静态电特性

静态电特性
静态电特性

MOSFET

众所周知,由于采用了绝缘栅,功率MOSFET器件只需很小的驱动功率,且开关速度优异。可以说具有“理想开关”的特性。其主要缺点是开态电阻(R DS(on))和正温度系数较高。本教程阐述了高压N型沟道功率MOSFET的特性,并为器件选择提供指导。最后,解释了Microsemi公司Advanced Power Technology (ATP) MOSFET的数据表。

功率MOSFET结构

图1为APT N型沟道功率MOSFET剖面图(本文只讨论N型沟道MOSFET)。在栅极和源极间加正压,将从衬底抽取电子到栅极。如果栅源电压等于或者高于阈值电压,栅极下沟道区域将积累足够多的电子从而产生N型反型层;在衬底形成导电沟道(MOSFET被增强)。电子在沟道内沿任意方向流动。电子从源极流向漏极时,产生正向漏极电流。沟道关断时,正向漏极电流被阻断,衬底与漏极之间的反偏PN结维持漏源之间的电势差。对于N型MOSFET,正向导通时,只有电子流,没有少子。开关速度仅受限于MOSFET内寄生电容的充电和放电速率。因此,开关速率可以很快,开关损耗很低。开关频率很高时,这让功率MOSFET具有很高的效率。

图1:N型沟道MOSFET剖面图。

开态电阻

开态电阻R DS(on)主要受沟道、JFET(积累层)、漂移区和寄生效应(多层金属,键和线和封装)等因素的影响电压超过150V时,R DS(on)主要取决于漂移区电阻。

图2:R DS(on)与电流的关系。

高压MOSFET中R DS(on)与电流的相关较弱。电流增大一倍R DS(on)仅提高了6%,见图2。

图3:R DS(on)与温度的关系。

相反,温度对R DS(on)的影响很大。如图3,温度从25℃升高到125℃,开态电阻提高近一倍。图3中曲线的斜率反映了R DS(on)的温度系数,由于载流子仅为多子,该温度系数永远为正。随着温度的升高,正温度系数将使导通损耗按照I2R增大。

功率MOSFET并联时,正的R DS(on)温度系数可以保证热稳定性,这是其很好的特性。然而,不能保证各分路的电流均匀。这一点容易被误解。MOSFET易于并联正是因为其参数的分布狭窄,特别是R DS(on)。并且与正温度系数相结合,可避免电流独占。

如图4,对于任何给定的芯片尺寸,随着额定电压的增大,R DS(on)也会随之增大。

图4:归一化后的R DS(on)与V(BR)DSS的关系。

对于功率MOS V型和功率MOS 7型MOSFET器件,通过对额定R DS(on)与V(BR)DSS的关系曲线进行拟和,可发现R DS(on)增量与V(BR)DSS的平方成正比。这种非线性关系显示了降低晶体管导通损耗的可能[2]。

本征和寄生参数

JFET寄生于MOSFET结构中,见图1。这对R DS(on)影响很大,并且是MOSFET正常操作的一部分。

本征衬底二极管

衬底和漏之间的PN结所形成的本征二极管称为体二极管(见图1)。由于衬底与源极短接,无法将反向漏极电流关断,这样体二极管构成了很大的电流通路。当反向漏极电流流过时,器件导通损耗降低,这是由于电子流过沟道,并且电子和少数载流子流过体二极管。

本征衬底二极管对于需要反向漏极电流(通常称为自振荡电流)通路的电路十分方便,例如:电桥电路。

对于这样的电路,FREDFET的反向恢复特性通常都得到了改善。FREDFET是Advanced Power Technology所使用的商标,用来区分那些采用了额外工艺步骤加快本征衬底二极管反向恢复特性的MOSFET。FREDFET中没有使用分离的二极管;仅仅是MOSFET的本征衬底二极管。通过电子辐射(经常使用的方法)或者掺杂铂来控制衬底二极管中少数载流子的寿命,极大地降低了反向恢复充电和时间。

FREDFET中额外工艺带来的负面影响是漏电流的增大,特别是高温时。然而,考虑到MOSFET开始工作时漏电流比较低,FREDFET带来的漏电流在PN结温度低于150℃时并不显著。根据电子辐射剂量的不同,FREDFET的额定R DS(on)可能比所对应的MOSFET 还要高。FREDFET的衬底二极管正向压降也会稍微高于所对应的MOSFET。对于栅极充电和开关速度,两种器件性能相同。下文中,如无特别说明,MOSFET这个词既可以代表MOSFET,也可以代表FREDFET。

与分立的快恢复二极管相比,无论是MOSFET还是FREDFET,其反向恢复性能都显得很“笨重”。对在125℃工作的硬开关而言,由于衬底二极管反向恢复电流造成的开关损耗比分立快恢复二极管要高出5倍。造成这种状况的原因有两点:

1.对于MOSFET或FREDFET,体二极管的面积相同,但同样功能的分立二极管面积小很多,这样反向恢复充电效应减小了很多。

2.对于MOSFET或FREDFET,体二极管并没有像分立二极管那样对反向恢复性能进行优化。与常规硅二极管相似,体二极管反向恢复充电效应以及时间是温度,电流随时间的变化率(di/dt)和电流的函数。体二极管正向压降,VSD,随温度的变化率为2.5 mV/℃。

寄生双极晶体管

MOSFET结构中还寄生有NPN型双极晶体管(BJT),正常工作时并不会开启。但如果BJT 开启并进入饱和区,将产生闩锁效应,这时只有从外部关断漏极电流才能关断MOSFET。闩锁效应产生大量的热会烧毁器件。

寄生BJT的基极与MOSFET源极短接用来防止闩锁效应,并且如果基极悬空,会极大的降低击穿电压(对同样的R DS(on)来说)。理论上讲,关断时会产生极高的电压变化率(dv/dt),这是造成闩锁效应的主要原因。然而,对于现代常规功率MOSFET,电路很难产生如此之高的dv/dt。

如果体二极管导通后反向关断,将产生极高的电压变化率(dv/dt),这可能会造成寄生BJT 开启。高dv/dt会在器件体区产生高的少数载流子(正载流子或者空穴)电流密度,体电阻上所积累的电压足以开启寄生BJT。这也是为什么器件会对整流(体二极管反向恢复)dv/dt峰值作限制的原因。由于降低了少数载流子寿命,FREDFET器件整流dv/dt峰值要高于MOSFET器件。

开关速度

由于电容不受温度的影响,因此开关速度和开关损耗也同样不受温度影响。然而,二极管反向恢复电流却随着温度提高而增大,因此,温度效应会对大功率电路中的外部二极管(可以是分立二极管和MOSFET或者FREDFET体二极管)造成影响,从而影响开关损耗。

阈值电压

阈值电压,即VGS(th),表示晶体管关断时的电压。该参数表示在阈值电压下,漏极电流可以达到多少毫安培,因此,器件工作在开与关的临界状态。阈值电压具有负温度系数,这意味着随着温度升高,阈值电压将降低。负温度系数会影响开关延时时间,因此电桥电路对于死时间有要求。

图5:传输特性。

传输特性

图5为APT50M75B2LL MOSFET的传输特性。传输特性依赖于温度和漏极电流。从中可以发现,100安培以下,栅-源电压是负温度系数(给定漏极电流,随着温度升高,栅-源电压降低)。而在100安培以上,温度系数为正。栅-源电压温度系数和漏极电流何时从负值变为正值对于线性区操作十分重要。

击穿电压

击穿电压具有正的温度系数,我们将在后面的章节讨论。

短路能力

数据表中通常不会列出抗短路能力。这是因为常规功率MOSFET的抗短路能力无法与工作于高电流密度下的IGBT或者其他器件相提并论。这样,我们通常不认为MOSFET和FREDFET具有抗短路的能力。

数据表浏览

通常使用先进探针技术(advanced probe technology,ATP)获得的测试数据来选择合适的器件并预测器件的性能。通过测试曲线,可以从一组工作状态外推到另一组工作状态。值得注意的是:测试曲线代表的是典型性能,而非最大或者最小的极端情况。测试得到的性能有时也或多或少的依赖于测试电路;采用不同的测试电路,得到的结果会有些许差别。

额定最大值

V DSS ?C漏-源电压

在栅源短接,工作温度为25℃时,漏-源额定电压(V DSS)是指漏-源未发生雪崩击穿前所能施加的最大电压。根据温度的不同,实际雪崩击穿电压可能低于额定V DSS。关于V(BR)DSS的详细描述请参见静电学特性。

