FATFS文件系统剖析(全)要点

FATFS文件系统剖析(全)要点
FATFS文件系统剖析(全)要点

FATFS文件系统剖析1:

FAT16:

数据按照其不同的特点和作用大致可分为5部分:MBR区、DBR区、FAT区、DIR区和DATA区,相比fat12多了DBR区

Main boot record: MBR(0--1bdh)磁盘参数存放

DPT(1beh--1fdh)磁盘分区表

55,aa 分区结束标志

DBR(Dos Boot Record)是操作系统引导记录区的意思

FAT区(有两个,一个备份):对于fat16,每一个fat项16位,所以可寻址的簇项数为65535(2的16次方)。而其每簇大小不超过32k,所以其每个分区最大容量为2G。fat32,每一个fat项32位,可寻址簇数目为2的32次方。

DIR区(根目录区):紧接着第二FAT表(即备份的FAT表)之后,记录着根目录下每个文件(目录)的起始单元,文件的属性等。定位文件位置时,操作系统根据DIR中的起始单元,结合FAT表就可以知道文件在硬盘中的具体位置和大小了。

DATA区:实际文件内容存放区。

FAT32:

暂时放在这里,不讨论!

Fatfs:嵌入式fat文件系统,支持fat16,fat32。

包含有ff.h,diskio.h,integer.h,ffconf.h 四个头文件以及ff.c 文件系统实现。当然要实现具体的应用移植,自己要根据diskio.h实现其diskio。c 底层驱动。

diskio.h : 底层驱动头文件

ff.h : 文件系统实现头文件,定义有文件系统所需的数据结构

ff.c : 文件系统的具体实现

如下开始逐个文件加以分析:

integer.h :仅实现数据类型重定义,增加系统的可移植性。

ffconf.h : 文件系统配置---逐个配置,先配置实现一个最小的fat文件系统,下面来分析各配置选项:

#define _FFCONF 8255 //版本号

#define _FS_TINY 0 /* 0:Normal or 1:Tiny */ //在这里与先前版本有些许变化,是通过配置头配置两种不同大小的文件系统,这里配置为0。

#define _FS_READONLY 1//定义文件系统只读,也就不能写修改,在此定义为1,这样文件系统会大大缩小,简化学习理解过程。

#define _FS_MINIMIZE 3 /* 0 to 3 */ 这个选项是用于过滤掉一些文件系统功能,为0时是全功能,3是功能实现最小

#define _USE_STRFUNC 0 /* 0:Disable or 1/2:Enable */ 是否使用字符串文件接口,为0,不使用

#define _USE_MKFS 0 /* 0:Disable or 1:Enable */ 制作文件系统,这个功能实现是还要_FS_READONLY=0

#define _USE_FORWARD 0 /* 0:Disable or 1:Enable */ f_forward function 实现还需_FS_TINY =1

#define _USE_FASTSEEK 0 /* 0:Disable or 1:Enable */ 快速查找功

#define _CODE_PAGE 936 // 936 - Simplified Chinese GBK (DBCS, OEM, Windows)

#define _USE_LFN 0/* 0 to 3 */ 0:不使用长文件名

#define _MAX_LFN 255/* Maximum LFN length to handle (12 to 255) */

#define _LFN_UNICODE 0 /* 0:ANSI/OEM or 1:Unicode */

#define _FS_RPATH 0 /* 0 to 2 */ 不使用相对路径

/*---------------------------------------------------------------------------/

/ Physical Drive Configurations

/----------------------------------------------------------------------------*/

#define _VOLUMES 1

/* Number of volumes (logical drives) to be used. */

#define _MAX_SS 512 /* 512, 1024, 2048 or 4096 */ 512字节每扇区

#define _MULTI_PARTITION 0 /* 0:Single partition or 1:Multiple partition */ 只有一个分区

#define _USE_ERASE 0 /* 0:Disable or 1:Enable */

/* To enable sector erase feature, set _USE_ERASE to 1. */

/*---------------------------------------------------------------------------/

/ System Configurations

/----------------------------------------------------------------------------*/

#define _WORD_ACCESS 0 /* 0 or 1 */ 0: Byte-by-byte access.

/* Include a header file here to define sync object types on the O/S */

/* #include , , or ohters. */

#define _FS_REENTRANT 0 /* 0:Disable or 1:Enable */ 同步选项

#define _FS_TIMEOUT 1000 /* Timeout period in unit of time ticks */

#define _SYNC_t HANDLE /* O/S dependent type of sync object. e.g. HANDLE, OS_EVENT*, ID and etc.. */

#define _FS_SHARE 0 /* 0:Disable or >=1:Enable */ 共享选项

如上已经配置成了一个最小的fat文件系统。

Diskio.h:底层驱动头文件,就一些状态宏的定义和底层驱动函数的申明,看源码一目了然。

实现相应的diskio.c 。

根据我的配置:只需要根据不同的存储介质实现相应的disk_initialize ,disk_status,disk_read三个函数就够了,

我在这里实现上s3c2440上的SD卡驱动:

DSTATUS disk_initialize (BYTE nDisk)

{

return 1;

}

DSTATUS disk_status (BYTE nDisk)

{

return 1;

}

DRESULT disk_read (BYTE nDisk, BYTE* b, DWORD c, BYTE d)

{

return 0;

}

编译报错get_fattime 没实现:

DWORD get_fattime (void)

{

return 0;

}

转自博客,供大家相互交流!

FATFS文件系统剖析2:

分析下ff.h和ff.c两个文件。

先来分析ff.h中定义的几个结构体:

typedef struct {

BYTE fs_type; // 系统类型,为0时系统没有被挂载

BYTE drv; // 物理磁盘驱动号

BYTE csize; // 每簇的扇区数目,簇是文件数据分配的基本单位

BYTE n_fats; // 文件分配表的数目,一般为两个(一个备份fat表) //Fatfs文件系统应该是:引导扇区,文件分配表2个,根目录区,和数据区 BYTE wflag; // 文件活动窗体是否改动标志,为1要回写

BYTE fsi_flag; // 文件信息回写标志

WORD id; // 文件系统加载id号

WORD n_rootdir; // 根目录区目录项数目(针对FAT12/16,FAT32不使用)

#if _MAX_SS != 512

WORD ssize; // 每扇区多少字节

#endif

#if _FS_REENTRANT

_SYNC_t sobj; // 允许重入,则定义同步对象

#endif

#if !_FS_READONLY

DWORD last_clust; // 最新分配的簇

DWORD free_clust; // 空闲簇

DWORD fsi_sector; // 文件信息扇区(仅用于FAT32)

#endif

#if _FS_RPATH

DWORD cdir; //使用相对路径,文件系统的当前起始路径0(root 路径)

