感器实际运行中负荷阻抗很小,二次绕组接近于短路状态,相当于一个短路运行的变压器。 由于一次绕组与二次绕组有相等的安培匝数,IN=IN2,电流互感器额定电LM 流比:万一。电流互感器实际运行中负荷阻抗很小,二次绕组接近于短路状态,相当于一个短路运行的变压器。

由于穿心式电流互感器不设一次绕组,其变比根据一次绕组穿过互感器铁心中的匝数确定,穿心匝数越多,变比越小;反之,穿心匝数越少,变比越大,额五定电流比:n。 式中I1—一穿心一匝时一次额定电流;n——穿心匝数。 3特殊型号电流互感器3.1多抽头电流互感器。这种型号的电流互感器,一次绕组不变,在绕制二次绕组时,增加几个抽头,以获得多个不同变比。它具有一个铁心和一个匝数固定的一次绕组,其二次绕组用绝缘铜线绕在套装于铁心上的绝缘筒上,将不同变比的二次绕组抽头引出,接在接线端子座上,每个抽头设置各自的接线端子,这样就形成了多个变比,见图3。 例如在同一负荷情况下,为了保证电能计量准确,要求变比较小一些(以满足负荷电流在一次额定值的2/3左右),准确度等级高一些(如1K1、1K2为200/5、0.2级);而用电设备的继电保护,考虑到故障电流的保护系数较大,则要求变比较大一些,准确度等级可以稍低一点(如2K1、2K2为300/5、1级)。 3.3.一次绕组和多绕组二次绕组可调流变压器。对于这种类型的电力变压器,它的变压器比测量范围多,而且可以更换。常用于高压变压器看到了。那个一次开发分为两部分,

有功电度表电流互感器接线原理图

电度表经电流互感器接线原理图 三相有功电度表经电流互感器的接线图有三相三线式(三相两元件)和三相四线式(三相三元件)两种。 按图接线(实做) 选件及接线要求 1.电度表的额定电压应与电源电压一致,额定电流应是5A的。 2.要按正相序接线。 3.电流互感器要和LQG型的,精度应不低于0.5级。电流互感器的极性要用对。

三相四线式(三相三元件)电度表经电流互感器接线原理图 三相三线式(三相两元件)电度表经电流互感器接线原理图 4.二次线应使用绝缘铜导线,中间不得有接头。其截面:电压回路应不小于1.5mm 2;电流回路应不小于 2.5mm2。 5.二次线应排列整齐,两端穿带有回路标记和编号的“标志头”。 6.当计量电流超过250A时,其二次回路应经专用端子接线,各相导线在专用端子上的排列顺序:自上至下,或自左至右为U、V 、W、N。 7.三相四线有功电度表(DT型),可对三相四线对称或不对称负载作有功电量的计量;而三相三线有功电度表(DS型),仅可对三相三线对称或不对称负载作有

功电量的计量。 例某三相四线负荷电流为361A,经电流互感器接线的三相有功电度表作有功是量计量。 可选DT86型380/220 3×6A的有功电度表。用LQZ—0.5400/5的电流互感器。 接线检查 1低压三相电能表的接线检查 1.1直接接入或经低压电流互感器接入三相二元件电能表的接线检查。 1.1.1断开A相电压进表线,观察铝盘之转向;恢复A相电压,断开C相电压进表线,观察铝盘之转向,若接线正确则有: cosφ>0.5时,电能表铝盘皆正转,且断开A相电压时的转速慢于断开C相电压时的转速。 cosφ=0.5时,断开UA铝盘正转,断开UC停转。 cosφ<0.5时,断开UA铝盘正转,断开UC反转。 1.1.2断开B相电压进表线,观察铝盘之转向,若接线正确,断开UB后的转速应为断开前转速的1/2。 1.1.3恢复B相电压,将A、C电压进表线调换,若接线正确,调换后铝盘应停转或稍有蠕动。 1.2直接接入或经低压电流互感器接入三相二元件电能表的接线检查。 1.2.1将任一相电流进表线短路或从电流互感器二次侧短路,正常情况电能表铝盘转速应为短路前的2/3。 1.2.2恢复电流进线,再将另外任意一相电压断开,正常情况下铝盘转速应为断开前的2/3。

