传热学答案+第五版+章熙民(完整版)

传热学答案+第五版+章熙民(完整版)
传热学答案+第五版+章熙民(完整版)

绪论

1.冰雹落体后溶化所需热量主要是由以下途径得到:

—— 与地面的导热量 ——与空

气的对流换热热量

注:若直接暴露于阳光下可考虑辐射换热,否则可忽略不计。6.夏季:在维持20℃的室内,人体通过与空气的对流换热失去热量,

但同时又与外界和内墙面通过辐射换热得到热量,最终的总失热量减少。()

冬季:在与夏季相似的条件下,一方面人体通过对流换热失去部

分热量,另一方面又与外界和内墙通过辐射换热失去部分热量,最终的总失热量增加。()

。挂上窗帘布阻断了与外界的辐射换热,减少了人体的失热量。

7.热对流不等于对流换热,对流换热 = 热对流 + 热传导 热对流为基本传热方式,对流换热为非基本传热方式8.门窗、墙壁、楼板等等。以热传导和热对流的方式。

9.因内、外两间为真空,故其间无导热和对流传热,热量仅能通过

胆壁传到外界,但夹层两侧均镀锌,其间的系统辐射系数

降低,故能较长时间地保持热水的温度。

当真空被破坏掉后,1、2两侧将存在对流换热,使其保温性

Q λf

Q T

T ?外

内T

T ?外

传热学第五版课后习题答案

传热学第五版课后习题答案

传热学习题_建工版V 0-14 一大平板,高3m ,宽2m ,厚0.2m ,导热系数为45W/(m.K), 两侧表面温度分别为 w1t 150C =?及 w1t 285C =? ,试求热流密度计热流量。 解:根据付立叶定律热流密度为: 2w2w121t t 285150q gradt=-4530375(w/m )x x 0.2λλ??--?? =-=-=- ? ?-???? 负号表示传热方向与x 轴的方向相反。 通过整个导热面的热流量为: q A 30375(32)182250(W) Φ=?=-??= 0-15 空气在一根内经50mm ,长2.5米的管子内流动并被加热,已知空气的平均温度为85℃,管壁对空气的h=73(W/m2.k),热流密度q=5110w/ m2, 是确定管壁温度及热流量?。 解:热流量 qA=q(dl)=5110(3.140.05 2.5) =2005.675(W) πΦ=?? 又根据牛顿冷却公式 w f hA t=h A(t t )qA Φ=??-= 管内壁温度为: w f q 5110t t 85155(C)h 73 =+ =+=?

1-1.按20℃时,铜、碳钢(1.5%C)、铝和黄铜导热系数的大小,排列它们的顺序;隔热保温材料导热系数的数值最大为多少?列举膨胀珍珠岩散料、矿渣棉和软泡沫塑料导热系数的数值。 解: (1)由附录7可知,在温度为20℃的情况下, λ铜=398 W/(m·K),λ碳钢=36W/(m·K), λ 铝=237W/(m·K),λ 黄铜 =109W/(m·K). 所以,按导热系数大小排列为: λ 铜>λ 铝 >λ 黄铜 >λ 钢 (2) 隔热保温材料定义为导热系数最大不超过0.12 W/(m·K). (3) 由附录8得知,当材料的平均温度为20℃时的导热系数为: 膨胀珍珠岩散料:λ=0.0424+0.000137t W/(m·K) =0.0424+0.000137×20=0.04514 W/(m·K); 矿渣棉: λ=0.0674+0.000215t W/(m·K) =0.0674+0.000215×20=0.0717 W/(m·K); 由附录7知聚乙烯泡沫塑料在常温下, λ=0.035~0.

传热学第四版课后题答案第四章

第四章 复习题 1、 试简要说明对导热问题进行有限差分数值计算的基本思想与步骤。 2、 试说明用热平衡法建立节点温度离散方程的基本思想。 3、 推导导热微分方程的步骤和过程与用热平衡法建立节点温度离散方程的过程十分相似, 为什么前者得到的是精确描述,而后者解出的确实近似解。 4、 第三类边界条件边界节点的离散那方程,也可用将第三类边界条件表达式中的一阶导数 用差分公式表示来建立。试比较这样建立起来的离散方程与用热平衡建立起来的离散方程的异同与优劣。 5.对绝热边界条件的数值处理本章采用了哪些方法?试分析比较之. 6.什么是非稳态导热问题的显示格式?什么是显示格式计算中的稳定性问题? 7.用高斯-塞德尔迭代法求解代数方程时是否一定可以得到收敛德解?不能得出收敛的解时是否因为初场的假设不合适而造成? 8.有人对一阶导数()()()2 21,253x t t t x t i n i n i n i n ?-+-≈ ??++ 你能否判断这一表达式是否正确,为什么? 一般性数值计算 4-1、采用计算机进行数值计算不仅是求解偏微分方程的有力工具,而且对一些复杂的经验公式及用无穷级数表示的分析解,也常用计算机来获得数值结果。试用数值方法对Bi=0.1,1,10的三种情况计算下列特征方程的根:)6,2,1( =n n μ 3,2,1,tan == n Bi n n μμ 并用计算机查明,当2 .02≥=δτ a Fo 时用式(3-19)表示的级数的第一项代替整个级数(计 算中用前六项之和来替代)可能引起的误差。 解:Bi n n =μμtan ,不同Bi 下前六个根如下表所示: Bi μ 1 μ2 μ3 μ 4 μ 5 μ 6 0.1 0.3111 3.1731 6.2991 9.4354 12.5743 15.7143 1.0 0.8603 3.4256 6.4373 9.5293 12.6453 15.7713 10 1.4289 4.3058 7.2281 10.2003 13.2142 16.2594 Fo=0.2及0.24时计算结果的对比列于下表: Fo=0.2 δ=x Bi=0.1 Bi=1 Bi=10 第一项的值 0.94879 0.62945 0.11866 前六和的值 0.95142 0.64339 0.12248 比值 0.99724 0.97833 0.96881 Fo=0.2 0=x Bi=0.1 Bi=1 Bi=10 第一项的值 0.99662 0.96514 0.83889 前六项和的值 0.994 0.95064 0.82925 比值 1.002 1.01525 1.01163 Fo=0.24 δ=x

