热敏电阻的特性及参数

热敏电阻的特性及参数
热敏电阻的特性及参数

热敏电阻的特性及参数

热敏电阻的物理特性用下列参数表示:

电阻值、B值、耗散系数、热时间常数、电阻温度系数。

电阻值:R〔Ω〕

电阻值的近似值表示为:R2=R1exp[1/T2-1/T1]

其中: R2:绝对温度为T2〔K〕时的电阻〔Ω〕

R1:绝对温度为T1〔K〕时的电阻〔Ω〕

B: B值〔K〕

B值:B〔k〕

B值是电阻在两个温度之间变化的函数,表达式为:

B= InR1-InR2 =2.3026(1ogR1-1ogR2)

1/T1-1/T2 1/T1-1/T2

其中: B: B值〔K〕

R1:绝对温度为T1〔K〕时的电阻〔Ω〕

R2:绝对温度为T2〔K〕时的电阻〔Ω〕

[传感器仪表类]常用规格热敏电阻的阻温特性表

常用规格热敏电阻的阻温特性表(单位:KΩ)

3KΩ5KΩ5KΩ5KΩ10KΩ10KΩ10KΩ-30℃31.7 52.84 63.73 90.83 111.3 127.5 133.625 -25℃24.75 41.19 48.6 66.65 86.39 97.1 101.6 -20℃19.46 32.44 37.4 49.44 67.74 74.8 77.925 -15℃15.41 25.65 29.03 37.05 53.39 58.08 60.2925 -10℃12.29 20.48 22.72 28.03 42.45 45.44 47.015 -5℃9.864 16.43 17.91 21.4 33.89 35.82 36.945 0℃7.974 13.29 14.23 16.48 27.28 28.46 29.235 5℃ 6.486 10.8 11.39 12.79 22.05 22.78 23.305 10℃ 5.303 8.839 9.181 9.998 17.96 18.36 18.685 15℃ 4.362 7.266 7.451 7.879 14.68 14.9 15.0875 20℃ 3.608 6.013 6.085 6.255 12.09 12.17 12.245 25℃ 3 5 5 5 10 10 10 30℃ 2.507 4.179 4.132 4.024 8.313 8.264 7.934

35℃ 2.106 3.508 3.434 3.259 6.941 6.89 6.7738 40℃ 1.777 2.962 2.869 2.656 5.828 5.738 5.623 45℃ 1.507 2.51 2.407 2.177 4.912 4.81 4.6913 50℃ 1.283 2.138 2.032 1.794 4.161 4.064 3.9265 55℃ 1.096 1.826 1.723 1.487 3.537 3.448 3.3043 60℃0.9408 1.568 1.467 1.238 3.021 2.934 2.7928 65℃0.8106 1.351 1.253 1.036 2.589 2.504 2.3726 70℃0.7014 1.169 1.073 0.8717 2.229 2.146 2.021 75℃0.609 1.014 0.9225 0.7364 1.924 1.845 1.7288 80℃0.5303 0.8838 0.7959 0.6248 1.669 1.592 1.4858 85℃0.4634 0.7725 0.6887 0.5324 1.451 1.378 1.2818 90℃0.4064 0.6774 0.5975 0.4555 1.226 1.195 1.1088 95℃0.3578 0.5963 0.5196 0.3912 1.108 1.039 0.964 100℃0.316 0.5267 0.4533 0.3372 0.9735 0.966 0.8377 105℃0.2798 0.4656 0.3974 0.2918 0.8574 0.7949 0.7344 110℃0.2478 0.413 0.3514 0.2533 0.7579 0.7028 0.6429 B值25/50℃3270 3270 3470 3950 3380 3470 3600 B值25/85℃3320 3320 3530 3990 3435 3530 3630

B=?

热敏电阻实践报告

黑龙江科技学院 综合性、设计性实验报告 实验项目名称热敏电阻特性实验 所属课程名称传感器工程实践 实验日期2011年3月x日 班级 学号 姓名 成绩 电气与信息工程学院实验室

实验概述: 【实验目的及要求】 【实验目的】 1通过实验使学生掌握各种传感器的工作原理; 2掌握热敏电阻传感器的特性测试方法; 3掌握传感器的特性实验数据处理方法; 4培养和提高学生传感器特性测试系统设计和分析的能力; 5通过该课程的学习扩大学生知识面,为今后的研究和技术工作打下坚实的基础。 【设计要求】 1掌握热敏电阻传感器的工作原理、测量电路的原理; 2通过传感器特性系统的设计,多方面知识综合应用,全面提高能力; 3为今后从事传感器工程方面的工作打下基础。 【实验原理】 传感器特性测试系统框图: 传感器测量电路图: 热敏电阻温度传感器工作原理: 热敏电阻是利用某种半导体材料的电阻率随温度变化而变化的性质制成的。 热敏电阻用于测温是利用了半导体电阻率随温度变化这一特性,对于热敏电阻要求其材料电阻温度系数大、稳定性好、电阻率高,电阻与温度之间最好有线性关系。 热敏电阻采用二线或三线连接法,其中一端接二根引线(三线连接法),主要为了消除引线电阻对测量的影响 【实验环境】(使用的软件) 工具:工程实践台、热敏电阻式传感器、导线、Pt100标准温度传感器、恒温箱。 实验内容: 【实验方案设计】 设计要点: 1)数显电压表分辨率为:1/1999,即:0.5/1000,并存在“〒1”个字的量化误差,在系统精度范围外的数字跳动属正常现象。 2)通用放大器(Ⅰ)调零时数显电压表需从20V档逐步逐步减小。 3)实验中其他单元的电源应关闭,否则有干扰。 4)温度源具有升温快、降温慢的特点,所以在取初始设定值时,应比PV 值略高。 5)插传感器接头时注意对正小方形口。 6)在实验前应先对测量电路进行调零。 7)记录数据时应在温度稳定在某一数值后再记录。 设计方案 (1)由于测量处理电路中存在零位电势,所以在开始实验前先将测量处理

