笔记本适配器工作原理及维修

笔记本适配器工作原理及维修
笔记本适配器工作原理及维修

一.笔记本电脑电源适配器电路常见典型故障快速排除故障方法

(2010-10-12 17:59:12)

转载

标签:

杂谈

1.通电电源适配器指示灯不良,无电压输出。

打开外壳,一股烧焦气味很浓,保险管发黑熔断、负载元件电容C8、C9顶部炸裂,稳压管ZD3变色有裂纹,该现象为输出电压过高造成的,拆除并更换损坏的原件。将自制30V可调稳压电源调到19V,接在稳压管ZD3两端,加电用电压表测量IC3基准电压工作状况,同时调节输入电压大小,IC3的K极对地有高低电平变化,表明IC3良好,测量IC2光电管电阻无明显变化。重新代换一只EL817故障排除。更换或替换光耦合器时应参考电流传输比CTR值,他的允许范围为80%-160%,当电流传输比值小于70%时,光耦合器中的发光二极管将损耗较大的工作电流。

2.通电电源适配器指示灯不良,无电压输出。

保险管发黑熔断、开关管Q1击穿、取样电阻R10B开路、,更换损坏元件,将30V的可调稳压电源可调稳压电源调到17V,接在IC1⑦上,加电用电压表测量IC3⑧18V,IC⑥1V正常,通电保险管再次熔断,仔细检查Q1外围电路发现D1内阻变大。当Q1场效应管从饱和状态突变为截止状态时,在脉冲变压器T1初级线圈产生的反向峰值电压,不能有效地被吸收掉造成Q1开关管损坏,更换D1,故障排除。

二.笔记本电脑电源适配器电路常见典型故障快速排除故障方法

(2010-10-12 18:01:44)

转载

标签:

杂谈

3.通电电源适配器指示灯亮,液晶屏幕闪烁,经常掉电,表现时好时坏,

将电源适配器空载加电正常,只要接入负载电压就降低不稳,表明电路中有元件过载能力变差。断开电源用手触摸开关电源元件,发现开关管Q1表面温度很高,更换一只同型号的,故障排除,但是电源内发出轻微的吱吱声,再仔细检查一遍电路各部件均正常,只是开关管温度30°左右,重新更换一只开关管,故障排除。经查发现开关管放大倍数太小,在通电带上负荷后,就会尖叫、发热稳定变差,因此,代换开关管时一定要注意观察其运行稳定和电路发出的响声,以避免陷入维修困境。

4.遭雷击,通电电源适配器指示灯不良,无电压输出。

保险管烧黑炸裂、滤波电容C1鼓包、开关管击穿,经查发现四只整流二极管有两只击穿,更换以上损坏元件,通电无反应,将30V的可调稳压电源可调稳压电源调到17V,接在IC1⑦上,17V电压被拉低到0.8V,用电阻档测IC1⑦与地之间阻值21欧,表明IC1⑦与地之间以击穿,更换IC1故障排除。通常遭雷击、过电压应将压敏电阻CX1击穿、保险管熔断。一些市场销售的山寨版和杂牌笔

记本电脑电源适配器中未按装该部件,当遭雷击、过电压时,有的还会殃及脉冲变压器N1绕组匝间绝缘击穿、过流取样电阻烧毁。

三.笔记本电脑电源适配器电路常见典型故障快速排除故障方法

(2010-10-12 18:03:32)

转载

标签:

杂谈

5.经常烧坏开关管,

经对尖峰脉冲吸收回路和稳压控制回路检查均未发现异常,陷入困境后,无意触碰到滤波电容C1外壳非常烫手,更换C1后,故障排除。该电容外观无鼓包、漏液,用电阻档测量漏电不大,容量有100uF左右基本算正常,分析可能该电容长期工作在高电压、高温度中,当加上340V电压后容量变的很小,造成开关管功耗增大而发热损坏。

6.接入笔记本电脑电源电指示灯闪亮一下变暗,

取下电源供给器负载插头,使开关电源空载运行,测量电源直流输出插座19V 正常,再插入负载插头,测量该处电压在8.7V左右摆动,开关电路处于自保护状态,判断电路有短路故障,检查IC1外围元件均正常,由于该开关电源稳压电路取样是从C8、C9正极直接通过电阻R15、R16到IC3的,检测该回路无发现异常。于是怀疑二次回路肖特基全波整流管TPS带负载能力下降所以,拆下TPS 测量内阻增大,用一只S30D40C肖特基全波整流管代替,故障排除。

1.笔记本电脑电源适配器电路故障分析与详解

(2010-10-12 17:53:58)

转载

标签:

杂谈

笔记本电脑电源适配器电路故障分析与详解

加电后电压指示灯不亮,无19V输出。

这是一种常见的电源电路故障,首先检查开关电路的供电回路IC1⑦脚有无17V电压,该脚最低门限电压值为10V,内部接有最低门限电压控制器和电源稳压器电路组成,所以外接电源只需简单接一支110K左右的降压电阻,电路即可正常工作,当IC1⑦供电电压低于门限电压10V以下,PWM脉冲输出电路IC⑥脚无输出,处于保护状态。只要用电压表测量滤波电容C1两端有无320V左右的直流电压即可。

1.若无320V左右的直流电压,故障大多为F1保险管熔断,现象为保险管玻璃内全烧黑,有的玻璃外壳被炸裂,这种故障多为整流电路桥堆或有的电路采用四只二极管中的某一只击穿或滤波电容C1击穿短路,当发现开关管Q1击穿短路后,必须查明原因再更换加电。否则还会再次烧毁,造成开关管Q1损坏原因有其自身原因如老化导通内阻变大发热、消峰电压吸收回路R4、5、6、C2、D1开路或虚焊(该回路是在开关管Q1截止期间迅速将储能变压器中的能量释放掉,以保护开关管Q1不被过电压击穿)。IC1、2、3不良或损坏(稳压控制回路,他是一个闭环的反馈稳压电路,它将输出电压的变化来使电源误差比较器IC3导通或截止,再通过光电耦合器IC2中的光电管去IC1①的内部PWM电路来改变IC1⑥脚输出的脉冲宽度,调整开关管Q1的占空比,当闭环回路中元件损坏或不良时,就会导致误差电压不能正常的从输出极反馈到IC1①的内部PWM电路,造成开关管Q1占空比加大(导通时间过长烧毁)。

笔记本电脑电源适配器电路原理

(2010-10-12 17:42:32)

转载

标签:

杂谈

随着电子技术飞速发展,几乎所以的电器都离不开开关电源电路,如液晶显示器、液晶电视、打印机、手机充电器等。笔记本电脑的便携性和高性能及体积小对外围设备的扩充与应用,已成为数百万人日常工作、学习、娱乐生活中的一个重要部分。由于使用率高,故障发生也相对高,给我们生活带来了很多烦恼,作者经过这几年对笔记本电脑故障维修统计,硬件发生率较高的就是电源适配器。由于其电源适配器全密封、小体积设计,元件密度高。外加工作电压高、电流大。发生故障后由于很难找到这方面维修资料,无从下手。

按我们以往维修经验,在检修过程中需逐级断开各支路,又因各支路多为闭环回路,一旦断开加电,会造成负载大面积元件烧毁。判断元器件如IC1、IC2、IC3好坏使用万用表测量无法判断其好坏。直接加电检修有可能还会造成故障扩大。所有我们必须了解熟悉此类电路的基本原理,在检修该开关电源适配器故障中提高维修技能。本文介绍一种最快、最安全的检修方法是使用一台1~30V的可调稳压电源。给故障电源回路单独供电,可快速找出故障元件。