传热学答案+第五版+章熙民(完整版)

绪论 1.冰雹落体后溶化所需热量主要是由以下途径得到: Q λ——与地面的导热量 f Q——与空 气的对流换热热量 注:若直接暴露于阳光下可考虑辐射换热,否则可忽略不计。6.夏季:在维持20℃的室内,人体通过与空气的对流换热失去热量,但同时又与外界和内墙面通过辐射换热得到热量,最终的 总失热量减少。(T T? 外内 ) 冬季:在与夏季相似的条件下,一方面人体通过对流换热失去部分热量,另一方面又与外界和内墙通过辐射换热失去部分 热量,最终的总失热量增加。(T T? 外内 )。挂上窗帘布阻断了与外界的辐射换热,减少了人体的失热量。 7.热对流不等于对流换热,对流换热 = 热对流 + 热传导热对流为基本传热方式,对流换热为非基本传热方式 8.门窗、墙壁、楼板等等。以热传导和热对流的方式。 9.因内、外两间为真空,故其间无导热和对流传热,热量仅能通过胆壁传到外界,但夹层两侧均镀锌,其间的系统辐射系数 降低,故能较长时间地保持热水的温度。 当真空被破坏掉后,1、2两侧将存在对流换热,使其保温性

能变得很差。 10.t R R A λλ = ? 1t R R A λ λ = = 221 8.331012 m --=? 11.q t λσ =? const λ=→直线 const λ≠ 而为λλ=(t ) 时→曲线 12. i R α 1 R λ 3 R λ 0 R α 1 f t ??→ q 首先通过对流换热使炉子内壁温度升高,炉子内壁通过热传导,使内壁温度生高,内壁与空气夹层通过对流换热继续传递热量,空气夹层与外壁间再通过热传导,这样使热量通过空气夹层。(空气夹层的厚度对壁炉的保温性能有影响,影响a α的大小。) 13.已知:360mm σ=、0.61()W m K λ=? 1 18f t =℃ 2187() W h m K =? 2 10f t =-℃ 22124() W h m K =? 墙高2.8m ,宽3m 求:q 、1 w t 、2 w t 、φ 解:12 11t q h h σλ?= ++= 18(10) 45.9210.361 870.61124 --=++2W m

传热学第五版完整版答案

1.冰雹落地后,即慢慢融化,试分析一下,它融化所需的热量是由哪些途径得到的? 答:冰雹融化所需热量主要由三种途径得到: a 、地面向冰雹导热所得热量; b 、冰雹与周围的空气对流换热所得到的热量; c 、冰雹周围的物体对冰雹辐射所得的热量。 2.秋天地上草叶在夜间向外界放出热量,温度降低,叶面有露珠生成,请分析这部分热量是通过什么途径放出的?放到哪里去了?到了白天,叶面的露水又会慢慢蒸发掉,试分析蒸发所需的热量又是通过哪些途径获得的? 答:通过对流换热,草叶把热量散发到空气中;通过辐射,草叶把热量散发到周围的物体上。白天,通过辐射,太阳和草叶周围的物体把热量传给露水;通过对流换热,空气把热量传给露水。 4.现在冬季室内供暖可以采用多种方法。就你所知试分析每一种供暖方法为人们提供热量的主要传热方式是什么?填写在各箭头上。 答:暖气片内的蒸汽或热水 对流换热 暖气片内壁 导热 暖气片外壁 对流换热和 辐射 室内空气 对流换热和辐射 人体;暖气片外壁 辐射 墙壁辐射 人体 电热暖气片:电加热后的油 对流换热 暖气片内壁 导热 暖气片外壁 对流换热和 辐射 室内空气 对流换热和辐射 人体 红外电热器:红外电热元件辐射 人体;红外电热元件辐射 墙壁 辐射 人体 电热暖机:电加热器 对流换热和辐射加热风 对流换热和辐射 人体 冷暖两用空调机(供热时):加热风对流换热和辐射 人体 太阳照射:阳光 辐射 人体 5.自然界和日常生活中存在大量传热现象,如加热、冷却、冷凝、沸

腾、升华、凝固、融熔等,试各举一例说明这些现象中热量的传递方式? 答:加热:用炭火对锅进行加热——辐射换热 冷却:烙铁在水中冷却——对流换热和辐射换热 凝固:冬天湖水结冰——对流换热和辐射换热 沸腾:水在容器中沸腾——对流换热和辐射换热 升华:结冰的衣物变干——对流换热和辐射换热 冷凝:制冷剂在冷凝器中冷凝——对流换热和导热 融熔:冰在空气中熔化——对流换热和辐射换热 5.夏季在维持20℃的室内,穿单衣感到舒服,而冬季在保持同样温度的室内却必须穿绒衣,试从传热的观点分析其原因?冬季挂上窗帘布后顿觉暖和,原因又何在? 答:夏季室内温度低,室外温度高,室外物体向室内辐射热量,故在20℃的环境中穿单衣感到舒服;而冬季室外温度低于室内,室内向室外辐射散热,所以需要穿绒衣。挂上窗帘布后,辐射减弱,所以感觉暖和。 6.“热对流”和“对流换热”是否同一现象?试以实例说明。对流换热是否为基本传热方式? 答:热对流和对流换热不是同一现象。流体与固体壁直接接触时的换热过程为对流换热,两种温度不同的流体相混合的换热过程为热对流,对流换热不是基本传热方式,因为其中既有热对流,亦有导热过程。 9.一般保温瓶胆为真空玻璃夹层,夹层内两侧镀银,为什么它能较长时间地保持热水的温度?并分析热水的热量是如何通过胆壁传到外界

传热学总复习试题及答案【第五版】【精】【_必备】(DOC)