热敏电阻规格书

NTC规格书 1)型号: DAE-303AT-95 2)主要参数 3)图纸 5) 绝缘试验 5-1) 绝缘试验

在产品外层绝缘材料抗阻值为大于100MΩ,在绝缘层施加直流 电压为500V 时此产品不会被击穿。 6)电气性能试验 6-1)高温试验: 在产品经过环境为100 ℃1,000 个小时后, 本产品变化幅度 可以控制在±1% 以内。. 6-2) 恒温恒湿试验: 在产品经过环境湿度为95% 环境温度为65℃情况下1,000小时 后, 本产品变化幅度可以控制在±1%以内。. 6-3) 低温试验: 在产品经过环境温度为-30℃1,000小时后, 本产品变化幅度可以 控制在±1%以内 6-4) 工作状态试验: 电阻在经过1mA恒定电流状态下,在产品经过环境湿度为95% 环境温度为65℃情况下1,000小时后, 本产品变化幅度可以控制 在±1%以内 6-5) 冲击试验: .在产品经过环境为-30℃30分钟,然后放置在室温3分钟进入. + 90℃环境放置30 分钟。再拿出在室温3分钟。连续循环100 次。本产品变化幅度可以控制在±1%以内。 6-6) 通电高温试验: 在产品经过直流为1mA电流,环境温度为+110℃1,000小时, 本产 品变化幅度可以控制在±1%以内 7)物理测试: 7-1)拉力测试 在产品经过2N拉力情况下时间1分钟,此款产品胶体与引线连接处不会脱落。 7-2) 自由落体测试: 在经过1m高的位置此产品落下,此款产品不会产生破损现象。. 7-3) 焊接测试

在产品经过距离芯片8.5 mm 处,焊接温度为260℃±10%,时间为2 ±0.5s, 本产品变化幅度可以控制在±1%以内.

NTC热敏电阻参数

NTC热敏电阻 NTC热敏电阻: NTC热敏电阻是一种可以通过1~10A强电流的负温度系数的热敏元件,直径在5~20mm之间的可分为六种。表3列出常用型号及主要参数供参考。 参数值及名称 型号 直径(mm) 最大稳定电流Imax(A) 零功率电阻值Rto Imax时电阻值R'to 热时间常数t(s) 功率热敏参数中, A零功率电阻值是元件在45℃环境下无电流作用时的自身电阻值。 在元件外形一定时,零功率电阻值越大,最大稳定电流值将越校零功率电阻值相同而外形直径不同的NTC热敏电阻,其最大稳定电流不同,直径大的电流值大,直径小的电流值校即最大稳定电流值与零功率值成反比,与直径成正比。 B,最大稳定电流值是指NTC热敏电阻能长时间稳定工作而不造成性能恶化的电流最大值。C,热时间常数是指NTC热敏电阻在25环境中从通电工作开始,到最后达到最大稳定电流的时间。 直径越大,热时间常数也越大。 在实际软启动应用中,主要对功率电阻器的最大稳定电流Imax,零功率电阻值Rto及直径大小三项提出要求: 最大稳定电流Imax是以负载工作电流IL按1~5倍IL选取Imax值。如IL=1A., NTC热敏电阻的Imax应为1~5A。 零功率电阻的选取,是以负载(如灯泡)未通电时的冷阻Ro,按R/1~5来选用Rto值。 元件直径是根软启动过程中所需要的时间即热时间常数来确定。通常直径较大的元件,其软启动时间较长,反之越短。另外,直径较大的,允许通过元件的Imax值也较大。 NTC热敏电阻使用注意事项: •安装位置应院里电器中的发热元件,也不宜靠近发热窗,不能靠近散热板或有排风扇气流吹动处,引脚应尽量长。 •关机后,在热时间常数内,NTC热敏电阻没有恢复到零功率电阻值,所以不宜频繁的开启。

热敏电阻的温度特性

测量热敏电阻的温度特性 热敏电阻是用半导体材料制成的热敏器件,根据其电阻率随温度变化的特性不同,大致可分为三种类型:(1)NTC (负温度系数)型热敏电阻;(2)PTC (正温度系数)型热敏电阻;(3)CTC (临界温度系数)型热敏电阻。其中PTC 型和CTC 型热敏电阻在一定温度范围内,阻值随温度剧烈变化,因此可用做开关元件。热敏电阻器在温度测控、现代电子仪器及家用电器(如电视机消磁电路、电子驱蚊器)等中有广泛用途。在温度测量中使用较多的是NTC 型热敏电阻,本实验将测量其电阻温度特性。 1.实验目的 (1)测量NTC 型热敏电阻的温度特性; (2)学习用作图法处理非线性数据。 2.实验原理 NTC 型热敏电阻特性 NTC 型热敏电阻是具有负的温度系数的热敏电阻,即随着温度升高其阻值下降,在不太宽的温度范围内(小于450℃),其电阻-温度特性符合负指数规律。 NTC 热敏电阻值R 随温度T 变化的规律由式(1-1)表示 T B T Ae R = (1-1) 其中A 、B 为与材料有关的特性常数,T 为绝对温度,单位K 。对于一定的热敏电阻, A 、 B 为常数。对式(1-1)两边取自然对数有 T B A R T + =ln ln (1-2) 从T R T 1ln -的线性拟合中,可得到A 、B 的值,写出热敏电阻温度特性 的经验公式。 3.实验内容 (1)连接电路。 (2)观察NTC 型热敏电阻的温度特性。 (3)测量NTC 型热敏电阻的温度特性。

