2019-2020学年高中数学 第二章《2.2.1直线与平面平行的判定》教案 新人教A版必修2.doc

2019-2020学年高中数学 第二章《2.2.1直线与平面平行的判定》教案 新人教A版必修2.doc
2019-2020学年高中数学 第二章《2.2.1直线与平面平行的判定》教案 新人教A版必修2.doc

2019-2020学年高中数学 第二章《2.2.1直线与平面平行的判定》教

案 新人教A 版必修2

一、三维目标: 1、知识与技能

(1)理解并掌握直线与平面平行的判定定理;

(2)进一步培养学生观察、发现的能力和空间想象能力; 2、过程与方法

学生通过观察图形,借助已有知识,掌握直线与平面平行的判定定理。 3、情感、态度与价值观

(1)让学生在发现中学习,增强学习的积极性; (2)让学生了解空间与平面互相转换的数学思想。 二、教学重点、难点

重点、难点:直线与平面平行的判定定理及应用。

三、学法:学生借助实例,通过观察、思考、交流、讨论等,理解判定定理。 四、教学过程

(一)创设情景、揭示课题

空间两直线有几种位置关系?直线和平面的位置关系,有几种,分别是什么?如何画出表示直线和平面的位置关系的图形呢?直线和平面的位置关系中,平行是一种非常重要的关系。

引导学生观察身边的实物,如教材第54页观察题:封面所在直线与桌面所在平面具有什么样的位置关系?如何去确定这种关系呢?直线与平面是否平行,可以直接用定义来检验,但“没有公共点”不好验证,所以我们来寻找比较实用又便于验证的判定定理.我们先来观察:门框的对边是平行的,如图a ∥b ,当门扇绕着一边a 转动时,另一边b 始终与门扇不会有公共点,即b 平行于门扇.由此我们得到: 这就是我们本节课所要学习的内容。 (二)研探新知 1、问题

直线a 与平面α平行吗?

若α内有直线b 与a 平行, 那么α与a 的位置关系如何?

是否可以保证直线a 与平面α平行?

α

a

α a

b

学生思考后,师生共同探讨,得出以下结论

直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

简记为:线线平行,则线面平行。 符号表示:

a α

b α => a ∥α a ∥b

(附证明,可不讲)

已知:a α?,b α?,a ∥b (图2) 求证: a ∥α. 证明:∵a ∥b ,

∴经过,a b 确定一个平面β. ∵a α?,而a β?, ∴α与β是两个不同的平面. ∵b α?,且b β?, ∴b α

β=.

下面用反证法证明a 与α没有公共点,假设a 与α有公共点P ,则P α∈,b αβ=,点P

是,a b 的公共点,这与a ∥b 矛盾.

∴a ∥α.

推理模式:a α?,b α?,a ∥b ?a ∥α

例1求证:空间四边形相邻两边中点的连线,平行于经过另外两边的平面. 已知:空间四边形ABCD 中,,E F 分别是,AB AD 的中点(图3) 求证:EF ∥平面BCD .

引导学生思考后,师生共同完成该例是判定定理的应用,让学生掌握将空间问题转化为平面问题的化归思想。

例2:P 是平行四边形ABCD 所在平面外一点,Q 是PA 中点。求证:PC ‖平面BDQ

线面平行问题,通常转化为线线平等来处理,如何寻找平行直线自然成为问题的关键,这可

通过联想三角形中位线、平行四边形对边、梯形两底边、平行公理来完成。

在平面BDQ内找一条直线平行于PC,可以利用“中点”构造中位线解决。

例3、已知四面体ABCD中,M、N分别是三角形ABC和三角形ACD的重心,求证;(1)MN‖平面ABD ;(2)BD‖平面CMN。

例4、如图,已知P是平行四边形ABCD所在平面外一点,M、N分别是AB、PC的中点.

(1)求证:MN∥平面PAD;

(2)若MN=BC=4,PA=43,求异面直线PA与MN所成的角的大小.(30°)

练习册概念判断题

1、下列命题中正确的是( )

①过一点一定存在和两条异面直线都平行的平面

②直线l、平面α与同一条直线m平行,则l∥α

③若两条直线没有公共点,则过其中一条直线一定有一个平面与另一条直线平行

A.① B.③

C.①③ D.①②③

[答案] B

2、给出下列结论

(1)过平面外一点有且只有一条直线与已知平面平行.

(2)过直线外一点,有且只有一个平面与已知直线平行.

(3)a、b是异面直线,则过b存在惟一一个平面与a平行.

其中正确的有( )

A.1个B.2个

C.3个D.4个

[答案] A

[解析] (1)错(2)错(3)正确

3、给出下列结论:

(1)平行于同一条直线的两条直线平行;

(2)平行于同一条直线的两个平面平行;

(3)平行于同一平面的两条直线平行;

(4)平行于同一个平面的两个平面平行.

其中正确的个数为( )

A.1个B.2个C.3个D.4个

[答案] B

[解析] 由公理4知(1)正确,正方体ABCD-A1B1C1D1中,DD1∥平面ABB1A1,DD1∥平面BB1C1C,但两个平面相交,故(3)错;同样在正方体ABCD-A1B1C1D1中,A1B1与B1C1都与平面ABCD平行,故(3)错;(4)正确,故选B.

4.给出下列命题:

①若直线与平面没有公共点,则直线与平面平行;

②若直线与平面内的任意一条直线无公共点,则直线与平面平行;

③若直线与平面内的无数条直线不相交,则直线与平面平行;

④若两条平行直线中的一条与一个平面平行,则另一条也与这个平面平行.

其中正确命题的序号是( )

A.①② B.③④

C.①③ D.②④

[答案] A

[解析] 由定义知①正确;若直线与平面内的任一条直线无公共点,则此直线与平面无公共点,∴②正确;如图(1),直线a∩α=A,a与α内不过A点的任意直线都不相交,故③错;如图(2),a∥b,b?α,满足a∥b,a∥α,故④错.

(三)自主学习、发展思维

练习:教材第55页 1、2题

1.如图,长方体ABCD–A′B′C′D′中,

(1)与AB平行的平面是 .

(2)与AA′平行的平面是 .