总复习题 基本概念 : ?薄材 : 在加热或冷却过程中 , 若物体内温度分布均匀 , 在任意时刻都可用一个温度来代表整个物体的温度 , 则该物体称为 ----. ?传热 : 由热力学第二定律 , 凡是有温差的地方 , 就有热量自发地从高温物体向低温物体转移 , 这种由于温差引起的热量转移过程统称为 ------. ?导热 : 是指物体内不同温度的各部分之间或不同温度的物体相接触时 , 发生的热量传输的现象 . 物体各部分之间不发生相对位移,仅依靠物体内分子原子和自由电子等微观粒子的热运动而产生的热能传递成为热传导简称导热 ?对流 : 指物体各部分之间发生相对位移而引起的热量传输现象 . 由于流体的宏观运动而引起的流体各部分之间发生相对位移,冷热流体相互渗混所导致的热量传递过程 ?对流换热 : 指流体流过与其温度不同的物体表面时 , 流体与固体表面之间发生的热量交换过程称为 ------. ?强制对流 : 由于外力作用或其它压差作用而引起的流动 . ?自然对流 : 由于流体各部分温度不同 , 致使各部分密度不同引起的流动 . ?流动边界层 : 当具有粘性的流体流过壁面时 , 由于粘滞力的作用 , 壁面附近形成一流体薄层 , 在这一层中流体的速度迅速下降为零 , 而在这一流层外 , 流体的速度基本达到主流速度 . 这一流体层即为 -----. ?温度边界层 : 当具有粘性的流体流过壁面时 , 会在壁面附近形成一流体薄层 , 在这一层中流体的温度迅速变化 , 而在这一流层外 , 流体的温度基本达到主流温度 . 这一流体层即为 -----. ?热辐射 : 物体由于本身温度而依靠表面发射电磁波而传递热量的过程称为 ------. 物体由于本身温度而依靠表面发射电磁波而传递热量的过程成为热辐射 ?辐射力 : 物体在单位时间内 , 由单位表面积向半球空间发射的全部波长的辐射能的总量 . ?单色辐射力 : 物体在单位时间内 , 由单位表面积向半球空间发射的波长在λ -- λ +d λ 范围内的辐射能量 . ?立体角 : 是一个空间角度 , 它是以立体角的角端为中心 , 作一半径为 r 的半球 , 将半球表面上被立体角切割的面积与半径平方 r 2 的比值作为 ------ 的大小 . ?定向辐射强度 : 单位时间内 , 在单位可见面积 , 单位立体角内发射的全部波长的辐射能量称为 ----. ?传质 : 在含有两种或两种以上组分的流体内部 , 如果有浓度梯度存在 , 则每一种组分都有向低浓度方向转移 , 以减弱这种浓度不均匀的趋势 . 物质由高浓度向低浓度方转移过程称为 ----.

传热学第五版答案

传热学习题解答 与中国建筑工业出版社教材 ——《传热学》配套 中原工学院 能环学院 2006.5.30

绪论 1.冰雹落地后,即慢慢融化,试分析一下,它融化所需的热量是由哪些途径得到的? 答:冰雹融化所需热量主要由三种途径得到: a 、地面向冰雹导热所得热量; b 、冰雹与周围的空气对流换热所得到的热量; c 、冰雹周围的物体对冰雹辐射所得的热量。 2.秋天地上草叶在夜间向外界放出热量,温度降低,叶面有露珠生成,请分析这部分热量是通过什么途径放出的?放到哪里去了?到了白天,叶面的露水又会慢慢蒸发掉,试分析蒸发所需的热量又是通过哪些途径获得的? 答:通过对流换热,草叶把热量散发到空气中;通过辐射,草叶把热量散发到周围的物体上。白天,通过辐射,太阳和草叶周围的物体把热量传给露水;通过对流换热,空气把热量传给露水。 3.现在冬季室内供暖可以采用多种方法。就你所知试分析每一种供暖方法为人们提供热量的主要传热方式是什么?填写在各箭头上。 答:暖气片内的蒸汽或热水 对流换热 暖气片内壁 导热 暖气片外壁 对流换热和 辐射 室内空气 对流换热和辐射 人体;暖气片外壁 辐射 墙壁辐射 人体 电热暖气片:电加热后的油 对流换热 暖气片内壁 导热 暖气片外壁 对流换热和 辐射 室内空气 对流换热和辐射 人体 红外电热器:红外电热元件辐射 人体;红外电热元件辐射 墙壁 辐射 人体 电热暖机:电加热器 对流换热和辐射加热风 对流换热和辐射 人体 冷暖两用空调机(供热时):加热风 对流换热和辐射 人体

太阳照射:阳光 辐射 人体 4.自然界和日常生活中存在大量传热现象,如加热、冷却、冷凝、沸腾、升华、凝固、融熔等,试各举一例说明这些现象中热量的传递方式? 答:加热:用炭火对锅进行加热——辐射换热 冷却:烙铁在水中冷却——对流换热和辐射换热 凝固:冬天湖水结冰——对流换热和辐射换热 沸腾:水在容器中沸腾——对流换热和辐射换热 升华:结冰的衣物变干——对流换热和辐射换热 冷凝:制冷剂在冷凝器中冷凝——对流换热和导热 融熔:冰在空气中熔化——对流换热和辐射换热 5.夏季在维持20℃的室内,穿单衣感到舒服,而冬季在保持同样温度的室内却必须穿绒衣,试从传热的观点分析其原因?冬季挂上窗帘布后顿觉暖和,原因又何在? 答:夏季室内温度低,室外温度高,室外物体向室内辐射热量,故在20℃的环境中穿单衣感到舒服;而冬季室外温度低于室内,室内向室外辐射散热,所以需要穿绒衣。挂上窗帘布后,辐射减弱,所以感觉暖和。 6.“热对流”和“对流换热”是否同一现象?试以实例说明。对流换热是否为基本传热方式? 答:热对流和对流换热不是同一现象。流体与固体壁直接接触时的换热过程为对流换热,两种温度不同的流体相混合的换热过程为热对流,对流换热不是基本传热方式,因为其中既有热对流,亦有导热过程。