(4)数据处理 R 特性曲线; a. 画出热敏电阻的t

b. 画出T R T 1ln 曲线,求出其直线的截距、斜率,即可求得A 、B ,写 出热敏电阻温度特性的经验公式。 (注:文档可能无法思考全面,请浏览后下载,供参考。可复制、编制,期待你的好评与关注)

NTC热敏电阻参数及其对照表

10K NTC热敏电阻参数及其对照表常温下R25℃ = 10K B(25-85)=3435

10K NTC热敏电阻负温度系数(NTC电阻随着温度的升高而降低)温度传感器探头是基于一个10K的±1% @ 25oC传感器-即电阻值在25oC 是10K,一般用途的温度测量,NTC温度传感器可以在很宽的温度范围内工作(-40 + 125°C)他们是稳定的,年/阻值漂移小于1PPM。10K NTC热敏电阻产品尺寸图: 10K 3435NTC热敏电阻特点: 1:MF52系列产品为径向绝缘引线,使用时无需引脚绝缘处理 2:产品稳定性好,可靠性高,年漂移率小于1PPM 3:热敏电阻阻值范围宽:1KΩ~1000KΩ 4:阻值及B值精度高,一致性好 6:体积小热感应时间快灵敏度高,便于自动化安装 7:使用温度范围-40℃~+125℃ R25=10K B=3435NTC热敏电阻应用范围: ?充电器、温湿度计、美容仪器、电源、电子玩具 ?气体分析计手机电池、NB电池、电动车电池、医疗仪器 ?太阳能热水器、冷藏库、汽车、複印机、传真机 ?电子体温计、电子炉台、电子锅、电热水瓶

?即热式热水器、瓦斯热水器、电毯、空调 ?3C家电产品、石油暖炉、打印机 103F3435NTC热敏电阻机械性能标准: MF52产品型号说明 MF 52 103 F 3435 ①② ③ ④ ⑤ ①MF ——负温度系数(NTC)热敏电阻编号。 ②52——树脂封装小黑头热敏电阻(包括漆包线、小皮线) ③103 ——热敏电阻的标称阻值(10K欧),表示该电阻标称阻值为:10×103(Ω)。 ④F——电阻值的误差(精度)为:S=±0.5% F=±1%,G=±2%,H=±3%,J=±5% ⑤3435——电阻的热敏指数(材料系数)B值为:343×10(K) R25=10K B=3435NTC热敏电阻阻温特性R/T表:

热敏电阻规格书

NTC 规格书 1) 型号 : DAE-303AT-95 2) 主要参数 3) 图纸 5) 绝缘试验 5-1) 绝缘试验 在产品外层绝缘材料抗阻值为大于100M Ω , 在绝缘层施加直流

电压为500V 时此产品不会被击穿。 6)电气性能试验 6-1)高温试验: 在产品经过环境为100 ℃1,000 个小时后, 本产品变化幅度 可以控制在±1% 以内。. 6-2) 恒温恒湿试验: 在产品经过环境湿度为95% 环境温度为65℃情况下1,000小时 后, 本产品变化幅度可以控制在±1%以内。. 6-3) 低温试验: 在产品经过环境温度为-30℃1,000小时后, 本产品变化幅度可以 控制在±1%以内 6-4) 工作状态试验: 电阻在经过1mA恒定电流状态下,在产品经过环境湿度为95% 环境温度为65℃情况下1,000小时后, 本产品变化幅度可以控制 在±1%以内 6-5) 冲击试验: .在产品经过环境为-30℃30分钟,然后放置在室温3分钟进入. + 90℃环境放置30 分钟。再拿出在室温3分钟。连续循环100 次。本产品变化幅度可以控制在±1%以内。 6-6) 通电高温试验: 在产品经过直流为1mA电流,环境温度为+110℃1,000小时, 本产 品变化幅度可以控制在±1%以内 7)物理测试: 7-1)拉力测试 在产品经过2N拉力情况下时间1分钟,此款产品胶体与引线连接处不会脱落。 7-2) 自由落体测试: 在经过1m高的位置此产品落下,此款产品不会产生破损现象。. 7-3) 焊接测试 在产品经过距离芯片8.5 mm 处,焊接温度为260℃±10%,时

热敏电阻演示实验

实验三十五 热敏电阻演示实验 一、实验目的: 了解NTC 热敏电阻现象。 二、实验内容: 通过对NTC 热敏电阻加热,了解其特性。 三、实验仪器: 加热器、热敏电阻、可调直流稳压电源、+15V 稳压电源、电压表、主、副电源。 四、实验原理: 热敏电阻的温度系数有正有负,因此分成两类:PTC 热敏电阻(正温度系数)与NTC 热敏电阻(负温度系数)。一般NTC 热敏电阻测量范围较宽,主要用于温度测量;而PTC 突变型热敏电阻的温度范围较窄,一般用于恒温加热控制或温度开关,也用于彩电中作自动消磁元件。有些功率PTC 也作为发热元件用。PTC 缓变型热敏电阻可用作温度补偿或作温度测量。 一般的NTC 热敏电阻测温范围为:-50℃~+300℃。热敏电阻具有体积小、重量轻、热惯性小、工作寿命长、价格便宜,并且本身阻值大,不需考虑引线长度带来的误差,适用于远距离传输等优点。但热敏电阻也有:非线性大、稳定性差、有老化现象、误差较大、一致性差等缺点。一般只适用于低精度的温度测量。 五、实验注意事项: 加热时间不要超过2分钟,此实验完成后应立即将+15V 电源拆去,以免影响梁上的应变片性能。 六、实验步骤: 1、了解热敏电阻在实验仪的所在位置及符号,它是一个蓝色元件,封装在双平行振动平行梁上片梁的表面。 2、将电压表切换开关置2V 档,直流稳压电源切换开关置±2V 档,按图35接线,开启主、副电源,调整W1(RD)电位器,使电压表指示为100mV 左右。这时电压表的指示值为室温时的Vi 。 3、将+15V 电源接入加热器,加热器的另一端接地。观察电压表的读数变化(注意加热时间不要超过2分钟)。 电压表的输入电压: S IL IH T IL i V ) W W (R W V ?++= 4、由此可见,当温度 时,RT 阻值 ,Vi 。