一.电源适配器电路详解及故障分析:

开关电源适配器电源输入电压100V-240V/,频率50/60HZ,直流输出电压19V/3A。开关电源输入端采取双级EMI抗干扰电路,有FL1、FL2等元件组成,能有效的减小开关电源内的高频信号对电网的辐射干扰。电源输入回路的CX1压敏电阻是为保护开关电源脉冲宽度控制电路IC1和场效应管Q1而设置的。根据实物测绘的工作原理图供维修人员参考(见图)。该电源脉冲宽度控制电路的核心为IC1片IC1 UC3843B 采用COP-8封装:①脚误差放大器输出补偿,(它内部有两个误差放大器,一个用于反馈控制,一个用于过流保护)②脚反馈电压输入端,内部2.5VDC基准电压比较器,产生误差电压来控制调节脉冲宽度,③脚用于检测开关管Q1源极过载保护取样电阻R10A/B上的电流,当峰值电流大于IC1内部保护设定阀值电平时,内部电路比较器翻转关闭脉宽调制控制器输出,达到保护目的。(实际上就是个过流保护电路),④脚定时器电路外接有C3、R11产生方波震荡,震荡频率由C3、R11决定,其最大工作频率500KHZ,⑤脚接地,⑥脚控制器输出,⑦脚Vcc工作电压17V,启动电流1mA、工作电流15mA,⑧脚+5V参考电压输出

电路工作原理:

当接入220V交流电源后,经整流桥式二极管桥堆BD、C1滤波后的340V不稳定的直流电压,被分为两路,,第一路经电阻R2、R3降压给电源控制芯片IC1 ⑦脚注入启动工作电压,内部(PWM)振荡电路开始工作,产生脉宽调制器所需要的锯齿波(SAW),同时产生最大占空比信号(DMAx)。电路产生的额定占空比脉宽调制(PWM)信号,经驱动放大后,从⑥脚送出驱动场效应功率开关管Q1导通,另一路经脉冲变压器T1 ②、①端加到场效应开关管的Q1的漏极D,开关管Q1导通,同时在脉冲变压器T1初级绕组中流过高频脉冲电流,经开关管Q1,L1、R10A、R10B形成回路,脉动变压器T1的二次极绕组感应输出高频脉冲电压,经肖特基全波整流管Q2,经C8、L1、C9滤波的到19V直流输出电压。当负载有短路过流时,稳压管ZD1两端的电压升高,并通过R9送入IC1的③脚,IC1内部的保护电路误差放大器将反馈电压与基准电压进行比较后,输出误差电流,以控制其场效应功率管Q1迅速截止。避免开关管Q1因过流烧坏。

稳压电路,当输出直流电压升高时,在二次电容器C8、C9两端电压会增大,R13为光电耦合器IC2 ①脚内部发光二极管正极提供一个电压,R15、R16为取样电阻,超过2.5V的电压经IC3参考极输入,经内部电路误差放大控制分流,使光电耦合器②脚电位下降,发光二极管导通电流增大,发光加强,并在光敏三极管因受光而加强,使IC1的①脚电位下降,在其内部的误差放大器和PWM控制电路使⑥脚输出的脉冲占空比减小,使开关管导通时间缩短,脉冲变压器次级绕组感应的高频脉冲电压下降,实现稳压的目的。

详细电脑开关电源维修图解及原理图解大字版

电脑开关电源维修图解 一颗强劲的CPU可以带着我们在复杂的数码世界里飞速狂奔,一块最酷的显示卡会带着我们在绚丽的3D世界里领略那五光十色的震撼,一块最棒的声卡更能带领我们进入那美妙的音乐殿堂。相对于CPU,显示卡、声卡而言,电源可能是微不足道的,我们对它的了解也不是很多,可是我们必须知道,一个稳定工作的电源,是使我们计算机能够更好工作的前提。 计算机开关电源工作电压较高,通过的电流较大,又工作在有自感电动势的状态下,因此,使用过程中故障率较高。对于电源产生的故障,不少朋友束手无策,其实,只要有一点电子电 路知识,就可以轻松的维修电源。 首先,我们要知道计算机开关电源的工作原理。电源先将高电压交流电(220V)通过全桥二极管(图1、2)整流以后成为高电压的脉冲直流电,再经过电容滤波(图3)以后成为高压直流电。

此时,控制电路控制大功率开关三极管将高压直流电按照一定的高频频率分批送到高频变压器的初级(图4)。接着,把从次级线圈输出的降压后的高频低压交流电通过整流滤波转换为能使电脑工作的低电压强电流的直流电。其中,控制电路是必不可少的部分。它能有效的监控输出端的电压值,并向功率开关三极管发出信号控制电压上下调整的幅度。在计算机开关电源中,由于电源输入部分工作在高电压、大电流的状态下,故障率最高;其次输出直流部分的整流二极管、保护二极管、大功率开关三极管较易损坏;再就是脉宽调制器TL494的4脚电压是保护电路的关键测试点。通过对多台电源的维修,总结出了对付电源常见故障的方法。

一、在断电情况下,“望、闻、问、切” 由于检修电源要接触到220V高压电,人体一旦接触36V以上的电压就有生命危险。因此,在有可能的条件下,尽量先检查一下在断电状态下有无明显的短路、元器件损坏故障。首先,打开电源的外壳,检查保险丝(图5)是否熔断,再观察电源的内部情况,如果发现电源的PCB 板上元件破裂,则应重点检查此元件,一般来讲这是出现故障的主要原因;闻一下电源内部是否有糊味,检查是否有烧焦的元器件;问一下电源损坏的经过,是否对电源进行违规的操作,这一点对于维修任何设备都是必须的。在初步检查以后,还要对电源进行更深入地检测。

开关电源各模块原理实图讲解

开关电源原理 一、开关电源的电路组成: 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值 降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及 杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。 当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪 涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是 负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5 容量变小,输出的交流纹波将增大。

时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增 大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路: 1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导 体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图: 3、工作原理: R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖峰电压和尖峰电流,这些元件组合一起,能很好地吸收尖峰电压和电流。从R3测得的电流峰值信号参与当前工作周波的占空比控制,因此是当前工作周波的电流限制。当R5上的电压达到1V时,UC3842停止工作,开关管Q1立即关断。 R1和Q1中的结电容C GS、C GD一起组成RC网络,电容的充放电直接影响着开关管的开关速度。R1过小,易引起振荡,电磁干扰也会很大;R1过大,会降低开关管的开关速度。Z1通常将MOS管的GS电压限制在18V以下,从而保护了MOS管。 Q1的栅极受控电压为锯形波,当其占空比越大时,Q1导通时间越长,变压器所储存的能量

