液压阀块设计规范1

液压阀块设计规范1
液压阀块设计规范1

PHT002-R02

液压阀块设计规范

Regulations for Hydraulic Manifold Designing

2000-07-15修订 2000-08-01实施

目 录

1 范围 1

2 引用文件 1

3 定义 1

4 设计的一般原则 1

5 阀块体的设计 3

附录1 平面密封螺纹油口尺寸 7 附录2 O型圈密封直螺纹油口 8

液压阀块设计规范PHT002-R02

1 范围

本标准规定了液压二通插装阀阀块体的设计规则、绘制阀块体零件工作图的要求。

本标准适用于液压二通插装阀阀块体(以下简称阀块体)的设计,其它六面体形液压控制阀阀块体的设计亦可参照本规范。

2 引用文件

ISO1219.1 流体传动系统和元件-图形符号和回路图-第一部分图形符号

GB/T786.1-93 液压气动图形符号

GB2346-88 液压气动系统及元件公称压力系列

GB2877-86 二通插装式液压阀安装连接尺寸

GB2878-90 油(气)口连接螺纹尺寸

GB4457~ 4458-92 机械制图

ZBJ22007-90 液压气动用球涨式堵头安装尺寸

3 定义

本标准使用下列定义:

a) 液压控制阀块(以下简称阀块)

将多个选定的液压控制阀件集成或组合安装在同一金属块体上,组成具有预定控制功能的装配体;b) 阀块体

用于安装选定的各类液压控制阀件,并加工有要求的油路孔道,以组成具有预定的液压控制功能的金属块体;

c) 主级孔道

阀块体上动力传动油液流经的孔道,一般指与液压动力源、主回油以及液压执行机构工作腔相连接的孔道;

d) 先导孔道

阀块体上先导控制油液流经的孔道,指与先导控制回路对应的进油、回油、泄油、与受控连通、压力检测以及相应的工艺孔道等;

e) 孔口结构

孔道口部用于安装其它零部件的结构。

4 设计的一般原则

4.1 设计依据

阀块体设计时应有以下有关书面资料:

a) 正确、详细的阀块液压原理图;

b) 液压工作参数和控制要求;

c) 阀块的外形、油口布置及安装连接要求。

4.2 阀块体设计的一般规定

4.2.1 阀块体的外形一般为矩形六面体。

4.2.2 阀块体材料宜采用35钢锻件或连铸坯件。

4.2.3 阀块体的最大边长宜不大于600 mm,所包含的二通插装阀插件数量宜不大于8。

2000年09月15日修订

1 of 12

PHT002-R02

液压阀块设计规范

2 of 12

4.2.4 当液压回路所含的插件多于8个时,应分解成数个阀块体,各阀块体之间用螺栓相互连接,结合

面处的连接孔道用O 型密封圈予以密封,组成整体的阀块组。连接螺栓的矩形性能应不低于12.9级。 4.2.5 插件在阀块体中的安装位置的布置,应能使阀块体外形尺寸尽可能小,且便于孔道的加工。一般采

用立式对称布置或卧式L 形布置。 4.2.5.1 立式对称布置时,插件在垂直方向分层排列配置,每层两个插件,相对安装在阀块体的两个

相对的侧面内。另两个侧面上,可安置进油口P 、回油口T 、工作油口A 和B 或其它元组件。立式对称布置的结构示意图见图1。 图2 立式对称布置的阀块

4.2.

5.2 卧式L 形布置时,插件在水平方向分列配置,每列两个插件,成L 形安装在阀块体的两个相邻

表面(顶面和正面)内。其它三个侧面(背面和两侧)上可安置进油口P 、回油口T 、工作油口A 和B 或其它元组件。卧式L 形布置的结构示意图见图2。

图2 卧式L 形布置的阀块

4.2.6 阀块体的插件安装孔一般应符合GB 2877的规定。当有特殊需要时,可对标准安装孔作局部改动,

但改动后的安装孔应不影响具有标准安装尺寸的插件的安装。

液压阀块设计规范

PHT002-R02

3 of 12

4.2.7 阀块上采用的板式液压控制阀安装面尺寸应符合有关标准(ISO 4401, ISO/DPR 6264等)。 4.2.8 设计阀块体的主级孔道时应考虑尽可能减小流阻损失及加工方便。 4.2.8.1 主级孔道的直径按公式(1)估算选取:

max

.v Q 61

4≥D (mm)

(1)

式中: D - 孔道直径,mm ;

Q - 孔道内可能流过的最大工作流量,L/min ;

v max - 孔道允许的最大工作液流速,m/s 。

一般,对于压力孔道,v max 不大于6 m/s ;对于回油孔道,v max 不大于3 m/s 。 按公式(1)估算出的孔道直径应园整至标准的通径值。

4.2.8.2 当主级孔道与多个插件贯通时,为减小贯通处的局部流阻损失,宜采用与插件孔偏贯通的方

法(使主级孔道的中心线与插件孔的中心线偏移)。一般使主级孔道中心线与插件孔孔壁相切。同时也可以加大孔道通径,加大的通径应不超过GB 2877的规定。 4.2.9 为改善深孔工艺性,设计时可考虑增大孔径或采用两端钻孔对接的方法。

4.2.10 设计时应尽量避免在阀块体内设置复杂连接的控制孔道和三维斜孔,应充分利用控制盖板内的控

制孔道,或采用先导控制块等专用的控制孔道连接体。

先导孔道的直径应与GB 2877的规定一致。若因工艺需要而减小先导孔道的直径时,应作验算,确认不至影响对主级阀的控制要求。

4.2.11 应避免采用倾斜孔道。必须采用斜孔时,孔道的倾斜角度宜不超过35°,并须保证孔口的密封良

好。对主级斜孔,应在有关视图上标注出因斜孔加工而造成的椭园孔口的长轴尺寸。 4.2.12 当较小孔道孔径不大于25 mm 时,两相邻孔道孔壁之间的距离应不小于5 mm ;较小孔道孔径大

于25 mm 时,两相邻孔道孔壁之间的距离应不小于10 mm 。 4.2.13 为避免污染物的沉积,对于相通的孔道,孔深一般应到与之相通的孔道的中心线为止。 4.2.14 主级孔道的外接油口一般采用法兰连接。对于通径为25 mm 以下的较小油口,也可采用螺纹连

接。先导孔道的外接油口宜采用螺纹连接。

油口连接法兰宜采用符合ISO 6162 (SAE J518) 标准的SAE 法兰。 油口连接螺纹应符合GB 2878的规定。

4.2.15 工艺孔道应采用螺塞、法兰等可拆方式封堵,以便孔道的清理、清洗和检查。螺塞的螺纹应符合

GB 2878的规定。在位置不允许时,对直径不大于12 mm 的孔道,允许采用球涨式堵头封堵,球涨式堵头的安装尺寸应符合ZBJ 22007的规定。 4.2.16 主级孔道和主要的先导孔道上应设置必要的检测口,以便检测液压回路的工作参数。检测口一般

应安装具快速连接功能的测压接头。 4.2.17 阀块体的所有外接油口、检测口均应有油口标记,油口标记应与液压原理图上的相应标记一致。 4.2.18 应在阀块体的醒目部位,预留铭牌安装位置。 4.2.19 阀块体应有吊装结构,一般采用吊环螺钉。 5 阀块体的设计 5.1 阀块体的设计内容

阀块体的设计内容应包括:

a) 阀块体孔道布置,绘制孔道立体示意图(轴侧视图);

b) 绘制阀块体零件工作图(包括必要的视图、孔道加工尺寸表以及技术要求)。 5.2 阀块体孔道立体示意图

孔道立体示意图是阀块体设计的基础,应能清晰、直观地显示各插件、孔道和油口等的相对布置位置,以及孔道的连接和走向等情况。

PHT002-R02液压阀块设计规范

孔道立体示意图应参照GB 4458.3规定的轴测视图画法进行绘制,各孔道在阀块体表面上的相对位置应符合比例。

孔道立体示意图中的插件安装孔可用适当的圆柱体示意。孔道可用不同的线条表示:粗实线表示主级孔道;虚线表示先导孔道;细实线表示检测用孔道等等。

孔道立体示意图附属于阀块体零件工作图,应随之提供给加工部门,作为加工、检验和装配的辅助用图。

5.3 阀块体零件工作图

视图安排阀块体零件工作图的视图安排应符合GB 4458.1的规定,各视图须按表1进行编号,并标出坐标体系,见图3。

图3 阀块体零件图格式

表1 视图编号

5.3.1 主视图选择

主视图应选择为正常安装姿态且最能表示阀块体外型的视图。

5.3.2 孔道的表达

为表达阀块体内部孔道的情况,便于查找和加工、检验,应在主要的三个视图上用虚线画出正确的孔道图象(以正确、清晰为原则,尽可能以最少的虚线画出)。对某此难以用虚线图象表达清楚的细节,可用剖面图画出,但原则上应尽量少用剖面图。