(3)与AD平行的平面是 .

2.如图,正方体,E为DD1的中点,试判断BD1与平面AEC的位置关系并说明理由.

让学生独立完成,教师检查、指导、讲评。

(四)小结,归纳整理

1、同学们在运用该判定定理时应注意什么?

2、在解决空间几何问题时,常将之转换为平面几何问题。

(五)作业

1、教材第62页习题2.2 A组第3题;

2、预习:如何判定两个平面平行?

高中数学竞赛基础平面几何知识点总结

高中数学竞赛平面几何知识点基础 1、相似三角形的判定及性质 相似三角形的判定: (1)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似; (2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似.); (3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似.); (4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似(简叙为两角对应相等,两个三角形相似.). 直角三角形相似的判定定理: (1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似; (2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似. 常见模型: 相似三角形的性质: (1)相似三角形对应角相等 (2)相似三角形对应边的比值相等,都等于相似比 (3)相似三角形对应边上的高、角平分线、中线的比值都等于相似比 (4)相似三角形的周长比等于相似比 (5)相似三角形的面积比等于相似比的平方 2、内、外角平分线定理及其逆定理 内角平分线定理及其逆定理: 三角形一个角的平分线与其对边所成的两条线段与这个角的两边对应成比例。如图所示,若AM平分∠BAC,则 该命题有逆定理: 如果三角形一边上的某个点与这条边所成的两条线段与这 条边的对角的两边对应成比例,那么该点与对角顶点的连

线是三角形的一条角平分线 外角平分线定理: 三角形任一外角平分线外分对边成两线段,这两条线段和夹相应的内角的两边成比例。 如图所示,AD平分△ABC的外角∠CAE,则 其逆定理也成立:若D是△ABC的BC边延长线上的一点, 且满足,则AD是∠A的外角的平分线 内外角平分线定理相结合: 如图所示,AD平分∠BAC,AE平分∠BAC的外角 ∠CAE,则 3、射影定理 在Rt△ABC中,∠ABC=90°,BD是斜边AC上的高,则有射 影定理如下: BD2=AD·CD AB2=AC·AD BC2=CD·AC 对于一般三角形: 在△ABC中,设∠A,∠B,∠C的对边分别为a,b,c,则有 a=bcosC+ccosB b=ccosA+acosC c=acosB+bcosA 4、旋转相似 当一对相似三角形有公共定点且其边不重合时,则会产生另 一对相似三角形,寻找方法:连接对应点,找对应点连线和 一组对应边所成的三角形,可以得到一组角相等和一组对应 边成比例,如图中若△ABC∽△AED,则△ACD∽△ABE 5、张角定理 在△ABC中D为BC边上一点,则 sin∠BAD/AC+sin∠CAD/AB=sin∠BAC/AD 6、圆内有关角度的定理 圆周角定理及其推论: (1)圆周角定理指的是一条弧所对圆周角等于它所对圆心角的一半 (2)同弧所对的圆周角相等 (3)直径所对的圆周角是直角,直角所对的弦是直径

高中数学必修4知识点总结:第二章 平面向量

高中数学必修4知识点总结 第二章 平面向量 16、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 17、向量加法运算: ⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式:a b a b a b -≤+≤+ . ⑷运算性质:①交换律:a b b a +=+ ; ②结合律:()() a b c a b c ++=++ ;③00a a a +=+= . ⑸坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y +=++ . 18、向量减法运算: ⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y -=-- . 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1 212 ,x x y y A B=-- . 19、向量数乘运算: ⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ . ①a a λλ= ; ②当0λ>时,a λ 的方向与a 的方向相同;当0λ<时,a λ 的方向与a 的方向相反;当0λ=时,0a λ= . ⑵运算律:①()()a a λμλμ= ;②()a a a λμλμ+=+ ;③() a b a b λλλ+=+ . ⑶坐标运算:设(),a x y = ,则()(),,a x y x y λλλλ== . 20、向量共线定理:向量() 0a a ≠ 与b 共线,当且仅当有唯一一个实数λ,使b a λ= . 设()11,a x y = ,()22,b x y = ,其中0b ≠ ,则当且仅当12210x y x y -=时,向量a 、() 0b b ≠ 共线. 21、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+ .(不共线的向量1e 、2e 作为这一平面内所有向量的一组基 b a C B A a b C C -=A -AB =B

高中数学《平面的基本性质》教案

§1.2.1平面的基本性质 一、教学目标: 1、知识与技能 (1)借助生活中的实物,学生对平面产生感性的认识; (2)掌握平面的表示法,认识水平放置的直观图; (3)掌握平面的基本性质及作用; (4)培养学生的空间想象能力。 2、过程与方法 通过师生的共同讨论,学生经历平面的感性认识。 3、情感与价值 使用学生认识到我们所处的世界是一个三维空间,进而增强了学习的兴趣。 二、教学重点、难点 重点:(1)平面的概念及表示; (2)平面的基本性质,注意他们的条件、结论、作用、图形语言及符号语言。 难点:平面基本性质的掌握与运用。 三、学法与教学用具 (1)学法:学生通过阅读教材,联系身边的实物思考、交流,师生共同讨论等,从而较好地完成本节课的教学目标。 (2)教学用具:投影仪、投影片、正(长)方形模型、三角板 四、授课类型:新授课 五、教学过程 (一)创设引入情景 生活中常见的如黑板、平整的操场、桌面、平静的湖面等等,都给我们以平面的印象。你们能举出更多例子吗? 平面的含义是什么呢? (二)建立模型 1、平面含义 以上实物都给我们以平面的印象,几何里所说的平面,就是从这样的一些物体中抽象出来的,但是,几何里的平面是无限延展的。 2、平面的画法及表示 在平面几何中,怎样画直线?一条直线平移就得到了一个平面。我们通常把一个“水平 放置的平面画成一个平行四边形,锐角画成450 ,且横边画成邻边的2倍长”。(如图): 平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。 如果几个平面画在一起,当一个平面的一部分被另一个平面遮住时,应画成虚线或不画(打出投影片) D C B A α β β

直线与平面、平面与平面平行的判定(附答案)