三相四线电表接线与互感器接线方法 图文,民熔

电表的接线形式很多,有单相电表的接法,也有三相电表的接法;有直接接线式,也有经过电流互感器和电压互感器接线的。其中,三相电表,主要计量的是380V电压的三根火线的“耗电量之和”,三相电表有三相三线电表和三相四线电表之分。下面,就来了解下三相四线电表接线怎么接,三相四线电表互感器的接法。 三相四线电表接线图 电表的接线形式很多,但是总的来说,只有两种回路:电压回路和电流回路。电表接线的一般原则是:电流线圈与负载串联,或接在电流互感器的二次侧,电压线圈与负载并联或接在电压互感器的二次侧。

三相四线有功电表由三个驱动部件组成,称三元件电表,和单相及三相三线电表外观上最大的不同是其共有11个这么多接线端,此电表常用在动力和照明混合的供电电路。接线图如下:

上图(左)为三相四线有功电表直接接入,火线U、V、W分别接在1、4、7端,3、6、9端接负载,零线接10号端,11号端接负载另一端。 上图(右)为三相四线有功电表经电流互感器接入,火线U、V、W分别接电流互感器一次侧首端L1,一次侧末端L2端接负载,电度表1、4、7端分别接电流互感器二次侧首端K1,3、6、9端分别接二次侧末端K2,电表2、5、8端分别接电流互感器一次侧L1端,其连片应拆下。为保证安全,电流互感器二次侧末端K2应分别接地。右图为接线图的模拟演示,大家注意电流互感器与电表的接线。 三相四线分别是什么线 1、三相电源输送的配线方法

三相四线制是指有A、B、C、N,其中,N线是中线,也叫零线。N线是为了从380V相间电压中获得220V 相间电压而设的,有的场合也可以用来进行零序电流检测,以便进行三相供电平衡的监控。A线用黄色,B 线用蓝色,C线用红色,N线用褐色,PE线用黄绿色。 2、单相三线、三相四线、三相五线,三者有什么区别? 单相双线----------1根火线1根零线 单相三线----------1根火线1根零线+1根地线 三相四线----------3根相线1根零线

电流互感器的接线方式及使用注意事项

1、工作原理 电流互感器起到变流和电气隔离作用。便于二次仪表测量需要转换为比较统一的电流,避免直接测量线路的危险。电流互感器是升压(降流)变压器,它是电力系统中测量仪表、继电保护等二次设备获取电气一次回路电流信息的传感器,电流互感器将高电流按比例转换成低电流,电流互感器一次侧接在一次系统,二次侧接测量仪表、继电保护等。 2、名词解释 额定工作电压,互感器允许长期运行的最高相同电压有效值。额定一次电流,作为互感器性能基准的一次电流值。额定二次电流,作为互感器性能基准的二次电流值,通常为5A或1A。额定电流比,额定一次电流与额定二次电流之比。 3、选用要点 (1)额定电流(一次侧)应为线路正常运行时负载电流的1.0~1.3倍。 (2)额定电压。应为0.5kV或0.66kV。 (3)注意精度等级。若用于测量,应选用精度等级0.5或0.2级;若负载电流变化较大,或正常运行时负载电流低于电流互感器一次侧额定电流30%,应选用0.5级。 (4)根据需要确定变比与匝数。 (5)型号规格选择。根据供电线路一次负荷电流确定变比后,再根据实际安装情况确定型号。 (6)额定容量的选择。电流互感器二次额定容量要大于实际二次负载,实际二次负载应为25~100%二次额定容量。容量决定二次侧负载阻抗,负载阻抗又影响测量或控制精度。负载阻抗主要受测量仪表和继电器线圈电阻、电抗及接线接触电阻、二次连接导线电阻的影响。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有 10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关低压配电产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.360docs.net/doc/b43201323.html,。

相关文档
最新文档