笔记本电源适配器维修过程

前段时间一个同事一个笔记本电源坏了,我想着容易就想着说修修看,本以为就是电容击穿了换下容易,谁知道就开始了漫漫的维修之路,说实在的,比买说下我的维修心得。 1、用工具撬开电源外壳(一般笔记本电源都是胶粘上的,没有用螺丝固定),取出屏蔽罩 跟电源。 2、观察电路有无明显坏掉部位,结果没有,测试保险管好着,上电,绿色指示灯不亮,说 明无输出电压,测量整流滤波电容两端电压为310V左右,与理论的√2倍220符合,说明整流电路没坏,断电,电容上电压仍然保持(310V相当危险,测电极一不小心就熏黑了),我的水平仅限于测电容的水平,发现C7正常,C5击穿了,观察主控芯片为KA3842,发现3842裂开了,怀疑还能用,百度其PDF,测试各引脚,(由于芯片很小各脚相距很近,一定不能直接在引脚上测量,要到引出的电路上测,我因此两次短路造成了大片损坏,实际上已经不能分析到原来电路的问题了),百度电路原理图,如图下图所示(图片来自中电网),分析C7不放电原因,根据网上搜索出来的修理经验,估计是电阻坏的可能性大,排查电阻,发现R5断路,6N60C管损坏,MBRF200010T似乎也坏了,D1(1n4148)损坏,初步以为是1n4148损坏造成断路致使C7不能正常放电。 更换好后一通电又是一声响,电源指示灯闪了下,说明工作了,然后就是一声,爆得更彻底,3842直接爆开,6n60c,桥式整流更不用说了,r5又坏了,本来这个电路原件不多,似乎全换了。 3、分析以为是Q1(6n60c)击穿造成电流从6脚进入集成块,引起爆炸,查了下有关资料 说是场管栅极容易积累电荷引起击穿,于是查r10电阻发现有22k,而根据他的色环绿红黑,说明只有52欧,和上图也一致,这可能是造成栅极电荷积累的主要原因,于是D2,R10也进行了更换; 4、继续查,发现光耦也不对,正反向电阻一致,只有几K,原来这里是导通的,致使3842 产生正反馈,估计不停的正增益,致使电压奇高,因此估计tl431也好不到那里去。

开关电源入门必读:开关电源工作原理超详细解析

开关电源入门必读:开关电源工作原理超详细解析 第1页:前言:PC电源知多少 个人PC所采用的电源都是基于一种名为“开关模式”的技术,所以我们经常会将个人PC电源称之为——开关电源(Sw itching Mode P ow er Supplies,简称SMPS),它还有一个绰号——DC-DC转化器。本次文章我们将会为您解读开关电源的工作模式和原理、开关电源内部的元器件的介绍以及这些元器件的功能。 ●线性电源知多少 目前主要包括两种电源类型:线性电源(linear)和开关电源(sw itching)。线性电源的工作原理是首先将127 V或者220V市电通过变压器转为低压电,比如说12V,而且经过转换后的低压依然是AC交流电;然后再通过一系列的二极管进行矫正和整流,并将低压AC交流电转化为脉动电压(配图1和2中的“3”);下一步需要对脉动电压进行滤波,通过电容完成,然后将经过滤波后的低压交流电转换成DC直流电(配图1和2中的“4”);此时得到的低压直流电依然不够纯净,会有一定的波动(这种电压波动就是我们常说的纹波),所以还需要稳压二极管或者电压整流电路进行矫正。最后,我们就可以得到纯净的低压DC直流电输出了(配图1和2中的“5”) 配图1:标准的线性电源设计图

配图2:线性电源的波形 尽管说线性电源非常适合为低功耗设备供电,比如说无绳电话、PlayStation/W ii/Xbox等游戏主机等等,但是对于高功耗设备而言,线性电源将会力不从心。 对于线性电源而言,其内部电容以及变压器的大小和AC市电的频率成反比:也即说如果输入市电的频率越低时,线性电源就需要越大的电容和变压器,反之亦然。由于当前一直采用的是60Hz(有些国家是50Hz)频率的AC市电,这是一个相对较低的频率,所以其变压器以及电容的个头往往都相对比较大。此外,AC市电的浪涌越大,线性电源的变压器的个头就越大。 由此可见,对于个人PC领域而言,制造一台线性电源将会是一件疯狂的举动,因为它的体积将会非常大、重量也会非常的重。所以说个人PC用户并不适合用线性电源。 ●开关电源知多少 开关电源可以通过高频开关模式很好的解决这一问题。对于高频开关电源而言,AC输入电压可以在进入变压器之前升压(升压前一般是50-60KHz)。随着输入电压的升高,变压器以及电容等元器件的个头就不用像线性电源那么的大。这种高频开关电源正是我们的个人PC以及像VCR录像机这样的设备所需要的。需要说明的是,我们经常所说的“开关电源”其实是“高频开关电源”的缩写形式,和电源本身的关闭和开启式没有任何关系的。 事实上,终端用户的PC的电源采用的是一种更为优化的方案:闭回路系统(closed loop system)——负责控制开关管的电路,从电源的输出获得反馈信号,然后根据PC的功耗来增加或者降低某一周期内的电压的频率以便能够适应电源的变压器(这个方法称作PW M,Pulse W idth Modulation,脉冲宽度调制)。所以说,开关电源可以根据与之相连的耗电设备的功耗的大小来自我调整,从而可以让变压器以及其他的元器件带走更少量的能量,而且降低发热量。 反观线性电源,它的设计理念就是功率至上,即便负载电路并不需要很大电流。这样做的后果就是所有元件即便非必要的时候也工作在满负荷下,结果产生高很多的热量。 第2页:看图说话:图解开关电源 下图3和4描述的是开关电源的PW M反馈机制。图3描述的是没有PFC(P ow er Factor Correction,功率因素校正)电路的廉价电源,图4描述的是采用主动式PFC设计的中高端电源。 图3:没有PFC电路的电源 图4:有PFC电路的电源 通过图3和图4的对比我们可以看出两者的不同之处:一个具备主动式PFC电路而另一个不具备,前者没有110/220V转换器,而且也没有电压倍压电路。下文我们的重点将会是主动式PFC电源的讲解。