V GS(th)?C栅源电压

V GS额定电压是栅源两极间可以施加的最大电压。设定该额定电压的主要目的是防止电压过高导致的栅氧化层损伤。实际栅氧化层可承受的电压远高于额定电压,但是会随制造工艺的不同而改变,因此保持V GS在额定电压以内可以保证应用的可靠性。

I D - 连续漏电流

I D定义为芯片在最大额定结温T J(max)下,管壳在25℃或者更高温度下,可允许的最大连续直流电流。该参数可以表示为最大结温与管壳之间额定热阻RθJC和管壳温度的函数:

式1

该式表示了可消散的最大热量,

式2

等于传导损耗所产生的最大允许热量,I2D X R DS(on)@TJ(max),这里R DS(on)@TJ (max)代表最大结温下的开态电阻。

解得I D:

式3

可以发现:I D中并不包含开关损耗,并且实际使用时保持管壳在25℃也很难。因此,硬开关应用中实际开关电流通常小于I D额定值@ T C = 25℃的一半;通常在四分之一到三分之一。

I D随T C变化的曲线

管壳温度在一定范围内,根据式(2)可以获得I D随T C变化的曲线。该曲线并未考虑开关损耗的影响。图6为I D随T C变化曲线的具体实例。可以发现:某些情况下,封装是限制I D的主要原因(开关电流可以更高):TO-247和TO-264封装的最大电流为100Amps,TO-220封装的最大电流为75Amps,SOT-227封装的最大电流为220Amps。

图6:最大漏极电流随管壳温度的变化。

I DM -脉冲漏极电流

该参数反映了器件可以处理的脉冲电流的高低,脉冲电流要远高于连续的直流电流。定义I DM 的目的在于:线的欧姆区。对于一定的栅-源电压,MOSFET导通后,存在最大的漏极电流。如图7所示,对于给定的栅-源电压,如果工作点位于欧姆区“膝”点之上,任何漏极电流的增大都会极大地提高漏-源电压(线性工作区),并最终增大导通损耗。如果长时间工作在大功率之下,将导致器件失效。因此,在典型栅极驱动电压下,需要将额定I DM设定在“膝”点之下。

设定电流密度上限防止芯片由于温度过高而烧毁。

防止过高电流流经封装引线,因为在某些情况下,整个芯片上最“薄弱的连接”不是芯片,而是封装引线。

图7:MOSFET输出特性。

考虑到热效应对于I DM的限制,温度的升高依赖于脉冲宽度,脉冲间的时间间隔,散热状况,R DS(on)以及脉冲电流的波形和幅度。单纯满足脉冲电流不超出I DM上限并不能保证结温不超过最大允许值。可以参考热性能与机械性能中关于瞬时热阻的讨论,来估计脉冲电流下结温的情况。

P D -总功耗

总功耗标定了器件可以消散的最大功耗,可以表示为最大结温和管壳温度为25℃时热阻的函数。

式4

线性降低因子与RθJC的倒数成正比。

T J, T STG-工作温度和存储环境温度的范围

这两个参数标定了器件工作和存储环境所允许的结温区间。设定这样的温度范围是为了满足器件最短工作寿命的要求。如果确保器件工作在这个温度区间内,将极大地延长其工作寿命。

E AS-单脉冲雪崩击穿能量

如果电压过冲值(通常由于漏电流和杂散电感造成)未超过击穿电压,则器件不会发生雪崩击穿,因此也就不需要消散雪崩击穿的能力。雪崩击穿能量标定了器件可以容忍的瞬时过冲电压的安全值,其依赖于雪崩击穿需要消散的能量。

定义额定雪崩击穿能量的器件通常也会定义额定E AS。额定雪崩击穿能量与额定UIS具有相似的意义。E AS标定了器件可以安全吸收反向雪崩击穿能量的高低。

测试电路的条件在标注中标明,E AS等于

式5

L是电感值,i D为电感上流过的电流峰值,其会突然转换为测量器件的漏极电流。电感上产生的电压超过MOSFET击穿电压后,将导致雪崩击穿。雪崩击穿发生时,即使MOSFET 处于关断状态,电感上的电流同样会流过MOSFET器件。电感上所储存的能量与杂散电感上存储,由MOSFET消散的能量类似。

MOSFET并联后,不同器件之间的击穿电压很难完全相同。通常情况是:某个器件率先发生雪崩击穿,随后所有的雪崩击穿电流(能量)都从该器件流过。

E AR -重复雪崩能量

重复雪崩能量已经成为“工业标准”,但是在没有设定频率,其它损耗以及冷却量的情况下,该参数没有任何意义。散热(冷却)状况经常制约着重复雪崩能量。对于雪崩击穿所产生的能量高低也很难预测。

额定E AR的真实意义在于标定了器件所能承受的反复雪崩击穿能量。该定义的前提条件是:不对频率做任何限制,从而器件不会过热,这对于任何可能发生雪崩击穿的器件都是现实的。在验证器件设计的过程中,最好可以测量处于工作状态的器件或者热沉的温度,来观察MOSFET器件是否存在过热情况,特别是对于可能发生雪崩击穿的器件。

I AR - 雪崩击穿电流

对于某些器件,雪崩击穿过程中芯片上电流集边的倾向要求对雪崩电流I AR进行限制。这样,雪崩电流变成雪崩击穿能量规格的“精细阐述”;其揭示了器件真正的能力。

静态电特性

V(BR)DSS:漏-源击穿电压

V(BR)DSS(有时候叫做BVDSS)是指在特定的温度和栅源短接情况下,流过漏极电流达到一个特定值时的漏源电压。这种情况下的漏源电压为雪崩击穿电压。

如图8所示,V(BR)DSS是正温度系数,温度高时的MOSFET漏源击穿电压比温度低时要大,实际上,温度低时V(BR)DSS小于25℃时的漏源电压的最大额定值。例如图18,在-50℃, V(BR)DSS大约是25℃时最大漏源额定电压的90%。

图8. 归一化后的雪崩击穿电压随温度的变化

VGS(th):阈值电压

VGS(th)是指加的栅源电压能使漏极开始有电流或者关断MOSFET时停止流过电流时的电压,测试的条件(漏极电流,漏源电压,结温)也是有规格的。正常情况下,所有的MOS 栅极器件的阈值电压都会有所不同。因此,VGS(th)的变化范围是规定好的。正如前面所讨论过在温度的影响下,VGS(th)是负温度系数,这就意味着当温度上升时,MOSFET将会在比较低的栅源电压下开启。

RDS(on):导通电阻

RDS(on)是指在特定的漏电流(通常为ID电流的一半)、栅源电压和25℃的情况下测得的漏-源电阻,除非另有规定。

IDSS:零栅压漏极电流

IDSS是指在当栅源电压为零时,在特定的漏源电压下的漏源之间泄漏电流。既然泄漏电流随着温度的增加而增大,IDSS在室温和高温下都有规定。漏电流造成的功耗可以用IDSS 乘以漏源之间的电压计算,通常这部分功耗可以忽略不计。

IGSS —栅源漏电流

IGSS是指在特定的栅源电压情况下流过栅极的漏电流

动态特性

从图九可以看出功率管的寄生电容分布情况,电容的大小由功率管的结构,材料和所加的电压决定。这些电容和温度无关,所以功率管的开关速度对温度不敏感(除阈值电压受温度影响产生的次生效应外)

图9. 功率管的电容分布图

由于器件里的耗尽层受到了电压影响,电容Cgs和Cgd随着所加电压的变化而变化。然而相对于Cgd,Cgs受电压的影响非常小,Cgd受电压影响程度是Cgs的100倍以上。

如图10所示为一个从电路角度所看到的本征电容。受栅漏和栅源电容的影响,感应到的dv/dt会导致功率管开启。

图10. 功率管的本征电容

简单的说,Cgd越小对由于dv/dt所导致的功率管开启的影响越少。同样Cgs 和Cgd形成了电容分压器,当Cgs 与Cgd比值大到某个值的时候可以消除dv/dt所带来的影响,阈值电压乘以这个比值就是可以消除dv/dt所导致功率管开启的最佳因数,APT功率MOSFET 在这方面领先这个行业。

Ciss :输入电容

将漏源短接,用交流信号测得的栅极和源极之间的电容就是输入电容。Ciss是由栅漏电容Cgd和栅源电容Cgs并联而成,或者

Ciss = Cgs +Cgd

当输入电容充电致阈值电压时器件才能开启,放电致一定值时器件才可以关断。因此驱动电路和Ciss对器件的开启和关断延时有着直接的影响。

Coss :输出电容

将栅源短接,用交流信号测得的漏极和源极之间的电容就是输出电容。Coss是由漏源电容Cds和栅漏电容Cgd并联而成,或者

Coss = Cds +?Cgd

对于软开关的应用,Coss非常重要,因为它可能引起电路的谐振

Crss :反向传输电容

在源极接地的情况下,测得的漏极和栅极之间的电容为反向传输电容。反向传输电容等同于栅漏电容。

Cres =?Cgd

反向传输电容也常叫做米勒电容,对于开关的上升和下降时间来说是其中一个重要的参数,他还影响这关断延时时间。

图11是电容的典型值随漏源电压的变化曲线.