传热学章熙民

第八章 8-13 有一漫射表面温度T =1500K ,已知其光谱发射率ε λ 随波长的变化如图所示,试计算表面的全波长总发射率ε和辐射力E 。 解: = 实际表面辐射力 总发射率同温下黑体表面辐射力 b b E d E E E λλε∞ == ? b b E d E λλελ ∞ = ? 1 2 3 1230 1 2 (,)(,)(,)() b b b b E T d E T d E T d E T λλλλλλλλλλλελλελλελλ ++= ??? 即 : 11221(0)[(0)(0)]F T F T F T λλεελελλ=-+--- 332[(0)(0)]F T F T λελλ+---

2233...m k m k m k λμλλμλλμλε?????????1b 1b b 又,T=11500=1500查表8-1得,F (0-T)=0.01375,同理:T=31500=4500则,F (0-T)=0.56405, T=51500=7500则,F (0-T)=0.8344. 故: =0.10.01375+0.4(0.56405-0.01375) +0.2(0.8344-0.56404 bT εεδb 5) =0.276 所以:该表面的辐射力:E=E = 840.276 5.67101500-=??? 279224/W m = 8-14 已知某表面的光谱吸收比αλ随波长的变化如图所示,该表面的投射光谱辐射能G λ随波长的变化如图所示,试计算该表面的吸收比α。

解: =投入辐射能中被表面吸收的辐射能 总吸收率投入到表面的总辐射能 G d λλλ λλ αα∞ ∞= ?? G d 1 1 2 3 1(01)2(12)3(23)0 1 2 2 3 (01)(12)(23)0 1 2 G d G d G d G d G d G d λλλλλλλλλλλλλλλλλλλλλλλαλαλαλ λλλ ------++= ++???? ??(01)3(23)22(12)200 , 3 2400200, 0.1750.85;400/(). G G G W m m λλλλλλλλλαλαλααλμ---==-=-=?12又: =0.2, =0.9, 与波长相关,其线性关系为:而

传热学

传热学 摘要: 传热学是研究由温度差异引起的热量传递过程的科学。生成生活中,传热学应用广泛存在。对传热学的研究虽然由来已久,但其任然有着活力,虽然目前在一些行业取得了一定的成功,但是任然任重而道远,特别是当今基础工业,装备行业快速发展的时代犹是如此。 关键词:传热学温度差装备 一传热学的发展 传热现象在我们的日常生活中十分普遍,不管是冬天取暖,还是夏天吹凉,不管是家里烧水,亦或是工厂炼油换热等,所有的这些现象无不包涵着传热学的相关知识。 早在1822年, 傅里叶根据大量的实验观察总结出了著名的导热公式即傅里叶导热定理,并在他的划时代名著—《热的解析理论》中通过严密的数学演绎奠定了现有热传导理论基础。从傅里叶导热定理出发,可以导出多维稳态和瞬态热传导方程[1]。由于对流换热的复杂性,人们更多的是采用实验的方法,其主要思路是利用N一S方程和能量方程,导出一些无量纲参数,利用大量的实验数据,拟合出无量纲数之间的准则关系式,并且根据相似理论,对相似理论进行推广使用来求解。Prandil观察到对流过程中在贴近壁面处有一蠕动的薄层,大胆提出了边界层理论,使得流体力学基本问题得到解决,对流换热的研究从而进人了理论化阶段。 热传递的三种基本方式 1 热传导 热传导的定义:热从物体温度较高的一部分沿着物体传到温度较低的部分的方式。 目前热传导是三种传热方式中研究得最为深刻和最理论化的一种[2]。热传 导是指热量从系统的一部分传到另一部分或由一个系统传到另一个系统的现象。 它是固体中热传递的主要方式,在不流动的液体或气体层中层层传递,在流动情况下往往与对流同时发生。热传导实质是由大量物质的分子热运动互相撞击,而使能量从物体的高温部分传至低温部分,或由高温物体传给低温物体的过程。在固体中,热传导的微观过程是:在温度高的部分,晶体中结点上的微粒振动动能较大。在低温部分,微粒振动动能较小。因微粒的振动互相联系,所以在晶体

传热学章熙民

传热学章熙民

第六章 6-17 黄铜管式冷凝器内径12.6mm ,管内水流速1.8m/s ,壁温维持80℃,冷却水进出口温度分别为28℃和34℃,管长l/d>20,请用不同的关联式计算表面传热系数。 解:常壁温边界条件,流体与壁面的平均温差为 ()()()[][]() ()80288034t t t 48.94C ln t /t ln 8028/8034---''' ?-??===?'''??--冷却 水的平均温度为()f w t t t =80-48.94=31.06C =-?? 由附录3查物性,水在t f 及t w 下的物性参数为: t f =31℃时, λf =0.6207 W/(m·K), νf =7.904×10-7m 2/s, Pr f =5.31, μf =7.8668×10-4N s/m 2 t w =80℃时, μw =3.551×10-4N s/m 2。所以 -7 f 0.0126 1.8Re 28700100007.90410 ??===>?m f d u v 水在管内的流动为紊流。 用Dittus-Boelter 公式,液体被加热

0.80.4f Nu 0.023Re Pr = 0.80.4f Nu 0.02328700 5.31.=??=1652 ()20.6207 165.28138.1W /m K 0.0126 ==?=?f f h Nu d λ 用Siede-Tate 公式 0.14 f 0.8 1/3 f w Nu 0.027Re Pr μμ?? = ??? 0.14 0.8 1/3 f 7.8668Nu 0.02728700 5.31 1943.551?? =??= ??? ()20.6207 1949554.7W /m K 0.0126 ==?=?f f h Nu d λ 6-21 管式实验台,管内径0.016m ,长为2.5m ,为不锈钢管,通以直流电加热管内水流,电压为5V ,电流为911.1A ,进口水温为47℃,水流速0.5m/s ,试求它的表面传热系数及换热温度差。(管子外绝热保温,可不考虑热损失) 解:查附录3,进口处47℃水的密度为 3989.22kg/m ρ'= 质量流量为2f m m =V=u r ρρπ''