5.3.3 孔道定位尺寸

所有孔道的定位尺寸均应标注在各自所在的视图上,且原则应从同一基准出发。对于某些自成体

4 of 12

液压阀块设计规范

PHT002-R02

5 of 12

系的孔道组,如:板式液压阀安装面、二通插装阀安装面等,其定位尺寸应从相对的基准出发标注。作为相对基准的要素,应标注出其相对于阀块体统一基准的定位尺寸,从而确定该孔道组在阀块体上的位置。

为适应计算机辅助设计与加工的需要,定位尺寸的基准应按图3所示确定。 5.3.4 孔道的编号

除板式液压阀或二通插装阀盖板等的安装螺纹孔外,阀块体上的所有孔道均应予以编号。编号由一位字母代号和两位数字序号组成。首位字母代号表示孔道所在的视图表面,应与视图编号一致,即:A-主视图;B-左视图;……依次类推。后两位数字序号为孔道顺序号,对各视图表面,分别按从上到下,从左到右的顺序各自编号。例如:A01为主视图上第一号孔;B09为左视图上第9号孔等等。

孔道编号应标注在相应的孔口旁,且不致引起混淆、误会的地方。 5.3.5 孔道的加工尺寸

将孔道分为基孔和孔口结构两个部分,所有孔道的加工尺寸均可分为基孔尺寸及孔口结构尺寸,并以“孔道加工尺寸表”的形式标明该两部分尺寸。

不予编号的螺纹孔不列入“孔道加工尺寸表”,应直接在相应视图上标注其加工尺寸,如:“4-M12深20孔深25”。 5.3.6 孔道加工尺寸表

“孔道加工尺寸表”应位于图样标题栏附近,其格式如表2所示。

5.3.

6.1 “孔号”栏应填写按5.3.5编制的孔道编号。

5.3.

6.2 “坐标”栏应填写孔道中心线与阀块体表面交点的三坐标数值。

5.3.

6.3 “孔径”栏应填写基孔的加工直径。

5.3.

6.4

“深度”栏应填写基孔的深度,深度规定为从孔道所在的视图表面算起。对于斜孔,应在深

度数值后加注“(斜)”字样,斜孔深度应从斜孔中心线与视图表面的交点算起。 5.3.6.5 “孔口结构”栏应填入孔口结构代号,用以表示孔口的结构形式和加工尺寸。无孔口结构的

孔道,本栏不必填写。 5.3.6.5.1 孔口结构代号的编制方法见如下: 辅助代号,一位字母。用以区别有差异的同类同规格的孔口结构,不需时省略; 规格代号,数字(位数不限)。可取代表结构特征的尺寸数值,如: 插装阀通径、O 型圈外径、油口螺纹以及球涨式堵头外径等等。

结构代号,至多两位字母,如:

CV - 标准的二通插装阀插件安装孔; DM - 内六角螺塞孔; GM - 螺纹管接头安装孔;

表2 孔道加工尺寸表

PHT002-R02液压阀块设计规范

6 of 12Q -O型密封圈槽孔;QD -球涨式堵头安装孔。

5.3.

6.5.2 孔口结构代号示例:

CV32 -通径为32 mm的标准二通插装阀插件安装孔;

CV32A -通径为32 mm的加深的二通插装阀插件安装孔;

DM14 - M14×1.5内六角螺塞安装孔。

5.3.

6.6 “相通孔号”栏应填入与该孔道直接相连通的其它孔道的编号,间接连的通孔一律不予填入。

5.3.

6.7 “备注”栏应填入孔道剖面符号等必要的说明。对于斜孔,必须绘出其剖面图,以表示出孔

道倾斜方向及倾斜角度,将剖面符号填入本栏。

5.3.

6.8 应在阀块体图样的适当位置绘制出相应代号的孔口结构局部剖面图,所有的有关加工尺寸、

符号及技术说明均应标注在该剖面图上,并在剖面图上方标明孔口结构的代号。对于尺寸作

局部改动的二通插装阀安装孔,应在相应规格标准安装孔剖面图旁绘出该非标准孔剖面图,

仅标注改动的尺寸和要求,并注明:“其余尺寸按(标准孔代号)”。

5.4 孔道的校验

阀块体设计完成后必须用专用软件“HmbCAD”由计算机进行孔道校验,检查所设计的阀块体的油路孔道是否有误贯穿,或该贯穿的却未贯穿。

计算机校验合格后,应在图纸标题栏上部空格内写上“已经计算机校验合格”字样,并由校验者签名。

5.5 阀块体的一般性技术要求

阀块体零件工作图上应附以下规定的一般技术要求:

a) 采用锻件毛坯时,应经正火处理以消除残余内应力。必要时应进行无损探伤以检查其内部质量;

b) 棱边倒角2×45°,阀体较小时则倒角1.5×45°;

c) 各油道孔口应保持尖边,勿倒角,但应去尽毛刺。各管接头螺纹孔口倒角深度应不大于螺距的二分

之一;

d) 去毛刺、飞边,认真清除孔道内切屑、杂质,并清洗干净;

e) 按图示在各油口旁打上相应的油口标记钢印,钢印距孔口不小于6 mm(以不影响O型密封圈的密

封性能为准);

f) 当阀块体表面采用化学镀镍处理时,镀层厚0.008~0.012 mm;

g) 加工完毕后的阀块体应有防锈、防尘等防护措施,表面应封盖,并存放于清洁干燥的场所。

液压阀块设计规范

PHT002-R02

7 of 12

附录1 平面密封螺纹油口尺寸

mm

规格

尺寸

螺纹

D2 +0.4

M

D2small D2wide

t min t1 min t3 W 大径 小径. M 8 x 1 M 8 x 1 15 17 8 11.5 1.0 0.1 8.00 6.92 M 10 x 1 M 10 x 1 17 20 8

11.5

1.0

0.1

10.00

8.92

M 12 x 1.5 M 12 x 1.5 19 20 12 14.0 1.5 0.1 12.00 10.38 M 14 x 1.5 M 14 x 1.5 21 23 12 14.0 1.5 0.1 14.00 12.38 M 16 x 1.5 M 16 x 1.5 23 25 12 15.5 1.5 0.1 16.00 14.38 M 18 x 1.5 M 18 x 1.5 26 28 12 17.0 2.0 0.1 18.00 16.38 M 20 x 1.5 M 20 x 1.5 28 28 14 18.0 2.0 0.1 20.00 18.38 M 22 x 1.5 M 22 x 1.5 31 31 14 22.0 2.5 0.1 22.00 20.38 M 26 x 1.5 M 26 x 1.5 33 37 16 22.0 2.5 0.2 26.00 24.38 M 27 x 2 M 27 x 2 37 42 16 22.0 2.5 0.2 27.00 24.84 M 33 x 2 M 33 x 2 45 47 18 22.0 2.5 0.2 33.00 30.84 M 42 x 2 M 42 x 2 56 58 20 22.5 2.5 0.2 42.00 39.84 M 48 x 2 M 48 x 2 63 65 22 25.0 2.5 0.2 48.00 45.84 G 1/8 G 1/8 17 19 8 12.0 1.0 0.1 9.73 8.57 G 1/4 G 1/4 21 23 12 16.0 1.5 0.1 13.16 11.45 G 3/8 G 3/8 25 28 12 16.0 2.0 0.1 16.66 14.95 G 1/2 G 1/2 28 31 14 18.0 2.5 0.1 20.96 18.63 G 3/4 G 3/4 33 37 16 20.0 2.5 0.2 26.44 24.12 G 1 G 1 45 47 18 22.0 2.5 0.2 33.25 30.29 G 1 1/4 G 1 1/4 56 58 20 24.0 2.5 0.2 41.91 38.95 G 1 1/2 G 1 1/2 61 63 22 26.0 2.5 0.2 47.80 44.85 G 1 3/4

G 1 3/4

63

65

24

30.0

2.5

0.2

53.75

50.79

管接头螺纹拧入端 螺纹尺寸应符合ISO 9974-1或GB 2787 (公制螺纹) 及ISO 1179-1 (英制BSPP 螺纹)