直线与平面、平面与平面平行的判定 [学习目标] 1.理解直线与平面平行、平面与平面平行判定定理的含义.2.会用图形语言、文字语言、符号语言准确描述直线与平面平行、平面与平面平行的判定定理,并知道其地位和作用.3.能运用直线与平面平行的判定定理、平面与平面平行的判定定理证明一些空间线面关系的简单问题. 知识点一直线与平面平行的判定定理 语言叙述符号表示图形表示 平面外一条直线与此平面内的一条直线平 行,则该直线与此平面平行 ?? ? ?? a?α b?α a∥b ?a∥α 思考若一条直线平行于一个平面内的一条直线,则这条直线和这个平面平行吗? 答根据直线与平面平行的判定定理可知该结论错误. 知识点二平面与平面平行的判定定理 语言叙述符号表示图形表示 一个平面内的两条相交直线与另一个平 面平行,则这两个平面平行 ?? ? ?? a?α,b?α a∩b=A a∥β,b∥β ?α∥β 思考如果一条直线与两个平行平面中的一个平行,那么这条直线与另一个平面也平行吗?答不一定.这条直线与另一个平面平行或在另一个平面内. 题型一直线与平面平行的判定定理的应用 例1如图,空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、 DA的中点. 求证:(1)EH∥平面BCD; (2)BD∥平面EFGH. 证明(1)∵EH为△ABD的中位线, ∴EH∥BD.

∵EH?平面BCD,BD?平面BCD, ∴EH∥平面BCD. (2)∵BD∥EH,BD?平面EFGH, EH?平面EFGH, ∴BD∥平面EFGH. 跟踪训练1在四面体A-BCD中,M,N分别是△ABD和△BCD的重心,求证:MN∥平面ADC. 证明如图所示,连接BM,BN并延长,分别交AD,DC于P,Q两 点,连接PQ. 因为M,N分别是△ABD和△BCD的重心, 所以BM∶MP=BN∶NQ=2∶1. 所以MN∥PQ. 又因为MN?平面ADC,PQ?平面ADC, 所以MN∥平面ADC. 题型二面面平行判定定理的应用 例2如图所示,在三棱柱ABC-A1B1C1中,点D,E分别是BC与B1C1的中点.求证:平面A1EB∥平面ADC1. 证明由棱柱性质知, B1C1∥BC,B1C1=BC, 又D,E分别为BC,B1C1的中点, 所以C1E綊DB,则四边形C1DBE为平行四边形, 因此EB∥C1D, 又C1D?平面ADC1, EB?平面ADC1, 所以EB∥平面ADC1. 连接DE,同理,EB綊BD,

高中数学竞赛平面几何中的几个重要定理

平面几何中几个重要定理及其证明 一、 塞瓦定理 1.塞瓦定理及其证明 定理:在?ABC 内一点P ,该点与?ABC 的三个顶点相连所在的三条直线分别交?ABC 三边AB 、BC 、CA 于点D 、E 、F ,且D 、E 、F 三 点均不是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. 证明:运用面积比可得 ADC ADP BDP BDC S S AD DB S S ????== . 根据等比定理有 ADC ADC ADP APC ADP BDP BDC BDC BDP BPC S S S S S S S S S S ??????????-=== -, 所以APC BPC S AD DB S ??=.同理可得APB APC S BE EC S ??=,BPC APB S CF FA S ??=. 三式相乘得 1AD BE CF DB EC FA ??=. 注:在运用三角形的面积比时,要把握住两个三角形是“等高”还是“等底”,这样就可以产生出“边之比”. 2.塞瓦定理的逆定理及其证明 定理:在?ABC 三边AB 、BC 、CA 上各有一点D 、E 、F ,且D 、E 、F 均不是? ABC 的顶点,若 1AD BE CF DB EC FA ??=,那么直线CD 、AE 、BF 三线共点. A B C D F P

证明:设直线AE 与直线BF 交于点P ,直线CP 交 AB 于点D /,则据塞瓦定理有 // 1AD BE CF D B EC FA ??=. 因为 1AD BE CF DB EC FA ??=,所以有/ /AD AD DB D B =.由于点D 、D /都在线段AB 上,所以点D 与D /重合.即得D 、E 、F 三点共线. 注:利用唯一性,采用同一法,用上塞瓦定理使命题顺利获证. 二、 梅涅劳斯定理 A B C D E F P D /

高一数学必修四第二章平面向量测试题及答案

一、选择题: (本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.设点P(3,-6),Q(-5,2),R的纵坐标为-9,且P、Q、R三点共线,则R点的横坐标为()。 A、-9 B、-6 C、9 D、6 2.已知=(2,3), b=(-4,7),则在b上的投影为()。 A、B、C、D、 3.设点A(1,2),B(3,5),将向量按向量=(-1,-1)平移后得 向量为()。 A、(2,3) B、(1,2) C、(3,4) D、(4,7)4.若(a+b+c)(b+c-a)=3bc,且sinA=sinBcosC,那么ΔABC是()。 A、直角三角形 B、等边三角形 C、等腰三角形 D、等腰直角三角形5.已知| |=4, |b|=3, 与b的夹角为60°,则| +b|等于()。A、B、C、D、 6.已知O、A、B为平面上三点,点C分有向线段所成的比为2,则()。 A、B、 C、D、 7.O是ΔABC所在平面上一点,且满足条件,则点O是ΔABC的()。 A、重心 B、垂心 C、内心 D、外心8.设、b、均为平面内任意非零向量且互不共线,则下列4个命题:(1)( ·b)2= 2·b2(2)| +b|≥| -b| (3)| +b|2=( +b)2