图11. APT50M75B2LL的电容VS电压曲线

电容随着漏源电压的增加而减小,尤其是输出电容和反向传输电容。

Qgs, Qgd, 和Qg :栅电荷

栅电荷值反应存储在端子间电容上的电荷,既然开关的瞬间,电容上的电荷随电压的变化而变化,所以设计栅驱动电路时经常要考虑栅电荷的影响。

请看图12,Qgs从0电荷开始到第一个拐点处,Qgd是从第一个拐点到第二个拐点之间部分(也叫做“米勒”电荷),Qg是从0点到vGS等于一个特定的驱动电压的部分。

图12. 栅源电压和栅电荷的函数曲线

漏电流和漏源电压的变化对栅电荷值影响比较小,而且栅电荷不随温度的变化。测试条件是规定好的。栅电荷的曲线图体现在数据表中,包括固定漏电流和变化漏源电压情况下所对应的栅电荷变化曲线。在图12中平台电压VGS(pl)随着电流的增大增加的比较小(随着电流的降低也会降低)。平台电压也正比于阈值电压,所以不同的阈值电压将会产生不同的平台电压。

开关电阻时间

完全是因为历史原因,这个指标才会包括在数据表中。

td(on) :导通延时时间

导通延时时间是从当栅源电压上升到10%栅驱动电压时到漏电流升到规定电流的10%时所经历的时间。

td(off) :关断延时时间

关断延时时间是从当栅源电压下降到90%栅驱动电压时到漏电流降至规定电流的90%时所经历的时间。这显示电流传输到负载之前所经历的延迟。

tr :上升时间

上升时间是漏极电流从10%上升到90%所经历的时间。

tf :下降时间

下降时间是漏极电流从90%下降到10%所经历的时间。

开关感应能量

在现实的功率变换器中,由于开关电阻数据难以反应开关能量,ATP很多的MOSFET和FREDFET包含了开关感应能量的数据。这样对于电源设计人员来说非常方便,他们可以直接对比MOSFET或FREDFET与另外晶体管,甚至是另一种技术的例如IGBT,或者大多数成功应用的功率管在这方面性能。

图13为开关电感测试电路图。是一种低占空比的脉冲测试,这样可以在下一个周期来临之前使电感的能量完全泄放,自身发热也就可以被忽略。被测器件和嵌位二极管的温度可以由温度强制系统来调节。

图13. 开关电感损耗的测试电路

下面的测试条件在一个动态特性表格中被定义:VDD如图13,测试电流,栅驱动电压,栅电阻,还有结温。注意的是门极电阻包括驱动栅极IC的阻抗。大部分原因是由于测试电路中二极管的存在,开关时间和开关能耗会随温度变化,所以在室温和高温的情况下分别进行了数据测试,高温测试时要将二极管和被测器件一起加热。曲线图也会提供开关时间和开关能耗与漏电流和门极电阻的关系曲线。延迟时间和电流上升下降时间与开关电阻的定义一样。

数据表中的实际开关波形用于解释被测参数的变化情况,图14为导通时的波形及定义,由于实际应用电压和数据表中开关能量的测试电压之间的不同,开关能量也会不同。例如,如果测试电压为330伏,而应用电压为400伏,那么实际的开关能量就是用数据表中的开关能量值乘以400/330。

图14. 导通波形及定义

开关时间和能量与电路的其他器件和漏感有很大关系。二极管尤其对导通能量产生很多影响。串联进源极的漏感对开关时间和能量有明显的影响。因此在数据表中的开关时间和开关能量的值和曲线只是典型情况,这些曲线有可能与实际的电源电路或马达驱动电路的测试结果有所不同。

Eon :存在二极管情况下的开关导通能量

Eon为嵌位电感导通能量包含被测器件整流二极管的反向恢复电流产生的导通损耗。注意的是FREDFET,在桥式开关电路应用中,由于体二极管的影响使其不能迅速关断,所以这种情况下的导通能量是使用快速恢复二极管的的5倍,测试电路和图13类似。

开关导通能量是对漏电流和漏源电压的积分,积分范围是从漏电流上升到测试电流的5%或10%到电压下降到测试电压的5%区间。出于仪器分辨率的考虑,在不影响精度和可靠性前提下将积分区间设置在5%到10%的上升电流到5%的下降电压之间,如图14。

Eoff :开关关断能量

这是嵌位电感关断能量,图13为测试电路,图15为关断波形和定义。Eoff是对漏电流和漏源电压的积分,积分范围是从栅源电源降至90%到漏电流达到0这个区间。测试关断能量的方法与JEDEC(全球半导体标准组织)的24-1号标准一致。

图15. 关断波形及定义

热-机械特性

RθJC:结到管壳的热阻

热阻是从芯片的表面到器件外部之间的电阻,功率损失的结果是使器件自身产生热量,热阻就是要将芯片产生的热量和功耗联系起来。注意ATP的热阻测试显示管壳的塑料部分与金属部分的温度相同。

最大的RθJC值留有一定的裕度以应对生产工艺的变化。由于制作工艺的提高,工业上趋向于减小最大R?JC和典型值之间的裕度。通常情况下这个裕度的值不会公布。

ZθJC :结到管壳瞬态热阻抗

瞬态热阻抗主要考虑的是器件的热容,所以它可以用做评估由于瞬态功率损失所产生的当前的温度。

热阻测试仪给被测器件提供不同占空比的脉冲,等待结温在各脉冲之间稳定下来。这种测试‘单脉冲’瞬态热阻抗响应。用这种方法我们可以拟合出电阻-电容的模型。图16为瞬态热阻抗RC模型。其他一些数据表中电阻电容是以并联的形式体现的,但这种表示方法是错误的。在图16中,这些电容被接地,器件的值没有变化。在这个模型中,对于中间级节点没有实际的物理意义。不同的电阻电容对主要是为了更好的与实际测量的热阻数据相对应。

图16. 瞬态热阻抗RC模型

为了用RC模型对温度上升时进行仿真,可以提供一个电流源,电流源的幅度就是MOSFET 消耗的大小,于是就可以用PSPICE或其他电子仿真软件随意设置输入消耗的功率大小。如图16所示,通过调节ZEXT(由ZEXT调节到短路),就可以估算结-壳温度上升情况。

数据表中的瞬态热阻抗的‘全家福曲线’是根据RC热阻抗模型用简单的矩形脉冲仿真得到。图17为所举的一个例子。对于一个矩形功率脉冲,你可以用‘全家福曲线’去估算温度上升的峰值,这种方法在电源中非常常见。然而,由于最小脉冲宽度是10微秒,所以图标中只是开关频率小于100 kHz的情况。在更高的频率可以简单用热阻RθJC

图17 热阻抗的‘全家福曲线

数据表中的例子推导

假设在一个开关电源的应用中,我们想在200KHz、400V、35%平均占空比的情况下,硬开关电流为15安培,门极电压为15V,导通时门极电阻为15Ω,关断时的门极电阻为5Ω。假设我们想让结温最大达到112 ℃,保持壳的温度维持在75℃。用一个耐压500V的器件,在应用电压和VDSS之间只有100V的裕度。在400V的总线上面,这么小的裕度是足够的,因为MOSFET很大的雪崩击穿能力可以使这条总线是安全的。它是一种连续升压模式,因

此没必要用有更快反向恢复体二极管的FREDFET;用MOSFET的效果也将会很好。你会选那种器件呢?

既然是一个关于高频的应用,功率MOS 7型将是最好的选择,让我们看一下

APT50M75B2LL,它的电流能力为57A,比所需开关电流的3倍还多,在高频开关和硬开关的考虑中应该是优先考虑的。我们将会估算传输损耗,开关损耗,和要看是否产生的热量可以快速散发掉。总功耗的计算公式为

在112℃时的RDS(on)是室温下的1.8倍(参照图3)。所以传输损耗为Pconduction

=1.8-0.075Ω:15A:0.35 =10.6W

对于开关损耗,我们可以在图18中看到在125℃下开关损耗和电流的关系图。即使我们应用的要求最大值为112℃结温,这个图表已经足够能满足需要,因为电路中除了二极管对温度比较敏感外,MOSFET的开关能量受温度影响比较小,所以在112℃和125℃之间将不会发生大的变化。在任何情况下,我们都是在进行保守的估算。

图18. APT50M75B2LL的感应开关损耗

从图18可以看出,在15A时,Eon大约为300 μJ, Eoff大约为100 μJ。这些是在330V的情况下测试得到。而我们的应用电压为400V。所以开关能量可以计算为:

图18中的数据是在导通时门极电阻为15Ω和关断时的门极电阻为5Ω的情况下测得。所以我们可以得到开关能量随门极电阻变化曲线。如图19.