PHT002-R02

液压阀块设计规范

8 of 12

附录2 O 型圈密封直螺纹油口

mm 规格 尺寸

螺纹

M D2 min D3 +0.10t

min

t1 min t2 t3 W α 大径 小径 M8 x 1 M8 x 1 14 9.1010.011.5 1.6 1.00.112o 8.00 6.92M10 x 1 M10 x 1 16 11.1010.011.5 1.6 1.00.112o 10.00 8.92M12 x 1.5 M12 x 1.5 19 13.8011.514.0 2.4 1.50.115o 12.00 10.38M14 x 1.5 M14 x 1.5 21 15.8011.514.0 2.4 1.50.115o 14.00 12.38M16 x 1.5 M16 x 1.5 24 17.8013.015.5 2.4 1.50.115o 16.00 14.38M18 x 1.5 M18 x 1.5 26 19.8014.517.0 2.4 2.00.115o 18.00 16.38M20 x 1.5 M20 x 1.5 29 21.8015.518.0 2.4 2.00.115o 20.00 18.38M22 x 1.5 M22 x 1.5 29 23.8015.518.0 2.4 2.00.115o 22.00 20.38M26 x 15 M26 x 1.5 32 29.0017.520.0 3.1 2.00.115o 26.00 24.38M27 x 2 M27 x 2 34 29.4019.022.0 3.1 2.00.115o 27.00 24.84M33 x 2 M33 x 2 43 35.4019.022.0 3.1 2.50.115o 33.00 30.84M42 x 2 M42 x 2 52 44.4019.522.5 3.1 2.50.115o 42.00 39.84M48 x 2 M48 x 2 57 50.4022.025.0 3.1 2.50.115o 48.00 45.84SAE 02 (1/8”) 5/16-24 UNF 17 9.1010.012.0 1.9 1.00.112o 7.94 6.78SAE 03 (3/16”) 3/8-24 UNF 19 10.7010.012.0 1.9 1.00.112o 9.53 8.56SAE 04 (1/4”) 7/16-20 UNF 21 12.4011.514.0 2.4 1.60.112o 11.11 9.74SAE 05 (5/16”) 1/2-20 UNF

23 14.0011.514.0 2.5 1.60.112o 12.70 11.33SAE 06 (3/8”) 9/16-18 UNF 25 15.6512.715.5 2.5 1.60.112o 14.29 12.76SAE 08 (1/2”) 3/4-16 UNF 30 20.6014.317.5 2.5 2.40.115o 19.05 17.33SAE 10 (5/8”) 7/8-14 UNF 34 23.9516.720.0 2.5 2.40.115o 22.23 20.26SAE 12 (3/4”) 1 1/16-12 UN 41 29.1519.023.0 3.3 2.40.115o 26.99 24.69SAE 14 (7/8”) 1 3/16-12 UN 45 32.3019.023.0 3.3 2.40.115o 30.16 27.86SAE 16 (1”)

1 5/16-1

2 UN

49 35.5019.023.0 3.3 3.20.115o 33.34 31.04SAE 20 (1 1/4”) 1 5/8-12 UN 58 43.5019.023.0 3.3 3.20.115o 41.28 38.99SAE 24 (1 1/2”) 1 7/8-12 UN 65 49.8519.023.0 3.3 3.20.115o 47.63 45.33SAE 32 (2”)

2 1/2-12 UN

89

65.70

19.0

23.0

3.3

3.2

0.1

15o

63.50

61.20

管接头螺纹拧入端,符合ISO 6149-2/3 (公制螺纹) 及ISO 11926-2/3 (SAE 螺纹) 油口尺寸符合ISO 6149-1 (公制油口) 及ISO 11926-1或SAE J514 (SAE 油口)

SolidWorks的液压阀块【结构设计】方案

SolidWorks的液压阀块结构设计 3.1液压阀块的结构特点及设计 3.1.1液压阀块的结构特点 按照结构和用途划分,液压阀块有条形块(Bar Manifolds)、小板块(Subplates),盖板(Cover plates)、夹板(Sandwich Plates)、阀安装底板(Valve Adaptors)、泵阀块(PumpManifolds)、逻辑阀块(Logic Manifolds)、叠加阀块(Accumulator Manifolds)、专用阀块(Specialty Manifolds)、集流排管和连接块(Header and Junction Blocks)等多种形式[35][36]。实际系统中的液压阀块是由阀块体以及其上安装的各种液压阀、管接头、附件等元件组成。 (1)SolidWorks阀块体 阀块体是集成式液压系统的关键部件,它既是其它液压元件的承装载体,又是它们油路连通的通道体。阀块体一般都采用长方体外型,材料一般用铝或可锻铸铁。阀块体上分布有与液压阀有关的安装孔、通油孔、连接螺钉孔、定位销孔,以及公共油孔、连接孔等,为保证孔道正确连通而不发生干涉有时还要设置工艺孔。一般一个比较简单的阀块体上至少有40-60个孔,稍微复杂一点的就有上百个,这些孔道构成一个纵横交错的孔系网络。阀块体上的孔道有光孔、阶梯孔、螺纹孔等多种形式,一般均为直孔,便于在普通钻床和数控机床上加工。有时出于特殊的连通要求设置成斜孔,但很少采用。 (2)SolidWorks液压阀 液压阀一般为标准件,包括各类板式阀、插装阀、叠加阀等,由连接螺钉安装在阀块体上,实现液压回路的控制功能。 (3)SolidWorks管接头 管接头用于外部管路与阀块的连接。各种阀和阀块体组成的液压回路,要对液压缸等执行机构进行控制,以及进油、回油、泄油等,必须与外部管路连接才能实现。 (4)其它附件 包括管道连接法兰、工艺孔堵塞、油路密封圈等附件。 3.1.2液压阀块的布局原则 阀块体外表面是阀类元件的安装基面,内部是孔道的布置空间。阀块的六个面构成一个安装面的集合。通常底面不安装元件,而是作为与油箱或其它阀块的叠加面。在工程实际中,出于安装和操作方便的考虑,液压阀的安装角度通常采用直角。 液压阀块上六个表面的功用(仅供参考):

液压布管知识总结

液压布管规程 液压管道安装是液压设备安装的一项主要工程。管道安装质量的好坏是关系到液压系统工作性能是否正常的关键之一。 1、布管设计和配管时都应先根据液压原理图,对所需连接的组件、液压元件、管接头、法兰作一个通盘的考虑。 2、管道的敷设排列和走向应整齐一致,层次分明。尽量采用水平或垂直布管,水平管道的不平行度应≤2/1000;垂直管道的不垂直度应≤2/400。用水平仪检测。 3、平行或交*的管系之间,应有10mm以上的空隙。 4、管道的配置必须使管道、液压阀和其它元件装卸、维修方便。系统中任何一段管道或元件应尽量能自由拆装而不影响其它元件。 5、配管时必须使管道有一定的刚性和抗振动能力。应适当配置管道支架和管夹。弯曲的管子应在起弯点附近设支架或管夹。管道不得与支架或管夹直接焊接。 6、管道的重量不应由阀、泵及其它液压元件和辅件承受;也不应由管道支承较重的元件重量。 7、较长的管道必须考虑有效措施以防止温度变化使管子伸缩而引起的应力。 8、使用的管道材质必须有明确的原始依据材料,对于材质不明的管子不允许使用。 9、液压系统管子直径在50mm以下的可用砂轮切割机切割。直径50mm以上的管子一般应采用机械加工方法切割。如用气割,则必须用机械加工方法车去因气割形成的组织变化部分,同时可车出焊接坡口。除回油管外,压力由管道不允许用滚轮式挤压切割器切割。管子切割表面必须平整,去除毛刺、氧化皮、熔渣等。切口表面与管子轴线应垂直。10、一条管路由多段管段与配套件组成时应依次逐段接管,完成一段,组装后,再配置其后一段,以避免一次焊完产生累积误差。 11、为了减少局部压力损失,管道各段应避免断面的局部急剧扩大或缩小以及急剧弯曲。 12、与管接头或法兰连接的管子必须是一段直管,即这段管子的轴心线应与管接头、法兰的轴心是平行、重合。此直线段长度要大于或等于2倍管径。 13、外径小于30mm的管子可采用冷弯法。管子外径在30~50mm时可采用冷弯或热弯法。管子外径大于50mm时,一般采用热弯法。 14、焊接液压管道的焊工应持有有效的高压管道焊接合格证。 15、焊接工艺的选择:乙炔气焊主要用于一般碳钢管壁厚度小于等于2mm的管子。电弧焊主要用于碳钢管壁厚大于2mm 的管子。管子的焊接最好用氩弧焊。对壁厚大于5mm的管子应采用氩弧焊打底,电弧焊填充。必要的场合应采用管孔内充保护气体方法焊接。 16、焊条、焊剂应与所焊管材相匹配,其牌号必须有明确的依据资料,有产品合格证,且在有效使用期内。焊条、焊剂在使用前应按其产品说明书规定烘干,并在使用过程中保持干燥,在当天使用。焊条药皮应无脱落和显著裂纹。 17、液压管道焊接都应采用对接焊。焊接前应将坡口及其附近宽10~20mm处表面脏物、油迹、水份和锈斑等清除干净。 18、管道与法兰的焊接应采用对接焊法兰,不可采用插入式法兰。 19、管道与管接头的焊接应采用对接焊,不可采用插入式的形式。 20、管道与管道的焊接应采用对接焊,不允许用插入式的焊接形式。 21、液压管道采用对接焊时,焊缝内壁必须比管道高出0.3~0.5mm。不允许出现凹入内壁的现象。在焊完后,再用锉或手提砂轮把内壁中高出的焊缝修平。去除焊渣、毛刺,达到光洁程度。 22、对接焊焊缝的截面应与管子中心线垂直。 23、焊缝截面不允许在转角处,也应避免在管道的两个弯管之间。 24、在焊接配管时,必须先按安装位置点焊定位,再拆下来焊接,焊后再组装上整形。 25、在焊接全过程中,应防止风、雨、雪的侵袭。管道焊接后,对壁厚小于等于5mm的焊缝,应在室温下自然冷却,不得用强风或淋水强迫冷却。