(4)(b ) -( a )b 与 不一定垂直。其中真命题的个数是( )。 A 、1 B 、2 C 、3 D 、4 9.在ΔABC 中,A=60°,b=1, ,则 等 于( )。 A 、 B 、 C 、 D 、 10.设 、b 不共线,则关于x 的方程 x 2+b x+ =0的解的情况是( )。 A 、至少有一个实数解 B 、至多只有一个实数解 C 、至多有两个实数解 D 、可能有无数个实数解 二、填空题:(本大题共4小题,每小题4分,满分16分.). 11.在等腰直角三角形ABC 中,斜边AC=22,则CA AB =_________ 12.已知ABCDEF 为正六边形,且AC =a ,AD =b ,则用a ,b 表示AB 为______. 13.有一两岸平行的河流,水速为1,速度为 的小船要从河的一边驶 向对岸,为使所行路程最短,小船应朝________方向行驶。 14.如果向量 与b 的夹角为θ,那么我们称 ×b 为向量 与b 的“向量积”, ×b 是一个向量,它的长度| ×b |=| ||b |sin θ,如果| |=3, |b |=2, ·b =-2,则| ×b |=______。 三、解答题:(本大题共4小题,满分44分.) 15.已知向量 = , 求向量b ,使|b |=2| |,并且 与b 的夹角 为 。(10分)

《直线与平面平行的判定》教案

直线与平面平行的判定 教学目标 1.知识目标 ⑴进一步熟悉掌握空间直线与平面的位置关系; ⑵理解并掌握直线与平面平行的判定定理、图形语言、符号语言、文字语言; ⑶灵活运用直线与平面的判定定理,把“线面平行”转化为“线线平行”。 2.能力训练 ⑴掌握由“线线平行”证得“线面平行”的数学证明思想; ⑵进一步培养学生的观察能力、空间想象力与类比、转化能力,提高学生的逻辑推理能力。 3.德育渗透 ⑴培养学生的认真、仔细、严谨的学习态度; ⑵建立“实践——理论——再实践”的科学研究方法。 教学重点 直线与平面平行的判定定理 教学难点 直线与平面平行的判定定理的应用 教学方法 启发式、引导式、观察分析、理论联系实际 教具 模型、尺、多媒体设备 教学过程 (一) 内容回顾 师:在上节课我们介绍了直线与平面的位置关系,有几种?可将图形给以什么作为划分的标准? 直线与平面平行 直线与平面相交 直线在平面内 //a α a α ?{} a A α=I

(二)新课导入 1、如何判定直线与平面平行 师:请同学回忆,我们昨天就是受用了什么方法证明直线与平面平行?有直线在平面外能不能说明直线与平面平行? 生:借助定义,说明直线与平面没有公共点。 师:判断直线与平面有没有公共点,需要将直线与平面延展开瞧它们有没有交点,但延展判断并不方便灵敏,那就需要我们挖掘一种新的判定方法。我们来瞧瞧生活中的线面平行能给我们什么启发呢? 若将一本书平放在桌面上,翻动书的封面,观察封面边缘所在直线l 与 书本所在的平面具有怎样的位置关系? 师:您们能用自己的话概括出线面平行的判定定理不? 生:如果平面外一条直线与这个平面内的一条直线平行, 那么这条直线与这个平面平行。 2、分析判定定理的三种语言 师:定理的条件细分有几点? 生:线在平面外,线在平面内,线线平行 (师生互动共同整理出定理的图形语言、符号语言、文字语言) 图形语言 符号语言 文字语言 线线平行, 则线面平行。 (三)例题讲解 师:如果要证明线面平行,关键在哪里? 生:在平面内找到一条直线,证明线线平行。 例1 已知:如图空间四边形ABCD 中,E 、F 分别就是AB 、AD 的中点。求证:EF ∥平面BCD 。 证明:连结BD AE = EB ? EF ∥BD AF =FD EF ?平面BCD ?EF ∥平面BCD BD ?平面BCD 着重强调:①要证EF ∥平面BCD,关键就是在平面BCD 中找到与EF 平行的直线; ②注意证明的书写,先说明图形中增加的辅助点与线,证明步骤严谨。 例2 如图,正方体ABCD -A 1B 1C 1D 1中,E 为DD 1的中点,证明BD 1∥平面AEC 。 观察 l b a αααα////a b a b a ??? ? ?? ??

高中数学竞赛讲义_平面几何

平面几何 一、常用定理(仅给出定理,证明请读者完成) 梅涅劳斯定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','C B A 三点共线,则 .1''''''=??B C AC A B CB C A BA 梅涅劳斯定理的逆定理 条件同上,若.1''''''=??B C AC A B CB C A BA 则',','C B A 三点共线。 塞瓦定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','CC BB AA 三线平行或共点,则.1''''''=??B C AC A B CB C A BA 塞瓦定理的逆定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若.1''''''=??B C AC A B CB C A BA 则',','CC BB AA 三线共点或互相平行。 角元形式的塞瓦定理 ',','C B A 分别是ΔABC 的三边BC ,CA ,AB 所在直线上的点,则',','CC BB AA 平行或共点的充要条件是.1'sin 'sin 'sin 'sin 'sin 'sin =∠∠?∠∠?∠∠BA B CBB CB C ACC AC A BAA 广义托勒密定理 设ABC D 为任意凸四边形,则AB ?CD+BC ?AD ≥AC ?BD ,当且仅当A ,B ,C ,D 四点共圆时取等号。 斯特瓦特定理 设P 为ΔABC 的边BC 上任意一点,P 不同于B ,C ,则有 AP 2=AB 2?BC PC +AC 2?BC BP -BP ?PC. 西姆松定理 过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。 西姆松定理的逆定理 若一点在三角形三边所在直线上的射影共线,则该点在三角形的外接圆上。 九点圆定理 三角形三条高的垂足、三边的中点以及垂心与顶点的三条连线段的中点,这九点共圆。 蒙日定理 三条根轴交于一点或互相平行。(到两圆的幂(即切线长)相等的点构成集合为一条直线,这条直线称根轴) 欧拉定理 ΔABC 的外心O ,垂心H ,重心G 三点共线,且.2 1GH OG = 二、方法与例题 1.同一法。即不直接去证明,而是作出满足条件的图形或点,然后证明它与已知图形或点重合。 例1 在ΔABC 中,∠ABC=700,∠ACB=300,P ,Q 为ΔABC 内部两点,∠QBC=∠QCB=100,∠ PBQ=∠PCB=200,求证:A ,P ,Q 三点共线。 [证明] 设直线CP 交AQ 于P 1,直线BP 交AQ 于P 2,因为∠ACP=∠PCQ=100,所以 CQ AC QP AP =1 ,①在ΔABP ,ΔBPQ ,ΔABC 中由正弦定理有

高中数学必修四第二章平面向量课后习题Word版

【必修4】 第二章平面向量 2.1 练习 1、画有向线段,分别表示一个竖直向上,大小为18N 的力和一个水平向左、大小为28N 的力(1cm 长表示10N ). 2、非零向量的长度怎样表示?非零向量的长度怎样表示?这两个向量的长度相等吗?这两个向量相等吗? 3、指出图中各向量的长度. 4、(1)用有向线段表示两个相等的向量,如果有相同的起点,那么它们的终点是否相同? (2)用有向线段表示两个方向相同但长度不同的向量,如果有相同的起点,那么它们的终点是否相同? 2.2.1 练习 1、如图,已知b a ,,用向量加法的三角形法则作出b a +. 2、如图,已知b a ,,用向量加法的平行四边形法则作出b a +.