#endif

DWORD n_fatent; //文件分配表占用的扇区 n_fatent=数据簇数目+2

DWORD fsize; //每FAT表有多少个扇区

DWORD fatbase; //文件分配表开始扇区

DWORD dirbase; // 如果是FAT32,根目录开始扇区需要首先得到 DWORD database; // 数据起始扇区

DWORD winsect; // win中当前指定的扇区

BYTE win[_MAX_SS]; //扇区操作缓存

} FATFS;

typedef struct {

FATFS* fs; // 指向的文件系统

WORD id; // 自身文件系统挂载id号即fs->id

BYTE flag; // 文件状态

BYTE pad1; //文件在簇里面扇区偏移(0--fs->csize)

DWORD fptr; //文件当前读写指针位置,当文件打开时为0

DWORD fsize; //文件大小(按字节计算)

DWORD org_clust; // 文件起始簇(0 when fsize==0)

DWORD curr_clust; // 文件当前操作簇

DWORD dsect; // 文件当前操作扇区

#if !_FS_READONLY

DWORD dir_sect; // 包含路径入口的扇区号

BYTE* dir_ptr; // 目录入口指针

#endif

#if _USE_FASTSEEK

DWORD* cltbl; //指向查找映射表的簇(null on file open)

#endif

#if _FS_SHARE

UINT lockid; // 文件锁ID号(index of file semaphore table) #endif

#if !_FS_TINY

BYTE buf[_MAX_SS]; // 文件读写缓存

#endif

} FIL;

typedef struct {

FATFS* fs; // 对应的文件系统

WORD id; // 自身文件系统挂载id号即fs->id

WORD index; // 目前读写索引号 /* Current read/write index number */

DWORD sclust; // 目录表起始簇(0:Root dir)

DWORD clust; // 目前处理的簇

DWORD sect; // 目前簇里对应的扇区

BYTE* dir; //指向当前在win[]中的短文件名入口项/* Pointer to the current SFN entry in the win[]

BYTE* fn; //指向短文件名 (in/out) {file[8],ext[3],status[1]}

#if _USE_LFN

WCHAR* lfn; //指向长文件名缓冲 /* Pointer to the LFN working buffer */

WORD lfn_idx; /* Last matched LFN index number (0xFFFF:No LFN) */

#endif

} DIR;

typedef struct { //文件目录表项大小=4+2+2+1+13

DWORD fsize; /* File size */

WORD fdate; /* Last modified date */

WORD ftime; /* Last modified time */

BYTE fattrib; /* Attribute */ // 文件属性

TCHAR fname[13]; /* Short file name (8.3 format) */

#if _USE_LFN //长文件名支持

TCHAR* lfname; /* Pointer to the LFN buffer */

UINT lfsize; /* Size of LFN buffer in TCHAR */

#endif

} FILINFO;

结构是搞清楚了,但其里面的具体联系怎么也还收理不清楚。只有看ff.c来疏通了!

里面东西还是蛮多的,咋一看,3000多行类(太多,在这里就根据我的配置,进行逐个分析吧),从头到尾,一个一个来。

首先是三个内存操作和以个字符查找处理函数,不说不解释。

然后是:

static

FRESULT move_window (

FATFS *fs, /* File system object */

DWORD sector /* Sector number to make appearance in the fs->win[] */

) /* Move to zero only writes back dirty window */

该函数就是把指定扇区sector中的数据读到fs->win[]里面

DWORD clust2sect ( /* !=0: Sector number, 0: Failed - invalid cluster# */

FATFS *fs, /* File system object */

DWORD clst /* Cluster# to be converted */

)

计算簇clst在对应文件系统fs里面的扇区号

DWORD get_fat ( /* 0xFFFFFFFF:Disk error, 1:Internal error, Else:Cluster status */

FATFS *fs, /* File system object */

DWORD clst /* Cluster# to get the link information */

)

获取簇clst在文件系统fs中FAT表里面fat入口

static

FRESULT dir_sdi (

DIR *dj, /* Pointer to directory object */

WORD idx /* Directory index number */

)

根据根目录索引号idx获取相应的目录信息存储到dj结构里面

static

FRESULT dir_next ( /* FR_OK:Succeeded, FR_NO_FILE:End of table, FR_DENIED:EOT and could not stretch */

DIR *dj, /* Pointer to directory object */

int stretch /* 0: Do not stretch table, 1: Stretch table if needed */

)

获取当前目录项的索引值+1 ,对应的目录项信息

static

FRESULT dir_find (

DIR *dj /* Pointer to the directory object linked to the file name */

)

在目录表中查找与dj->fn相同文件名的目录项

static

FRESULT create_name (

DIR *dj, /* Pointer to the directory object */

const TCHAR **path /* Pointer to pointer to the segment in the path string */

)

创建一个文件名为path指向的dj目录项

static

FRESULT follow_path ( /* FR_OK(0): successful, !=0: error code */

DIR *dj, /* Directory object to return last directory and found object */

const TCHAR *path /* Full-path string to find a file or directory */

)

获取文件路径path对应的目录项填入dj里面

static

BYTE check_fs ( /* 0:The FAT BR, 1:Valid BR but not an FAT, 2:Not a BR, 3:Disk error */ FATFS *fs, /* File system object */

DWORD sect /* Sector# (lba) to check if it is an FAT boot record or not */

)

读取文件系统fs的一号扇区,进行MBR 检查,文件系统类型区分

static

FRESULT chk_mounted ( /* FR_OK(0): successful, !=0: any error occurred */

const TCHAR **path, /* Pointer to pointer to the path name (drive number) */

FATFS **rfs, /* Pointer to pointer to the found file system object */

BYTE chk_wp /* !=0: Check media write protection for write access */

)

测试文件系统是否已挂在,如没有,就进行挂载,文件系统结构初始化

static

FRESULT validate ( /* FR_OK(0): The object is valid, !=0: Invalid */

FATFS *fs, /* Pointer to the file system object */

WORD id /* Member id of the target object to be checked */

)

检测文件系统是否可用

如下是现配置好的文件系统引出的四个接口函数:

FRESULT f_mount ( //挂在一个逻辑的文件系统

BYTE vol, /* Logical drive number to be mounted/unmounted */

FATFS *fs /* Pointer to new file system object (NULL for unmount)*/ )

系统挂载

FRESULT f_open (

FIL *fp, /* Pointer to the blank file object */

const TCHAR *path, /* Pointer to the file name */

BYTE mode /* Access mode and file open mode flags */

)

文件打开,包括(真正的文件系统初始化,系统检测)

FRESULT f_read (

FIL *fp, /* Pointer to the file object */

void *buff, /* Pointer to data buffer */

UINT btr, /* Number of bytes to read */

UINT *br /* Pointer to number of bytes read */

)

文件读

FRESULT f_close (

FIL *fp /* Pointer to the file object to be closed */ )

文件关闭

转自博客,供大家相互交流!