热敏电阻实验报告模板

实验一温度(热敏电阻)传感器实验 一、实验目的:了解热敏电阻测量温度的原理和工作情况。 二、实验内容: 本实验主要学习以下几方面的内容 1. 了解热敏电阻特性曲线; 2.观察采集到的热信号的实时变化情况。 三、实验仪器、设备和材料: 所需单元和部件:ELVIS,nextboard ,nextsense02 注意事项: 1在插拔实验模块时,尽量做到垂直插拔,避免因为插拔不当而引起的接插件插针弯曲,影响模块使用。 2 禁止弯折实验模块表面插针,防止焊锡脱落而影响使用。 3 更换模块或插槽前应关闭电源。 4 开始实验前,认真检查电阻连接,避免连接错误而导致的输出电压超量程,否则会损坏数据采集卡。 5本实验仪采用的热敏电阻为NTC热敏电阻,负温度系数。 四、实验原理:金属的电阻随温度的升高而增大,但半导体却相反,它的电阻随温度的升高而急剧减少,并呈非线性。在温度变化的同时,热敏电阻阻值变化约为铂热电阻的10倍。热敏电阻正是利用半导体电阻值随温度显著变化这一特性制成的热敏元件。热敏电阻在温度变化时阻值发生变化,将变化接入相应的变换电路中,电阻的变化就产生了电压的变化,测量该电压就可以测得温度。 五、实验步骤: 1关闭平台电源(nextboard或者myboard或者ELVISboard),插上热电偶实验模块。开启平台电源,此时可以看到模块左上角电源指示灯亮。 2运行热敏电阻实验应用程序 3传感器介绍、对热敏电阻的原理、分类以及温度计算公式进行了说明。在实验开始前,请仔细阅读传感器介绍。 4特性曲线、根据温度计算公式描绘了热敏电阻以及温度的关系曲线。 5实验内容、罗列了热敏电阻实验的课程要求,按照要求逐步完成课程。 6实验模拟、包含了电路原理仿真以及真实的手动测量实验。 7恒流源实测面板、显示了恒流源电路的实际测试值。 8分压法实测面板。显示了分压电路的实际测试值。 六、结果及处理 1绘制R_T特性曲线 2绘制恒流源数据图像 3绘制分压法数据图像

误差分析-热敏电阻

用非平衡电桥研究热敏电阻 摘要:文本结合用非平衡电桥研究热敏电阻实例来探讨用origin 软件做数据处理的方法, 并分析其优势。 关键词:非平衡电桥,直线拟合 1 热敏电阻 热敏电阻是一种电阻值随其电阻体温度变化呈现显著变化的热敏感电阻。本实验所选择为负温度系数热敏电阻,它的电阻值随温度的升高而减少。其电阻温度特性的通用公式为: T B T Ae R = (1) 式中T 为热敏电阻所处环境的绝对温度值(单位,开尔文),今为热敏电阻在温度T 时的电阻值,A 为常数,B 为与材料有关的常数。将式(l)两边取对数,可得: T B A R T +=ln ln (2) 由实验采集得到T R T -数据,描绘出T R T 1 - ln 的曲线图,由图像得出直线的斜率B ,截距A ln ,则可以将热敏电阻的参数表达式写出来。 2 平衡电桥 电桥是一种用比较法进行测量的仪器,由于它具有很高的测t 灵敏度和准确度,在电 测技术中有较为广泛的应用,不仅能测量多种电学量,如电阻、电感、电容、互感、频率及电介质、磁介质的特性;而且配适当的传感器,还能用来测量某些非电学量,如温度、湿度、压强、微小形变等。在“测量热敏电阻温度特性”实验中用平衡电桥来测量热敏电阻的阻值,其原理如下: 在不同温度下调节电阻3R 的大小,使检流计G 的示数为0,有平衡电桥的性质可知 1 2 3 R R R R x = .在实验时,调节1R 和2R 均为1000欧姆。则x R 的值即为3R 的值。 3 非平衡电桥原理

图1 非平衡电桥的原理图如图1所示。非平衡电桥在结构形式上与平衡电桥相似,但测量方法上有很大差别。非平衡电桥是使1R 2R 3R 保持不变,x R 变化时则检流计G 的示数g I 变化。再根据“g I 与x R 函数关系,通过测量g I 从而测得x R 。由于可以检测连续变化的g I ,从而可以检测连续变化的x R ,进而检测连续变化的非电量。 4 实验条件的确定 当电桥不平衡时,电流计有电流g I 流过,我们用支路电流法求出g I 与热敏电阻x R 的关系。桥路中电流计内阻g R ,桥臂电阻1R 2R 3R 和电源电动势E 为已知量,电源内阻可忽略不计。 根据基尔霍夫第一定律和基尔霍夫第二定律,通过一些列的计算可求得热敏电阻x R E R R R R R R R R R R R I R R R R R R R R R I E R R R g g g g g g x 113213132213232132)()(+++++++-= 5 用非平衡电桥测电阻的实例 已知:微安表量程Ig=100μA ,精度等级f=级,温度计的量程为100 t 100 95 90 85 80 75 70 65 60 55 50 45 40 35 Ig T 373 368 363 358 353 348 343 338 333 328 323 318 313 308 Rt 951 1032 1140 1255 1380 1541 1749 1985 2255 2527 2850 3660 3991 4398