戴尔笔记本电脑电源适配器电路原理浅析与维修

戴尔笔记本电脑电源适配器电路原理浅析与维修 近日修了几台戴尔笔记本电脑PA-12系列HA65NS2-00型电源适配器,版本号REV A01。其标称输入电压为100~240V(50-60Hz).输出电压为直流19.5V,输出电流为3.34A,额定输出功率65W。戴尔Latitude、lnsipron 系列笔记本电脑均可使用该电源适配器,社会保有量较大。 HA65NS02-00型电源适配器大量使用了表面安装器件,如图1所示。 由于元器件密度高、工作电压高、电流大,发生故障的几率较大。若没有电路原理图维修相当困难。这里给出根据实物绘出的电路原理图(见图2),浅析其工作原理,给出两个维修实例。图2中:器件编号与实物一致,贴片电容未标注容量,电阻R12和R18阻值为实测值(缺省标注数值的电阻单位为欧姆,缺省标注数值的电容单位为微法)。 一、电路组成与主要元器件作用 1.电磁干扰抑制电路与整流滤波电路L1、R1A、R1B、CXl、L2组成差模和共模低通滤波器,通常称作电磁干扰抑制电路(EMI),用来抑制开关电源产生的电磁干扰;BDl和C1组成桥式全波整流滤波电路,为直流/直流变换电路提供平滑的直流电源(主电源)。 2.直流/直流变换电路 集成电路IC1及外围元器件、功率场效应开关管Ql、开关变压器T1等构成直流/直流变换电路。ICl是HA65NS02-00电源适配器的核心器件,采用SOP-8封装,顶部有两行标记,一行为“1D07N25",一行为"5528"。在查阅了大量资料后排除了NCPl207、LD7575等 芯片,最终确认该芯片为富士电机(Fuji Electric)生产的FA5528。FA5528是采用CMOS制程的电流模式脉宽调制控制芯片,典型工作电流仅1.4mA。该芯片额定工作频率60kHz,轻载时自动降低工作频率,图3是FA5528的内部电路框图。 电阻R5A、R5D、c5和D1构成消尖峰电路。用来削除开关管导通与夹断时T1初级绕组产生的高压尖峰脉冲(用来保护开关管Q1)。遇Q1击穿故障时,应检查消尖峰电路。D2和R1构成IC1的启动电路。启动电流大约7mA。IC1启动后,芯片启动电路关闭,改由辅助电源供电,启动电路电流降至251uA左右。开关变压器T1-1、T1-2绕组、R7、D3、R8、C3、C10和R4组成18V辅助电源为ICI提供电能。开关管Q1源极与高压地之间的电阻R18和R14为开关电源过载保护取样电阻。当流经过载保护电阻的峰值电流大于IC1内部设定的保护阀值电平时,IC1内部过载保护比较器翻转关闭脉宽调制器输出.功率场效应开关管Q1夹断,达到保护目的。 3.输出整流滤波电路 开关变压器T1A、T1B绕组产生的低压脉冲电压,经共阴极双肖特基二极管D31A整流、C21A~C21C滤波后,产生平滑的+19.5V电源供电脑使用。电阻R21和电容C21组成的网络用来吸收开关变压器产生的尖峰脉冲,保护整流器件。高亮度发光二极管LED和电阻R13相串用来指示电源适配器工作状态。 4.输出电压稳压控制电路 线性光电耦合器PH1和精密并联型可调整稳压器IC32及其外围元器件与IC1内部误差放大器、脉宽控制电路共同构成输出电压稳压控制电路。 由于IC32的存在,PHI②脚的电位是恒定的,当+19.5V电压变化时。PH1内部发光二极管的发光强度发生变化,PH1内部光电三极管集电极和发射极间的电压UCE随之发生变化,UCE的变化经ICI内部误差放大器放大后,调

反激开关电源原理

星期一, 05/11/2009 - 09:42 —陶显芳 1-7.反激式变压器开关电源 反激式变压器开关电源工作原理比较简单,输出电压控制范围比较大,因此,在一般电器设备中应用最广泛。 1-7-1.反激式变压器开关电源工作原理 所谓反激式变压器开关电源,是指当变压器的初级线圈正好被直流电压激励时,变压器的次级线圈没有向负载提供功率输出,而仅在变压器初级线圈的激励电压被关断后才向负载提供功率输出,这种变压器开关电源称为反激式开关电源。 图1-19-a是反激式变压器开关电源的简单工作原理图,图1-19-a中,Ui是开关电源的输入电压,T是开关变压器,K是控制开关,C是储能滤波电容,R是负载电阻。图1-19-b是反激式变压器开关电源的电压输出波形。 把图1-19-a与图1-16-a进行比较,如果我们把图1-16-a中开关变压器次级线圈的同名端对调一下,原来变压器输出电压的正、负极性就会完全颠倒过来,图1-19-b所示的电压输出波形基本上就是从图1-16-b的波形颠倒过来的。不过,因为图1-16-b的波形对应的是纯电阻负载,而图1-19-b的负载是一个储能滤波电容和一个电阻并联。由于储能滤波电容的容量很大,其两端电压基本不变,变压器次级线圈输出电压uo相当于被整流二极管和输出电压Uo进行限幅,因此,图1-16-b中输出电压uo的脉冲尖峰完全被削除,被限幅后的剩余电压幅值正好等于输出电压Uo的最大值Up,同时也等于变压器次级线圈输出电压uo的半波平均值Upa。

下面我们来详细分析反激式变压器开关电源的工作过程(参考图1-20)。 图1-19-a中,在控制开关K接通的Ton期间,输入电源Ui对变压器初级线圈N1绕组加电,初级线圈N1绕组有电流i1流过,在N1两端产生自感电动势的同时,在变压器次级线圈N2绕组的两端也同时产生感应电动势,但由于整流二极管的作用,没有产生回路电流。相当于变压器次级线圈开路,变压器次级线圈相当于一个电感。因此,流过变压器初级线圈N1绕组的电流就是变压器的励磁电流,变压器初级线圈N1绕组两端产生自感电动势可由下式表示: e1 = L1di/dt = Ui —— K接通期间(1-98) 或 e1 = N1dф/dt = Ui —— K接通期间(1-99) 上式中,e1为变压器初级线圈N1绕组产生的自感电动势,L1是变压器初级线圈N1绕组的电感,N1为变压器初级线圈N1绕组线圈绕组的匝数,ф为变压器铁心中的磁通。对(1-98)和(1-99)式进行积分,由此可求得: i1 =Ui*t/L1 +i(0) —— K接通期间(1-100) ф=Ui*t/N1 +ф (0) —— K关断瞬间(1-101) 上式中,i1是流过变压器初级线圈N1绕组的电流,ф为变压器铁心中的磁通;i1(0)为变压器初级线圈中的初始电流,即:控制开关刚接通瞬间流过变压器初级线圈N1绕组的电流;ф(0)为初始磁通,即:控制开关刚接通瞬间变压器铁心中的磁通。当开关电源工作于输出临界连续电流状态时,这里的i1(0)正好0,而ф(0)正好等于剩磁通S?Br。当控制开关K将要关断,且开关电源工作于输出电流临界连续状态时,i1和均达到最大值: i1m =Ui*Ton/L1 —— K关断瞬间(1-102)

减震器工作原理详解

汽车悬架知识专题:减震器工作原理详解 悬架系统中由于弹性元件受冲击产生振动,为改善汽车行驶平顺性,悬架中与弹性元件并联安装减振器,为衰减振动,汽车悬架系统中采用减振器多是液力减振器,其工作原理是当车架(或车身)和车桥间受振动出现相对运动时,减振器内的活塞上下移动,减振器腔内的油液便反复地从一个腔经过不同的孔隙流入另一个腔内。此时孔壁与油液间的摩擦和油液分子间的内摩擦对振动形成阻尼力,使汽车振动能量转化为油液热能,再由减振器吸收散发到大气中。在油液通道截面和等因素不变时,阻尼力随车架与车桥(或车轮)之间的相对运动速度增减,并与油液粘度有关。 减振器与弹性元件承担着缓冲击和减振的任务,阻尼力过大,将使悬架弹性变坏,甚至使减振器连接件损坏。因面要调节弹性元件和减振器这一矛盾。 (1) 在压缩行程(车桥和车架相互靠近),减振器阻尼力较小,以便充分发挥弹性元件的弹性作用,缓和冲击。这时,弹性元件起主要作用。 (2) 在悬架伸张行程中(车桥和车架相互远离),减振器阻尼力应大,迅速减振。 (3) 当车桥(或车轮)与车桥间的相对速度过大时,要求减振器能自动加大液流量,使阻尼力始终保持在一定限度之内,以避免承受过大的冲击载荷。 在汽车悬架系统中广泛采用的是筒式减振器,且在压缩和伸张行程中均能起减振作用叫双向作用式减振器,还有采用新式减振器,它包括充气式减振器和阻力可调式减振器。