NTFS文件系统结构分析

NTFS文件系统结构分析 在NTFS文件系统中,文件存取是按簇进行分配,一个簇必需是物理扇区的整数倍,而且总 是2的整数次方。NTFS文件系统并不去关心什么是扇区,也不会去关心扇区到底有多大(如是不是512字节),而簇大小在使用格式化程序时则会由格式化程序根据卷大小自动的进行 分配。 文件通过主文件表(MFT)来确定其在磁盘上的存储位置。主文件表是一个对应的数据库, 由一系列的文件记录组成--卷中每一个文件都有一个文件记录(对于大型文件还可能有多个记录与之相对应)。主文件表本身也有它自己的文件记录。 NTFS卷上的每个文件都有一个64位(bit)称为文件引用号(File Reference Number,也称文件索引号)的唯一标识。文件引用号由两部分组成:一是文件号,二是文件顺序号。文 件号为48位,对应于该文件在MFT中的位置。文件顺序号随着每次文件记录的重用而增加, 这是为NTFS进行内部一致性检查而设计的。 NTFS使用逻辑簇号(Logical Cluster Number,LCN)和虚拟簇号(Virtual Cluster Number,VCN)来进行簇的定位。LCN是对整个卷中所有的簇从头到尾所进行的简单编号。卷因子乘 以LCN,NTFS就能够得到卷上的物理字节偏移量,从而得到物理磁盘地址。VCN则是对属于特定文件的簇从头到尾进行编号,以便于引用文件中的数据。VCN可以映射成LCN,而不必 要求在物理上连续。

NTFS的目录只是一个简单的文件名和文件引用号的索引,如果目录的属性列表小于一个记 录的长度,那么该目录的所有信息都存储在主文件表的记录中,对于大于记录的目录则使用 B+树进行管理。

Linux 文件系统体系结构

6内容 o基本的文件系统体系结构什么是文件系统?文件系统体系结构高层体系结构主要结构有趣的文 件系统结束语参考资料评论 在IBM Bluemix 云平台上开发并部署您的下一个应用。 现在就开始免费试用 基本的文件系统体系结构 Linux 文件系统体系结构是一个对复杂系统进行抽象化的有趣例子。通过使用一组通用的API 函数,Linux 可以在许多种存储设备上支持许多种文件系统。例如,read函数调用可以从指定的文件描述符读取一定数量的字节。read函数不了解文件系统的类型,比如ext3 或NFS。它也不了解文件系统所在的存储媒体,比如AT Attachment Packet Interface(ATAPI)磁盘、Serial-Attached SCSI(SAS)磁盘或Serial Advanced Technology Attachment(SATA)磁盘。但是,当通过调用read函数读取一个文件时,数据会正常返回。本文讲解这个机制的实现方法并介绍Linux 文件系统层的主要结构。 回页首 什么是文件系统? 首先回答最常见的问题,“什么是文件系统”。文件系统是对一个存储设备上的数据和元数据进行组织的机制。由于定义如此宽泛,支持它的代码会很有意思。正如前面提到的,有许多种文件系统和媒体。由于存在这么多类型,可以预料到Linux 文件系统接口实现为分层的体系结构,从而将用户接口层、文件系统实现和操作存储设备的驱动程序分隔开。 挂装 在Linux 中将一个文件系统与一个存储设备关联起来的过程称为挂装(mount)。使用mount命令将一个文件系统附着到当前文件系统层次结构中(根)。在执行挂装时,要提供文件系统类型、文件系统和一个挂装点。

结构化分析

结构化分析 1.1简介 随着信息化时代的来临,计算机与网络的普及,超市作为一个贴近日常的综合消费模式,也有着信息化需求。大型超市系统早已普及的收银系统多是在市面的ERP软件中,选取一款进行客户化定制,或独立开发的。在后台库存与商品的管理上,市面上也有着对应的众多软件选择。而随着电商平台的发展,线上销售的模式也被一些一定规模超市集团启用。这也意味着线上服务系统衔上超市综合信息系统的一环。该超市信息管理系统实践拟从前台与后台两个使用者角度,收银、商品、库存、人员、线上服务等几个模块着手,进行结构化分析与设计。 该系统旨在达到几项目标,通过软件系统加快商品收款结算速度,减少人为产生金额交易差错可能性与发生率,有效管理商品,商品的信息、进货情况、销售情况以及库存情况都可以直观显示以及可通过系统记录以及部分可行调控。其次做到对系统用户角色的分类管理以及权限划分。对这些信息的数据管理和统计对于营销策略与进货选择都有极大的参考价值。以此顶替无法满足现在超市运作,无法应对复杂多变市场的人工模式。 该系统的收银、商品、库存以及内部管理人员模块拟通过C\S模式,而线上订单与顾客人员模块采用B\S模式。C\S客户端拟采用C++编写,B\S拟使用JSP和oracle。软件规模上,C\S客户端暂不考虑分布式数据的问题,采用统一的服务器与数据库对所有数据进行管理,而B\S需要考虑的同时访问量与数据同步的问题,这些在技术上默认达到要求,我们期望做到服务器可以同时满足万人访问量需求。 2.1系统业务流程

系统流程图 2.2系统逻辑模型 收银系统数据流图

商品、库存、员工管理系统数据流图 线上购物系统数据流图

FAT文件系统原理详细介绍

FAT文件系统原理详细介绍 2012-03-29 23:09 434人阅读评论(0) 收藏举报 FAT文件起源于70年代末80年代初,用于微软的MS-DOS操作系统。它开始被设计成一个简单的文件系统用于小于500K的软件盘。后来被功能被大大增强用于支持越来越大的媒质。现在的文件系统有FAT12,FAT16和FAT32三种子类。 FAT12是最早的一版,主要用于软盘,它对簇的编址采用12bit宽度的数,所以称为FAT12。12bit的地址可以寻址4096个簇,事实上在FAT12中只能寻址4078个簇(在Linux 下可寻址4084个簇),有一些簇号是不能用的,在后面会给出具体的说明。磁盘的扇区是用16bit的数进行计算的,所以磁盘的容量就被局限在32M空间之内。 在FAT16中,采用了16bit宽的簇地址,32bit宽扇区地址。虽然32bit的扇区地址可以寻址2^32*512,约2个TB的容量,但于由规定每簇最大的容量不超过1024*32,所以FAT16文件系统的容量也就限制到了2^16*1024*32,大约2.1GB的空量,并且实际还达不到这个值。 FAT32文件系统使用了32bit宽的簇地址,所以称为FAT32。但在微软件的文件系统中只使用了低28位,最大容量为2^28*1024*32,约8.7TB的空量。有的人认为32bit全用,最大容量为2^32*1024*32,这种说法是不正确的。 虽然FAT32具有容纳近乎8.7TB的容量,但实际应用中通常不使用超过32GB的FAT32分区。WIN2000及之上的OS已经不直接支持对超过32GB的分区格式化成FAT32,但WIN98依然可以格式化大到127GB的FAT32分区,但不推荐这样做。 下面是一个FAT分区的构成概况 需要说明的是: 1.引导扇区和其他保留扇区一起称为保留扇区,而其他保留扇区是可选的,当没有时候,引导扇区后紧跟的就是FAT表1 2.根目录区是仅FAT12/16才有,FAT32的目录项位于数据区。由于FAT12/16的根目录区是一个固定的区域,所以它的根目录的项数是有限制的,意即不能在根录建立超过这个定数的目录项数。 (一)引导扇区与BPB BPB(BIOS Parametre Block)是FAT文件系统中第一个重要的数据结构,它位于该FAT分区的第一个扇区,同时也属于FAT文件系统基本区域的保留区, 在下面的描述中。凡名称以BPB_开头的都是BPB的一部分,凡名称与BS_开头的项