3、根据图示填空: (1)________;=+d a (2).________ =+b c 4、根据图示填空: (1)________;=+b a (2)________;=+d c (3)________;=++d b a (4).________ =++e d c 2.2.2 练习 1、如图,已知b a ,,求作.b a - 2、填空: ________;=- ________;=-BC BA ________;=-BA BC ________; =- .________=-

3、作图验证:b a b)(a --=+- 2.2.3 练习 1、任画一向量e ,分别求作向量e b e a 44-==, 2、点C 在线段AB 上,且 2 5 =CB AC ,则.________AB BC AB AC ==, 3、把下列各小题中的向量b 表示为实数与向量a 的积: ;,e b e a 63)1(== ;,e b e a 148)2(-== ;,e b e a 3132)3(=-= .3 2 43)4(e b e a -=-=, 4、判断下列各小题中的向量b a 与是否共线: ;,e b e a 22)1(=-= .22)2(2121e e b e e a +-=-=, 5、化简: ;)32(4)23(5)1(a b b a -+- ;)(2 1 )23(41)2(31)2(b a b a b a ----- .)())(3(a a y x y x --+ 6、已知向量)(三点不共线、、B A O ,求作下列向量: );(21 )1(OB OA OM += );(2 1 )2(OB OA ON -= .23)3(OB OA OG += 2.3 练习 1、已知向量b a 、的坐标,求b a b a -+,的坐标: ;,,,)25()42()1(=-=b a

直线与平面平行的判定和性质经典练习及详细答案

直线、平面平行的判定及其性质 1. 下列命题中,正确命题的是 ④ . ①若直线l 上有无数个点不在平面α内,则l ∥α; ②若直线l 与平面α平行,则l 与平面α内的任意一条直线都平行; ③如果两条平行直线中的一条直线与一个平面平行,那么另一条直线也与这个平面平行;④若直线l 与平面α平行,则l 与平面α内的任意一条直线都没有公共点. 2. 下列条件中,不能判断两个平面平行的是 (填序号). ①一个平面内的一条直线平行于另一个平面 ②一个平面内的两条直线平行于另一个平面 ③一个平面内有无数条直线平行于另一个平面 ④一个平面内任何一条直线都平行于另一个平面 答案 ①②③ 3. 对于平面α和共面的直线m 、n ,下列命题中假命题是 (填序号). ①若m ⊥α,m ⊥n ,则n ∥α ②若m ∥α,n ∥α,则m ∥n ③若m ?α,n ∥α,则m ∥n ④若m 、n 与α所成的角相等,则m ∥n 答案 ①②④ 4. 已知直线a ,b ,平面α,则以下三个命题: ①若a ∥b ,b ?α,则a ∥α; ②若a ∥b ,a ∥α,则b ∥α; ③若a ∥α,b ∥α,则a ∥b . 其中真命题的个数是 . 答案 0 5. 直线a //平面M ,直线b ? /M ,那么a //b 是b //M 的 条件. A .充分而不必要 B.必要而不充分 C.充要 D.不充分也不必要 6. 能保证直线a 与平面α平行的条件是 A.b a b a //,,αα?? B.b a b //,α? C.c a b a c b //////,,,αα? D.b D b C a B a A b ∈∈∈∈?,,,,α且BD AC = 7. 如果直线a 平行于平面α,则 A.平面α内有且只有一直线与a 平行 B.平面α内无数条直线与a 平行 C.平面α内不存在与a 平行的直线 D.平面α内的任意直线与直线a 都平行 8. 如果两直线a ∥b ,且a ∥平面α,则b 与α的位置关系 A.相交 B.α//b C.α?b D .α//b 或α?b 9. 下列命题正确的个数是

高中数学常用平面几何名定理

高中数学常用平面几何名定理 定理1 Ptolemy定理托勒密(Ptolemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。 定理2 Ceva定理 定理3 Menelaus定理 定理4 蝴蝶定理定理 内容:圆O中的弦PQ的中点M,任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。 定理5 张角定理 在△ABC中,D是BC上的一点。连结AD。张角定理指出:sin∠BAD/AC+sin∠CAD/AB=sin∠BAC/AD 定理6 Simon line西姆松(Simson)定理(西姆松线) 从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。 定理7 Eular line: 同一三角形的垂心、重心、外心三点共线,这条直线称为三角形的欧拉线;且外心与重心的距离等于垂心与重心距离的一半 定理8 到三角形三定点值和最小的点——费马点 已知P为锐角△ABC内一点,当∠APB=∠BPC=∠CPA=120°时,PA+PB+PC的值最小,这个点P称为△ABC 的费尔马点。 定理9 三角形内到三边距离之积最大的点是三角形的重心 定理10到三角形三顶点距离的平方和最小的点是三角形的重心 在几何里,平面是无限延展的,是无大小的,是不可度量的,是无厚度的,通常画平行四边形来表示平面 0、勾股定理,即直角三角形两直角边的平方和等于斜边的平方。这是平面几何中一个最基本、最重要的定理,国外称为毕达哥拉斯定理。 1、欧拉(Euler)线: 同一三角形的垂心、重心、外心三点共线,这条直线称为三角形的欧拉线;且外心与重心的距离等于垂心与重心距离的一半 2、九点圆: 任意三角形三边的中点.三条高线的垂足.垂心与各顶点连线的中点,这9点共圆,这个圆称为三角形的九点圆;其圆心为三角形外心与垂心所连线段的中点,其半径等于三角形外接圆半径的一半。