1. 活塞杆; 2. 工作缸筒; 3. 活塞; 4. 伸张 阀;5. 储油缸筒; 6. 压缩阀;7. 补偿阀; 8. 流通阀;9. 导向座;10. 防尘罩;11. 油 封 双向作用筒式减振器示意图 双向作用筒式减振器工作原理说明。在压缩行程时,指汽车车轮移近车身,减振器受压缩,此时减振器内活塞3向下移动。活塞下腔室的容积减少,油压升高,油液流经流通阀8流到活塞上面的腔室(上腔)。上腔被活塞杆1占去了一部分空间,因而上腔增加的容积小于下腔减小的容积,一部分油液于是就推开压缩阀6,流回贮油缸5。这些阀对油的节约形成悬架受压缩运动的阻尼力。减振器在伸张行程时,车轮相当于远离车身,减振器受拉伸。这时减振器的活塞向上移动。活塞上腔油压升高,流通阀8关闭,上腔内的油液推开伸张阀4流入下腔。由于活塞杆的存在,自上腔流来的油液不足以充满下腔增加的容积,主使下腔产生一真空度,这时储油缸中的油液推开补偿阀7流进下腔进行补充。由于这些阀的节流作用对悬架

ATX电脑电源常见故障及维修方法

ATX电脑电源常见故障及维修方法 电源是计算机的重要组成部件,它是计算机正常工作的基础。当今微机绝大多数配置ATX 电源,它是AT电源发展而来,主变换电路和AT电源相似,并增加了一些辅助电路,除给主机提供稳定可靠的工作电源外,还可配合A TX主板实现软件开关主机的功能。A TX电源除经常发生和AT电源共有的故障外,还有一些特有的故障。下面简要介绍ATX电源的常见故障,仅供参考。 1.A TX电源的工作原理方框图 ATX电源方框图如图1所示。 从图1可以看出,A TX电源的主变换电路和AT电源相似,采用双管半桥它激式电路。整个电路的核心是脉宽调制(PWM)控制芯片,多数A TX电源都采用TL494(或其替代芯片),利用TL494的④脚“死区控制”功能来实现主变换电路的开启和关闭。 2.如何判定故障范围 由于微机电源都设置了过压、过流保护电路,电源发生故障时,大多表现为主机加电无任何指示,主机不启动,显示器无任何显示,电源风扇不转。由于A TX主板上有一部分电路称为“电源检测模块”,它可以控制电源的开启和关闭,这部分电路出现了故障,也表现为上述故障现象。那么,怎样判定是A TX电源故障还是主板故障呢? ATX电源和主板之间是通过一个20脚长方形双排综合插件连接的,如图2所示,其中14脚(绿色线)为PS-ON信号,主板就是通过这个信号来控制电源的开启和关闭的。当主板电源的“电源检测部件”使PS-ON信号为高电平时,电源关闭;当主板使PS-ON信号为低电平时,电源工作,向主板供电。当A TX电源不和主板相连时,电源内部提供PS-ON信号高电平,ATX电源不工作,处于待机状态。当计算机通电后无法开启时,可将所有供电插头拔下,将14脚和地线(黑色线)用导线短接,若电源风扇转动,各路输出正确,即可判定电源是正常的,否则是电源故障。 3.ATX电源常见故障维修(l)无300V直流电压。这种故障,首先从交流输入插座查起,保险管、整流二极管(桥)、滤波电容是常坏的元件。找到损坏元件后,还要检查主变换电路大功率开关管及其附属电路,在保证其正常时,才可以加电,因为这种故障通常是山大功率元件损坏后引起的。大功率管多采用MJE13007(400V/8A/75W),是故障率最高的元件,更换时要选用性能参数等于或高于原参数的管子,最好选用原型号的管子,还要注意两个管子的参数应一致。 (2)通电后辅助电源正常,启动电源各路主电压无输出。 这种故障有两种可能,一是主变换电路有故障,二是控制部分损坏。首先静态检查半桥功率管及其附属电路和驱动电路,若无故障,检查TL494④脚在PS-ON信号为低电平时是否变为低电平,若无变化,是PS-ON处理电路故障,有变化,再检查8 、11脚有无脉冲输出,若无则TL494损坏。 (3)有300v直流电压,辅助电源不工作。 这是最常见的故障.表现为+300V正常,无+5VSB电压,Tl494的12脚无电压,可以判定辅助电源有故障,辅助电源常见电路简图如图3所示。 这是典型的单管自激式开关电源电路,变压器T3次级有两路输出,一路经整流滤波再由7805稳压,输出5VSB电压;另一路整流滤波后,直接加在TL494的12脚,作为TL494的工作电源,由于TL494的可工作电压范围较宽(7~40V),这一路没有稳压措施。TL494的14脚输出基准+5V(VREF),提供给保护电路、P.G产生电路和PS-ON处理电路,作为这些电路的工作电压。由于电路简单,没有完善的稳压调控及保护电路,使辅助电源电路成为ATX 电源中故障率较高的部分,常损坏的元件是功率管和功率电阻(4.7?),特别是功率管的启

减震原理

摩托车减震器的分类以及工作原理 为了缓和与衰减摩托车在行驶过程中因道路凹凸不平受到的冲击和震动,保证行车的平顺性与舒适性,有利于提高摩托车的使用寿命和操纵的稳定性,摩托车上均设置有减震器装置。本文拟对常见的减震器结构类型、工作原理,以及减震器油的技术要求和如何调配、更换等进行探讨,供广大摩托车用户和车迷朋友们参考。 一、减震器的分类 减震器有许多种类,摩托车中绝大多数采用筒式减震器,只有极少数采用钢板弹簧结构。筒式减震器的型式和品种很多,大体上有以下几种类型: 1、根据安装位置分,有前减震器和后减震器; 2、按结构形式分,有(a)伸缩管式前*液力减震器(这是目前摩托车中使用最多的前减震器);(b)摇臂式减震器;(c)摇臂杠杆垂直式中心减震器;(d)摇臂杠杆倾斜式中心减震器。 3、按油缸工作位置分,有(a)倒置式减震器(即油缸位置在上方,活塞杆在下方);(b)正置式减震器(油缸位置在下方,活塞杆在上方)。 4、按工作介质分,有(a)弹簧式减震器;(b)弹簧—空气阻尼式减震器(因空气的阻尼力有限,减震效果也不太理想,一般只用于速度不高的轻便摩托车作后减震器);(c)液力阻尼式减震器;(d)油—气组合式前*减震器。(e)充氮气液压减震器。 5、按衰减力方向分,有(a)单向作用减震器;(b)双向作用减震器。 6、按负载调节式分,有(a)弹簧初始压力调节式;(b)气簧式;(c)安装角度调节式。 世界各国摩托车厂家在相互竞争中,对摩托车的前悬挂装置和后悬挂装置的设计,投入较大且十分考究,采用了更为新颖的变直径和变节距的弹性元件,如油压阻尼器、油—气调节装置、负载调节装置、摇臂杠杆式中心减震装置等先进结构。这些新技术的普及,能迅速衰减因车速、负载及多种路况变化所带来的冲击和震动,将振抗自动地调节到最佳的技术状态,极大地改善了摩托车的减震性能,不同程度地提高了摩托车乘骑的适应性、舒适性、平稳性和安全性。 二、液压阻尼减震器的工作原理 液压式减震器是目前摩托车使用最为普遍的减震器,现简要介绍其工作原理。 1、液压阻尼式后减震器 液压式减震器的结构同吸入式泵基本相似,不同之处只是液压减震器的钢体上端是封闭的,而阀门上留有小孔。当后轮遇到凸起的路面受到冲击时,缸筒向上移动,活塞在内缸筒里相对往下移动。此时,活塞阀门被冲开向上,内缸筒腔内活塞下侧的油不受任何阻力地流向活塞上侧。同时,这一部分油也通过底部阀门上的小孔流入内、外缸筒之间的油腔内。这样就有效地衰减了凹凸路面对车辆的冲击负荷。而当车轮越过凸起地面往下落时,缸筒也会跟着往下运动,活塞就会相对于缸筒向上移动。当活塞向上移动时,油冲开底部的阀门流向内缸筒,同时内缸筒活塞上侧的油经活塞阀门上的小孔流向下侧。此时当油液流过小孔过程中,会受到很大的阻力,这样就产生了较好的阻尼作用,起到了减震的目的。 2、伸缩管式前*液力减震器 伸缩式前*同前轮和车架是连在一起的,它既起到一部分骨架支撑作用,又起到减震器的作用。随着柄管和套管之间的相互伸缩,前*内的油经设置在隔壁的小孔流动。当柄管压缩时,随着柄管的移动(如图1所示),B室里的油受压后经柄管上的小孔流向C室。同时经自由阀流向A室。油液流动时,受到的阻力衰减了压缩力。当压缩行程快到极限时,柄管末端的锥形油封片就会插上,从而封闭了B室内油的通路。此时,B室油压激剧上升,使其处于被封闭的状态,这样就限制了柄管的行程,有效地防止前*上的可动零件之间的瞬间机械碰撞。 在柄管伸张(即反弹)时,A室内的油经设在前*活塞上部(靠近活塞环附近)的小孔流向C室。此时,油液流动所受到的阻力衰减了伸张力。当伸张行程快到极限时,反弹弹簧的伸长吸收了振动能量,而且在这一过程中,油经前*活塞下部的小孔补充到B室,为下一次的工作做好了准备。 三、减震力调节器及防点头装置 1、减震力调节器