液压阀块设计经验

液压阀块设计规范 液压阀块的设计大多属于非标设计,需要根据不同的工况和使用要求进行针对性设计,设计阀块时大致分为以下几步:选材、设计、加工与热处理、去毛刺与清洗、表面防锈处理、试验。 1、选材: 不同的材料决定了不同的压力等级,首先根据使用压力进行合理选材,一般来说遵循以下原则: 工作压力P<6.3MPa时,液压阀块可以采用铸铁HT20一40。采用铸铁件可以进行大批量铸造,减少工时,提高效率,特别适用于标准化阀块。 6.3MPa≤P<21MPa时,液压阀块可以选用铝合金锻件、20号锻钢或者Q235;低碳钢焊接性能好,特别适合与非标的硬管(使用中很多阀块需要和硬管进行焊接)进行焊接。 P≥21MPa时,液压阀块可以选用35号锻钢。锻打后直接机加工或者机加工后调质处理HB200-240(一般高压的阀块,往往探伤、机加工与热处理循环进行)。

设计阀块时阀块最初的厚度定为最大通径的5倍,然后根据具体设计逐步才缩小;设计通道时应合理布置孔道,尽量减少深孔、斜孔和工艺孔,先安排大流量通道,最后是先导油通道,各孔道之间的安全壁厚不得小于3~5mm ,还应考虑钻头在允许范围内的偏斜,适当加大相邻孔道的间距;通道内液压油流速不能高于12m/s ,回油通道要比是进油通道大20-40%;阀块进油口,工作口,控制口要加工测压口;各阀口要刻印标号;对于质量较大的阀块必须有起吊螺钉口。 阀体设计的一般规定: 1.阀块体的外形一般为矩形六面体。 2.阀块体材料宜采用35钢锻件或连铸坯件。 3.阀块体的最大边长宜不大于600mm ,所包含的二通插装阀插件数量宜不大于8。 4.当液压回路所含的插件多于8个时,应分解成数个阀块体,各阀块体之间用螺栓相互连接,结合面处的连接孔道用O 型密封圈予以密封,组成整体的阀块组。连接螺栓的矩形性能应不低于12.9级。 5.设计阀块体的主级孔道时应考虑尽可能减小流阻损失及加工方便。 6.主级孔道的直径按公式(1)估算选取: max v 61.4Q D 式中: D - 孔道直径,mm; Q - 孔道内可能流过的最大工作流量,L/min; vmax - 孔道允许的最大工作液流速,m/s 。 一般,对于压力孔道,vmax 不大于6m/s;对于回油孔道,vmax 不大于3m/s 。 按公式(1)估算出的孔道直径应园整至标准的通径值。 7.当主级孔道与多个插件贯通时,为减小贯通处的局部流阻损失,宜采用与插件孔偏贯通的方法(使主级孔道的中心线与插件孔的中心线偏移)。一般使主级孔道中心线与插件孔孔壁相切。同时也可以加大孔道通径,加大的通径应不超过GB2877的规定。 8.为改善深孔工艺性,设计时可考虑增大孔径或采用两端钻孔对接的方法。 9.设计时应尽量避免在阀块体内设置复杂连接的控制孔道和三维斜孔,应充分利用控制盖板内的控制孔道,或采用先导控制块等专用的控制孔道连接体。先导孔道的直径应与

液压阀块设计指南与实例

液压阀块设计基本准则 1范围 本标准规定了液压系统阀块设计过程中应遵循的基本准则。 2术语、符号及定义 阀块 阀块是指用作油路的分、集和转换的过渡块体,或者用来安装板式、插装式等阀件的的基础块,在其上具有外接口和连通各外接口或阀件的流道,各流道依据所设计的原理实现正确的沟通。 液压阀块的设计要求和步骤 设计要求 (1)可靠性高,确保孔道间不窜油; (2)结构紧凑,占用空间小; (3)油路简单,压力损失小; (4)易于加工,辅助工艺孔少; (5)便于布管; (6)各控制阀调节操作方便。 设计步骤 (1)根据阀块在系统中的布置和管路布局初步确定各外接油口在阀块上的相对位置,并根据流量确定接头规格; (2)根据阀组工作原理、系统布局、各阀本身特性和维护性能初步确定各控制阀在阀块上的安装位置;(3)设计并反复优化各外接口和阀件间的流道,使各流道依据所设计的原理实现正确、合理的沟通。液压阀块的设计要点 阀块的油口 4.1.1设计阀块时应考虑系统管路走向,同时应考虑扳手操作空间;对于位置相近且易接错的油口,应尽量设计或选用不同通径的管接头和胶管以便于区分。 图1 SAB熨平板分集流块 4.1.2 阀块上的各油口旁均应标注注油口标识(例如:P、A、T、B、A1、A2、B1、B2、M1、M2……),其中,板式阀安装面的油口标识仅在图纸上体现,而用于与胶(钢)管相连接的外接油口和测压口旁则必须在阀块体上打相应钢印,为保证安装管接头(或法兰)后不将标识覆盖,钢印距离相应油口边缘大于7mm(可在技术要求中注明),具体可见附录A阀块工程图示例。

4.1.3 阀块上的外接油口、测压口应根据管接头连接尺寸设计,沉孔外径、深度和螺纹深度均应留有合适的余量,避免安装时干涉。具体可根据管接头螺纹规格由表1确定,并按《路机液压阀块管接头螺纹用沉孔规格系列》对沉孔外径进行圆整。 图2 油口尺寸示意图 管接头螺纹d1管接头止口外径 d7 油口沉孔外径 d4 油口沉孔深度 a1 油口螺纹深度 b1 形位公差 W M10×114≥15≤1≥8 M12×17≥18≤≥12 M14×19≥20≤≥12 M16×≥23≤≥12 M18×≥25≤2≥12 M20×≥27≤2≥14 M22×27≥28≤≥14 M26×≥33≤≥16 M27×232≥33≤≥16 M33×2≥41≤≥18 M42×2≥51≤≥20 M48×255≥56≤≥22 G1/814≥15≤1≥8 G1/4≥20≤≥12 G3/822≥23≤2≥12 G1/2≥28≤≥14 G3/432≥33≤≥16 G1≥41≤≥18 G1-1/4≥51≤≥20 G1-1/255≥56≤≥22表2 公制管接头螺纹对应沉孔规格(优选系列)

液压系统安装工艺要求

液压系统安装工艺要求 1使用范围: 适用于特种设备液压系统安装 2作业条件: 本作业应在晴好的天气情况下进行,风力大于5级、雷、雨、雪、雾等恶劣天气时,严禁作业。 4作业人员 作业人员2人一组,配合作业。经专业培训并考试合格。作业人员应有岗位合格证。 5安全注意事项及危险控制措施: 5.1安全注意事项 5.1.1在清洗接头件时,应将汽油远离火源,并在清洗过程中严禁吸 烟。 5.2危险点控制措施