传热学_杨茉_部分习题与解答

第一章: 1-1 对于附图所示的两种水平夹层,试分析冷、热表面 间热量交换的方式有何不同?如果要通过实验来测定夹层中流体的导热系数,应采用哪一种布置? 解:(a )中热量交换的方式主要有热传导和热辐射。 (b )热量交换的方式主要有热传导,自然对流和热辐射。 所以如果要通过实验来测定夹层中流体的导热系数,应采用( a )布置。 1-2 一炉子的炉墙厚13cm ,总面积为20m 2 ,平均导热系数为 1.04w/m 〃k ,内外壁温分别是520 ℃及50 ℃。试计算通过炉墙的热损失。如果所燃用的煤的发热量是 2.09 ×10 4 kJ/kg ,问每天因热损失要用掉多少千克煤? 解:根据傅利叶公式 每天用煤 1-3 在一次测定空气横向流过单根圆管的对流换热实验中,得到下列数据:管壁平均温度t w = 69 ℃,空气温度t f = 20 ℃,管子外径d= 14mm ,加热段长80mm ,输入加热段的功率8.5w ,如果全部热量通过对流换热传给空气,试问此时的对流换热表面传热系数多大? 解:根据牛顿冷却公式

1-4宇宙空间可近似的看作0K 的真空空间。一航天器在太空中飞行,其外表面平均温度为250K ,表面发射率为0.7 ,试计算航天器单位表面上的换热量? 解:航天器单位表面上的换热量 1-5附图所示的空腔由两个平行黑体表面组成,孔腔内抽成真空,且空腔的厚度远小于其高度与宽度。其余已知条件如图。表面 2 是厚δ= 0.1m 的平板的一侧面,其另一侧表面 3 被高温流体加热,平板的平均导热系数λ=17.5w/m ? K ,试问在稳态工况下表面3 的t w3 温度为多少? 解: 表面1 到表面2 的辐射换热量= 表面2 到表面3 的导热量 第二章:

传热学第五版答案

传热学习题解答 与中国建筑工业出版社教材——《传热学》配套 中原工学院

能环学院 2006.5.30 绪论 1.冰雹落地后,即慢慢融化,试分析一下,它融化所需的热量是由哪些途径得到的? 答:冰雹融化所需热量主要由三种途径得到: a、地面向冰雹导热所得热量; b、冰雹与周围的空气对流换热所得到的热量; c、冰雹周围的物体对冰雹辐射所得的热量。 2.秋天地上草叶在夜间向外界放出热量,温度降低,叶面有露珠生成,请

分析这部分热量是通过什么途径放出的?放到哪里去了?到了白天,叶面的露水又会慢慢蒸发掉,试分析蒸发所需的热量又是通过哪些途径获得的? 答:通过对流换热,草叶把热量散发到空气中;通过辐射,草叶把热量散发到周围的物体上。白天,通过辐射,太阳和草叶周围的物体把热量传给露水;通过对流换热,空气把热量传给露水。 3.现在冬季室内供暖可以采用多种方法。就你所知试分析每一种供暖方法为人们提供热量的主要传热方式是什么?填写在各箭头上。

答:暖气片内的蒸汽或热水对流换热暖气片内壁导热暖气片外壁对流换热和辐射室内空气对流换热和辐射人体;暖气片外壁辐射墙壁辐射人体 电热暖气片:电加热后的油对流换热暖气片内壁导热暖气片外壁对流换热和辐射室内空气对流换热和辐射人体 红外电热器:红外电热元件辐射人体;红外电热元件辐射墙壁辐射人体 电热暖机:电加热器对流换热和辐射加热风对流换热和辐射人体 冷暖两用空调机(供热时):加热风对流换热和辐射人体 太阳照射:阳光辐射人体 4.自然界和日常生活中存在大量传热

现象,如加热、冷却、冷凝、沸腾、升华、凝固、融熔等,试各举一例说明这些现象中热量的传递方式? 答:加热:用炭火对锅进行加热——辐射换热 冷却:烙铁在水中冷却——对流换热和辐射换热 凝固:冬天湖水结冰——对流换热和辐射换热 沸腾:水在容器中沸腾——对流换热和辐射换热 升华:结冰的衣物变干——对流换热和辐射换热 冷凝:制冷剂在冷凝器中冷凝——对流换热和导热

《传热学》(第五版)中国建筑工业出版社 章熙民等 课后习题完整答案之绪论-第二章答案

绪论 思考题与习题(89P -)答案: 1. 冰雹落体后溶化所需热量主要是由以下途径得到: Q λ—— 与地面的导热量 f Q ——与空气的对流换热热量 注:若直接暴露于阳光下可考虑辐射换热,否则可忽略不计。 2.略 3.略 4.略 5.略 6.夏季:在维持20℃的室内,人体通过与空气的对流换热失去热量,但同时又与外界和内 墙面通过辐射换热得到热量,最终的总失热量减少。(T T ?外内) 冬季:在与夏季相似的条件下,一方面人体通过对流换热失去部分热量,另一方面又与 外界和内墙通过辐射换热失去部分热量,最终的总失热量增加。(T T ?外内) 挂上窗帘布阻断了与外界的辐射换热,减少了人体的失热量。 7.热对流不等于对流换热,对流换热 = 热对流 + 热传导 热对流为基本传热方式,对流换热为非基本传热方式 8.门窗、墙壁、楼板等等。以热传导和热对流的方式。 9.因内、外两间为真空,故其间无导热和对流传热,热量仅能通过胆壁传到外界,但夹层 两侧均镀锌,其间的系统辐射系数降低,故能较长时间地保持热水的温度。 当真空被破坏掉后,1、2两侧将存在对流换热,使其保温性能变得很差。 10.t R R A λλ= ? 1t R R A λλ== 221 8.331012 m --=? 11.q t λ σ = ? const λ=→直线 const λ≠ 而为λλ=(t ) 时→曲线

12. i R α 1R λ 3R λ 0R α 1f t ??→ q 首先通过对流换热使炉子内壁温度升高,炉子内壁通过热传导,使内壁温度生高,内壁与空气夹层通过对流换热继续传递热量,空气夹层与外壁间再通过热传导,这样使热量通过空气夹层。(空气夹层的厚度对壁炉的保温性能有影响,影响a α的大小。) 13.已知:360mm σ=、0.61() W m K λ=? 118f t =℃ 2187() W h m K =? 210f t =-℃ 22124() W h m K =? 墙高2.8m ,宽3m 求:q 、1w t 、2w t 、φ 解:12 11 t q h h σλ?= ++= 18(10) 45.9210.361 870.61124 --=++2W m