图19. 开关能量VS 门极电阻

即使图19中测试电流比我们应用电流要大,对于我们的情况,开关能量可以从图19中按一定比例得到。从5Ω 到15 Ω,Eon变化的系数为1.2(大约1500μJ / 1250μJ,在图19中可以看到)。电压的修正数据可以查看图18,我们得到Eon =1.2-364μJ = 437μJ

开关损耗为

Pswitch = fswitch:( Eon + Eoff) = 200kHz-(437μJ +121μJ) = 112W

Pconduction +Pswitch = 123W ,这个数据在要求结温小于112℃,壳温75℃的范围之内。所以APT50M70B2LL满足这个应用例子的要求。用同样的计算方法可以看看是否小一点的MOSFET可以满足要求。实际应用中的开关损耗要比单个器件的损耗要高的多。为了保持壳温为75℃,可以在壳和散热片之间使用用陶瓷结构(用于电隔离)。MOSFET的优势在于它的谐振缓冲特性技术,可以不用担心电压和温度对MOSFET的影响,减小开关损耗。

静电喷雾润滑液滴的荷电特性和摩擦磨损性能_胡志强

[研究·设计] DOI :10.3969/j.issn.1005-2895.2014.01.009 收稿日期:2013-06-29;修回日期:2013-08-19基金项目:国家自然科学基金项目(No.51375454) 专利项目:浙江工业大学,切削液气雾微量润滑装置(201320072042.7) 作者简介:胡志强(1987),男,湖北咸宁人, 硕士研究生,主要研究方向为静电喷雾润滑。E-mail :huzhiqiang1110@163.com 静电喷雾润滑液滴的荷电特性和摩擦磨损性能 胡志强,孔 魁,姚伟强,李中亚,许雪峰 (特种装备制造与先进加工技术教育部/浙江省重点实验室(浙江工业大学),浙江杭州310014) 摘 要:采用十二烷基苯磺酸钠表面活性剂对Accu-Lube LB-2000基础油进行改性处理来提高其电导率,获得了适用于 静电喷雾润滑的润滑液。通过目标网状法检测改性润滑液的荷电性能,利用四球摩擦磨损试验分析润滑液流量、时间和载荷对静电喷雾润滑摩擦磨损性能的影响。结果表明,表面活性剂溶液体积含量为5%的润滑液具有较稳定的乳化状 态,且电导率可达到6.5?10-5 S /m ,能满足静电喷雾润滑的荷电要求;与普通喷雾润滑相比, 静电喷雾润滑在不同润滑液流量与载荷下均能获得更好的减摩抗磨性能,尤其是在润滑液流量为5mL /h 和载荷为147N 下作用效果更显著。关 键 词:静电喷雾;电导率;荷质比;摩擦磨损 中图分类号:TG501 文献标志码:A 文章编号:1005-2895(2014)01-0036-06Charged and Tribological Characteristics of Cutting Fluid Droplets for Electrostatic Spraying Lubrication HU Zhiqiang ,KONG Kui ,YAO Weiqiang ,LI Zhongya ,XU Xuefeng (Key Laboratory of E&M (Zhejiang University of Technology ),Ministry of Education &Zhejiang Province , Hangzhou 310014,China )Abstract :The Accu-Lube LB-2000base oil was modified by sodium dodecyl benzene sulfonate to obtain the lubricants suited for the electrostatic spraying lubrication ,which had a higher conductivity.The charged performance of conductivity-modified lubricants was detected by the method of target meshing ,based on which the effect of cutting fluids flow ,time and load on the properties of the friction and wear were evaluated by using the four-ball friction wear testing experiment.The result showed that the lubricants had a stable emulsified state and met the charged requirements because its conductivity could reach 6.5?10-5S /m when the concentration of surfactant was at 5%,the better tribological characteristics can be obtained by electrostatic spraying lubrication compared with the normal spraying lubrication at different flows and loads ,especially getting more obvious at the flow of 5mL /h and the load of 147N.Key words :electrostatic atomization ;conductivity ;charge-to-mass ratio ;friction and wear 微量润滑(Minimal Quantity Lubrication , MQL )技术是环境友好绿色切削技术的典型代表。MQL 技术是指利用压缩空气将微量润滑剂雾化成微米级液滴,喷向切削区,对刀具与工件、切屑的接触界面进行润滑,同时润滑剂液滴和压缩空气还起到冷却切削区的 作用[1] 。静电喷雾是凭借静电力使液体微粒化的过程,在均匀、细化雾滴及提高雾滴在目标物上的沉积量、吸附性能等方面有明显效果。静电喷雾广泛应用于农药静电喷雾 [2-3] 、荷电喷雾燃烧[4-5]、静电涂油 [6-7] 等领域。结合静电喷雾和微量润滑技术提出的静电喷 雾微量润滑技术,利用静电喷雾液滴粒径小、表面张力降低、吸附性好等特点,可以提高雾化润滑液的润滑和冷却性能,并可降低工作环境空气中的颗粒物浓度。静电喷雾微量润滑是一项新技术,润滑液荷电雾化液滴的荷电特性和摩擦磨损性能是该技术的基础研究内容。 1 实验部分 1.1 实验材料及仪器 材料:Accu- Lube LB-2000中黏度纯天然基础油,第32卷第1期2014年2月轻工机械 Light Industry Machinery Vol.32No.1Feb.2014

仪表的特性有静态特性和动态特性

仪表的特性有静态特性和动态特性 仪表的特性有静态特性和动态特性之分,它们所描述的是仪表的输出变量与输入变呈之间的对应关系。当输人变量处于稳定状态时,仪表的输出与翰人之间的关系称为睁态特性。这里仅介绍几个主要的静态特性指标。至于仪表的动态特性,因篇幅所限不予介绍,感兴趣的读者请参阅有关专著。 1.灵敏度 灵饭度是指仪表或装置在到达稳态后,输出增量与输人增量之比,即K=△Y/△X式中K —灵教度,△Y—输出变量y的增量,△X—输人变量x的增量。 对于带有指针和标度盘的仪表,灵敏度亦可直观地理解为单位输入变量所引起的指针偏转角度或位移盈。 当仪表的“输出一输入”关系为线性时,其灵放度K为一常数。反之,当仪表具有非线性特性时,其灵敏度将随着输入变量的变化而改变。 2线性度 一般说来,总是希望侧贴式液位开关具有线性特性,亦即其特性曲线最好为直线。但是,在对仪表进行校准时人们常常发现,那些理论上应具有线性特性的仪表,由于各种因素的影响,其实际特性曲线往往偏离了理论上的规定特性曲线(直线)。在高频红外碳硫分析仪检测技术中,采用线性度这一概念来描述仪表的校准曲线与规定直线之问的吻合程度。校准曲线与规定直线之间最大偏差的绝对值称为线性度误差,它表征线性度的大小。 3.回差 在外界条件不变的情况下,当输入变量上升(从小增大)和下降(从大减小)时,仪表对于同一输入所给出的两相应输出值不相等,二者(在全行程范围内)的最大差值即为回差,通常以输出量程的百分数表示回差是由于仪表内有吸收能量的元件(如弹性元件、磁化元件等)、机械结构中有间隙以及运动系统的魔擦等原因所造成的。 4.漂移 所谓漂移,指的是在一段时间内,仪表的输人一愉出关系所出现的非所期望的逐渐变化,这种变化不是由于外界影响而产生的,通常是由于在线微波水分仪弹性元件的时效、电子元件的老化等原因所造成的。 在规定的参比工作条件下,对一个恒定的输入在规定时间内的输出变化,称为“点漂”。 发生在仪表测量范围下限值七的点漂,称为始点漂移。当下限值为零时的始点漂移又称为零点漂移,简称零漂。 5重复性 在同一工作条件下,对同一输入值按同一方向连续多次测量时,所得输出值之间的相互一致程度称为重复性。 仪器仪表的重复性用全测量范围内的各输入值所测得的最大重复性误差来确定。所谓重复性误差,指的是对于高频红外碳硫分析仪全范围行程、在同一工作条件下、从同方向对同一输人值进行多次连续测量时,所获得的输出值的两个极限值之间的代数差或均方根误差。重复性误差通常以量程的百分数表示,它应不包括回差或漂移。