6作业步骤及要求: 液压元件组成:各液压元件之间由管道、接头和集成阀块等零部件有机地连接成一个完整的液压系统。因此,液压管道安装是否正确、牢固、可靠和整齐,将对液压系统工作性能有着重要的影响。 6.1液压管道安装要求 6.1.1管道安装质量的好坏是关系到液压系统工作性能是否正常的关键之一,管路上应尽量按使用说明书的图纸连接。并合理的配置管夹及支架。 a 安装时对已经酸洗过的管子还要用气吹净。 b安装时对管子接头、法兰件都要进行质量检查,发现有缺陷的接头或法兰件不准使用,应更换,并用煤油清洗和用气吹净。 c安装时要精心检查密封件质量,不合要求的密封件不准使用。安装密封件时要注意唇口方向,并仔细安装,切勿划伤或破损密封件,更不能漏装。 d各管子接头连接要牢固,各结合面密封要严密,不准有外漏。 e压力油管安装必须牢固、可靠和稳定。 6.1.2高压软管安装要求 a检查软管质量。要查明软管通径和成套软管的规格尺寸是否符合安装要求;检查胶管内外径表面是否有脱胶、老化、破损等缺陷,有严重缺陷的不准使用。

b 按使用说明书的液压图进行安装。 6.1.3管接头安装要求 a按照使用说明书的液压图进行安装管接头。 b 检查管接头的质量,发现有缺陷(如端面加工不平)应更换。 c 接头用煤油清洗,并用气吹净。 d接头体拧入油路板或阀体之前,将接头体的螺纹清洗干净,涂上密封胶或用聚四氟乙烯塑料带顺螺纹旋向缠上,以提高密封性,防止接头处漏油。但要注意,密封带的缠向必须顺着螺纹旋向,一般1-2圈。缠的层数多,工作过程中接头容易松动,反而会漏油。若用流态密封胶作为螺纹扣与扣之间的填料,温度不得超过60℃,否则会熔化,使液体从扣中溢出。拧紧时用力不宜过大,特别是锥管螺纹接头体,拧紧力过大会产生裂纹,导致泄漏。 e 接头体与管子端面应对准,不准有偏斜或弯曲现象,两平面接合良好后才能拧紧,并应有足够的拧紧力矩(或达到规定值),保证接合严密。 f 要检查密封圈质量,若有缺陷应更换,装配时要细心,不准装错或安装时把密封圈损坏。 6.1.4法兰盘安装要求 a 按照使用说明书的液压图要求安装法兰。 b 检查法兰盘和密封圈质量,若有异常应更换。 c法兰盘用煤油清洗干净,并用气吹干净。 d 拧紧螺钉时,各螺钉受力要均匀,并要有足够的拧紧力矩(或达到规定值),保证接合严密。 e对高压法兰的紧固螺钉要抽查螺钉所用的材料和加工质量,不合要求的螺钉不准使用。 6.1.5吸油管安装要求 a 按照使用说明书的液压图进行安装。 b 吸油管与液压泵吸入口连接处应密封严密,否则泵在工作时,会

液压阀块设计注意事项

非常详细的液压阀块设计经验总结 1.阀块体的外形一般为矩形六面体。 2.阀块体材料宜采用35钢锻件或连铸坯件。 3.阀块体的最大边长宜不大于600mm,所包含的二通插装阀插件数量宜不大于8。 4.当液压回路所含的插件多于8个时,应分解成数个阀块体,各阀块体之间用螺栓相互连接,结合面处的连接孔道用O型密封圈予以密封,组成整体的阀块组。连接螺栓的矩形性能应不低于12.9级。 5.设计阀块体的主级孔道时应考虑尽可能减小流阻损失及加工方便。 6.主级孔道的直径按公式(1)估算选取: 式中: D - 孔道直径,mm; Q - 孔道内可能流过的最大工作流量,L/min; vmax - 孔道允许的最大工作液流速,m/s。 一般,对于压力孔道,vmax不大于6m/s;对于回油孔道,vmax不大于3m/s。 按公式(1)估算出的孔道直径应园整至标准的通径值。 7.当主级孔道与多个插件贯通时,为减小贯通处的局部流阻损失,宜采用与插件孔偏贯通的方法(使主级孔道的中心线与插件孔的中心线偏移)。一般使主级孔道中心线与插件孔孔壁相切。同时也可以加大

孔道通径,加大的通径应不超过GB2877的规定。 8.为改善深孔工艺性,设计时可考虑增大孔径或采用两端钻孔对接的方法。 9.设计时应尽量避免在阀块体内设置复杂连接的控制孔道和三维斜孔,应充分利用控制盖板内的控制孔道,或采用先导控制块等专用的控制孔道连接体。先导孔道的直径应与GB2877的规定一致。若因工艺需要而减小先导孔道的直径时,应作验算,确认不至影响对主级阀的控制要求。 10. 应避免采用倾斜孔道。必须倾斜时,孔道的倾斜角度应不超过35°,并须保证孔口的密封良好。对主级斜孔,应在有关视图上标注出因斜孔加工而造成的椭园孔口的长轴尺寸。 11. 当较小孔道孔径不大于25mm时,两相邻孔道孔壁之间的距离应不小于5mm;较小孔道孔径大于25mm时,两相邻孔道孔壁之间的距离应不小于10mm。 12. 为避免污染物的沉积,对于相通的孔道,孔深一般应到与之相通的孔道的中心线为止。 13.主级孔道的外接油口一般采用法兰连接。对于通径为25mm以下的较小油口,也可采用螺纹连接。先导孔道的外接油口宜采用螺纹连接。 14. 工艺孔道应采用螺塞、法兰等可拆方式封堵,以便孔道的清理、清洗和检查。螺塞的螺纹应符合GB2878的规定。在位置不允许时,对直径不大于12mm的孔道,允许采用球涨式堵头封堵。

液压阀块设计指南与实例

液压阀块设计基本准则 1 范围 本标准规定了液压系统阀块设计过程中应遵循的基本准则。 2 术语、符号及定义 阀块 阀块是指用作油路的分、集和转换的过渡块体,或者用来安装板式、插装式等阀件的的基础块,在其上具有外接口和连通各外接口或阀件的流道,各流道依据所设计的原理实现正确的沟通。 3 液压阀块的设计要求和步骤 3.1 设计要求 (1)可靠性高,确保孔道间不窜油; (2)结构紧凑,占用空间小; (3)油路简单,压力损失小; (4)易于加工,辅助工艺孔少; (5)便于布管; (6)各控制阀调节操作方便。 3.2 设计步骤 (1)根据阀块在系统中的布置和管路布局初步确定各外接油口在阀块上的相对位置,并根据流量确定接头规格; (2)根据阀组工作原理、系统布局、各阀本身特性和维护性能初步确定各控制阀在阀块上的安装位置; (3)设计并反复优化各外接口和阀件间的流道,使各流道依据所设计的原理实现正确、合理的沟通。 4 液压阀块的设计要点 4.1 阀块的油口 4.1.1设计阀块时应考虑系统管路走向,同时应考虑扳手操作空间;对于位置相近且易接错的油口,应尽量设计或选用不同通径的管接头和胶管以便于区分。 图1 SAB熨平板分集流块 4.1.2 阀块上的各油口旁均应标注注油口标识(例如:P、A、T、B、A1、A2、B1、B2、M1、M2……),其中,板式阀安装面的油口标识仅在图纸上体现,而用于与胶(钢)管相连接的外接油口和测压口旁则必须在阀块体上打相应钢印,为保证安装管接头(或法兰)后不将标识覆盖,钢印距离相应油口边缘大于7mm(可在技术要求中注明),具体可见附录A阀块工程图示例。

4.1.3 阀块上的外接油口、测压口应根据管接头连接尺寸设计,沉孔外径、深度和螺纹深度均应留有合适的余量,避免安装时干涉。具体可根据管接头螺纹规格由表1确定,并按《路机液压阀块管接头螺纹用沉孔规格系列》对沉孔外径进行圆整。 图2 油口尺寸示意图 表1 阀块油口设计推荐尺寸 表2 公制管接头螺纹对应沉孔规格(优选系列) 表3 英制管接头螺纹对应沉孔规格(优选系列)

液压阀组的设计

液压集成块单元回路图 1、确定公用油道孔的数目 集成块头体的公用油道孔,有二孔、三孔、四孔、五孔等多种设计方案。由液压集成块单元回路图可知,第二个中间块的公用油道孔数目为五个:三条压力油路,一条回油路,一条泄漏油路;第一个和第三个中间块的公用油道孔数目为四个:两条压力油路,一条回油路,一条泄漏油路。 2、制作液压元件样板 为了在集成块四周面上实现液压阀的合理布置及正确安排其通孔(这些孔将与公用油道孔相连),可按照液压阀的轮廓尺寸及油口位置预先制作元件样板,在集成块各有关视图上,安排合适的位置。 3、确定孔道直径及通油孔间的壁厚

与阀的油口相通孔道的直径,与阀的油口直径相同。 压力油口的直径可通过以下公式确定: 7.21m m d=== 取压力油口的直径为10mm。泄油孔的直径一般由经验确定,取为6m m φ。 固定液压阀的定位销孔的直径应与所选定的液压阀的定位销直径及配合要求相同。 用类比法确定连接集成块组的螺栓直径为M8mm,其相应的连接孔直径为M9mm,孔中心距两侧面之距为15mm。 4、中间块外形尺寸的确定 中间块的长度尺寸L和宽度尺寸B均应大于安放的液压阀的长度L1和宽度B1,以便于设计集成块内的通油孔道时调整元件的位置。一般长度方向的调整尺寸为40~50mm,宽度方向的调整尺寸为20~30mm。根据液压阀的尺寸加上调整尺寸,油路块的外形尺寸为???? 长宽高=160140110m m。 5、布置集成块上的液压元件 6、集成块油路的压力损失 7、绘制集成块加工图 液压泵站的设计 液压油箱及其设计与制造 液压泵组的结构设计(主要是电动机和液压泵) 蓄能器装置的设计、安装及使用要点 液压站的结构总成及CAD 选择布置液压泵站、液压阀组、蓄能器架之间的连接管路 设计系统的电气控制回路及其控制柜 绘制液压站结构总成装配图 一般不必画得过分详细,总图上的尺寸也不必标注得过分详细,但应标明液压站的外部轮廓尺寸、液压泵组距基座的中心高及液压控制装置、液压泵组与油箱顶盖之间的定位尺寸和连接尺寸。 编制有关技术文件内容 一般包括设计任务书、设计计算说明书,设计图样,基本件、标准件、通用件及外购件汇总明细表,使用说明书等。液压系统图中的液压和电气图形符号应严格按照国家标准绘制,图面布置应力求紧凑、清晰、美观、大方。