5V1A电源适配器充电器6级能效正确选取和使用方法

12V/9V/5V-1A/2A/3A电源适配器/充电器6级能效正确选取和使用方法 生活中电源适配器就像是日用品一样被普遍应用,如随身携带的手机、需照明的LED灯、路由器、以及经常使用的笔记本计算机和打印机等等。但是很多人选择电源适配器的时候都很迷惑,下面小编来分享选择电源适配器需符合的三个条件。 电源适配器,简单的说可以理解成为一个变压器,当然内部结构不是简简单单的一个变压器。那么如何辨知电源适配器能不能给移动设备充电?我先给出三个符合适配条件,后面解释为什么需要这样。 符合三个适配条件 1、适配器的接口与设备匹配。 2、输出电压必须与负载(移动设备)的额定输入电压相同,或者在负载(移动设备)可承受的电压范围,否则,可能烧毁负载(移动设备)的。 3、电源适配器的输出电流应等于、大于负载(移动设备)的电流,以提供足够的电力。 原理解释 1、第一条不需要解释,不匹配的接口在没有专业知识的情况下千万不要乱插。 2、对于为什么需要电压一致,从原理上讲是这样的——电压不足,不足以驱动负载,电池无法正常充电,说的通俗点就是供不应求。 3、对于为什么需要这样的电流配置,这要涉及到电路的原理,大家都知道电源是有内阻的,内阻越大损耗越大。因此厂家在生产这个适配器的时候就会根据内阻大小,确定空载输出电压在一定范围内,而电压临界值对应的电流临界值即为我们看到的电流标称值,电流标称值越大说明适配器带载能力越好。所以你选择电流略大的适配器不但不会伤害你的电池,反而会让你的充电变得更快。 注意事项: 注意三个原则,但这不是绝对的,电路充斥着我们的日常生活,了解基本的电路常识大有裨益。 正确的选择电源适配器,正确使用,才不会对电子设备造成损坏,不会缩短正常使用寿命。

计算机开关电源的工作原理与维修

计算机开关电源的工作原理与维修 计算机开关电源工作电压较高,通过的电流较大,又工作在有自感电动势的状态下,因此,使用过程中故障率较高。对于电源产生的故障,不少朋友束手无策,其实,只要有一点电子电路知识,就可以轻松的维修电源。 对ATX电源控制电路的工作原理进行了较详细的阐述,望能对广大维修者有所帮助。 一、ATX型电源电路的组成及工作原理 ATX开关电源,电路按其组成功能分为:交流输入整流滤波电路、脉冲半桥功率变换电路、辅助电源电路、脉宽调制控制电路、PS-ON和PW-OK产生电路、自动稳压与保护控制电路、多路直流稳压输出电路。请参照图1和ATX电源电路原理图。 1.辅助电源电路 只要有交流市电输入,ATX开关电源无论是否开启,其辅助电源一直在工作,为开关电源控制电路提供工作电压。市电经高压整流、滤波,输出约300V 直流脉动电压,一路经R72、R76至辅助电源开关管Q15基极,另一路经T3开关变压器的初级绕组加至Q15集电极,使Q15导通。T3反馈绕组的感应电势(上正下负)通过正反馈支路C44、R74加至Q15基极,使Q15饱和导通。反馈电流通过

R74、R78、Q15的b、e极等效电阻对电容C44充电,随着C44充电电压增加,流经Q15基极电流逐渐减小,T3反馈绕组感应电势反相(上负下正),与C44电压叠加至Q15基极,Q15基极电位变负,开关管迅速截止。 Q15截止时,ZD6、D30、C41、R70组成Q15基极负偏压截止电路。反馈绕组感应电势的正端经C41、R70、D41至感应电势负端形成充电回路,C41负极负电压,Q15基极电位由于D30、ZD6的导通,被箝位在比C41负电压高约6.8V(二极管压降和稳压值)的负电位上。同时正反馈支路C44的充电电压经T3反馈绕组,R78,Q15的b、e极等效电阻,R74形成放电回路。随着C41充电电流逐渐减小,Ub电位上升,当Ub电位增加到Q15的b、e极的开启电压时,Q15再次导通,又进入下一个周期的振荡。 Q15饱和期间,T3二次绕组输出端的感应电势为负,整流管截止,流经一次绕组的导通电流以磁能的形式储存在T3辅助电源变压器中。当Q15由饱和转向截止时,二次绕组两个输出端的感应电势为正,T3储存的磁能转化为电能经BD5、BD6整流输出。其中BD5整流输出电压供Q16三端稳压器7805工作,Q16输出+5VSB,若该电压丢失,主板就不会自动唤醒ATX电源启动。BD6整流输出电压供给IC1脉宽调制TL494的12脚电源输入端,该芯片14脚输出稳压5V,提供ATX开关电源控制电路所有元件的工作电压。 2.PS-ON和PW-OK、脉宽调制电路 PS-ON信号控制IC1的4脚死区电压,待机时,主板启闭控制电路的电子开关断开,PS-ON信号高电平3.6V,IC10精密稳压电路WL431的Ur电位上升,Uk电位下降,Q7导通,稳压5V通过Q7的e、c极,R80、D25和D40送入IC1的4脚,当4脚电压超过3V时,封锁8、11脚的调制脉宽输出,使T2推动变压器、T1主电源开关变压器停振,停止提供+3.3V、±5V、±12V的输出电压。受控启动后,PS-ON信号由主板启闭控制电路的电子开关接地,IC10的Ur为零电位,Uk电位升至+5V,Q7截止,c极为零电位,IC1的4脚低电平,允许8、11脚输出脉宽调制信号。IC1的输出方式控制端13脚接稳压5V,脉宽调制器为并联推挽式输出,8、11脚输出相位差180度的脉宽调制控制信号,输出频率为IC1的5、6脚外接定时阻容元件的振荡频率的一半,控制Q3、Q4的c极所接T2推动变压器初级绕组的激励振荡,T2次级它激振荡产生的感应电势作用于T1主电源开关变压器的一次绕组,二次绕组的感应电势经整流形成+3.3V、±5V、±12V 的输出电压。 推动管Q3、Q4发射极所接的D17、D18以及C17用于抬高Q3、Q4发射极电平,使Q3、Q4基极有低电平脉冲时能可靠截止。C31用于通电瞬间封锁IC1的8、11脚输出脉冲,ATX电源带电瞬间,由于C31两端电压不能突变,IC1的4脚出现高电平,8、11脚无驱动脉冲输出。随着C31的充电,IC1的启动由PS-ON 信号控制。 PW-OK产生电路由IC5电压比较器LM393、Q21、C60及其周边元件构成。待机时IC1的反馈控制端3脚为低电平,Q21饱和导通,IC5的3脚正端输入低电位,小于2脚负端输入的固定分压比,1脚低电位,PW-OK向主机输出零电平的电源自检信号,主机停止工作处于待命休闲状态。受控启动后IC1的3脚电位上升,Q21由饱和导通进入放大状态,e极电位由稳压5V经R104对C60