系统测试需求分析与系统测试用例设计

系统测试需求分析与系统测试用例设计 上海博为峰软件技术有限公司 20011年3月4日

目录 第一章:系统需求评审 (2) 1 基本信息 (2) 2 课程设计 (2) 第二章:系统测试需求分析方法 (3) 1 基本信息 (3) 2 课程设计 (3) 第三章:系统测试用例设计 (4) 1 基本信息 (4) 2 课程设计 (4) 第四章用户体验测试思路 (6) 1 基本信息 (6) 2 课程设计 (6)

第一章:系统需求评审 1基本信息 2课程设计 1、系统需求规格说明书课程介绍 系统需求规格说明书是系统测试用例设计的参考文档,只有具备良好的 系统需求规格,才可能设计出全面、合理的测试用例。因此,测试人员 对系统需求规格的评审能力就显得尤为重要; 2、系统需求规格说明书的内容介绍 该章节包括,系统需求规格的定义、系统需求规格说明书的目的、系统 需求规格说明书的特点、良性需求的定义、需求的分类、系统需求的属 性、表达需求的方法、表达需求常见的问题、系统需求规格说明书写作 要点;结合具体的系统需求规格说明书例子,讲解系统需求规格说明书 的具体写作方法。 3、系统需求的可测试性分析 从测试需求分析和测试用例设计角度分析软件的可测试性;讲解在需求 不完整的情况下,如何在有限的需求情况下,有效的开展软件测试设计 工作

第二章:系统测试需求分析方法 1基本信息 2课程设计 1、系统测试需求分析过程和方法 讲解产品测试需求分析的步骤,包括: 1)被测试系统分析 2)原始测试需求分析 3)测试需求分析 4)测试特性分析 5)测试子需求分析 并且在每个阶段引入相应的分析方法和分析策略。 2、产品测试用例设计实例解析 根据上述系统测试需求分析的步骤,以某系统为例,讲解如何从被 测试系统的原始需求出发,通过上述步骤产生测试需求或者测试子 需求。

FATFS深入理解

一、通过格式化命令-看磁盘文件系统的建立过程 1、添加format命令,单步调试 所有的底层驱动函数都已经准备好。添加格式化命令format后,编译下载。 Format命令的执行主要是调用f_mkfs()函数,下面进行单步调试。 以下主要列出函数的主要执行步骤: res=f_mkfs( 0, 1, 4096 ); //1表示不需要引导扇区。4096是8个扇区。 进入f_mkfs()函数,这里只列出主要执行步骤: if (disk_ioctl(drv, GET_SECTOR_COUNT, &n_part) != RES_OK || n_part < MIN_SECTOR) return FR_MKFS_ABORTED;这个函数调用后,n_part=0x000F,3400 = 996 352,这是SD的总块数。allocsize /= SS(fs); 等于8/*Number of sectors per cluster */ n_clst = n_part / allocsize; //等于0x1E680 = 124 544 簇。 if (n_clst >= 0xFFF5) fmt = FS_FAT32; 所以文件系统确定为FAT32类型。 n_fat = ((n_clst * 4) + 8 + SS(fs) - 1) / SS(fs); 等于0x3CE = 974,表示FAT要占据974个扇区。 n_rsv = 33 - partition; 保留扇区32个。 n_dir = 0; b_fat = b_part + n_rsv; /* FATs start sector 32扇区*/ b_dir = b_fat + n_fat * N_FATS; /* Directory start sector 0x3EE =1006,由于FAT表个数设为1个,所以目录区=FAT起始+FAT占用扇区数*/ b_data = b_dir + n_dir; /* Data start sector */ 以上三项确定FAT区域、根目录区、数据区的起始扇区。 disk_ioctl(drv, GET_BLOCK_SIZE, &n) != RES_OK,这个函数调用没有正确返回可擦出扇区的总数。接下来程序会出错,因此退出,修改disk_ioctl()函数后,再次分析。把这个函数返回值直接改为32。并且把FAT表的个数定义为2. N_FATS改为2后,根目录区、数据区的起始扇区的起始扇区变为0x7BC=1980扇区。继续往下执行。 n = (b_data + n - 1) & ~(n - 1); n_fat += (n - b_data) / N_FATS;这两句话对fat所占扇区数进行了修正,保证擦除时,以32个扇区为一个单位。 n_clst = (n_part - n_rsv - n_fat * N_FATS - n_dir) / allocsize; =0x1E588。 tbl = fs->win; /* Clear buffer */ mem_set(tbl, 0, SS(fs)); 清零文件系统缓冲区。 mem_set(tbl, 0, SS(fs)); ST_DWORD(tbl+BS_jmpBoot, 0x90FEEB); /* Boot code (jmp $, nop) */ ST_WORD(tbl+BPB_BytsPerSec, SS(fs)); /* Sector size */ tbl[BPB_SecPerClus] = (BYTE)allocsize; /* Sectors per cluster */ ST_WORD(tbl+BPB_RsvdSecCnt, n_rsv); /* Reserved sectors */ 上面的工作主要是填充引导扇区缓冲区,也就是常说的DBR扇区缓冲,等所有的参数写好,就可以写回磁盘。 ST_WORD(tbl+BS_55AA, 0xAA55); /* Signature */ if (disk_write(drv, tbl, b_part+0, 1) != RES_OK) return FR_DISK_ERR; //这就是在写有效引导标志sec[510]=0x55, sec[511]=0xAA。 if (fmt == FS_FAT32) disk_write(drv, tbl, b_part+6, 1); //FAT32在第六扇区有个备份引导扇区。 for (m = 0; m < N_FATS; m++) { mem_set(tbl, 0, SS(fs)); /* 1st sector of the FAT */ if (fmt != FS_FAT32) { n = (fmt == FS_FAT12) ? 0x00FFFF00 : 0xFFFFFF00; n |= partition; ST_DWORD(tbl, n); /* Reserve cluster #0-1 (FAT12/16) */ } else { ST_DWORD(tbl+0, 0xFFFFFFF8); /* Reserve cluster #0-1 (FAT32) */