液压管道安装方案

曲靖双友钢铁630高炉工程液压系统安装 专业施工方案 一、工程概况 双友630高炉工程液压系统包括高炉炉顶液压站、高炉炉前液压站、矿焦储槽液压站、热风炉(重力除尘)液压站,共4个。其中炉顶液压站主要用于炉顶左右放散阀、均压放散阀、煤气放散阀、氧气均压发、挡料阀(DN300)、上下密封阀(DN500)等;炉前液压站主要用于左右泥炮和左右开口机,其配管主要为Φ34*5、Φ28*4和Φ18*3;矿焦储槽液压站主要用于烧结矿、球团矿、焦炭称量漏斗处的液压阀,其配管主要为Φ28*4和Φ18*3(2820kg);热风炉液压站主要用于煤气切断阀、空气切断阀、燃烧阀、热风阀、煤气放散阀、氧气吹扫阀、废气阀、冷风阀、冷风均压阀、烟道阀、倒流休风阀、混风切断阀,另有去重力除尘的煤气放散阀等,其配管主要为Φ28*4,约4000m。 二、主要技术依据 1、施工图纸及设计变更 2、YB207-85《冶金机械设备安装工程施工及验收规范》—液 压、气动和润滑系统部分 3、GB3766-83《液压系统技术条件》 4、GB50300—2001《建筑工程施工质量验收统一标准》 三、安装工艺流程

设备基础检查验收—设备开箱检查—阀、管材、管件准备—设备及元件安装—管道支架的制作安装—管道的切割下料—管道的丝接、卡接、焊接—管道安装—管道在线酸洗—系统循环酸洗—系统压力试验—调整与试运转 四、安装通用技术规程 1、构件按图纸要求制作完毕,检验合格。 2、构件除锈刷油完毕,检验合格。 3、构件按安装顺序运到指定位置。 4、出厂前物件编号清晰,准确无误。 5、构件安装前的前道专业工序施工完毕,检查合格,移交资料完整真实,复测合格。 6、施工用检测设备及仪表必须经计量鉴定,校验合格后方可使用。 7、构件安装完毕后,应清除表面焊疤,并修复平整,补刷油漆。 8、所使用的焊条、焊丝应具有出厂质量证明书。 五、安装施工技术要求 (一)安装前的技术准备 1.技术资料的熟悉与准备: 工程技术人员应熟悉液压系统安装图、管道走向布置图、液压元件、辅件、管件清单及元件样本等。 2.设备及管材、管材、管件、元件、辅件等的准备: 按照液压系统图及液压件清单,核对其数量,确认其规格、

液压硫化机液压原理的设计

1140液压硫化机液压原理的设计 随着我国交通运输事业的迅速发展,高速公路不断铺设,这就对对汽车轮胎的均匀性提出了越来越高的要求,因此对硫化机的工作精度要求也随之提高。 目前我国轮胎行业广泛应用的是50年代发展起来的机械式硫化机,由于本身结构的原因,机械式硫化机存在如下问题: 1. 上下热板的平行度、同轴度、机械手卡爪圆度和对下热板内孔的同轴度等精度等级低,特别是重复精度低; 2. 连杆、曲柄齿轮等主要受力件上的运动副,是由铜套组成的滑动轴承,易磨损,对精度影响较大。 3. 上下模受到的合模力不均匀,对双模轮胎定型硫化机而言,两侧的受力,大于两内侧的受力; 4. 合模力是在曲柄销到达下死点瞬间由各受力构件弹性变形量所决定的,而温度变化使受力构件尺寸发生变化,合模力也随之发生变化,因此,生产过程中温度的波动将造成合模力的波动。 由于机械式轮胎硫化机存在的不可克服的弱点,已不能满足由于高速公路的发展,对汽车轮胎质量要求的日益提高。因而世界上主要轮胎公司已逐步采用液压式硫化机代替传统的机械式硫化机,这是因为液压式硫化机结构上具有如下特点: 1. 机体为固定的框架式,结构紧凑,刚性良好。虽然液压式硫化机也是双模腔,但从受力角度看,只是两台单模硫化机连结在一起,在合模力作用下,机架微小变形是以模具中心线对称的; 2. 开合模时,上模部分仅作垂直上下运动,可保持很高的对中精度和重复精度;另一方面,对保持活洛模的精度也较为有利; 3. 上下合模力均匀,不受工作温度影响; 4. 整机重量减轻,仅为机械式硫化机的1/3; 5. 由于取消了全部蜗轮减速器、大小齿轮、曲柄齿轮和连杆等运动部件和易损件,使维护保养工作量减少。 一、液压式轮胎定型硫化机的工作程序 液压硫化机工作时,升降油缸带动上模沿导向柱上升,在机架内形成空腔,装胎装置转进装胎,中心机构的上下环上升,胎胚定位,装胎装置卸胎后退出,升降油缸带动上模沿导向柱下降合模,胎胚定型后合模到位,在模座下面的4个短行程加力油缸作用下,产生要求的合模力。轮胎硫化结束后,加力油缸卸压,升降油缸带动上模上升,轮胎脱出上模,上模上升到位后,中心机构囊筒上升,轮胎脱下模,中心机构的上下环下降,胶囊收入囊筒中,同时,卸胎机构转进,囊筒下降,卸胎机构将轮胎翻转而出,送至后充气冷却。 从各国实践经验看,液压式硫化机在升降驱动装置、活络模装置、加力装置、中心机构、囊筒升降装置上采用液压驱动。可以说除卸胎装置和装胎装置采用气动控制外,其它均采用液压驱动。因此,作为动力源的液压系统设计十分重要。 二、硫化机液压动力源的设计 1140 液压式轮胎硫化机硫化胎圈直径范围12"~18",最大合模力为1360KN。合模力的获得完全来源于油压。一般采用低压力、较快速度、较长行程的油缸控制开合模。合模后,用高压、短行程的油缸使上下模受到合模力。由于负载和速度变化较大,要求相应的液压系统能提供较大范围变化的压力和流量。 液压系统各缸工作时所需流量计算如下: 缸的几何流量Q= 式中: Q-几何流量 l/min A-有效面积 S-缸的行程 m

毕业设计(论文)_液压控制阀的研究与设计

液压控制阀的研究与设计 第1章绪论 液压技术作为一门新兴应用学科,虽然历史较短,发展的速度却非常惊人。液压设备能传递很大的力或力矩,单位功率重量轻,结构尺寸小,在同等功率下,其重量的尺寸仅为直流电机的10%~20%左右;反应速度快、准、稳;又能在大范围内方便地实现无级变速;易实现功率放大;易进行过载保护;能自动润滑,寿命长,制造成本较低。因此,世界各国均已广泛地应用在锻压机械、工程机械、机床工业、汽车工业、冶金工业、农业机械、船舶交通、铁道车辆和飞机、坦克、导弹、火箭、雷达等国防工业中。 液压传动设备一般由四大元件组成,即动力元件——液压泵;执行元件——液压缸和液压马达;控制元件——各种液压阀;辅助元件——油箱、蓄能器等。 液压阀的功用是控制液压传动系统的油流方向,压力和流量;实现执行元件的设计动作以控制、实施整个液压系统及设备的全部工作功能。 1.1 液压技术的发展历史 液压传动理论和液压技术发展的历史可追溯17世纪,当时的荷兰人史蒂文斯(Strvinus)研究指出,液体静压力随液体的深度变化,与容器的形状无关。之后托里塞勒(Torricelli)也对流体的运动进行研究。17世纪末,牛顿对液体的粘度以及浸入运动流动体中的物体所受的阻力进行了研究。18世纪中叶,伯努利提出的流束传递能量理论及帕斯卡提出的静压传递原理,使液压理论有了关键性的进展。1795年英国伦敦的约瑟夫.布拉默(Joseph Bramah 1749~1814)创造了世界上第一台水压机——棉花、羊毛液压打包机。1905年,詹尼(Janney)设计了一台带轴向柱塞泵的油压传动与控制装置,并于1906年成功地应用在弗吉尼亚号战舰的炮塔俯仰、转动机构中。1936年,哈里.威克斯(Harry Vikers)提出了包括先导式溢流阀在内的些液压控制元件有力地推动了液压技术的进步。1958年美国麻萨诸塞州理工学院的布莱克本(Blackburn)、李诗颖创造了电液伺服阀,并于1960年发表了对液压技术有杰出贡献的论著——《流体动力控制》。 现在由于微型计算机与液压技术日益密切的结合,对液压控制阀提出了更高、更新的要求,液压控制已开始形成了一个分支学科,继续不断不断地向高、精、尖的方向发展。 1.2 我国液压阀技术的发展概况 我国的液压工业及液压阀的制造,起始于第一个五年计划(1953~1957年),期间,由于机床制造工业发展的迫切需求,50年代初期,上海机床厂、天津液压件厂 - 1 -