PTC热敏电阻实验报告

功能材料—PTC热敏陶瓷制备与性能的综合实验一、实验目的 通过实验,使学生加深对“电子信息材料专业方向”中有关基础理论知识的理解。 1.了解PTC热敏陶瓷制备原理及方法 2.使学生熟练掌握PTC电阻的测试方法 二、实验原理 PTC效应与许多因素有关,PTC热敏电阻(正温度系数热敏电阻)是一种具温度敏感性的半导体电阻,一旦超过一定的温度(居里温度) 时,它的电阻值随着温度的升高几乎是呈阶跃式的增高。也可以说,PTC(positive temperature coefficient) 电阻是指在某一温度下电阻急剧增加、具有正温度系数的热敏电阻或材料。当PTC 陶瓷元件接通电源后,电流将随电压的升高而迅速增加,达到居里温度时,电流达到最大值,这时PTC 陶瓷元件进入PTC 区域,此时当电压继续升高时,由于PTC 陶瓷元件的电阻急剧增大,电流反而减小。 纯BaTiO3陶瓷是良好的绝缘体,是一种优良的陶瓷电容器材料,也是一种典型的钙钛矿型结构的铁电材料。纯的BaTiO3在常温下几乎是绝缘的,电阻率大于1012Ω?cm,通过不等价取代在BaTiO3中掺杂微量的元素后,会使其性能发生变化,出现PTC效应,并且伴随着室温电阻率的大幅度下降。制成的钛酸钡基PTC 陶瓷具有较大的正温度系数和开关阻温特性,通过掺杂,它的居里温度可在很宽的范围内(室温~400 ℃) 任意调节,所以,在航空航天、电子信息通讯、自动控制、家用电器、汽车工业、生物技术、能源及交通等领域,它得到了广泛的应用。 钛酸钡基PTC 陶瓷的组成: (1)移峰剂——添加后能够移动居里点(BaTiO3瓷120o C) 添加物与主晶相形成固溶体使铁电陶瓷的特性在居里温度处出现的峰值发生移动的现象,称为移峰效应。居里温度通常满足以下经验公式: t c =t c1 (1-x)+t c2 x(x-摩尔分数) 该添加物称为移峰剂。PTC 陶瓷中常用钙钛矿型铁电体的移峰剂有两种:钛酸铅、PbTiO3(490℃)、钛酸锶SrTiO3(-250℃)。 (2)半导体化: 施主掺杂:将BaTiO 3 基本组成离子分成三种离子群:其中至少在两个位置上的部分离子,用离子半径相接近,而原子价相差1价的不同离子进行置换。置换可得到低电阻率的陶瓷材料。 1.对于Ba 2+位可用La 3+、Ce3+、Sb3+、Sm3+、Dy3+或K +、Na +等离子;

NTC热敏电阻的基本特性

NTC热敏电阻的基本特性 NTC热敏电阻是指具有负温度系数的热敏电阻。是使用单一高纯度材料、具有接近理论密度结构的高性能陶瓷。因此,在实现小型化的同时,还具有电阻值、温度特性波动小、对各种温度变化响应快的特点,可进行高灵敏度、高精度的检测。本公司提供各种形状、特性的小型、高可靠性产品,可满足广大客户的应用需求。 电阻-温度特性 热敏电阻的电阻-温度特性可近似地用式1表示。 (式1) R=R0 exp {B(1/T-1/T0)} R: 温度T(K)时的电阻值 Ro:温度T0(K)时的电阻值 B: B 值 *T(K)= t(oC)+273.15 exp:指数函数,e(无理数)=2.71828;exp {B(1/T-1/T0)} 指e 的{B(1/T-1/T0)} 次方。 但实际上,热敏电阻的B值并非是恒定的,其变化大小因材料构成而异,最大甚至可达5K/°C。因此在较大的温度范围内应用式1时,将与实测值之间存在一定误差。 此处,若将式1中的B值用式2所示的作为温度的函数计算时,则可降低与实测值之间的误差,可认为近似相等。 (式2) B T=CT2+DT+E 上式中,C、D、E为常数。 另外,因生产条件不同造成的B值的波动会引起常数E发生变化,但常数C、D 不变。因此,在探讨B值的波动量时,只需考虑常数E即可。 ?常数C、D、E的计算 常数C、D、E可由4点的(温度、电阻值)数据 (T0, R0). (T1, R1). (T2, R2) and (T3, R3),通过式3~6计算。 首先由式样3根据T0和T1,T2,T3的电阻值求出B1,B2,B3,然后代入以下各式样。

?电阻值计算例 试根据电阻-温度特性表,求25°C时的电阻值为5(kΩ),B值偏差为50(K)的热敏电阻在10°C~30°C 的电阻值。 ?步骤 (1) 根据电阻-温度特性表,求常数C、D、E。 T o=25+273.15 T1=10+273.15 T2=20+273.15 T3=30+273.15 (2) 代入B T=CT2+DT+E+50,求B T。 (3) 将数值代入R=5exp {(B T1/T-1/298.15)},求R。 *T : 10+273.15~30+273.15 ?电阻-温度特性图如图1所示

大学物理实验报告--热敏电阻的电阻温度特性的研究(精)

实验六半导体热敏电阻特性的研究 实验目的 1.研究热敏电阻的温度特性。 2.进一步掌握惠斯通电桥的原理和应用。 实验仪器 箱式惠斯通电桥,控温仪,热敏电阻,直流电稳压电源等。 实验原理 半导体材料做成的热敏电阻是对温度变化表现出非常敏感的电阻元件,它能测量出温度的微小变化,并且体积小,工作稳定,结构简单。因此,它在测温技术、无线电技术、自动化和遥控等方面都有广泛的应用。 半导体热敏电阻的基本特性是它的温度特性,而这种特性又是与半导体材料的导电机制密切相关的。由于半导体中的载流子数目随温度升高而按指数规律迅速增加。温度越高,载流子的数目越多,导电能力越强,电阻率也就越小。因此热敏电阻随着温度的升高,它的电阻将按指数规律迅速减小。 实验表明,在一定温度范围内,半导体材料的电阻R T 和绝对温度T 的关系可表示为 b T ae R = (4-6-1) 其中常数a 不仅与半导体材料的性质而且与它的尺寸均有关系,而常数b 仅与材料的性质有关。常数a 、b 可通过实验方法测得。例如,在温度T 1时测得其电阻为R T 1 11b T ae R = (4-6-2) 在温度T 2时测得其阻值为R T 2