高中数学必修4第二章 平面向量公式及定义

平面向量公式 1、向量的加法 向量的加法满足平行四边形法则和三角形法则. AB+BC=AC. a+b=(x+x',y+y'). a+0=0+a=a. 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c). 2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0 AB-AC=CB.即“共同起点,指向被减” a=(x,y) b=(x',y') 则 a-b=(x-x',y-y'). 4、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣?∣a∣. 当λ>0时,λa与a同方向; 当λ<0时,λa与a反方向; 当λ=0时,λa=0,方向任意. 当a=0时,对于任意实数λ,都有λa=0. 注:按定义知,如果λa=0,那么λ=0或a=0. 实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩. 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍; 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍. 数与向量的乘法满足下面的运算律 结合律:(λa)?b=λ(a?b)=(a?λb). 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λ b. 数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b.②如果a≠0且λa=μa,那么λ=μ. 3、向量的的数量积 定义:已知两个非零向量a,b.作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作a?b.若a、b不共线,则a?b=|a|?|b|?cos〈a,b〉;若a、b共线,则a?b=+-∣a∣∣b∣. 向量的数量积的坐标表示:a?b=x?x'+y?y'. 向量的数量积的运算律 a?b=b?a(交换律);

高中数学 平面

§2.1.1平面(1) 一、设问导读(预习教材P 40~ P 43,找出疑惑之处) 问题1:观察长方体,你能发现构成空间几何体的基本要素有哪些?这些点、线、面有怎样的位置关系?本节我们将讨论这个问题. 2.平面的概念: 问题2:生活中哪些物体给人以平面形象?你觉得平面可以拉伸吗?平面有厚薄之分吗? 问题3:什么是平面呢? 如何画平面?平面如何表示呢? 问题4:点动成线、线动成面.联系集合的观点,点与直线、点与平面的位置关系怎么表示?直线与平面? A a A a A α A α 用符号语言表示: 3.平面的基本性质: 问题5:直线l 与平面α有一个公共点P ,直线l 是否在平面α内?有两个公共点呢? 问题6:公理1的文字语言如何叙述,符号语言如何符号语言如何表示?表示? 问题7:公理1有何作用? 问题8:两点确定一条直线,两点能确定一个平面吗?任意三点能确定一个平面吗? 问题9:公理2的文字语言如何叙述,符号语言如何表示? 问题10:你从公理2出发还能得出哪些推论?它们的作用是什么? 问题11:把三角板的一个角立在课桌面上,三角板所在平面与桌面所在平面是否只相交于点B ?为什么? 问题12:公理3的文字语言如何叙述,符号语言如何表示? 问题13:公理3有何作用? 二、自学检测 例1:如图,用符号表示下列图形中点、直线、平面之间的位置关系. 例2:如图在正方体ABCD A B C D ''''-中,判断下列命题是否正确,并说明理由: ⑴直线AC 在平面ABCD 内; ⑵设上下底面中心为,O O ',则平面AA C C ''与平面BB 'D D ' 的交线为OO '; ⑶点,,A O C '可以确定一个平面; ⑷平面AB C ''与平面AC D '重合; ⑸由,,A C B ''确定的平面是ADC B ''; 练 一练 :用符号表示下列语句,并画出相应的图形: ⑴点A 在平面α内,但点B 在平面α外; ⑵直线a 经过平面α外的一点M ; ⑶直线a 既在平面α内,又在平面β内. 4.课堂练习:43页 1,2,3,4. 5.课外作业:51页 习题2.1 A 组 1,2 三、巩固训练: 1. 下面说法正确的是( ). ①平面ABCD 的面积为210cm ②100个平面重合比50个平面重合厚③空间图形中虚线都是辅助线④平面不一定用平行四边形表示. A.① B.② C.③ D.④ 2. 下列说法正确的是( ). ①空间任意三点可以确定一个平面; ②有三个公共点的两个平面必重合; ③空间两两相交的三条直线确定一个平面; ④三角形是平面图形 ⑤平行四边形、梯形、四边形都是平面图形; ⑥垂直于同一条直线的两条直线平行; ⑦一条直线与两条平行线中的一条相交,也必和另一条相交; ⑧两组对边相等的四边形是平行四边形. 3.直线12,l l 相交于点P ,并且分别与平面γ相交于点,A B 两点,用符号表示为____________________. 4..平面α?平面l β=,点A α∈,B α∈,C β∈,且AB l R ?=,过A 、B 、C 三点确定平面γ,则βγ?= ( ) A . 直线AC B .直线BC C .直线CR D .以上都不对. 5. 两个平面不重合,在一个面内取4点,另一个面内取3点,这些点最多能够确定平面_______个 ※ 学习小结 1. 平面的特征、画法、表示; 2. 平面的基本性质(三个公理); 3. 用符号表示点、线、面的关系. ※ 知识拓展 平面的三个性质是公理(不需要证明,直接可以用),是用公理化方法证明命题的基础.其中公理1可以用来判断直线或者点是否在平面内;公理2用来确定一个平面,判断两平面重合,或者证明点、线共面;公理3用来判断两个平面相交,证明点共线或者线共点的问题. 四、拓展延伸 1.①两个平面α,β可将空间分成几部分? ② 已知a αβ?=,b βγ?=,c αγ?=,则平面α,β,γ可将空间分成几部分? O ' O B ' C ' D 'A ' D C B A

直线与平面平行的判定定理

§2.2.1 直线与平面平行的判定 一、学习目标: (1)理解并掌握直线与平面平行的判定定理; (2)进一步培养学生观察、发现的能力和空间想象能力; 二、学习重点与难点 重点:直线与平面平行的判定定理及应用。 难点:直线与平面平行的判定定理的探索及应用。 三、教学过程 (一)知识准备、新课引入 α 提问2:今天我们针对直线与平面平行的位置关系进行探究。根据直线与平面平行的定义(没有公共点)来判定直线与平面平行你认为方便吗?谈谈你的看法,并指出是否有别的判定途径。 (二)探求判定定理 1、直观感知 提问:根据同学们日常生活的观察,你们能感知到并举出直线与平面平行的具体事例吗? 2、动手实践 教师取出预先准备好的直角梯形泡沫板演示: 当把互相平行的一边放在讲台桌面上并转动,观察另一边与桌面的位置给人以的感觉, 当把直角腰放在桌面上并转动,观察另一边与桌面给人的印象是 3、探究思考 (1)上述演示的直线与平面位置关系为何有如此的不同?关键是什么因素起了作用呢? (2)如果平面外的直线a与平面α内的一条直线b平行,那么直线a与平面α平行吗?