传热学精讲 第四章

第四章 导热问题数值解法基础 第一节 建立离散方程的方法 一、区域和时间的离散化 图4-1 二维物体中的网格 二、建立离散方程的方法 1、泰勒级数展开法 +?? ??? ????+????? ? ???+???? ????+=+! 3!23 ,332,2 2 ,,,1x x t x x t x x t t t j i j i j i j i j i (1) +????? ????-????? ? ???+???? ????-=-!3!23 ,3 32,22 ,,,1x x t x x t x x t t t j i j i j i j i j i (2) ()x x t t x t j i j i j i ?+?-=???? ? ???-0,1,, (4-2) ()2 ,1,1,02x x t t x t j i j i j i ?+?-=? ?? ????-+ (4-3) ()2 2,1,,1,2202x x t t t x t j i j i j i j i ?+?+-=???? ????-+ (4-4) ( )2 21,,1,,2202y y t t t y t j i j i j i j i ?+?+-=???? ? ???-+ (4-5) 222 1 ,,1,2 ,1,,1=?+-+ ?+--+-+y t t t x t t t j i j i j i j i j i j i (4-6)

2、热平衡法 图4-2 二维网格单元的能量平衡 1,,1???-=Φ-y x t t j i j i LP λ 1,,1???-=Φ+y x t t j i j i P R λ 1,1,???-=Φ+x y t t j i j i P T λ Φ??B P i j i j t t y x =-?-λ ,,11 以常物性,无热源二维稳态导热为例,对节点P ()i j ,所代表的微元体写热平衡式, ΦΦΦΦLP R P T P B P +++=0 () () λ λ ????y x t t t x y t t t i j i j i j i j i j i j +-+--++-+=111 1220,,,,,, (4-7) 第二节 稳态导热问题的数值计算 一、内节点离散方程的建立 t t t t t i j i j i j i j i j +-+-+++-=111140,,,,, ()t t t t t i j i j i j i j i j ,,,,,= ++++-+-14 1111 (4-8) 二、边界节点离散方程的建立 图4-3 第三类边界条件的边界节点 λ λ λ t t x y t t y x t t y x q y i j i j i j i j i j i j w --+-+-+-+=11122 0,,,,,,???????

传热学

实验三 换热器换热性能实验 一、实验目的 1.测试换热器的换热能力; 2.了解传热驱动力的概念以及它对传热速率的影响。 二、实验装置 过程设备与控制多功能实验台 三、基本原理 换热器工作时,冷、热流体分别处在换热管的两侧,热流体把热量通过管壁传给冷流体,形成热交换。当若换热器没有保温,存在热损失,则热流体放出的热量大于冷流体获得的热量。 热流体放出的热量为: )(21T T c m Q pt t t -= (3-1) 式中 : t Q ——单位时间内热流体放出的热量, kW ; t m ——热流体的质量流率,kg/s ; pt c ——热流体的定压比热,kJ/kg· K , 1T 、2T ——热流体的进出口温度,K 或o C 。 冷流体获得的热量为: )(12t t c m Q ps s s -= (3-2) 式中 :s Q ——单位时间内冷流体获得的热量,kJ/s=kW ; s m ——冷流体的质量流率,kg/s ; ps c ——冷流体的定压比热,kJ/kg· K ,在实验温度范围内可视为常数; 1t 、2t ——冷流体的进出口温度,K 或o C 。 损失的热量为: s t Q Q Q -=? (3-3) 冷热流体间的温差是传热的驱动力,对于逆流传热,平均温差为

) /l n (212 1t t t t t m ???-?= ? (3-4) 式中: 211t T t -=?、122t T t -=?。 本实验着重考察传热速率Q 和传热驱动力m t ?之间的关系。 四、实验步骤 实验前,首先设定初始炉温,待炉温达到设定值后,开始以下步骤。 1.打开热流体管程入口阀1、热流体管程出口阀2,出口流量调节阀6、冷流体壳程入口阀7、冷流体壳程出口阀8,其他阀门关闭,使热流体走管程、冷流体走壳程; 2.打开灌泵,保证离心泵中充满水,开排气阀放净空气; 3.关自来水阀门,启动泵。调节压力调节旋钮(11-7),调整转速使压力保持在0.5Mpa 。 4.调节热流体管程进口阀1,同时观察实验画面,使热流体流量保持0.5L/s 不变; 5.调节出口流量调节阀6,使冷流体流量保持0。5L/s 不变; 6.清空数据库; 7.关闭热水泵,开循环泵,待炉内水温均匀后,关循环泵开热水泵。 8. 待冷流体的进出口温度1t 、2t 及热流体的出口温度2T 稳定后记录数据。 9. 改变炉内的设定温度,重复步骤7。 五、数据记录和整理 保持热流体流量t V 及冷流体流量s V 不变,改变热流体的进口温度1T ,测量冷流体的进出口温度1t 、2t 及热流体的出口温度2T ,根据公式(3-1)和(3-2)分别计算热流体放出的热量t Q 和冷流体获得的热量s Q ,并由式(3-3)计算损失的热量,根据公式(3-4)计算平均温差m t ?,将测量和计算出的结果填入数据表3-1中。