22b T ae R = (4-6-3)将以上两式相除,消去a 得 1 1(212 1T T b T T e R R ?= 再取对数,有 11(ln ln 2 121T T R R b T T ??= (4-6-4) 把由此得出的b 代入(4-6-2)或(4-6-3)式中,又可算出常数a ,由这种方法确定的常数a 和b 误差较大,为减少误差,常利用多个T 和R T 的组合测量值,通过作图的方法(或用回归法最好)来确定常数a 、b ,为此取(4-6-1)式两边的对数。变换成直线方程: T b a R T +=ln ln (4-6-5)或写作 BX A Y += (4-6-6)式中X b B a A R Y T , , ln , ln ====,然后取X 、Y 分别为横、纵坐标,对不同的温度T 测得对应的R T 值,经过变换后作X ~Y 曲线,它应当是一条截距为A 、斜率为B 的直线。根据斜率求出b ,又由截距可求出a =e A 。 确定了半导体材料的常数a 和b 后,便可计算出这种材料的激活能E =bK (K 为玻耳兹曼常数,其值见附录)以及它的电阻温度系数 %10012×?==T b dT dR R T T α (4-6-7)显然,半导体热敏电阻的温度系数是负的,并与温度有关。 热敏电阻在不同温度时的电阻值,可用惠斯通电桥测得。

NTC热敏电阻功率型系列简介和技术参数

NTC热敏电阻功率型系列简介和技术参数

NTC热敏电阻功率型系列简介、应用范围及特点 1.产品简介 为了避免电子电路中在开机的瞬间产生的浪涌电流,在电源电路中串接一个功率型NTC热敏电阻器,能有效地抑制开机时的浪涌电流,并且在完成抑制浪涌电流作用以后,由于通过其电流的持续作用,功率型NTC热敏电阻器的电阻值将下降到非常小的程度,它消耗的功率可以忽略不计,不会对正常的工作电流造成影响,所以,在电源回路中使用功率型NTC热敏电阻器,是抑制开机时的浪涌,以保证电子设备免遭破坏的最为简便而有效的措施。 2.应用范围 适用于转换电源、开关电源、UPS电源、各类电加热器、电子节能灯、电子镇流器、各种电子装置电源电路的保护以及彩色显示像管、白炽灯及其它照明灯具的灯丝保护。 3.特点: ·体积小,功率大,抑制浪涌电流能力强 ·反应速度快

·材料常数(B值)大,残余电阻小 ·寿命长,可靠性高 ·系列全,工作范围宽 1. 电阻器的最大工作电流〉实际电源回路的工作电流 2. 功率型电阻器的标称电阻值 R≥1.414*E/Im 式中 E为线路电压 Im为浪涌电流 对于转换电源,逆变电源,开关电源,UPS电源, Im=100倍工作电流 对于灯丝,加热器等回 路 Im=30倍工作电流 3. B值越大,残余电阻越小,工作时温升越小 4. 一般说,时间常数与耗散系数的乘积越大,则表示电阻器的热容量越大,电阻器抑制浪涌电流的能力也越强。

零功率电阻值RT(Ω) RT指在规定温度T 时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计的测量功率测得的电阻值。 电阻值和温度变化的关系式为: RT = RN expB(1/T – 1/TN) RT :在温度T (K )时的NTC 热敏电阻阻值。 RN :在额定温度TN (K )时的NTC 热敏电阻阻值。 T :规定温度(K )。 B :NT C 热敏电阻的材料常数,又叫热敏指数。

【大学物理实验】 热敏电阻温度计的设计 实验报告

大连理工大学 大 学 物 理 实 验 报 告 院(系) 材料学院 专业 材料物理 班级 姓 名 学号 实验台号 实验时间 年 11 月 25 日,第14周,星期 二 第 5-6 节 实验名称 热敏电阻温度计的设计 教师评语 实验目的与要求: (1) 掌握电阻温度计测量温度的基本原理和方法。 (2) 设计和组装一个热敏电阻温度计。 主要仪器设备: 稳压电源, 自制电桥盒(如右下图所示), 直流单臂电桥箱和热敏电阻感温原件等。 实验原理和内容: 热敏电阻温度计的工作原理 由于热敏电阻的阻值具有随温度变化而变化的性质, 我们可以将热敏电阻作为一个感温原件, 以阻值的变化来体现环境温度的变化。 但是阻值的变化量以直接测量的方式获得可能存在较大的误差, 因此要将其转化为一个对外部条件变化更加敏感的物理量; 本实验中选择的是电流, 通过电桥可以将电阻阻值的变化转化为电流(电压)的变化。 电桥的结构如右图所示, R1、R2、R3为可调节电阻, Rt 为热敏电阻。 当四个电阻值选择适当时, 可以使电桥达到平衡, 即AB 之间(微安表头)没有电流流过, 微安表指零; 当Rt 发生变化时, 电桥不平衡, AB 间有电流流过, 可以通过微安表读出电流大小, 从而进一步表征温度的变化。 成 绩 教师签字