结构化需求分析方法

结构化分析(SA)方法 结构化开发方法(Structured Developing Method)是现有的软件开发方法中最成熟,应用最广泛的方法,主要特点是快速、自然和方便。结构化开发方法由结构化分析方法(SA法)、结构化设计方法(SD 法)及结构化程序设计方法(SP 法)构成的。 结构化分析(Structured Analysis,简称SA 法)方法是面向数据流的需求分析方法,是70 年代末由Yourdon,Constaintine 及DeMarco 等人提出和发展,并得到广泛的应用。它适合于分析大型的数据处理系统,特别是企事业管理系统。 SA 法也是一种建模的活动,主要是根据软件内部的数据传递、变换关系,自顶向下逐层分解,描绘出满足功能要求的软件模型。 1 SA 法概述 1.SA 法的基本思想 结构化分析(Structured Analysis,简称SA 法)是面向数据流的需求分析方法,是70年代由Yourdon,Constaintine 及DeMarco 等人提出和发展,并得到广泛的应用。 结构化分析方法的基本思想是“分解”和“抽象”。

分解:是指对于一个复杂的系统,为了将复杂性降低到可以掌握的程度,可以把大问题分解成若干小问题,然后分别解决。 图4 是自顶向下逐层分解的示意图。顶层抽象地描述了整个系统,底层具体地画出了系统的每一个细节,而中间层是从抽象到具体的逐层过渡。 抽象:分解可以分层进行,即先考虑问题最本质的属性,暂把细节略去,以后再逐层添加细节,直至涉及到最详细的内容,这种用最本质的属性表示一个自系统的方法就是“抽象”。 2.SA 法的步骤 ⑴建立当前系统的“具体模型”; 系统的“具体模型”就是现实环境的忠实写照,即将当前系统用DFD 图描述出来。这样的表达与当前系统完全对应,因此用户容易理解。 ⑵抽象出当前系统的逻辑模型;

系统测试报告实例

XX系统测试总结报告

1引言 1.1 编写目的 编写该测试总结报告主要有以下几个目的 1.通过对测试结果的分析,得到对软件质量的评价 2.分析测试的过程,产品,资源,信息,为以后制定测试计划提供参考 3.评估测试测试执行和测试计划是否符合 4.分析系统存在的缺陷,为修复和预防bug提供建议 1.2 背景 1.3 用户群 主要读者:XX项目管理人员,XX项目测试经理 其他读者:XX项目相关人员。 1.4 定义 严重bug:出现以下缺陷,测试定义为严重bug ?系统无响应,处于死机状态,需要其他人工修复系统才可复原。 ?点击某个菜单后出现“The page cannot be displayed”或者返回异常错误。 进行某个操作(增加、修改、删除等)后,出现“The page cannot be displayed”或者返回异常错误 当对必填字段进行校验时,未输入必输字段,出现“The page cannot be displayed”或者返回异常错误 系统定义不能重复的字段输入重复数据后,出现“The page cannot be displayed”或者返回异常错误 1.5 测试对象 略

1.6 测试阶段 系统测试 1.7 测试工具 Bugzilla缺陷管理系统 1.8 参考资料 《XX需求和设计说明书》 《XX数据字典》 《XX后台管理系统测试计划》 《XX后台管理系统测试用例》 《XX项目计划》 2测试概要 XX后台管理系统测试从2007年7月2日开始到2007年8月10日结束,共持续39天,测试功能点174个,执行2385个测试用例,平均每个功能点执行测试用例13.7个,测试共发现427个bug,其中严重级别的bug68个,无效bug44个,平均每个测试功能点2.2个bug。 XX总共发布11个测试版本,其中B1—B5为计划内迭代开发版本(针对项目计划的基线标识),B6-B8为回归测试版本。计划内测试版本,B1—B4测试进度依照项目计划时间准时完成测试并提交报告,其中B4版本推迟一天发布版本,测试通过增加一个人日,准时完成测试。B5版本推迟发布2天,测试增加2个人日,准时完成测试。 B6-B11为计划外回归测试版本,测试增加5个工作人日的资源,准时完成测试。 XX测试通过Bugzilla缺陷管理工具进行缺陷跟踪管理,B1—B4测试阶段都有详细的bug分析表和阶段测试报告。 2.1 进度回顾

文件系统结构分析

文件系统结构分析 1嵌入式文件系统 1.1嵌入式文件系统体系结构 在嵌入式系统中,文件系统是嵌入式系统的一个组成模块,它是作为系统的一个 可加载选项提供给用户,由用户决定是否需要加载它。同时,它还需要满足结构紧 凑、代码量小、支持多种存储设备、可伸缩、可剪裁、可移植等特点。基于上面的要 求,嵌入式文件系统在设计和实现时就要把它作为一个独立的模块来整体考虑。特别 是对文件系统内部资源的管理要做到独立性。 由于嵌入式文件系统是作为嵌入式系统的一个可选加载项提供给用户的,当 用户针对其应用的特殊要求对嵌入式系统进行配置时没有选择加载文件系统,但 是用户还是需要使用到系统I/O。由于这种情况的出现就决定了嵌入式系统中的文件 系统不再具有I/O设备的管理功能。系统I/O的管理和使用接口的提供将由 I/O管理 模块完成,文件系统作为一个独立的自包含模块存在。 基于以上考虑,嵌入式文件系统的体系结构如图1所示。 1卩 硬件 图1嵌入式文件系统体系结构 在嵌入式文件系统的最上层是文件系统 API。文件系统的一切功能都是通过这一层提供给用户的。同时,在整个文件系统中也只有这一层对用户是可见的。 在这一层中所提供的所有功能接口都将严格的遵循 POSIX标准。 文件系统核心层是实现文件系统主要功能的模块。在这一层中,文件系统要把

用户的功能操作转化成对文件系统的抽象对象的操作。这些操作将通过下面的功能模块最终落实到物理介质上面。如果文件系统需要支持多种具体的文件系统格式的话,这一层还可以进一步细分成虚拟文件系统和逻辑文件系统。 块高速缓存的存在是为了提高文件系统的性能。在这一层中缓存着以前访问过的块设备数据。文件系统通过一定的算法来高效的管理这些数据,以提高缓冲的性能。同时,它的存在使下层的数据操作对上层的文件操作透明,提高了文件系统的模块性。 1.2 嵌入式文件系统体系的功能与特点 文件系统是操作系统的重要组成部分,用于控制对存储设备的存取。它提供对文件和目录的分层组织形式、数据缓冲(对于实时系统,允许绕过缓冲)以及对文件存取权限的控制。 嵌入式系统所使用的文件系统除了要提供通用文件系统的功能外,还由于嵌入式操作系统的特殊性而具有其自身的一些特点。嵌入式文件系统的设计应该满足如下目标: 1.实现按名存取。和桌面操作系统类似,用户对文件的操作是通过其“文件名”来完成的。因此,用户只需知道待操作文件的文件名,就可以方便的访问数据,而不必关心文件在物理设备上是如何存放的,以及如何对文件的打开、关闭操作进行处理等细节。所有与文件相关的管理工作都由文件系统组件隐式完成。 2.与实时系统相适应。嵌入式应用大多数都具有实时性需求。实时系统不仅 要求计算结果地准确无误,而且要求特定的指令要在限定的时间内完成,这就对文件系统提出了很高的要求。在通用操作系统中,往往采取分页和虚拟存储器管理的机制来满足规定的指令时间。然而嵌入式实时操作系统一般都不具有虚拟存储器管理机制,且各种外部设备的性能差异较大,控制文件系统的实时性变得非常困难。为了尽可能提高文件系统的实时性,除了选取高速存储介质作为嵌入式系统的外设外,还应该根据设备的特点设置一定大小的高速缓冲,以提高数据存取的相应速度。 3.支持多任务环境。面对日益复杂的计算环境,应用常常采取“分而治之” 的方法,将解决方案划分为多个任务,每个任务完成相对单一的功能。实时操作系统的设计目标之一就是对多任务的支持。从应用的层面上看,多任务可以对文件进行并发读操作,在实时内核进程间同步与通信机制支持下进行写操作。此外,文件系统内部实现也应该具备较好的可重入性,即利用同步机制对全局数据结构 进行必要的保护。 4.支持多种逻辑文件系统标准。随着操作系统技术的发展,出现了多种成熟的桌面文件系统标准,如 Windows下的FAT系列,Linux中的ext系列等。将这些成熟标