透析膜表面荷电性能的研究进展_邵嘉慧

?综述? 透析膜表面荷电性能的研究进展 邵嘉慧 中图分类号:R316.021 文献标识码:A 作者单位: 200240 上海,上海交通大学环境科学与工程学院 血液透析器用于去除肾衰竭患者血液中的新陈代谢废物(溶质分子质量小于49 600Iu)和过量的水。透析膜是血液透析器的关键。透析膜的设计最主要考虑两方面的因素:膜的传递特性和膜表面性质。膜的传递特性决定了溶质的清除率和对液体的去除。膜的表面性质决定了血液和膜之间相互作用的特性及程度,包括蛋白质的吸附、血栓症、补体激活和免疫反应等[1]。虽然透析膜的性能最终需要在实际的临床透析过程中确定,但透析膜的体外研究可为深入探究其质量传递和表面性质提供重要的本质认识。现有的文献报道中有大量的关于血液透析膜传质方面的研究工作,而对膜表面性质的研究报道则较少。膜表面的荷电性是表征膜表面性质、血液和透析膜之间相互作用的关键特性之一。因此本文将简要介绍膜的荷电性(?电位),总结近年来透析膜表面荷电性能研究的进展。1 膜的?电位(zeta电位) 图1为一负荷电膜表面上的离子分布示意图[2]。紧靠膜表面的一层称为Stern层,它是不可移动层,由牢固吸附在膜表面的离子和参予部分溶剂化的水分子构成。在Stern层的最外缘处液体开始可以移动,这个平面被称为剪切面。Stern层以外的层被称为扩散层或双电层,在这里过量的补偿反离子集聚以补偿膜表面的荷电来保持溶液体系的荷电平衡。膜在溶液中表现的荷电性是由于膜材料本身的荷电官能基团(如磺酸、羧酸或胺基团)所致,和/或由于溶液中离子在膜表面不同程度的吸附所致。膜的?电位是膜表面动电效应中,固液相之间相对运动时剪切面上的电位差,可以通过实验方法获得。?电位可以反映出膜表面荷电性质、荷电分布密度等,是研究膜表面荷电性的重要参数。流动电位方法是测量膜表面?电位使用最广泛的方法。流动电位测量时,电解质溶液在 当双电层厚度(德拜屏蔽长度)远小于膜孔孔径,同时膜表面电导可以忽略时,膜的?电位可应用Helmholtz-Smoluchowski公式,直接从实验测得的不同压力(?P)条件下的流动电位(Ez)的斜率数据计算出[2]: 式中,?为溶液粘度;?o为溶液电导率;?o为自由空间的介电常数;?r为电解质溶液的介电常数。典型的血液透析膜表面?电位测量的实验装置如图2所示。 外界压力作用下流过膜孔时,靠近膜表面双电层中扩散层中的补偿反离子也随主体流体流经膜孔,并在膜孔的下游积聚而产生电势,这就是通常所指的流动电位。此流动电位可导致反离子的相对于压力流动方向相反的流动。在稳态平衡时,这些离子流完全平衡而使整个系统呈电中性。通过电解质溶液平行流过膜表面,流动电位也可由于相反离子在膜表面集聚而产生。 图1 负荷电膜表面离子分布示意图 ? =????????? ( )??o dEz ?o?r d?P

龙门导轨磨床立柱动静态特性分析

龙门导轨磨床立柱动静态特性分析 范以撒杨君母德强 (长春工业大学机电工程学院长春130012) 摘要:以MM52160导轨磨床立柱为研究对象,首先采用三维软件建立龙门导轨磨床立柱的三维实体模型,并利用HyperMesh有限元软件对该模型进行前处理,建立立柱的有限元模型。对该有限元模型进行动静态特性分析,然后以立柱的质量作为目标函数,最大变形量作为约束函数,选择对立柱性能影响较大的灵敏度尺寸作为优化设计变量,进行多目标尺寸优化。优化后立柱的整体质量减少了113.2kg,减少量约为总质量的7.3%; 最大变形量减小了2.833μm,减小量约为总变形量的10.7%。实现了在保证立柱刚度的前提下,立柱的质量和最大变形量降低的目的。 关键字:磨床立柱静力分析动力学分析灵敏度分析优化设计HyperMesh Dynamic and Static Characteristic Analysis Gantry Rail Grinder Column MU De-qiang,FAN Yi-sa,YANG Jun (Changchun University of Technology, School of Mechatronic Engineering, Changchun 130012, China) Abstract: A three-dimensional entity model of the gantry rail grinder column was established by spaceclaim software and pretreated by HyperMesh finite element software, the finite element model of the main column was established. Then, the static analysis and modal analysis were carried out to the established finite element model of the main column, after which we can obtained the stress and deformation of the column and natural frequencies and vibration mode of the former sixth-order. Our research provided a basis for the optimization and improvement of the column and the whole grinding machine. Key words:Gantry rail grinder column, Static analysis, Kinetic analysis, HyperMesh 1 前言 龙门导轨磨床是航空航天、电力、船舶以及各种大型机床的关键加工设备。西方国家一直把数控龙门导轨磨穿作为重中之重的加工设备来开发研制,特别是航空、航天、风电、核

检测系统的静态特性和动态特性

检测系统的静态特性和动态特性 检测系统的基本特性一般分为两类:静态特性和动态特性。这是因为被测参量的变化大致可分为两种情况,一种是被测参量基本不变或变化很缓慢的情况,即所谓“准静态量”。此时,可用检测系统的一系列静态参数(静态特性)来对这类“准静态量”的测量结果进行表示、分析和处理。另一种是被测参量变化很快的情况,它必然要求检测系统的响应更为迅速,此时,应用检测系统的一系列动态参数(动态特性)来对这类“动态量”测量结果进行表示、分析和处理。 研究和分析检测系统的基本特性,主要有以下三个方面的用途。 第一,通过检测系统的已知基本特性,由测量结果推知被测参量的准确值;这也是检测系统对被测参量进行通常的测量过程。 第二,对多环节构成的较复杂的检测系统进行测量结果及(综合)不确定度的分析,即根据该检测系统各组成环节的已知基本特性,按照已知输入信号的流向,逐级推断和分析各环节输出信号及其不确定度。 第三,根据测量得到的(输出)结果和已知输入信号,推断和分析出检测系统的基本特性。这主要用于该检测系统

的设计、研制和改进、优化,以及对无法获得更好性能的同类检测系统和未完全达到所需测量精度的重要检测项目进行深入分析、研究。 通常把被测参量作为检测系统的输入(亦称为激励)信号,而把检测系统的输出信号称为响应。由此,我们就可以把整个检测系统看成一个信息通道来进行分析。理想的信息通道应能不失真地传输各种激励信号。通过对检测系统在各种激励信号下的响应的分析,可以推断、评价该检测系统的基本特性与主要技术指标。 一般情况下,检测系统的静态特性与动态特性是相互关联的,检测系统的静态特性也会影响到动态条件下的测量。但为叙述方便和使问题简化,便于分析讨论,通常把静态特性与动态特性分开讨论,把造成动态误差的非线性因素作为静态特性处理,而在列运动方程时,忽略非线性因素,简化为线性微分方程。这样可使许多非常复杂的非线性工程测量问题大大简化,虽然会因此而增加一定的误差,但是绝大多数情况下此项误差与测量结果中含有的其他误差相比都是可以忽略的。

℃荷电保持性能测试规范

M 版本:A 60℃荷电保持性能测试规范 页码:第1 页共2 页1.0目的和范围 规范迈科新能源有限公司锂离子二次电池芯的60℃荷电保持性能的测试。 适用于迈科新能源有限公司锂离子二次电池芯或客户要求的成品电池60℃荷电保持性能测试。 1.1变更记录 变更日期版本变更内容 2004-8-11 A 新版发行 1.2定义(无) 1.3相关文件和资料 2.0测试仪器 2.1擎天检测柜(BS-9300R)、内阻测试仪(NZY-200)、数显卡尺(分辨率为0.01mm)3.0试验环境 3.1温度:20℃±5℃,相对湿度:45%-75%,大气压力:86kPa~106kPa。 4.0作业内容及方法(客户有特殊要求时,按具体要求的条件测试) 4.1取样:当有重大工艺变更(材料改变)或新产品开发时(含新型号)或常规测试,由测 试员或实验员从检测车间新批次或试验批次电池芯中随机抽取10只,如正常生产批每周每类抽取2批,将电池芯编号,测试并记录其内阻、电压、厚度。 编制审核批准