当电桥不平衡时, 可以描绘成如右侧的电路图。 根据基尔霍夫定律和R1=R2的条件, 能够求得微安表在非平衡状态下的电流表达式: t t g t t cd g R R R R R R R R R U I ++++- =33132 2)21( 式中, Ucd 为加载在电桥两端的电压, Rg 为微安表头的内阻值。 可以见到, 为使Ig 为相关于Rt 的单值函数, R1、R2、R3和Ucd 必须为定值, 而其定制的大小则决定于以下两个因素: 1) 热敏电阻的电阻-温度特性。 2) 所设计的温度计的测温上限t1和测温下限t2。 步骤与操作方法: 1. 温度计的设计 (1) 测出所选择的热敏电阻Rt-t 曲线(或由实验室给出)。 (2) 确定R1、R2、R3的阻值。 具体方法如下: 该实验中, t1=20℃,t2=70℃, 对应R t -t 曲线可以得到R t1和R t2; Rg 由实验室给出, U cd 取值为1.3V , 由微安表面板上可读出I gm =50μA 。 根据电桥关系, 有R 1=R 2, R 3= R t1, R t = R t2, I g =I gm ; 再将以上量代入关系式:)(2)21(2 12121221t t t t g t t t gm cd R R R R R R R R I U R R ++-+-==, 计算得到R1和R2的值。 2. 温度计的调试 (1) 将面板上的开关扳向下方, 将R1和R2调节到方才的计算值之后, 保持不变。 (2) 将微安表接入电路, Rt 先用一个四位旋钮式的电阻箱代替接入E 、D 两点, 并链接其 余电路和电源。 (3) 将电阻箱调至R t1的计算值, 打开电源,调节R3使微安表指零,此时R3调节完毕, 有 R3= R t1。

热敏电阻的温度特性

热敏电阻的温度特性 班级:电子12 学号:2110501038 姓名:张婷婷

一.实验目的 1.了解热敏电阻的电阻—温度特性及测温原理; 2.学习惠斯通电桥的原理及使用方法; 3.学习坐标变换、曲线改直的技巧。 二.实验原理 半导体热敏电阻的电阻—温度特性 热敏电阻的电阻值与温度的关系为: A,B是与半导体材料有关的常数,T为绝对温度,根据定义,电阻温度系数为: Rt是在温度为t时的电阻值。 惠斯通电桥的工作原理 如图所示:

四个电阻R 0,R 1,R 2,R x 组成一个四边形,即电桥的四个臂,其中R x 就是待测电阻。在四边形的一对对角A 和C 之间连接电源,而在另一对对角B 和D 之间接入检流计G 。当B 和D 两点电位相等时,G 中无电流通过,电桥便达到了平衡。平衡时必有R x = (R 1/R 2)·R 0,(R 1/R 2)和R 0都已知,R x 即可求出。 电桥灵敏度的定义为: 式中ΔR x 指的是在电桥平衡后R x 的微小改变量,Δn 越大,说明电桥灵敏度越高。

三.实验内容 求电桥灵敏度 从室温开始,每隔5°C测量一次R t,直到85°C。撤去电炉,使水慢慢冷却,测量降温过程中,各对应温度点的R t。 求升温和降温时的各R t的平均值,然后绘制出热敏电阻的R t-t特性曲线。求出t =50°C点的电阻温度系数。 作ln R t~ (R1/ T)曲线,确定式(R1)中常数A和B,再由(2)式求α (50°C时)。 四.实验仪器及其使用方法 1.直流单臂电桥 实验过程中要注意电池按钮和接通检流计按钮的使用,检流计按钮先使用粗,然后再使用细,不要两个按钮同时使用。实验完成后,一定要将电池按钮松开。 2.检流计 当电桥达到平衡时,检流中电流为零。在使用检流计时,要注意保护检流计,不要让大 电流通过检流计,实验中间要用"跃接"。 3.待测热敏电阻和温度计 4.调压器 控制加热电炉电压。实验开始时,加热电压不宜太高。因为实验过程中,既要观察温度的变化,又要调节电桥平衡,操作有一定难度。待操作熟练后,可适当加大电压,让温度升高的 快些。 五.实验数据及处理

NTC热敏电阻功率型系列简介和技术参数

NTC热敏电阻功率型系列简介、应用范围及特点 1.产品简介 为了避免电子电路中在开机的瞬间产生的浪涌电流,在电源电路中串接一个功率型NTC 热敏电阻器,能有效地抑制开机时的浪涌电流,并且在完成抑制浪涌电流作用以后,由于通过其电流的持续作用,功率型NTC热敏电阻器的电阻值将下降到非常小的程度,它消耗的功率可以忽略不计,不会对正常的工作电流造成影响,所以,在电源回路中使用功率型NTC 热敏电阻器,是抑制开机时的浪涌,以保证电子设备免遭破坏的最为简便而有效的措施。 2.应用范围 适用于转换电源、开关电源、UPS电源、各类电加热器、电子节能灯、电子镇流器、各种电子装置电源电路的保护以及彩色显示像管、白炽灯及其它照明灯具的灯丝保护。 3.特点: ·体积小,功率大,抑制浪涌电流能力强 ·反应速度快 ·材料常数(B值)大,残余电阻小 ·寿命长,可靠性高 ·系列全,工作范围宽 1. 电阻器的最大工作电流〉实际电源回路的工作电流 2. 功率型电阻器的标称电阻值 R≥1.414*E/Im 式中 E为线路电压 Im为浪涌电流 对于转换电源,逆变电源,开关电源,UPS电源, Im=100倍工作电流 对于灯丝,加热器等回路 Im=30倍工作电流 3. B值越大,残余电阻越小,工作时温升越小 4. 一般说,时间常数与耗散系数的乘积越大,则表示电阻器的热容量越大,电阻器抑制浪涌电流的能力也越强。 零功率电阻值RT(Ω)