FATFS文件系统剖析1

FATFS文件系统剖析1: FAT16: 数据按照其不同的特点和作用大致可分为5部分:MBR区、DBR区、FAT区、DIR区和DATA区,相比fat12多了DBR区 Main boot record: MBR(0--1bdh)磁盘参数存放 DPT(1beh--1fdh)磁盘分区表 55,aa 分区结束标志 DBR(Dos Boot Record)是操作系统引导记录区的意思 FAT区(有两个,一个备份):对于fat16,每一个fat项16位,所以可寻址的簇项数为65535(2的16次方)。而其每簇大小不超过32k,所以其每个分区最大容量为2G。fat32,每一个fat项32位,可寻址簇数目为2的32次方。 DIR区(根目录区):紧接着第二FAT表(即备份的FAT表)之后,记录着根目录下每个文件(目录)的起始单元,文件的属性等。定位文件位置时,操作系统根据DIR中的起始单元,结合FAT表就可以知道文件在硬盘中的具体位置和大小了。 DATA区:实际文件内容存放区。 FAT32: 暂时放在这里,不讨论! Fatfs:嵌入式fat文件系统,支持fat16,fat32。 包含有ff.h,diskio.h,integer.h,ffconf.h 四个头文件以及ff.c 文件系统实现。当然要实现具体的应用移植,自己要根据diskio.h实现其diskio。c 底层驱动。 diskio.h : 底层驱动头文件 ff.h : 文件系统实现头文件,定义有文件系统所需的数据结构 ff.c : 文件系统的具体实现

如下开始逐个文件加以分析: integer.h :仅实现数据类型重定义,增加系统的可移植性。 ffconf.h : 文件系统配置---逐个配置,先配置实现一个最小的fat文件系统,下面来分析各配置选项: #define _FFCONF 8255 //版本号 #define _FS_TINY 0 /* 0:Normal or 1:Tiny */ //在这里与先前版本有些许变化,是通过配置头配置两种不同大小的文件系统,这里配置为0。 #define _FS_READONLY 1//定义文件系统只读,也就不能写修改,在此定义为1,这样文件系统会大大缩小,简化学习理解过程。 #define _FS_MINIMIZE 3 /* 0 to 3 */ 这个选项是用于过滤掉一些文件系统功能,为0时是全功能,3是功能实现最小 #define _USE_STRFUNC 0 /* 0:Disable or 1/2:Enable */ 是否使用字符串文件接口,为0,不使用 #define _USE_MKFS 0 /* 0:Disable or 1:Enable */ 制作文件系统,这个功能实现是还要_FS_READONLY=0 #define _USE_FORWARD 0 /* 0:Disable or 1:Enable */ f_forward function 实现还需_FS_TINY =1 #define _USE_FASTSEEK 0 /* 0:Disable or 1:Enable */ 快速查找功 能 #define _CODE_PAGE 936 // 936 - Simplified Chinese GBK (DBCS, OEM, Windows) #define _USE_LFN 0/* 0 to 3 */ 0:不使用长文件名 #define _MAX_LFN 255/* Maximum LFN length to handle (12 to 255) */ #define _LFN_UNICODE 0 /* 0:ANSI/OEM or 1:Unicode */

FAT32文件系统的存储组织结构

FAT32文件系统的存储组织结构(一) (2012-05-19 16:57) 标签: FAT32 文件系统分类:文件系统 对磁盘的物理结构,逻辑结构和存储结构有了比较深入的了解后,我们来仔细探讨FAT32文件系统的存储组织结构。说到文件系统的组织结构,我们应该马上意识到,这指的是文件系统在同一个分区内的组织结构,在这个话题上,我们完全可以不管分区之外的所有事情。 为了分析FAT32文件系统的存储组织结构,我们来建立一个实实在在的文件系统:将U盘插入电脑,将U盘格式化成FAT32分区格式: 以建好的U盘FAT32文件系统为基础,下面从文件系统的各个组成来分别加以介绍。 分区引导扇区DBR 用winhex打开U盘显示如下:

这是FAT32分区引导记录,定义如下: 偏移00H: 3字节的跳转指令 EB 58 90,跳过下面的BPB和扩展BPB部分 偏移03H:8字节的硬盘分区类型文本字符名:4D 53 44 4F 53 35 2E 30 即:MSDOS5.0 偏移0BH: 25字节的分区参数块(BPB),细分如下: 偏移0BH:扇区字节数 00 02 即0X0200,512字节 偏移0DH:每簇扇区数 08即每簇包括8个扇区

偏移0EH:保留扇区数 24 00即保留36个扇区 偏移10H:FAT表份数 02即两个FAT表 偏移11H:未用 00 00 偏移13H:未用 00 00 偏移15H:介质类型 F8即本地硬盘 偏移16H:未用 00 00 偏移18H:每磁道扇区数 3F 00 即每磁道63扇区 偏移1AH:磁头数 FF 00即255个磁头 偏移1CH:隐藏扇区数 80 1F即8064个隐藏扇区 偏移20H:磁盘总扇区数 80 F0 77 00即总共7860352个扇区 (7860352*512=4024500224,因为我的U盘是4G) 偏移24H:52字节的扩展分区参数块(扩展BPB),细分如下: 偏移24H:FAT表占用扇区数 EE 1D 00 00即FAT表占7662个扇区 偏移28H:未用 00 00 00 00 偏移2CH:根目录入口簇号 02 00 00 00即根目录从02号簇开始 偏移30H:文件系统信息扇区号 01 00即扇区1 偏移32H:备份引导扇区的位置 06 00即6号扇区(第7个扇区),从WINHEX中我们也可以看到,6号扇区的内容和0号引导扇区内容是一样的 偏移34H:未用 00 00 00 00 00 00 00 00 00 00 00 00 偏移40H:物理磁盘号 00 偏移41H:未用 00 偏移42H:扩展引导标志 29即0X29 偏移43H:磁盘序列号F1 2A 27 04通常为一随机数 偏移47H:卷标ASCII 4E 4F 20 4E 41 4D 45 20 20 20 20 即NO NAME