传热学第五版课后习题答案

传热学习题_建工版V 0-14 一大平板,高3m ,宽2m ,厚,导热系数为45W/, 两侧表面温度分别为w1t 150C =?及 w1t 285C =? ,试求热流密度计热流量。 解:根据付立叶定律热流密度为: 2 w2w121t t 285150q gradt=-4530375(w/m )x x 0.2λλ??--??=-=-=- ? ?-???? 负号表示传热方向与x 轴的方向相反。 通过整个导热面的热流量为: q A 30375(32)182250(W)Φ=?=-??= 0-15 空气在一根内经50mm ,长米的管子内流动并被加热,已知空气的平均温度为85℃,管壁对空气的h=73(W/m 2.k),热流密度q=5110w/ m 2, 是确定管壁温度及热流量?。 解:热流量 qA=q(dl)=5110(3.140.05 2.5) =2005.675(W) πΦ=?? 又根据牛顿冷却公式 w f hA t=h A(t t )qA Φ=??-= 管内壁温度为: w f q 5110t t 85155(C)h 73 =+ =+=? 1-1.按20℃时,铜、碳钢(%C )、铝和黄铜导热系数的大小,排列它们的顺序;隔热保温材料导热系数的数值最大为多少?列举膨胀珍珠岩散料、矿渣棉和软泡沫塑料导热系数的数值。 解: (1)由附录7可知,在温度为20℃的情况下, λ铜=398 W/(m ·K),λ碳钢=36W/(m ·K), λ铝=237W/(m ·K),λ黄铜=109W/(m ·K). 所以,按导热系数大小排列为: λ铜>λ铝>λ黄铜>λ钢 (2) 隔热保温材料定义为导热系数最大不超过 W/(m ·K). (3) 由附录8得知,当材料的平均温度为20℃时的导热系数为: 膨胀珍珠岩散料:λ=+ W/(m ·K) =+×20= W/(m ·K); 矿渣棉: λ=+ W/(m ·K) =+×20= W/(m ·K);

传热学章熙民

第五章 5-13 由微分方程解求外掠平板,离前缘150mm 处的流动边界层及热边界层度,已知边界平均温度为60℃,速度为u ∞=0.9m/s 。 解: 以干空气为例 平均温度为60℃,查附录2干空气的热物性参数 ν=18.97×10-6m 2/s=1.897×10-5m 2/s, Pr=0.696 离前缘150mm 处Re 数应该为 x 60.90.15Re 7116.518.9710 -?===?u ν∞x Re 小于临街Re,c(5510?), 流动处在层流状态 x δ =5.0Rex 1/-2 115.050.15=?=??x δ

0.00889(m)8.9mm ==δ 所以,热边界层厚度: 1/31/3t Pr 0.00890.6930.01(m)=10mm --==?=δδ 以水为例 平均温度为60℃,查附录3饱和水的热物性参数 ν=4.78×10-7m 2/s Pr=2.99 离前缘150mm 处Re 数应该为 5x 6 0.90.15Re 2.82427100.47810-?===??u ν∞x Re 小于临街Re,c(5510?), 流动处在层流状态 x δ =5.0Rex 1/-2 115.050.15=?=??x δ 0.00141(m) 1.41mm ==δ 所以,热边界层厚度:

1/31/3t Pr 0.00141 2.990.00098(m)=0.98mm --==?=δδ 5-14 已知t f =40℃,t w =20℃,u ∞=0.8m/s ,板长450mm ,求水掠过平板时沿程x=0.1、0.2、0.3、0.45m 的局部表面传热系数,并绘制在以为纵坐标,为横坐标的图上。确定各点的平均表面传热系数。 解:以边界层平均温度确定物性参数 ()()m w f 11t t t 20+4030(C )22 =+==?,查附表3水的物性为: 0.618W /m K λ=?,ν=0.805×10-6m 2/s ,Pr=5.42 在沿程0.45m 处的Re 数为 56 0.80.45Re 4.47100.80510-?===??x u ν∞x 该值小于临界Re c =5×105, 可见流动还处于层流状态。那么从前沿到x 坐标处的平均对流换热系数应为 x h 2h 0.664==??x λ 0.618h 0.6640.72x x =??=

传热学重点章节典型例题

第一章 1-1 对于附图所示的两种水平夹层,试分析冷、热表面间热量交换的方式有何不同?如果要通过实验来测定夹层中流体的导热系数,应采用哪一种布置? 解:( a )中热量交换的方式主要有热传导和热辐射。 ( b )热量交换的方式主要有热传导,自然对流和热辐射。 所以如果要通过实验来测定夹层中流体的导热系数,应采用( a )布置。 1-7 一炉子的炉墙厚 13cm ,总面积为 20m 2 ,平均导热系数为 1.04w/m · k ,内外壁温分别是520 ℃及 50 ℃。试计算通过炉墙的热损失。如果所燃用的煤的发热量是 2.09 × 10 4 kJ/kg ,问每天因热损失要用掉多少千克煤? 解:根据傅利叶公式 每天用煤 1-9 在一次测定空气横向流过单根圆管的对流换热实验中,得到下列数据:管壁平均温度 t w = 69 ℃,空气温度 t f = 20 ℃,管子外径 d= 14mm ,加热段长 80mm ,输入加热段的功率 8.5w ,如果全部热量通过对流换热传给空气,试问此时的对流换热表面传热系数多大? 解:根据牛顿冷却公式

1-14 宇宙空间可近似的看作 0K 的真空空间。一航天器在太空中飞行,其外表面平均温度为 250K ,表面发射率为 0.7 ,试计算航天器单位表面上的换热量? 解:航天器单位表面上的换热量 1-27 附图所示的空腔由两个平行黑体表面组成,孔腔内抽成真空,且空腔的厚度远小于其高度与宽度。其余已知条件如图。表面 2 是厚δ = 0.1m 的平板的一侧面,其另一侧表面 3 被高温流体加热,平板的平均导热系数λ =17.5w/m ? K ,试问在稳态工况下表面 3 的 t w3 温度为多少? 解: 表面 1 到表面 2 的辐射换热量 = 表面 2 到表面 3 的导热量 第二章