反激开关电源主电路工作原理

反激开关电源 一.定义: 直流电压正好激励变压器的初级线圈时,变压器的次级线圈并没有向负载提供输出功率,而是仅在关断变压器初级线圈的激励电压后,才对负载提供输出功率。 二.反激开关电源的主电路 开关管导通时,反激开关电源将电能转化为磁能,存储在变压器中; 开关管关断时,发激开关电源再将存储的磁能转化为电能传送给负载。 电路特点: 1.结构简单,效率高,体积小,造价低 2.输出纹波电压比较大

3.输出功率一般在150W一下,经常作为辅助电源应用在控制系 统中 4.适合多输出小功率场合 三.反激开关电源原理分析 CCM模式 1.开关管T导通 电源电压 in V加在变压器的初级绕组1N上,在次级绕组2N 上产生感应电压 2 2 1 N in N u V N =-,初级绕组电流线性增加,in P P V di dt L =, 电流 P i最大值max min in P P P V I I DT L -- =+,变压器铁心被磁化,磁通线 性增加, () 1 in V DT N + ?Φ=。 2.开关管T关断 初级绕组开路,次级绕组工作,次级绕组电压 2 N o u V =,次级绕

组电流线性下降, S o S di V dt L =,电流S i 最小值 min m (1)o S S ax S V I I D T L --=- -,变压器铁心去磁,磁通线性减小,()2 (1)o V D T N -?Φ= -。 3. 基本关系: ()()+-?Φ=?Φ?211(1)(1)o in V N D D V N D n D =?=?--,其中12 N n N = 开关管T 电压应力:1 21in T in o V N V V V N D =+ =- 二极管D 的电压应力:2 1o D o in V N V V V N D =+ = 此时,负载电流o I 等于二极管电流的平均值,即 min m 1 ()(1)2 o S S ax I I I D --=+- 由变压器工作原理 1min 2min 1max 2m P S P S ax N I N I N I N I ----== 可得 2max 11 12in P o P V N I I DT N D L -= +- 11m max 22112in S ax P o P V N N I I I DT N D N L --= =+- 临界模式 此时有min 0P I -=且min 0S I -=,则有下列式子成立:

笔记本电源适配器维修心得

前段时间教研室一个同学拜托我维修了一个笔记本电源,说下我的维修心得。 1、用工具撬开电源外壳(一般笔记本电源都是胶粘上的,没有用螺丝固定),取出屏蔽罩 跟电源。 2、观察电路有无明显坏掉部位,结果没有,测试保险管好着,上电,绿色指示灯不亮,说 明无输出电压,测量整流滤波电容两端电压为310V左右,与理论的√2倍220符合,说明整流电路没坏,断电,电容上电压仍然保持(310V相当危险,被电了一下,但没仔细分析,忽略了这一个非常关键的点,后边再说),观察主控芯片为KA3842,百度其PDF,测试各引脚,发现5脚与7脚短路,与实际不符,分析原因,百度电路原理图,如图下图所示(图片来自中电网),分析短路原因:芯片坏了或者外围电路短路,本人更希望是外围电路的问题,因为外围都是些电阻电容的东西,实验室有现成的不用去买。 短路原因罗列为:○15脚为地,7脚为电源,电容C5是否击穿,焊掉电容,测试电容好着。○2检测跟7脚相连的另一条电路(R2,二极管,与绕组34),放掉二极管的一端,测试二极管跟电阻发现没问题,再量5,7引脚仍然短路,初步判定为第三种情况。○3 KA3842坏了,没办法焊掉KA3842(焊掉两脚的电容比八脚芯片可容易得多,这是我希望是○1○2的另一个原因),再测果然是它坏了。 3、查出是KA3842的7脚5脚短路,分析其损坏原因,KA3842为一PWM输出芯片,百度 故障多出现7,5,6三脚短路,原因是MOS管6N60损坏(图中是7N60,本人维修的是6N60,电流6A,耐压600V),GD短路导致高压进入6脚,焊掉MOS管,测量MOS 管貌似好的(第一次测有点拿不准,后来事实证明确实没坏,测试方法为:看封装,123脚分别为GDS,用表笔将3个脚短路一下,万用表打到蜂鸣档,红黑表笔分别接S和D,测得有一个电阻,反接为断开;红笔接G,黑表笔接D,给G极一个电压,再次测量SD 发现两个都导通,最初导通的那个电阻减小差不多一半,证明管子好的。) 4、去电子市场买了KA3842,顺便问了一下有无6N60,店主说有7N60,我想7N60是7A, 600V可以替换,顺便也买了一个(前面说了第一次测有点拿不准,去一次电子市场不容易就顺便买了个,以防万一)。买回之后将3842与6N60都替换了,测量有无短路(非

超详细的反激式开关电源电路图讲解

反激式开关电源电路图讲解 一,先分类 开关电源的拓扑结构按照功率大小的分类如下: 10W以内常用RCC(自激振荡)拓扑方式 10W-100W以内常用反激式拓扑(75W以上电源有PF值要求) 100W-300W 正激、双管反激、准谐振 300W-500W 准谐振、双管正激、半桥等 500W-2000W 双管正激、半桥、全桥 2000W以上全桥 二,重点 在开关电源市场中,400W以下的电源大约占了市场的70-80%,而其中反激式电源又占大部分,几乎常见的消费类产品全是反激式电源。 优点:成本低,外围元件少,低耗能,适用于宽电压范围输入,可多组输出. 缺点:输出纹波比较大。(输出加低内阻滤波电容或加LC噪声滤波器可以改善) 今天以最常用的反激开关电源的设计流程及元器件的选择方法为例。给大家讲解如何读懂反激开关电源电路图! 三,画框图 一般来说,总的来分按变压器初测部分和次侧部分来说明。开关电源的电路包括以下几个主要组成部分,如图1