第五章 文件系统习题及答案

第五章文件系统习题及答案 一、填空题 1.文件系统主要管理计算机系统的软件资源,即对于各种的管理。 【答案】文件 【解析】用户使用计算机来完成自己的某项任务时,总会碰到这样一些问题:其一,使用现有的软件资源来协助自己工作。例如,利用系统调用和利用库函数与实用程序等来减少编程的工作量,避开与硬件有关的部分。其二,编制完成的或未完成的程序存放在什么地方,需要访问的数据存放在什么地方。这实际上是怎样对软件资源进行透明的存放,并能透明地存取,文件系统也就应运而生了。 2.从用户的角度看,文件系统的功能是要实现① 。为了达到这一目的,一般要建立② 【答案】①按名存取,②文件目录 【解析】文件系统的建立就是要让用户透明地对文件进行存取,这就要求文件系统要解决把每个文件的符号名与其所在的文件存储空间中的物理地址联系起来的问题,这也是文件系统最基本的功能。实现符号名与具体物理地址的转换,其主要环节是查目录。所以,文件目录的组织是文件系统研究的主要问题之一。 3.UNIX系统中,一般把文件分为① 、② 和③ 三种类型。 【答案】①普通文件、②目录文件、③特殊文件 【解析】普通文件既包括系统文件,也包括用户文件、库函数文件和实用程序文件。它主要指组织格式是无结构、无记录概念的字符流式文件。 目录文件则是由文件系统中的各个目录所形成的文件。 特殊文件(或设备文件)在UNIX系统中,每台设备都被看作为一个特殊文件。 4.串联文件是文件① 组织的方式之一,其特点是用② 来存放文件信息。 【答案】①物理,②非连续的物理块 【解析】串联文件结构中,每个物理块设有一个指针,指向其后续连接的另一个物理块,从而使得存放同一文件的物理块链接成一个串联队列。 5.文件存储器一般都被分成若干大小相等的① ,并以它为单位进行 ② 。 【答案】①物理块,②信息交换 【解析】文件存储空间的管理是文件系统的重要任务之一,磁盘、磁带是常见的文件存储器。 6.文件存储空间管理的基本方法有① 、② 。 【答案】位示图法、空闲块链接法。 【解析】文件存储空间的管理实质上是空闲块的组织和管理问题,它包括空闲块的分配与空闲块的回收等问题,这就要求对文件存储空间的空闲块进行有效的组织和管理。 7.目录文件是由① 组成的,文件系统利用② 完成“按名存取”和对文件信息的共享和保护。 【答案】①文件说明,②目录文件

详细了解并学习FatFS文件系统的基本原理

详细了解并学习FatFS文件系统的基本原理 最近做的spi flash,本打算弄个文件系统,由于之前用过了JFFS、YAFFS和TrueFFS,代码量都相当的大,这次想找款代码量不那么吓人的,学习一下,听说配置会相对复杂一些。选来选去,最终选定了FatFS,代码量足够的小,最新的R0.09版本只有1个.c文件(当然,还有一个底层的要自己写,option文件夹里的无视),老点版本就更小了。而且更新很频繁,用户量也够大,就选定它了。尽管最后由于硬件和项目原因未能实际的移植它到vxWorks,但学过的还是要记录下。 在这里http://elm-chan/fsw/ff/00index_el下载源码,只有800多K,小的可怜,还可以下载示例程序,有A VR、Win32、lpc等多平台已实现的方案。打开看src文件夹,一个opTIon 文件夹、00readme.txt、diskio.h、ff.c、ff.h、ffconf.h和interger.h。移植时需要修改的文件主要包括ffconf.h和interger.h,后者是在它的定义与目标平台上的有冲突,或者用的不习惯时修改的。 在做具体修改之前,先大概阅读下FatFS的源代码,可以先读integer.h,了解所用的数据类型,然后是ff.h,了解文件系统所用的数据结构和各种函数声明,再就是diskio.h,了解与介质相关的数据结构和操作函数。ff.c这个文件相对较大,可以在最后将所实现的函数大致扫描一遍,之后根据用户应用层程序调用函数的次序仔细阅读相关代码。各个文件都可以直接用记事本打开查阅,非常方便。ff.h中的几个结构体十分重要,列举如下,首先是最基础的文件系统结构体: view plaincopy to clipboardprint? /* File system object structure (FATFS) */ typedef struct { BYTE fs_type; /* FAT子类型,一般在mount时用,置0表示未挂载*/ BYTE drv; /* 物理驱动号,一般为0*/ BYTE csize; /* 每个簇的扇区数目(1,2,4...128) */ BYTE n_fats; /* 文件分配表的数目(1,2) */

Linux文件系统相关数据结构及相互间的关系案例分析

文件系统相关数据结构及相互间的关系 一.详细关系: 1.进程要访问文件,就要首先与文件系统中要访问的文件建立连接,在进程数据结构task_struct中,有两个指针fs和files,一个指向fs_struct数据结构,是关于文件系统的信息;另一个指向files_struct数据结构,是关于已打开文件的信息。 2.fs_struct数据结构中有dentry结构指针,dentry结构中有inode结构指针。Dentry结构所代表的是逻辑意义上的文件,记录的是其逻辑上的属性,而inode 结构所代表的是物理意义上的文件,记录的是物理上的属性。它们之间的关系是多对一的关系。Inode结构中定义union数据结构用于大致反应Linux内核目前所支持的各种文件系统。 2.1.dentry结构中有一个d_inode指针指向相应的inode结构,dentry结构代表的是逻辑意义上的文件,描述文件的逻辑属性,因此目录项在磁盘上并没有对应的映像;而inode结构代表的是物理意义上的文件,记录其物理属性,对与一个具体的文件系统,inode结构在磁盘上有对应的映像。由此可见,一个索引节点对象可能对应多个目录项对象。一个有效的dentry结构必定对应一个inode 结构,这是因为一个目录项要么代表一个文件,要么代表一个目录,而目录实际上也是文件。所以只要dentry结构是有效的,则其指针d_inode必定指向一个inode结构。反之则不成立,因为一个inode可以对应多个dentry结构,即一个文件可以有不止一个文件名或路径名。因为一个已经建立的文件可以被链接到其他文件名。所以inode结构中有一个i_dentry,凡是代表着同一个文件的所有目录项都通过其dentry结构体中的d_alias域挂入相应的inode结构体中的