M 版本:A 60℃荷电保持性能测试规范 页码:第2 页共2 页 4.2 60℃荷电保持能力测试: 步骤: A在环境温度20±5℃,湿度45%-75%的条件下,以1C5A充电至电池芯端电压达 到充电限制电压4.2V时,改为恒压充电直到电流小于或等于0.01C5A。搁置2min 后,再以1C5A电流放电到终止电压3.0V。循环2次。电池芯放电结束后记录第 二次的放电容量及3.6V平台。 B单充电:以1C5A充电,当电池芯端电压达到充电限制电压4.2V,改为恒压充电, 直到充电电流小于或等于0.01C5A。 C电池芯按照规定进行2次循环及单充电后,记录电池芯的内阻、电压、厚度、容量 及平台。然后在环境温度60℃±5℃的条件下,将电池芯开路贮存7天。贮存期间, 测试一周以后的电压,记录数据。七天后将电池芯直接以1C5A放电80 min,再将 电池芯循环三次,记录电池芯直接放电容量和3.6V平台及第一次、第三次的循环 容量和3.6V平台。然后将电池芯单充至3.85V,下夹测内阻,准备入库。 4.3电池芯处理:试验结束后,将所有电池芯按容量、内阻档次分类标识入库。 4.4异常反馈:如果60℃荷电保持性能测试数据有异常,则在测试电池芯电压完成后必须 立即向测试负责人反馈,然后再以书面的形式向技术部、品质部反馈。技术部应立 即对此问题进行分析、试验,以尽快找出原因,消除引起异常的因素。 4.5数据处理:将测试数据及现象详细记录,做成60℃荷电保持性能测试报告,报告经整 理后,上交领导核准,按照批次顺序放入60℃荷电保持性能测试报告文件夹内存档,以备查验。 5. 0判定标准(无) 6.0质量记录 《60℃荷电保持能力测试报告》 7.0附件(无)

牵引车车架的动静态性能分析

牵引车车架的动静态性能分析 摘要:本文以Ansys 软件为分析工具对从国外引进的某型牵引车的车架进行了有限元分析、模态分析和以路面谱为输入的随机振动分析,通过用壳单元离散车架及MPC 单元模拟铆钉传力建立计算模型,研究该车架静、动态性能,了解该车架的优缺点。 关键词:车架; 有限元分析;随机振动 引言 车架是汽车的重要组成部分,在汽车整车设计中占据着重要位置,车架结构设计历来为广大汽车厂商所重视。随着科技的进步,国际上汽车车架的开发和设计己由经验、类比、静态设计方法,进入建模、静动态分析、动态参数优化阶段,并向基于计算机平台的虚拟设计发展。国内车架设计,尤其是轿车、客车和载重货车车架设计仍以引进技术为主,车架分析和设计能力较低,与国外先进水平有较大差距。 本文以某汽车公司从欧洲引进的牵引车车架为研究对象,对该车架结构的基础应力进行分析了解,消化、吸收欧洲的先进技术并在此基础上进行自主创新设计。分析手段主要是通过建立正确的有限元分析模型,对车架进行典型工况的静态分析、模态分析和路面不平度引起的随机振动分析,以此了解车架的静态和动态特性,了解该车架的优越性能及其不足之处,为新车架的改型设计提供依据。 1 有限元分析模型的建立 该车架为边梁式[1],由两根位于两边的纵梁和若干根横梁组成,用铆接或焊接方式将纵梁和横梁连接成坚固的刚性结构,纵梁上有鞍座,其结构如图1 所示。由于车架是由一系列薄壁件组成的结构,有限元模型采用壳单元离散能详细分析车架应力集中问题,可以真实反映车架纵、横梁连接情况,是目前常采用一种模型。该车架是多层结构,纵梁断面为槽形,各层间用螺栓或铆钉方式连接,这种结构与具有连续横截面的车架不同,其力的传递是不连续的。

电容的特性(精)

电容的特性: 电容器是一种能储存电荷的容器.它是由两片靠得较近的金属片,中间再隔以绝缘物质而组成的.按绝缘材料不同,可制成各种各样的电容器.如:云母.瓷介.纸介,电解电容器等.在构造上,又分为固定电容器和可变电容器.电容器对直流电阻力无穷大,即电容器具有隔直流作用.电容器对交流电的阻力受交流电频率影响,即相同容量的电容器对不同频率的交流电呈现不同的容抗.为什么会出现这些现象呢?这是因为电容器是依靠它的充放电功能来工作的,如图1,电源开关s未合上时.电容器的两片金属板和其它普通金属板—样是不带电的。当开关S合上时,如图2所示,电容器正极板上的自由电子便被电源所吸引,并推送到负极板上面。由于电容器两极板之间隔有绝缘材料,所以从正极板跑过来的自由电子便在负极板上面堆积起来.正极板便因电子减少而带上正电,负极板便因电子逐渐增加而带上负电。电容器两个极板之间便有了电位差,当这个电位差与电源电压相等时,电容器的充电就停上了.此时若将电源切断,电容器仍能保持充电电压。对已充电的电容器,如果我们用导线将两个极板连接起来,由于两极板间存在的电位差,电子便会通过导线,回到正极板上,直至两极板间的电位差为零.电容器又恢复到不带电的中性状态,导线中也就没电流了.电容器的放电过程如图3所示.加在电容器两个极板上的交流电频率高,电容器的充放电次数增多;充放电电流也就增强;也就是说.电容器对于频率高的交流电的阻碍作用就减小,即容抗小,反之电容器对频率低的交流电产生的容抗大.对于同一频率的交流电电.电容器的容量越大,容抗就越小,容量越小,容抗就越大. 第2讲:电容器的参数与分类 在电子产品中,电容器是必不可少的电子器件,它在电子设备中充当整流器的平滑滤波、电源的退耦、交流信号的旁路、交直流电路的交流耦合等。由于电容器的类型和结构种类比较多,因此,我们不仅需要了解各类电容器的性能指针和一般特性,而且还必须了解在给定用途下各种组件的优缺点,以及机械或环境的限制条件等。这里将对电容器的主要参数及其应用做简单说明。 1. 标称电容量(C R )。电容器产品标出的电容量值。云母和陶瓷介质电容器的电容量较低(大约在5000pF 以下);纸、塑料和一些陶瓷介质形式的电容器居中(大约在0.005uF~1.0uF );通常电解电容器的容量较大。这是一个粗略的分类法。 2. 类别温度范围。电容器设计所确定的能连续工作的环境温度范围。该范围取决于它相应类别的温度极限值,如上限类别温度、下限类别温度、额定温度(可以连续施加额定电压的最高环境温度)等。 3. 额定电压(U R )。在下限类别温度和额定温度之间的任一温度下,可以连续施加在电容器上的最大直流电压或最大交流电压的有效值或脉冲电压的峰值。电容器应用在高电压场和时,必须注意电晕的影响。电晕是由于在介质/ 电极层之间存在空隙而产生的,它除了可以产生损坏设备的寄生信号外,还会导致电容器介质击穿。在交流或脉动条件下,电晕特别容易发生。对于所有的电容器,在使用中应保证直流电压与交流峰值电压之和不得超过电容器的额定电压。 4. 损耗角正切(tg )。在规定频率的正弦电压下,电容器的损耗功率除以电容器的无功功率为损耗角正切。在实际应用中,电容器并不是一个纯电容,其内部还有等效电阻,它的简化等效电路如附图所示。对于电子设备来说,要求R S 愈小愈好,也就是说要求损耗功率小,其与电容的功率的夹角要小。 5. 电容器的温度特性。通常是以20 ℃基准温度的电容量与有关温度的电容量

【过程控制】PID参数对系统动静态特性的影响(可编辑)

【过程控制】PID参数对系统动静态特性的影响(可编 辑) 主要内容 PID参数对系统动静态特性的影响控制器参数整定: 现场试凑法临界比例度法衰减曲线法采样周期选择 PID参数对系统动静态特性的影响比例度过小,即比例放大系数过大时,比例控制作用很强,系统有可能产生振荡; 积分时间过小时,积分控制作用很强,易引起振荡; 微分时间过大时,微分控制作用过强,易产生振荡。 PID参数对系统动静态特性的影响 比例(P)控制 PID参数对系统动静态特性的影响 比例积分(PI)控制 PID参数对系统动静态特性的影响 比例微分(PD)控制 PID参数对系统动静态特性的影响 比例积分微分(PID)控制控制器参数整定指决定调节器的比例度δ、积分时 间TI和微分时间TD和采样周期Ts的具体数值。整定的实质是通过改变调节器的参数,使其特性和过程特性相匹配,以改善系统的动态和静态指标,取得最佳的控制效果。整定方法整定调节器参数的方法很多,归纳起来可分为两大类,即理论计算整定法和工程整定法: 理论计算整定法有对数频率特性法、根轨迹法等; 工程整定法有经验法、衰减曲线法、监界比例度法和响应曲线法等。工程整定法特点不需要事先知道过程的数学模型,直接在过程控制系统中进行现场整定方法简单; 计算简便; 易于掌握。现场凑试法按照先比例(P)、再积分(I)、最后微分(D)的顺序。置调节器积分时间TI=?,微分时间TD=0,在比例度δ按经验设置的初值条件下,将系统投入运行,整定比例度δ。求得满意的4:1过渡过程曲线。引入积分作用(此时应将上述比例度δ加大1.2倍)。将TI由大到小进行整定。若需引入微分作用时,则将TD按经验值或按TD=