非常详细的液压阀块设计经验总结

非常详细的液压阀块设计经验总结 2016-07-26液压哥液压圈 1.阀块体的外形一般为矩形六面体。 2.阀块体材料宜采用35钢锻件或连铸坯件。 3.阀块体的最大边长宜不大于600mm,所包含的二通插装阀插件数量宜不大于8。 4.当液压回路所含的插件多于8个时,应分解成数个阀块体,各阀块体之间用螺栓相互连接,结合面处的连接孔道用O型密封圈予以密封,组成整体的阀块组。连接螺栓的矩形性能应不低于12.9级。 5.设计阀块体的主级孔道时应考虑尽可能减小流阻损失及加工方便。 6.主级孔道的直径按公式(1)估算选取: 式中: D - 孔道直径,mm; Q - 孔道内可能流过的最大工作流量,L/min; vmax - 孔道允许的最大工作液流速,m/s。 一般,对于压力孔道,vmax不大于6m/s;对于回油孔道,vmax不大于3m/s。 按公式(1)估算出的孔道直径应园整至标准的通径值。 7.当主级孔道与多个插件贯通时,为减小贯通处的局部流阻损失,宜采用与插件孔偏贯通的方法(使主级孔道的中心线与插件孔的中心线偏移)。一般使主级孔道中心线与插件孔孔壁相切。同时也可以加大孔道通径,加大的通径应不超过GB2877的规定。 8.为改善深孔工艺性,设计时可考虑增大孔径或采用两端钻孔对接的方法。 9.设计时应尽量避免在阀块体内设置复杂连接的控制孔道和三维斜孔,应充分利用控制盖板内的控制孔道,或采用先导控制块等专用的控制孔道连接体。先导孔道的直径应与GB2877的规定一致。若因工艺需要而减小先导孔道的直径时,应作验算,确认不至影响对主级阀的控制要求。

10. 应避免采用倾斜孔道。必须倾斜时,孔道的倾斜角度应不超过35°,并须保证孔口的密封良好。对主级斜孔,应在有关视图上标注出因斜孔加工而造成的椭园孔口的长轴尺寸。 11. 当较小孔道孔径不大于25mm时,两相邻孔道孔壁之间的距离应不小于5mm;较小孔道孔径大于25mm时,两相邻孔道孔壁之间的距离应不小于10mm。 12. 为避免污染物的沉积,对于相通的孔道,孔深一般应到与之相通的孔道的中心线为止。 13.主级孔道的外接油口一般采用法兰连接。对于通径为25mm以下的较小油口,也可采用螺纹连接。先导孔道的外接油口宜采用螺纹连接。 14. 工艺孔道应采用螺塞、法兰等可拆方式封堵,以便孔道的清理、清洗和检查。螺塞的螺纹应符合GB2878的规定。在位置不允许时,对直径不大于12mm的孔道,允许采用球涨式堵头封堵。 15.主级孔道和主要的先导孔道上应设置必要的检测口,以便检测液压回路的工作参数。检测口一般应安装具快速连接功能的测压接头。 16.阀块体的所有外接油口、检测口均应有油口标记,油口标记应与液压原理图上的相应标记一致。 17. 应在阀块体的醒目部位,预留铭牌安装位置。 18.阀块体应有吊装结构,一般采用吊环螺钉。 19.采用锻件毛坯时,应经正火处理以消除残余内应力。必要时应进行无损探伤以检查其内部质量。 20.棱边倒角2×45°,阀体较小时则倒角1.5×45°。 21.各油道孔口应保持尖边,勿倒角,但应去尽毛刺。各管接头螺纹孔口倒角深度应不大于螺距的二分之一。 22.去毛刺、飞边,认真清除孔道内切屑、杂质,并清洗干净。 23.在各油口旁打上相应的油口标记钢印,钢印距孔口不小于6mm(以不影响O型密封圈的密封性能为准)。 24. 当阀块体表面采用化学镀镍处理时,镀层厚0.008~0.012mm。

液压系统检验规范

来料紧固件检验规范 文件编号: 版号: 编制: 批准: 受控状态: 分发号:

1、目的 为了确保本公司采购的液压系统符合技术设计的要求,特制订本检验规范,采购人员与检验人员需依此检验规范进行采购和验收。 2、范围 本检验规范规定了本公司采购的液压系统的技术要求、测试方法、验收规 则。 3、职责 检验员:负责依据检验规范及相关产品规格的标准资料执行各项目检验。 采购人员:负责依本规范的质量要求进行产品的采购。 仓库员:负责来料的液压系统报检和入库管理。 调试责任人:由电气设计部负责准备液压系统测试所需要的成套控制系(控制程序),同时把控制程序调试到与实际工况相一致,确保在测试过程中液压系统能按控制系统规定的要求运行; 检验责任人:负责审批相关检验记录表,协调处理质量异常问题。 4、工作程序 4.1来料检验员 取得公司质量检验员任职资格,了解液压系统的相关术语及要求,熟悉公 司流程。 4.2检验设备及工具 游标卡尺、卷尺、万用表 4.3检验前准备: 4.3.1确认液压系统、厂牌及图面资料,承认书及检验注意事项。 4.3.2核对液压系统型号与验收单的料号是否符合。 4.3.3设备验收记录表。 5.技术条件 5.1. 基本原则 5.1.1. 油箱、泵站、阀块、阀架、蓄能器架、滤油器和冷却器架的安装。管道的最终安装,必须在一个清洁的室内进行。近旁不允许进行喷沙和打磨等作业、 5.1.2. 制造油箱、阀块、管道的材料应符合图纸要求、其材质必须由明确的原始依据或自行理化检验报告和合格证。

5.1.3. 所有装再系统上的元件都必须有元件出厂合格证,并应存档保存或随系统总成付用户。对在保管和运输过程中因变形、锈蚀、污染等产品质量受影响 的元件不得用于装配。 5.1.4. 元件的内部清洁度都应符合相应各类液压元件质量分等标准中清洁度要求,如不符合表格中相应标准规定的,应重新清洗后方可应用。 5.1.5. 系统中所有元件必须按元件制造厂的规定应用和进行操作。 5.1. 6. 所有装在系统上的橡胶密封件,包括外购液压元件上已装上的橡胶密封件,都必须在有效使用期内。 5.1.7. 所有加工零件在装配前必须清除毛刺,并进行仔细清洗。 5.2. 一般要求 5.2.1. 装配时零件间的接缝应平整,不得有明显错边。 5.2.2.考虑到系统在制造完成后要进行耐压试验、循环冲洗、分回路功能试验。因此要预先拟出试验方法等;准备、冲洗板、盲盖、A、B口回路沟通板等配件。并准备好负载试验用的油缸(或油达、加载阀、调速阀等)。 5.2. 3.在产品每个独立台架上的明显和适当部分,牢固地装贴与该台架上有关的液压系统图。 5.2.4 .在产品的明显和适当部位,牢固地装贴产品标牌。该标牌内容至少应包括:系统名称、主要技术参数、制造厂家、设计单位、验收单位、出厂年月。 5.2. 5.装配完毕后的总成所有外露油口应用耐油塞子封口,禁用纸张、棉纱、木塞等封口。 5.2. 6.经过试验合格后的系统各组件、元件、外露表面应涂耐用油漆,涂液要求符合涂装规范、 5.2.7. 液压系统总成生产厂应对系统的使用、现场调试负责。在使用期限内凡因设计、制造质量上的问题(除了外购配套件)发生质量问题时,系统总成生 产厂应负责无偿地为用户修理或更换。 5.2. 8.液压系统的设计制造还应符合GB37766-83液压通用技术条件 5.2. 9.在产品的明显和适当部位,牢固地装贴每个回路和各外接油口的标牌。