图1,反激开关电源框图 四,原理图 图2是反激式开关电源的原理图,就是在图1框图的基础上,对各个部分进行详细的设计,当然,这些设计都是按照一定步骤进行的。下面会根据这个原理图进行各个部分的设计说明。 图2 典型反激开关电源原理图

五,保险管 图3 保险管 先认识一下电源的安规元件—保险管如图3。 作用:安全防护。在电源出现异常时,为了保护核心器件不受到损坏。 技术参数:额定电压 ,额定电流 ,熔断时间。 分类:快断、慢断、常规 计算公式:其中:Po:输出功率 η效率:(设计的评估值) Vinmin :最小的输入电压 2:为经验值,在实际应用中,保险管的取值范围是理论值的1.5~3倍。 0.98: PF值 六,NTC和MOV NTC 热敏电阻的位置如图4。 图4 NTC热敏电阻 图4中的RT为NTC,电阻值随温度升高而降低,抑制开机时产生的浪涌电压形成的浪涌电流。

电源适配器安规常识

安规认识 1. 安规简介: 安规也就是安全标准规格,安规对制造的装置与电组件有明确的陈述与指导,以提供具有安全与高品质的产品给终端使用者其目的主要是用来防止electric shock, energy hazards, fire, mechanical and heat hazards, radiation hazards chemical hazards等对人体造成的伤害. 一般地,每一个国家都可以建立自己本国的电气安全标准,但是大多数的电源供给器制造厂商都是使用IEC,VDE,UL,CSA安全标准作为解决安全之需求.UL与VDE的安全标准有本质上的差异,UL规格比较集中在防止失火的危险,而VDE规格则比较关于操作人员的安全,对于电源供给器而言,VDE乃是最严厉的电气安全标准. 安规政策:高压测试和接地测试零缺点. 2. 电源供给器结构安全需求 (1) 空间需求(spacing requirements) UL, CSA与VDE安全规格在活性组件之间,以及活性组件与固定金属组件之间,强制规定特定的空间需求,空间需求包括空间距离和沿面距离,空间距离在VDE中又叫间隙距离, 而在UL中则叫分离距离, VDE标准规格中的沿面距离在UL标准规格中则称为分隔距离. 空间距离(Creepage distance):在两个导电组件之间或是导电组件与物体界面之间经由空气分离测得最短直线距离; 沿面距离(clearance):沿绝缘表面测得两个导电组件之间或是导电组件与物体界面之间的最短距离. (2).电介质测试承受度(dielectric test withstand) 当装置上的额定电压为250Vac或是更小时在UL与CSA标准规格中需要做输入至输出与输入至地端的高电位隔离测试(HI-POT isolation test).

联想笔记本电脑电源适配器原理分析与检修.docx

该电源适配器(型号为92P1107),输入电压为交流1OOV~240V市电;输出直流20V;最大输出功率有90W 和65W两种。其核心控制芯片为贴片式脉宽调制集成电路(3843),该芯片内含振荡器、脉宽调制比较器、逻辑控制 器;具有过流、欠压等保护控制功能;工作电压为7V~34V;最高工作频率可达500MHz;启动电流仅需1mA。 该芯片的各引脚功能如下:①脚是内部误差放大器的输出端。②脚是反馈电压输入端,作为内部误差放大器的 反相输入端,与同相输入端的基准电压(+2.5V)进行比较,产生误差控制电压,控制脉冲宽度。 ③脚为过流检测输入 端,当该脚的电压高于1V时,禁止驱动脉冲的输出。④脚为RT/CT定时电阻和电容的公共接入端,用于产生锯齿振 荡波。⑤脚为接地端。⑥脚为脉宽调制信号输出端。⑦脚为工作电压输入端(7V>Vi≤34V)。 ⑧脚为内部基准电压 (VREF=5V)输出端。 根据实物绘制了其电路原理图如附图所示。经比较,两种输出功率的电原理图完全相同,只是过流保护电路取 样电阻R20~R23的取值以及20V直流电压输出滤波电容C11及C12的容量有所不同。 一、整流滤波电路 交流市电经1A保险管F1及电容C1进入整流电路,BD1全桥整流后,经主滤波电容C7滤波,在C7两端得到约 300V的直流电压,作为适配器的工作电压。该适配器的输入电路只有一个高频滤波电容C1

进行简单的滤波处理,因此对外部电磁脉冲的抗干扰能力和防止自身的高频电磁信号向外辐射的能力较弱。 二、启动与稳压电路 由整流滤波电路产生的300V电压:一路经开关变压器T1的初级①~②绕组加到功率开关管Q1(FS5KM)的漏 极;另一路经启动电阻R3~R6并联串联后加到U1(3843)的⑦脚,作为主控制芯片(3843)的启动电压。在电路加电 的瞬间,300V直流电通过R3~R6对C8进行充电,当U1的⑦脚电压达到7V以上时,U1的⑧脚输出5V基准电压 Vref,同时3843内部的振荡电路开始工作,其⑥脚开始输出脉宽调制信号,通过R17驱动功率开关管Q1工作于交替 导通、截止的工作状态。开关变压器T1的初级①~②绕组流过高频脉冲电流,同时由于交流互感的作用,在开关变 压器T1的次级③~④绕组两端产生的感应电压经R16限流、D3整流、C8滤波后得到UI持续工作所需的电压。脉宽调 制信号的频率由R11和C3决定(本电路中.R11为5.6k,C3为4700pF),其振荡频率大约为70kHz。T1的⑤~⑥ 绕组产生的感应电压经D2整流,C11和C12滤波,输出20V的直流电压。 稳压电路由精密可调基准电压集成器件U3(KA431Z)、电阻R26、R27、R28、R29、电容C以及光电耦合器 U2(PC817)组成。输出的20V电压经R27与R28、R29分压后加到U3的①脚。当由于某种原因导致输出20V电压升 高时,U3的①脚电压升高,③脚的电压降低,导致流过光耦合器U2内部发光二极管的电流增大,使U2内部发光二 极管的亮度增强。U2内部光电三极管的内阻降低,将U1的①脚电位拉低,使U1内误差放大器的输出电压降低,经 内部自动控制电路的作用,自动将U1的⑥脚输出的脉冲宽度调窄,使开关管Q1的导通时间缩短,经开关变压器的 作用,使适配器输出的电压自动降低。当适配器输出20V电压变低时,其稳压过程与上述相反,将输出电压调整到 稳定的20V。 三、保护电路 1.功率管的保护:该保护电路由R13~R15、C6及D1组成,接在开关变压器T1的初级①~②绕组间。由于功 率开关管Q1交替工作在饱和导通与截止状态之间,当开关管由饱和导通变为截止状态时,在①~②绕组之间会产生瞬 间反向尖峰高电压,如果没有泄放电路,功率管的漏(D)、源(S)极很可能会被高压击穿。通过该保护电路可以将反 向尖峰电压吸收掉,从而起到保护功率开关管Q1的作用。 2.过流保护:电路由R20~R23、R18组成,当功率管的电流突然增大时,电阻R20~R23并联后的一端对热地 端电压升高,该电压经R18加到U1的③脚,当该电压高于1V时,U1(3843)内部控制电路控制⑥脚停止输出脉宽调 制信号,使Q1截止,保护功率管不因电流过大而被热击穿。

相关文档
最新文档