基于AMESim恒功率泵的动静态特性仿真分析

2010年7月 第38卷第13期 机床与液压 MACH I NE TOOL &HYDRAUL I CS Jul 2010 V ol 38No 13 DO I :10.3969/j issn 1001-3881 2010 13 037 收稿日期:2010-04-23 基金项目:国家 863 高技术产业化研究资助项目(2007AA041803);上海市数字化汽车车身工程重点实验室开放课题基 金资助(MS V 2009 02);十一五科技支撑计划资助项目(2006B AF01B03 01) 作者简介:文哲(1985 ),男,硕士研究生,主要研究方向为轴向柱塞泵变量控制。通讯作者:徐兵,E -m ai:l bxu @ zju edu cn 。 基于AMES im 恒功率泵的动静态特性仿真分析 文哲,徐兵 (浙江大学流体传动及控制国家重点实验室,浙江杭州310027) 摘要:以压力流量功率复合控制泵的功率控制部分为研究对象,利用AM ESi m 搭建压力流量功率复合控制泵的整体仿真模型,针对影响其功率控制部分动静态特性的几个关键因素 流量阀弹簧刚度、功率阀阀芯三角槽数进行变参分析。仿真结果表明:增大流量阀弹簧刚度,可以改善功率控制范围内斜盘摆角的动态特性;增加功率阀阀芯三角槽个数,可以减小最小功率值,从一定程度上增大功率控制范围。 关键词:恒功率;轴向柱塞泵;动态特性;静态工作曲线中图分类号:TH137 51!!文献标识码:A !!文章编号: 1001-3881(2010)13-122-6 Dyna m ic and Static Sim ulation Analysis of Constant Power Pu mp Based on Am esi m W E N Zhe ,XU B ing (State Key Lab of Flui d Po w er Trans m i s si o n and Contro l of Zhe jiang Un i v ersity ,H angzhou Zhe jiang 310027,Ch i n a) Abstrac t :T he po w er con tro l pa rt o f pressure /flow /powe r con tro l pump as the st udy object , t he m ode l of t he pump w as co m plete ly bu ilt i n AM ESi m for s i m u l a tion .A lter i ng para m eter ana l ys i s was perfor m ed for several key factors that i nfl uence t he dynam ic and sta ti c cha racte ristics o f the power control part of t he pu m p ,such as spr i ng stiff ness of flow ra te v alve and the nu m ber o f the tr iangu l a r g rooves o f the powe r va l ve spoo.l T he si m ulati on resu lts sho w tha t t he dynam ic and static character istics of the s w ash p l a te ang le i n rang e o f pow er contro l are i m proved by i ncreasi ng the spri ng stiffness o f flow ra te v alve ;the m i ni m u m pow er va l ue is reduced and the rang e o f pow er contro l i s broadened to a cer tai n ex tent by i ncreas i ng the number of t he triangular grooves of t he pow er valve spoo.l K eyword s :Constant pow er ;A x ial pist on pu m p ;Dyna m i c charac teristi c ;Static curve !!恒功率控制泵是提高液压系统节能效率的关键元件,可以在特定工况下减少原动机功率的浪费,具有良好的节能效果。因此研究恒功率控制泵的控制性能并改善其动静态特性,具有现实意义。 作者研究对象是一种压力流量功率复合控制泵的功率控制部分。这种压力流量功率复合控制泵,采用压力阀、流量阀、双弹簧功率阀的配合工作实现泵压力、流量、功率的复合控制,而且该泵是通过功率阀三角槽结构溢流的方式实现恒功率控制。因此,在该泵实现功率控制的过程中不仅受到自身功率阀结构参数的影响,而且也会受到其他功能控制阀结构参数的影响。 作者从上述的两个影响方面出发,针对流量阀弹簧刚度和功率阀三角槽个数进行分析。采用先进的液压仿真软件A M ESm i 搭建完整的压力流量功率复合控制泵仿真模型,并采用MATLAB 精确计算功率阀阀芯结构参数并将其导入AM ESm i 中,然后变参分析,最终获得合理的结构参数。 1!恒功率控制原理 图1!压力流量功率复 合控制泵原理图 ! 图2!压力流量功率复 合控制泵静态工 作曲线示意图 压力流量功率复合控制泵是通过预先设定,在不同工作压力下,使泵处于不同控制工况。根据压力流量功率复合控制原理图(图1),结合其静态工作曲线(图2)及功率阀结构示意图(图3),说明该泵

60℃荷电保持性能测试规范

1.0 目的和范围 规范迈科新能源有限公司锂离子二次电池芯的60℃荷电保持性能的测试。 适用于迈科新能源有限公司锂离子二次电池芯或客户要求的成品电池 60℃荷电保持性能测试。 1.1 变更记录 1.2 定义(无) 1.3 相关文件和资料 2.0测试仪器 2.1擎天检测柜(BS-9300R )、内阻测试仪(NZY -200)、数显卡尺(分辨率为0.01mm ) 3.0试验环境 3.1温度:20℃±5℃,相对湿度:45%-75%,大气压力:86kPa~106kPa 。 4.0作业内容及方法(客户有特殊要求时,按具体要求的条件测试) 4.1 取样:当有重大工艺变更(材料改变)或新产品开发时(含新型号)或常规测试,由测 试员或实验员从检测车间新批次或试验批次电池芯中随机抽取10只,如正常生产批每周每类抽取2批,将电池芯编号,测试并记录其内阻、电压、厚度。 M

M 4.2 60℃荷电保持能力测试: 步骤: A在环境温度20±5℃,湿度45%-75%的条件下,以1C5A充电至电池芯端电压达 到充电限制电压4.2V时,改为恒压充电直到电流小于或等于0.01C5A。搁置2min 后,再以1C5A电流放电到终止电压3.0V。循环2次。电池芯放电结束后记录第 二次的放电容量及3.6V平台。 B单充电:以1C5A充电,当电池芯端电压达到充电限制电压4.2V,改为恒压充电, 直到充电电流小于或等于0.01C5A。 C电池芯按照规定进行2次循环及单充电后,记录电池芯的内阻、电压、厚度、容量及平台。然后在环境温度60℃±5℃的条件下,将电池芯开路贮存7天。贮存期间, 测试一周以后的电压,记录数据。七天后将电池芯直接以1C5A放电80 min,再将 电池芯循环三次,记录电池芯直接放电容量和3.6V平台及第一次、第三次的循环 容量和3.6V平台。然后将电池芯单充至3.85V,下夹测内阻,准备入库。 4.3电池芯处理:试验结束后,将所有电池芯按容量、内阻档次分类标识入库。 4.4异常反馈:如果60℃荷电保持性能测试数据有异常,则在测试电池芯电压完成后必须 立即向测试负责人反馈,然后再以书面的形式向技术部、品质部反馈。技术部应立 即对此问题进行分析、试验,以尽快找出原因,消除引起异常的因素。 4.5数据处理:将测试数据及现象详细记录,做成60℃荷电保持性能测试报告,报告经整 理后,上交领导核准,按照批次顺序放入60℃荷电保持性能测试报告文件夹内存档,以备查验。 5. 0判定标准(无) 6.0质量记录 《60℃荷电保持能力测试报告》 7.0附件(无)