4、归纳确认: 直线和平面平行的判定定理: 文字语言: 图形语言: 符号语言: 简单概括:(内外)线线平行 线面平行 温馨提示: 作用:判定或证明线面平行。 关键:在平面内找(或作)出一条直线与面外的直线平行。 思想:空间问题转化为平面问题 5、思考:你能否尝试证明一下线面平行判定定理? (三)应用定理,巩固与提高 例1:已知:空间四边形ABCD 中,E 、F 分别是AB 、AD 试判断EF 与平面BCD 的关系,并予以证明 变式:空间四边形ABCD 中,E 、F 分别是AB 、AD 上的点, 且AE= 31AB ,AF=3 1AD 求证:EF ∥平面BCD . A B C D E F

高一数学必修4第二章平面向量测试题含答案

必修4第二章平面向量教学质量检测 : 班级: 学号: 得分: 一.选择题(5分×12=60分): 1.以下说法错误的是( ) A .零向量与任一非零向量平行 B.零向量与单位向量的模不相等 C.平行向量方向相同 D.平行向量一定是共线向量 2.下列四式不能化简为AD 的是( ) A .;)++(BC CD A B B .);+)+(+(CM B C M B AD C .;-+BM A D M B D .;+-CD OA OC 3.已知a =(3,4),b =(5,12),a 与b 则夹角的余弦为( ) A . 65 63 B . 65 C .513 D .13 4. 已知a 、b 均为单位向量,它们的夹角为60°,那么|a + 3b | =( ) A .7 B .10 C .13 D .4 5.已知ABCDEF 是正六边形,且?→ ?AB =→ a ,?→ ?AE =→b ,则?→ ?BC =( ) (A ) )(2 1 → → -b a (B ) )(2 1→ → -a b (C ) →a +→b 2 1 (D ) )(2 1→ →+b a 6.设→a ,→b 为不共线向量,?→?AB =→a +2→b ,?→?BC =-4→a -→b ,?→ ?CD = -5→a -3→ b ,则下列关系式中正确的是 ( ) (A )?→?AD =?→?BC (B )?→?AD =2?→?BC (C )?→?AD =-?→?BC (D )?→?AD =-2?→ ?BC 7.设→ 1e 与→ 2e 是不共线的非零向量,且k → 1e +→ 2e 与→ 1e +k → 2e 共线,则k 的值是( ) (A ) 1 (B ) -1 (C ) 1± (D ) 任意不为零的实数 8.在四边形ABCD 中,?→?AB =?→?DC ,且?→?AC ·?→ ?BD =0,则四边形ABCD 是( ) (A ) 矩形 (B ) 菱形 (C ) 直角梯形 (D ) 等腰梯形 9.已知M (-2,7)、N (10,-2),点P 是线段MN 上的点,且?→ ?PN =-2?→ ?PM ,则P 点的坐标为( ) (A ) (-14,16)(B ) (22,-11)(C ) (6,1) (D ) (2,4)

高中数学竞赛平面几何讲座(非常详细)

第一讲 注意添加平行线证题 在同一平面内,不相交的两条直线叫平行线.平行线是初中平面几何最基本的,也是非常重要的图形.在证明某些平面几何问题时,若能依据证题的需要,添加恰当的平行线,则能使证明顺畅、简洁. 添加平行线证题,一般有如下四种情况. 1、为了改变角的位置 大家知道,两条平行直线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.利用这些性质,常可通过添加平行线,将某些角的位置改变,以满足求解的需要. 例1 、设P 、Q 为线段BC 上两点,且BP =CQ,A 为BC 外一动点(如图1).当点A 运动到使 ∠BAP =∠CAQ 时,△ABC 是什么三角形?试证明你的结论. 答: 当点A 运动到使∠BAP =∠CAQ 时,△ABC 为等腰三角形. 证明:如图1,分别过点P 、B 作AC 、AQ 的平行线得交点D.连结DA. 在△DBP =∠AQC 中,显然∠DBP =∠AQC ,∠DPB =∠C. 由BP =CQ,可知△DBP ≌△AQC.有DP =AC ,∠BDP =∠QAC. 于是,DA ∥BP ,∠BAP =∠BDP.则A 、D 、B 、P 四点共圆,且四边形ADBP 为等腰梯形.故AB =DP.所以AB =AC. 这里,通过作平行线,将∠QAC “平推”到∠BDP 的位置.由于A 、D 、B 、P 四点共圆,使证明很顺畅. 例2、如图2,四边形ABCD 为平行四边形,∠BAF =∠BCE.求证:∠EBA =∠ADE. 证明:如图2,分别过点A 、B 作ED 、EC 的平行线,得交点P,连PE. 由AB CD,易知△PBA ≌△ECD.有PA =ED,PB =EC. 显然,四边形PBCE 、PADE 均为平行四边形.有 ∠BCE =∠BPE ,∠APE =∠ADE.由∠BAF =∠BCE,可知 ∠BAF =∠BPE.有P 、B 、A 、E 四点共圆.于是,∠EBA =∠APE.所以,∠EBA =∠ADE. 这里,通过添加平行线,使已知与未知中的四个角通过P 、B 、A 、E 四点共圆,紧密联系起来.∠APE 成为∠EBA 与∠ADE 相等的媒介,证法很巧妙. 2、欲“送”线段到当处 利用“平行线间距离相等”、“夹在平行线间的平行线段相等”这两条,常可通过添加平行线,将某些线段“送”到恰当位置,以证题. 例3、在△ABC 中,BD 、CE 为角平分线,P 为ED 上任意一点.过P 分别作AC 、AB 、BC 的垂 线,M 、N 、Q 为垂足.求证:PM +PN =PQ. 证明:如图3,过点P 作AB 的平行线交BD 于F,过点F 作BC 的 平行线分别交PQ 、AC 于K 、G,连PG. 由BD 平行∠ABC,可知点F 到AB 、BC 两边距离相等.有KQ =PN. 显然,PD EP =FD EF =GD CG ,可知PG ∥EC. 由CE 平分∠BCA,知GP 平分∠FGA.有PK =PM.于是,PM +PN =PK +KQ =PQ. 这里,通过添加平行线,将PQ “掐开”成两段,证得PM =PK,就有PM +PN =PQ.证法非常简捷. 3 、为了线段比的转化 由于“平行于三角形一边的直线截其它两边,所得对应线段成比例”,在一些问题中,可以通过添加平行线,实现某些线段比的良性转化.这在平面几何证题中是会经常遇到的. ∥=A D B P Q C 图1 P E D G A B F C 图2A N E B Q K G C D M F P 图3