传热学第四章

刘彦丰华北电力大学第四章导热问题的数值解法 内容简介: 本章介绍了数值求解物理问题的基本思想,以二维稳态导热问题和一维非稳态导热为例,介绍了采用有限差分法数值求解导热问题的基本过程。 刘彦丰 华北电力大学4-1 数值求解的基本思想 一、数值解法的本质 数值解法是用物理问题所涉及的空间和时间区域内有限个离散点(称为节点)的物理量近似值来代替物体内实际连续的物理量分布,将连续物理量分布函数的求解问题转化为各节点物理量值的求解问题。 ) ,,,(τz y x f t =刘彦丰 传热学Heat Transfer 华北电力大学 二、数值解法的基本步骤 建立控制方程及定解条件 确定节点(区域离散化)建立节点物理量的代数方程 设立物理量的初值 求解代数方程是否收敛解的分析 改进初场 是否 刘彦丰 传热学Heat Transfer 华北电力大学 将求解区域按照一定规则划分为许多小的小区域,这个过程称作区域的离散。每个小的区域的物理量值由一个点—节点来表示。 1.区域的离散 x y m n 传热学Heat Transfer 每一个节点都与它周围相邻的节点存在一定的关系,通过相应的物理定律,可建立它们之间的关系式(属于代数方程式),此关系式又称作节点的离散方程。 2.建立节点物理量的代数方程 (m ,n ) (m +1,n ) (m ,n +1) (m -1,n ) (m ,n-1) 传热学Heat Transfer 把所有节点的离散方程联立起来,会组成一个封闭的方程组,对代数方程组的求解可采用直接解法或迭代求解,更多的是采用迭代解法。 3.求解代数方程组 (m ,n ) (m +1,n ) (m ,n +1) (m -1,n ) (m ,n-1)

第五版《传热学》常考思考题汇总

西安建筑科技大学传热学(郭亚军)常考简答题 题目类型:10道简答题(*6分)三道大题14分/14分/12分无填空题无选择题重点看课后思考题哦 绪论 1.用铝制的水壶烧开水时,尽管炉火很旺,但水壶仍然安然无恙。而一旦壶内的水烧干后,水壶很快就烧坏。试从传热学的观点分析这一现象。 答:当壶内有水时,可以对壶底进行很好的冷却(水对壶底的对流换热系数大),壶底的热量被很快传走而不至于温度升得很高;当没有水时,和壶底发生对流换热的是气体,因为气体发生对流换热的表面换热系数小,壶底的热量不能很快被传走,故此壶底升温很快,容易被烧坏。 2.用一只手握住盛有热水的杯子,另一只手用筷子快速搅拌热水,握杯子的手会显著地感到热。试分析其原因。答:当没有搅拌时,杯内的水的流速几乎为零,杯内的水和杯壁之间为自然对流换热,自热对流换热的表面传热系数小,当快速搅拌时,杯内的水和杯壁之间为强制对流换热,表面传热系数大,热水有更多的热量被传递到杯壁的外侧,因此会显著地感觉到热。 3.有两个外形相同的保温杯A与B,注入同样温度、同样体积的热水后不久,A杯的外表面就可以感觉到热,而B 杯的外表面则感觉不到温度的变化,试问哪个保温杯的质量较好? 答:B:杯子的保温质量好。因为保温好的杯子热量从杯子内部传出的热量少,经外部散热以后,温度变化很小,因此几乎感觉不到热。 4热水瓶胆剖面的示意图如附图所示。瓶胆的两层玻璃之间抽成真空,内胆外壁及外胆内壁涂了反射率很低的银。试分析热水瓶具有保温作用的原因。如果不小心破坏了瓶胆上抽气口处的密闭性,这会影响保温效果吗? 解:保温作用的原因:内胆外壁外胆内壁涂了反射率很低的银,则通过内外胆向外辐射的热量很少,抽真空是为了减少内外胆之间的气体介质,以减少其对流换热的作用。如果密闭性破坏,空气进入两层夹缝中形成了内外胆之间的对流传热,从而保温瓶的保温效果降低。 5、冬天,经过在白天太阳底下晒过的棉被,晚上盖起来感到很暖和,并且经过拍打以后,效果更加明显。试解释原因。 答:棉被经过晾晒以后,可使棉花的空隙里进人更多的空气。而空气在狭小的棉絮空间里的热量传递方式主要是导热,由于空气的导热系数较小(20℃,1.01325×105Pa时,空气导热系数为0.0259W/(m·K),具有良好的保温性 能。而经过拍打的棉被可以让更多的空气进入,因而效果更明显。 6、夏季在维持20℃的室内工作,穿单衣感到舒适,而冬季在保持22℃的室内工作时,却必须穿绒衣才觉得舒服。试从传热的观点分析原因。 答:首先,冬季和夏季的最大区别是室外温度的不同。夏季室外温度比室内气温高,因此通过墙壁的热量传递方向是出室外传向室内。而冬季室外气温比室内低,通过墙壁的热量传递方向是由室内传向室外。因此冬季和夏季墙壁内表面温度不同,夏季高而冬季低。因此,尽管冬季室内温度(22℃)比夏季略高(20℃),但人体在冬季通过辐射与墙壁的散热比夏季高很多。根据上题人体对冷感的感受主要是散热量的原理,在冬季散热量大,因此要穿厚一些的绒衣。 7、试分析室内暖气片的散热过程,各环节有哪些热量传递方式?以暖气片管内走热水为例。 答:有以下换热环节及热传递方式 (1)由热水到暖气片管到内壁,热传递方式是对流换热(强制对流); (2)由暖气片管道内壁至外壁,热传递方式为导热; (3)由暖气片外壁至室内环境和空气,热传递方式有辐射换热和对流换热。 8、冬季晴朗的夜晚,测得室外空气温度t高于0℃,有人却发现地面上结有—层簿冰,试解释原因(若不考虑水表面的蒸发)。 解:如图所示。假定地面温度为了Te,太空温度为Tsky,设过程已达稳态,空气与地面的表面传热系数为h,地球表面近似看成温度为Tc的黑体,太空可看成温度为Tsky的黑体。则由热平衡: , 由于Ta>0℃,而Tsky<0℃,因此,地球表面温度Te有可能低于0℃,即有可能结冰。 导热 1、在寒冷的北方地区,建房用砖采用实心砖还是多孔的空心砖好?为什么? 答:在其他条件相同时,实心砖材料如红砖的导热系数约为0.5W/(m·K)(35℃),而多孔空心砖中充满着不动的空气,空气在纯导热(即忽略自然对流)时,其导热系数很低,是很好的绝热材料。因而用多孔空心砖好。 2、东北地区春季,公路路面常出现“弹簧”,冒泥浆等“翻浆”病害。试简要解释其原因。为什么南方地区不出现

相关文档
最新文档