什么是汽轮机调节系统的静态特性和动态特性

1.什么是汽轮机调节系统的静态特性和动态特性? 答:调节系统的工作特性有两种,即动态特性和静态特性。在稳定工况下,汽轮机的功率和转速之间的关系即为调节系统的静态特性。从一个稳定工况过渡到另一个稳定工况的过渡过程的特性叫做调节系统的动态特性,是指在过渡过程中机组的功率、转速、调节汽门的开度等参数随时间的变化规律。 2.汽封的作用是什么?轴封的作用是什么? 答:为了避免动、静部件之间的碰撞,必须留有适当的间隙,这些间隙的存在势必导致漏汽,为此必须加装密封装置----汽封。根据汽封在汽轮机中所处位置可分为:轴端汽封(简称轴封)、隔板汽封和围带汽封(通流部分汽封)三类。 轴封是汽封的一种。汽轮机轴封的作用是阻止汽缸内的蒸汽向外漏泄,低压缸排汽侧轴封是防止外界空气漏入汽缸。 3.低油压保护装置的作用是什么? 答:润滑油油压过低,将导致润滑油膜破坏,不但要损坏轴瓦。而且能造成动静之间摩擦等恶性事故,因此,在汽轮机的油系统中都装有润滑油低油压保护装置。 低油压保护装置一般具备以下作用: ⑴润滑油压低于正常要求数值时,首先发出信号,提醒运行人员注意并及时采取措施。 ⑵油压继续下降至某数值时,自动投入辅助油泵(交流、直流油泵),以提高油压。 ⑶辅助油泵起动后,油压仍继续下跌到某一数值应掉闸停机,再低时并停止盘车。 当汽轮机主油泵出口油压过低时,将危及调节及保护系统的工作,一般当该油压低至某一数值时,高压辅助油泵(调速油泵)自起动投入运行,以维持汽轮机的正常运行。 4.直流锅炉有何优缺点? 答:直流锅炉与自然循环锅炉相比主要优点是: (1)原则上它可适用于任何压力,但从水动力稳定性考虑,一般在高压以上(更多是超高压以上)才采用。 (2)节省钢材。它没有汽包、并可采用小直径蒸发管,使钢材消耗量明显下降。 (3)锅炉启、停时间短。它没有厚壁的汽包,在启、停时,需要加热、冷却的时间短.从而缩短了启、停时间。 (4)制造、运输、安装方便。 (5)受热面布置灵活。工质在管内强制流动.有利于传热及适合炉膛形状而灵活布置。

磁性材料静态磁特性的测量-Read

磁性材料基本磁化曲线的测量 一、实验目的 1. 通过实验了解铁磁材料基本磁化曲线测试的原理,熟悉磁锻、去磁的过程,以及用数字 磁通计测量磁通的方法,掌握用冲击法测量铁磁材料基本磁化曲线的方法; 2、通过实验熟练掌握数字磁通计的使用方法。 二、磁性材料的静态磁特性的测量原理 1.原理 磁性材料静态磁特性的测试,主要包括基本磁化曲线和磁滞回线及有关磁参量的测试。 静态磁特性测量的基本原理式根据电磁感应原理,当磁化回路中的磁化电流改变时,试样中的磁通量随之改变,在测量线圈两端产生感应电动势,根据冲击检流计偏转和磁化电流确定试样的直流磁性参数。 磁轭由高导磁材料制成,其截面积大于试样截面积50倍。磁轭与试样间的气隙极小,因此磁轭与试样构成的磁路中,可近似地认为磁势全部降落在试样上。根据磁路中的安培环路定律。试样中的磁场强度H 为 L I W H 1= (1) 式中L 为试样的有效长度。 根据电磁感应定理可知,当磁化电流增加I ?时,试样中的磁通量增加?Φ,则测试线圈W 2中的磁通链增加??,即?Φ=?2W ?。??将使数字磁通计产生偏转,其最大偏转值??。因此磁感应强度B 的增量为: S W S B 2? φ?= ?= ? (2) 式中S 为试样的截面积。 常用的测量装置见图1所示,图中: T ~220——去磁用交流调压器220/0~250V ,500V A ; A ——监视去磁电流用的交流安培表,选用量程1A ; E ——直流稳压电源; R 2——多档可选电阻; a.——磁轭。截面积为4900 mm 2; b.——试样。截面积S=100mm 2,试样的有效长度L=230 mm ; W 1——试样的磁化绕组。2000匝(由红色接线柱引出); W 2——磁测试线圈。30匝(由黑色接线柱引出); mA ——直流毫安表; Φ——数字磁通计,选用量程10mWb ; K 1、K 2、K 3一双刀双向开关;

电的种类及特性

一、电的种类及特性 按照电的不同种类和特性,分为直流电和交流电两种: 1、电流:电荷在电场的作用下定向移动,就形成了电流。 2、直流电:电流的大小和方向不随时间变化,即正负极性始终不会改变。用“DC”表示。如电池、蓄电瓶等产生的电流。 3、交流电:电流的大小和方向(即正负极性)随时间而变化。用“A C”表示。流电又分为交流电源(作为能量如我们电灯用的电)和交流信号(空中的电磁波)。 4、周期:交流电变化一次(一正一负)用的时间,用T表示。 5、频率:一秒内交流电变化的次数(周期数),F表示。我们照明电灯用的电源频率为50Hz。 单位:HZ(赫兹)、KHz(千赫)、(兆赫)1MHz=1000KHz 1KHz=1000Hz 直流电的大小和方向在单位时间内不会变化,没有频率;凡提到频率的均为交流电。单位时间内交流电变化次数(周期)多的叫高频;反之为低频”。 通常把人耳可以听到的频率(每秒变化20~20000Hz)叫低频,也称音频。好的音响设备可以发出悦耳的音乐,就是它的音频范围较宽,能把高、中、低频尽量的展现出来。即频带宽、音质好。 二、电路的结构及状 电路由若干元件组成,目的是把电能转换成其它能量,以实现特定功能。最基本的电路是由电源、用电器(负载)导线、开关组成。 以手电筒为例,它由电池、灯泡、导线、开关组成。按照电路和不同状态分为通路、断路、短路三种:1、通路:也叫回路。即合上开关接通电源,电荷从电池的正极出发,经过灯泡(发光)、导线、开关回到负极构成回路。 电荷在通过负载时,进行能量转换。如通过灯泡时转换为光能,通过烙铁时转换为热能,通过电机时转换为机械能。 2、断路:也叫开路。断开开关,电源构不成回路,不能做功。 3、短路:也叫连线。电荷没有经过用电器,而是正、负极直接短接。短路时电流最大,容易损坏用电器从上分析可知:电路正常工作用通路;不工作用断路;应避免短路. 常用电路符号: 三、电压和电流 1、电压:电路中任意两点之间的电位差。电压用“U”表示。 单位:V(伏)、mV(毫伏)、u V(微伏)1V=1000mV 1mV=1000uV 2、电流:在一个闭合的电路中,有电压存在就会产生电流,电流的大小,取决于负载阻值的大小。电流用“I”表示。如同水从高到低运动形成水流的道理一样,电流的方向是从高电位到低电位。 单位:A(安)、mA(毫安)u A(微安)1A=1000mA 1mA=1000uA 3、电压与电流的关系:根据欧姆定律,I=U/R

晶体管静态特性曲线分析

晶体管静态特性曲线分析 一、仿真目的 以三极管2N2222为例,运用Multisim对三极管的输入输出特性进行分析。 1)参照图一构建用于分析晶体管特性特性曲线的仿真电路。 2)参照图二,以Uce为参变量,通过仿真分析画出输入特性曲线Ube—I b.。3)参照图三,以ib为参变量,通过仿真分析画出输出特性曲线Uce—Ic 二、仿真要求 1)设计出用于分析NPN型晶体管输入输出特性的电路; 2)按要求选择合适的软件工具画出输入输出特性曲线,并对仿真进行总结分析,即:运用Multisim完成性能仿真,再选用自己熟悉的画图工具完成曲线绘制。 探索用Multisim仿真软件中的参数扫描功能,直接获取晶体三极管的特性曲线的方法。若能成功,,这应该是最直接最准确的好方法。 三、仿真电路图 四、仿真过程 静态工作点的设定

由图可知,晶体管处于放大状态,基本符合实验要求。 输入特性曲线: 将c极滑动变阻器调为0时,Uce近似与导线并联,约等于0,此时改变基极滑动变阻器可得到不同的Ube与Ib的值。 如图,令Uce=0V,1V,10V(0V操作简单,忘保存图了) 得到的Ube与Ib的值以及关系曲线分别为:

分析: 输入特性曲线描述了在关押将Uce一定的情况下,基极电流Ib与发射结压降Ube之间的函数关系。Uce=0V时,发射极与集电极短路,发射结与集电结均正偏,实际上时两个二极管并联的正向特性曲线。Uce>1时,Ucb=Uce-Ube>0,集电结进入反偏状态,开始Uce>1V 收集载流子,且基区复合减少,特性曲线将向右稍微移动一点,Ic/Ib增大,但Uce再增加时,曲线右移很不明显。 输出特性曲线: 将基极限流电阻调至很大(例如1M欧)时,基极电流Ib很小,近似约等于0。 令Ib分别=0uA,20uA,40uA,10mA:

相关文档
最新文档