全面了解NTFS文件系统结构

解读NTFS NTFS是一个比FAT复杂的多的文件系统,我们一起努力来把它完整的解读出来 NTFS的引导扇区也是完成引导和定义分区参数,和FAT分区不同,FAT分区的B OOT记录正常,就显示分区没有错误,即使文件不正确,而NTFS分区的BOOT不是分区的充分条件,它要求必须MFT中的系统记录如$MFT等正常该分区才能正常访问。其BPB参数如下表所示。 字节偏移长度常用值意义 0x0B 字 0x0002 每扇区字节数 0x0D 字节 0x08 每簇扇区数 0x0E 字 0x0000 保留扇区 0x10 3字节 0x000000 总为0 0x13 字 0x0000 NTFS未使用,为0 0x15 字节 0xF8 介质描述 0x16 字 0x0000 总为0 0x18 字 0x3F00 每磁盘扇区数 0x1A 字 0xFF00 磁头数 0x1C 双字 0x3F000000 隐含扇区 0x20 双字 0x00000000 NTFS未使用,为0 0x28 8字节 0x4AF57F0000000000 扇区总数 0x30 8字节 0x0 $MFT的逻辑簇号 0x38 8字节 0x54FF0000 $MFTMirr的逻辑簇号 0x40 双字 0xF6000000 每MFT记录簇数 0x44 双字 0x01000000 每索引簇数 0x48 8字节 0x14A51B74C91B741C 卷标 0x50 双字 0x00000000 检验和 MFT中的文件记录大小一般是固定的,不管簇的大小是多少,均为1KB。文件记录在MFT文件记录数组中物理上是连续的,且从0开始编号,所以,NTFS是预定义文件系统。MFT仅供系统本身组织、架构文件系统使用,这在NTFS中称为

FAT文件系统原理

FAT文件系统原理 一、硬盘的物理结构: 硬盘存储数据是根据电、磁转换原理实现的。硬盘由一个或几个表面镀有磁性物质的金属或玻璃等物质盘片以及盘片两面所安装的磁头和相应的控制电路组成(图1),其中盘片和磁头密封在无尘的金属壳中。 硬盘工作时,盘片以设计转速高速旋转,设置在盘片表面的磁头则在电路控制下径向移动到指定位置然后将数据存储或读取出来。当系统向硬盘写入数据时,磁头中“写数据”电流产生磁场使盘片表面磁性物质状态发生改变,并在写电流磁场消失后仍能保持,这样数据就存储下来了;当系统从硬盘中读数据时,磁头经过盘片指定区域,盘片表面磁场使磁头产生感应电流或线圈阻抗产生变化,经相关电路处理后还原成数据。因此只要能将盘片表面处理得更平滑、磁头设计得更精密以及尽量提高盘片旋转速度,就能造出容量更大、读写数据速度更快的硬盘。这是因为盘片表面处理越平、转速越快就能越使磁头离盘片表面越近,提高读、写灵敏度和速度;磁头设计越小越精密就

能使磁头在盘片上占用空间越小,使磁头在一张盘片上建立更多的磁道以存储更多的数据。 二、硬盘的逻辑结构。 硬盘由很多盘片(platter)组成,每个盘片的每个面都有一个读写磁头。如果有N个盘片。就有2N个面,对应2N个磁头(Heads),从0、1、2开始编号。每个盘片被划分成若干个同心圆磁道(逻辑上的,是不可见的。)每个盘片的划分规则通常是一样的。这样每个盘片的半径均为固定值R的同心圆再逻辑上形成了一个以电机主轴为轴的柱面(Cylinders),从外至里编号为0、1、2……每个盘片上的每个磁道又被划分为几十个扇区(Sector),通常的容量是512byte,并按照一定规则编号为1、2、3……形成Cylinders×Heads×Sector个扇区。这三个参数即是硬盘的物理参数。我们下面的很多实践需要深刻理解这三个参数的意义。 三、磁盘引导原理。 3.1MBR(MasterBootRecord)扇区:

软件测试用例分析 习题完美整合版

场景分析法 一、以答题业务为例: 1.答对题目增加题目积分,积分达到设定值时奖励一个礼包; 2.取题规则为随机不重复; 3.答错题目后答新题. 开始答题 是否存在 有效题目 提供题目及备选答案 答案是否 正确 增加题目积分 积分大于或等于设定值?给予无有效题目提示 结束奖励一个礼包

1.确定基本流与备选流 基本流: 步骤1. 开始答题 步骤2. 判断是否存在有效题目,存在有效题目,处理:提供题目及备选答案 步骤3. 用户答题并答对题目,增加用户相应积分。 步骤4. 判断积分是否达到设定值,达到,获取一个礼包,流程结束。 备选流1: 不存在有效题目 基本流步骤2时,题库不存在未答题目,处理:给予无有效题目提示,流程结束。备选流2: 答错题目 基本流步骤3时,答错题目,处理:提示用户答错题目,回到基本流步骤2 备选流3:答题后积分达不到设定值 基本流步骤4时,答对题后积分仍达不到设定值,处理:回到基本流步骤2 2.确定以下用例场景: 3.通过从确定执行用例场景所需的数据元素入手构建矩阵

4.设计数据,把数据填入上面的用例表中 二、下图所示是ATM例子的流程示意图。

2.场景设计:下表所示是生成的场景。 3.用例设计

4.测试用例表

三、用户进入一个在线购物网站进行购物,选购物品后,进行在线购买,这时需要使用账号登录,登录成功后,进行付钱交易,交易成功后,生成订购单,完成整个购物过程。 第一步:确定基本流和备选流 基本流:登录在线网站→选择物品→登录账号→付款→生成订单; 备选流1:账户不存在; 备选流2:账户密码错误; 备选流3:用户账户余额不足; 备选流4:用户账户没钱。 第二步:根据基本流和备选流确定场景 场景1成功购物:备选流; 场景2账号不存在:基本流,备选流1; 场景3账号密码错误:基本流,备选流2; 场景4账户余额不足:基本流,备选流3; 场景5账户没钱:基本流,备选流4。 第三步:对每一个场景生成相应的测试用例 测试用例 ID 场景/条件账号密码 用户账 号余额 预期结果 1 场景1:成功购物V V V 成功购物 2 场景2:账号不存在 1 n/a n/a 提示账号不存在 3 场景3:账号密码错误 (账号正确,密码错误)V 1 n/a 提示账号密码错误,返 回基本流步骤3 4 场景4:用户账号余额不 足V V 1 提示用户账号余额不 足,请充值 5 场景5:用户账号没钱V V 1 提示用户账号没有钱, 请充值 第四步:设计测试数据 测试用例ID 场景/条件账号密码 用户账 号余额 预期结果 1 场景1:成功购物Test 123456 800 成功购物,账号余额减少 100元 2 场景2:账号不存在aa n/a n/a 提示账号不存在 3 场景3:账号密码错误 (账号正确,密码错误)Test 111111 n/a 提示账号密码错误,返回 基本流步骤3 4 场景4:用户账号余额不 足Test 123456 50 提示用户账号余额不足, 请充值 5 场景5:用户账号没钱Test 12345 6 0 提示用户账号没有钱,请 充值

相关文档
最新文档