液压阀块设计

液压阀块设计方法 1.1液压阀块的结构特点 按照结构和用途划分,液压阀块有条形块、小板块,盖板、夹板、阀安装底板、泵阀块、逻辑阀块、叠加阀块、专用阀块、集流排管和连接块等多种形式。实际系统中的液压阀块是由阀块体以及其上安装的各种液压阀、管接头、附件等元件组成。 (1)阀块体 阀块体是集成式液压系统的关键部件,它既是其它液压元件的承装载体,又是它们油路连通的通道体。阀块体一般都采用长方体外型,材料一般用铝或可锻铸铁。阀块体上分布有与液压阀有关的安装孔、通油孔、连接螺钉孔、定位销孔,以及公共油孔、连接孔等,为保证孔道正确连通而不发生干涉有时还要设置工艺孔。一般一个比较简单的阀块体上至少有40-60个孔,稍微复杂一点的就有上百个,这些孔道构成一个纵横交错的孔系网络。阀块体上的孔道有光孔、阶梯孔、螺纹孔等多种形式,一般均为直孔,便于在普通钻床和数控机床上加工。有时出于特殊的连通要求设置成斜孔,但很少采用。 (2)液压阀 液压阀一般为标准件,包括各类板式阀、插装阀、叠加阀等,由连接螺钉安装在阀块体上,实现液压回路的控制功能。 (3)管接头 管接头用于外部管路与阀块的连接。各种阀和阀块体组成的液压回路,要对液压缸等执行机构进行控制,以及进油、回油、泄油等,必须与外部管路连接才能实现。 (4)其它附件 包括管道连接法兰、工艺孔堵塞、油路密封圈等附件。 1.2液压阀块的布局原则 阀块体外表面是阀类元件的安装基面,内部是孔道的布置空间。阀块的六个面构成一个安装面的集合。通常底面不安装元件,而是作为与油箱或其它阀块的叠加面。在工程实际中,出于安装和操作方便的考虑,液压阀的安装角度通常采用直角。 液压阀块上六个表面的功用(仅供参考): (1)顶面和底面 液压阀块块体的顶面和底面为叠加接合面,表面布有公用压力油口P、公用回油口O、泄漏油口L、以及四个螺栓孔。 (2)前面、后面和右侧面 (a)右侧面:安装经常调整的元件,有压力控制阀类,如溢流阀、减压阀、顺序阀等:流量控制阀类,如节流阀、调速阀等。 (b)前面:安装方向阀类,如电磁换向阀、单向阀等;当压力阀类和流量阀类在右侧面安装不下时,应安装在前面,以便调整。 (c)后面:安装方向阀类等不调整的元件。 (3)左侧面

液压阀块设计详细要求

液压阀块设计规范1.阀块体的外形一般为矩形六面体。 2.阀块体材料宜采用35钢锻件或连铸坯件。 3.阀块体的最大边长宜不大于600mm,所包含的二通插装阀插件数量宜不大于8。 4.当液压回路所含的插件多于8个时,应分解成数个阀块体,各阀块体之间用螺栓相互连接,结合面处的连接孔道用O型密封圈予以密封,组成整体的阀块组。连接螺栓的矩形性能应不低于12.9级。 5.设计阀块体的主级孔道时应考虑尽可能减小流阻损失及加工方便。 6.主级孔道的直径按公式(1)估算选取: 式中: D -孔道直径,mm; Q -孔道内可能流过的最大工作流量,L/min; vmax -孔道允许的最大工作液流速,m/s。 一般,对于压力孔道,vmax不大于6m/s;对于回油孔道,vmax不大于3m/s。(一般取压力孔道不超过8m/s,回油孔道不超过4 m/s) 按公式(1)估算出的孔道直径应园整至标准的通径值。 7.当主级孔道与多个插件贯通时,为减小贯通处的局部流阻损失,宜采用与插件孔偏贯通的方法(使主级孔道的中心线与插件孔的中心线偏移)。一般使主级孔道中心线与插件孔孔壁相切。同时也可以加大孔道通径,加大的通径应不超过GB2877的规定。 8.为改善深孔工艺性,设计时可考虑增大孔径或采用两端钻孔对接的方法。(为避免钻头损坏,通常钻孔深度不易超过孔径的25倍) 9.设计时应尽量避免在阀块体内设置复杂连接的控制孔道和三维斜孔,应充分利用控制盖板内的控制孔道,或采用先导控制块等专用的控制孔道连接体。先导孔道的直径应与GB2877的规定一致。若因工艺需要而减小先导孔道的直径时,应作验算,确认不至影响对主级阀的控制要求。 10. 应避免采用倾斜孔道。必须倾斜时,孔道的倾斜角度应不超过35°,并须保证孔口的密封良好。对主级斜孔,应在有关视图上标注出因斜孔加工而造成的椭园孔口的长轴尺寸。 11. 当较小孔道孔径不大于25mm时,两相邻孔道孔壁之间的距离应不小于5mm;较小孔道孔径大于25mm 时,两相邻孔道孔壁之间的距离应不小于10mm。 若较小孔径小于10mm时,孔壁间距离可以缩小到4mm(一般以该值为基准)。但在结构布局受限时,若孔内压力小于6.3MPa时,可以缩小到3mm。 也可按以下方式校核:(考虑到细长孔,钻孔时可能会偏,实际应在计算结果的基础上适当加大。) 孔间距计算公式:δ=P*d2*[σ] δ= (P*d)/(2*[σ])。([σ] =σb/n) 式中:P —最大工作压力,MPa ;[σ] —块体材料的许用应力,MPa ;σb —块体材料的抗拉强度,MPa ;n —安全系数。(取相邻两孔计算值的最大值) 12. 为避免污染物的沉积,对于相通的孔道,孔深一般应到与之相通的孔道的中心线为止。(这样加工孔道截面偏小,能损较大,钻尖建议到达孔对面壁上。) 13.主级孔道的外接油口一般采用法兰连接。对于通径为25mm以下的较小油口,也可采用螺纹连接。先导孔道的外接油口宜采用螺纹连接。 标准法兰。SAE J518法兰或Parker油口连接法兰采用.

液压阀块设计经验

同兴液压总汇:贴心方案星级服务 液压阀块设计经验 (同兴液压总汇) 液压阀块的设计大多属于非标设计,需要根据不同的工况和使用要求进行针对性设计,设计阀块时大致分为以下几步:选材、加工与热处理、去毛刺与清洗、表面防锈处理、试验。 1、选材: 不同的材料决定了不同的压力等级,首先根据使用压力进行合理选材,一般来说遵循以下原则: 工作压力P<6.3MPa时,液压阀块可以采用铸铁HT20一40。采用铸铁件可以进行大批量铸造,减少工时,提高效率,特别适用于标准化阀块。 6.3MPa≤P<21MPa时,液压阀块可以选用铝合金锻件、20号锻钢或者Q235;低碳钢焊接性能好,特别适合与非标的硬管(使用中很多阀块需要和硬管进行焊接)进行焊接。 P≥21MPa时,液压阀块可以选用35号锻钢。锻打后直接机加工或者机加工后调质处理HB200-240(一般高压的阀块,往往探伤、机加工与热处理循环进行)。 2、阀块的设计与加工 设计阀块时阀块最初的厚度定为最大通径的5倍,然后根据具体设计逐步才缩小;设计通道时应合理布置孔道,尽量减少深孔、斜孔和工艺孔,先安排大流量通道,最后是先导油通道,各孔道之间的安全壁厚不得小于3~5mm,还应考虑钻头在允许范围内的偏斜,适当加大相邻孔道的间距;通道内液压油流速不能高于12m/s,回油通道要比是进油通道大20-40%;阀块进油口,工作口,控制口要加工测压口;各阀口要刻印标号;对于质量较大的阀块必须有起吊螺钉口,阀块设计完成后进行加工,其加工工艺大致如下: (1)加工前处理。加工阀块的材料需要保证内部组织致密,不得有夹层、沙眼等缺陷,加工前应对毛坯探伤。铸铁块和较大的钢材块在加工前应进行时效处理和预处理。 (2)下料。一般每边至少留2mm以上加工余量。 (3)铣外形。铣削阀块6面,每边留0.2-0.4mm粗磨量。 (4)粗磨。粗磨阀块6面,每边留0.05~0.08mm精磨量,保证每对对应面平行度小于0.03mm,两相邻面垂直度小于0.05mm。 (5)划线。有条件的可在数控钻床上直接用中心钻完成。 (6)钻孔。各孔表面精糙度为Ra12.5。 (7)精磨。磨削阀块6面,各表面磨至粗糙度Ra0.4um。 阀块加工时必须严格控制形位公差以满足使用要求,形位公差值参考如下:阀块6个面相互之间的垂直度公差为0.05mm;相对面的平行度公差为 O.03mm; 各面的平面度公差为O.02mm;螺纹与其贴合面之间垂直度公差0.05mm;所有孔与所在端面垂直度的允差为如0.05mm 3、去毛刺与清洗 为了保证液压系统的清洁度,阀块必须进行去毛刺。目前很多厂家仍然采用

相关文档
最新文档