高中数学必修四第二章平面向量经典100道例题

第二章 平面向量 1.设向量a →的始点坐标为(3,1),终点坐标为(-1,-3),则向量a → 的坐标为( ) A. (-1,-3) B. (4,4) C. (-4,-2) D.(-4,-4) 2.在平行四边形ABCD 中,AC 为一条对角线,(2,4),(1,3)AB AC ==, 则=( ) A.)4,2( B.)5,3( C.)5,3(-- D.)4,2(-- 3.已知6,3,12a b a b ==?=-,则向量a 在b 方向上的投影为( ) A. 4- B. 4 C. 2- D. 2 4.如图,F E D ,,分别为ABC ?的三边AB CA BC ,,的中点, 则=+( ) A. AD B. 2 1 C. 2 1 D. 5.在下列向量组中,可以把向量()2,3=表示出来的是( ) A. )2,1(),0,0(21==e e B . )2,5(),2,1(21-=-=e e C. )10,6(),5,3(21==e e D. )3,2(),3,2(21-=-=e e 6.等边ABC ?的边长为1,设===, ,,则=?+?+?a c c b b a ( ) A .23 B .21 C .23- D .2 1- 7.已知点(1,1)A -,(1,2)B ,(2,1)C --,(3,4)D ,则向量AB 在CD 方向上的投影为( ) A B C .D . 8.在△ABC 中,6AB O =,为△ABC 的外心,则AO AB ?等于 A B .18 C .12 D .6 9.已知向量(1,2),(2,1)a b ==-,下列结论中不正确的是( ) A .a ⊥b B .a ∥b C .a b = D .a b a b +=- 10.已知向量)sin ,(cos θθ=a , )1,3(-=b 则|2|b a -的最大值,最小值分别是( )

高中数学平面

平面 立体几何课程是初等几何教育的内容之一,是在初中平面几何学习的基础上开设的,以空间图形的性质、画法、计算以及它们的应用为研究对象,以演绎法为研究方法.通过立体几何的教学,使学生的认识水平从平面图形延拓至空间图形,完成由二维空间向三维空间的转化,发展学生的空间想象能力,逻辑推理能力和分析问题、解决问题的能力. 平面的概念和平面的性质是立体几何全部理论的基础.平面,是现实世界存在着的客观事物形态的数学抽象,在立体几何中是只描述而不定义的原始概念,但平面是把三维空间图形转化为二维平面图形的主要媒介,在立体几何问题平面化的过程中具有重要的桥梁作用. 一、素质教育目标 (一)知识教学点 1.“平面”是空间图形的基本元素,很多空间图形的面都是平面图形,平面图形及其性质是初中平面几何的主要学习内容,因此,要建立起“空间问题平面化”的观点. 2.虽然日常生活中的平面物体有一定的局限,但作为立体几何中的“平面”无大小之分,是无限延展的. 3.平面可用图形表示,也可用符号表示,应理清与其它图形表示法的联系与区别. (二)能力训练点 1.通过“平面”概念的教学,初步培养空间想象能力,如平面的无限延展性. 2.由叙述语言、图形语言和符号语言的互译,培养语言转换能力. (三)德育渗透点 通过通俗意义上的平面到数学意义上的平面的学习,了解具体与抽象,特殊与一般的辩证关系,由点、直线、平面间内在的联系逐渐形成“事物总是运动变化”的辩证观点. 二、教学重点、难点及解决办法 1.教学重点 (1)从客观存在的平面物体抽象出“平面”概念.

(2)掌握点、直线、平面间的相互关系,并会用文字、图形、符号语言正确表示. (3)理解平面的无限延展性. 2.教学难点 (1)理解平面的无限延展性. (2)集合概念的符号语言的正确使用. 3.解决办法 (1)借助实物操作,抽象出“平面”概念. (2)运用正迁移规律,将直线的无限延伸性类比于平面的无限延展性. 三、课时安排 1课时. 四、学生活动设计 准备好纸板三块,纸盒一个,小竹签四根.纸板作为平面的模型,纸盒用于观察平面的位置,以便同画出的图形比较,小竹签用于表示直线. 五、教学步骤 (一)明确目标 1.能够从日常生活实例中抽象出数学中所说的“平面”. 2.理解平面的无限延展性. 3.正确地用图形和符号表示点、直线、平面以及它们之间的关系. (二)整体感知 “立体几何”作为一门学生刚开始学习的学科,其内容对学生来说基本上是完全陌生的,应以“讲授法’的主,引导学生观察和想象,吸引学生的注意力,激发学生的学习兴趣,初步培养空间想象力. 本课是“立体几何”的起始课,应先把这一学科的内容作一大概介绍,包括课本的知识结构,“立体几何”的研究对象,研究方法,学习立体几何的方法和作用等.而后引入“平面”概念,以类比的方式,联系直线的无限延伸性去理解平面的无限延展性,突破教学难点.在进行“平面的画法”教学时,不仅要会画水平放置的平面,还应会画直立的平面和相

相关文档
最新文档