RT指在规定温度T 时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计的测量功率测得的电阻值。 电阻值和温度变化的关系式为: RT = RN expB(1/T – 1/TN) RT :在温度T (K )时的NTC 热敏电阻阻值。 RN :在额定温度TN (K )时的NTC 热敏电阻阻值。 T :规定温度(K )。 B :NT C 热敏电阻的材料常数,又叫热敏指数。 exp :以自然数e 为底的指数(e = 2.71828 …)。 该关系式是经验公式,只在额定温度TN 或额定电阻阻值RN 的有限范围内才具有一定的精确度,因为材料常数B 本身也是温度T 的函数。 额定零功率电阻值R25 (Ω) 根据国标规定,额定零功率电阻值是NTC 热敏电阻在基准温度25 ℃时测得的电阻值 R25,这个电阻值就是NTC 热敏电阻的标称电阻值。通常所说NTC 热敏电阻多少阻值,亦指该值。 最大稳态电流 在环境温度为25℃时允许施加在热敏电阻器上的最大连续电流。 25℃下最大电流时近似电阻值(Ω) 25℃下最大电流时近似电阻值就是在环境温度25℃时,对热敏电阻施加允许的最大连续电流时,热敏电阻剩余的阻值,亦称最大残余电阻值。 材料常数(热敏指数)B 值(K ) B 值被定义为: RT1 :温度T1 (K )时的零功率电阻值。 RT2 :温度T2 (K )时的零功率电阻值。 T1,T2 :两个被指定的温度(K )。 对于常用的NTC 热敏电阻,B 值范围一般在2000K ~6000K 之间。 零功率电阻温度系数(αT )

2020年大学物理热敏电阻实验报告

大学物理热敏电阻实验报告 热敏电阻是阻值对温度变化非常敏感的一种半导体电阻,具有许多独特的优点和用途,在自动控制、无线电子技术、遥控技术及测温技术等方面有着广泛的应用。本实验通过用电桥法来研究热敏电阻的电阻温度特性,加深对热敏电阻的电阻温度特性的了解。 1、引言 热敏电阻是根据半导体材料的电导率与温度有很强的依赖关系而制成的一种器件,其电阻温度系数一般为(-0.003~+0.6)℃-1。因此,热敏电阻一般可以分为: Ⅰ、负电阻温度系数(简称NTC)的热敏电阻元件 常由一些过渡金属氧化物(主要用铜、镍、钴、镉等氧化物)在一定的烧结条件下形成的半导体金属氧化物作为基本材料制成的,近年还有单晶半导体等材料制成。国产的主要是指MF91~MF96型半导体热敏电阻。由于组成这类热敏电阻的上述过渡金属氧化物在室温范围内基本已全部电离,即载流子浓度基本上与温度无关,因此这类热敏电阻的电阻率随温度变化主要考虑迁移率与温度的关系,随着温度的升高,迁移率增加,电阻率下降。大多应用于测温控温技术,还可以制成流量计、功率计等。 Ⅱ、正电阻温度系数(简称PTC)的热敏电阻元件 常用钛酸钡材料添加微量的钛、钡等或稀土元素采用陶瓷工艺,高温烧制而成。这类热敏电阻的电阻率随温度变化主要依赖于载流子浓度,而迁移率随温度的变化相对可以忽略。载流子数目随温度的升

高呈指数增加,载流子数目越多,电阻率越小。应用广泛,除测温、控温,在电子线路中作温度补偿外,还制成各类加热器,如电吹风等。 2、实验装置及原理 【实验装置】 FQJⅡ型教学用非平衡直流电桥,FQJ非平衡电桥加热实验装置(加热炉内置MF51型半导体热敏电阻(2.7kΩ)以及控温用的温度传 感器),连接线若干大学物理实验报告大学物理实验报告。 【实验原理】 根据半导体理论,一般半导体材料的电阻率和绝对温度之间的关系为式中a与b对于同一种半导体材料为常量,其数值与材料的物理性质有关。因而热敏电阻的电阻值可以根据电阻定律写为式中为两电极间距离,为热敏电阻的横截面。 对某一特定电阻而言,与b均为常数,用实验方法可以测定。为了便于数据处理,将上式两边取对数,则有上式表明与呈线,在实验中只要测得各个温度以及对应的电阻的值,以为横坐标,为纵坐标作图,则得到的图线应为直线,可用图解法、计算法或最小二乘法求出参数a、b的值。热敏电阻的电阻温度系数下式给出。 从上述方法求得的b值和室温代入式(14),就可以算出室温时的电阻温度系数。 热敏电阻在不同温度时的电阻值,可由非平衡直流电桥测得。非平衡直流电桥原理图如右图所示,B、D之间为一负载电阻,只要测出,就可以得到值。

热敏电阻温度特性及热敏电阻温度计的设计

热敏电阻温度特性及热敏电阻温度计的设计 热敏电阻是对温度变化表现出非常敏感的一种半导体电阻元件,它能测量出温度的微小变化,并且体积小,工作稳定,结构简单。因此,它在测温技术、无线电技术、自动化和遥控等方面都有广泛的应用。 利用热敏电阻作为感温元件,并且配有温度显示装置的温度仪表称为热敏电阻温度计。热敏电阻能把温度信号变成电信号,从而实现了非电量的测量。值得提出的是,电量测量是现代测量技术中最简便的测量技术,不仅测量装置简单、造价低、灵敏度高、而且容易实现自动化控制,是测量技术的一个重要的发展趋势。 【实验目的】 1.研究热敏电阻的温度特性 2.进一步掌握非平衡电桥电路原理及应用 3、了解负温度系数热敏电阻的温度特性 4、设计和安装一台热敏电阻温度计,并对这台温度计的测量误差进行测试和评价 【实验原理】 内容1 热敏电阻的温度特性 1、测量原理 热敏电阻的基本特性是它的温度特性,许多材料的电阻随温度的变化而发生变化,纯金属和许多合金的电阻随温度增加而增加,它们具有正的电阻温度系数。另外像炭、玻璃、硅和锗等材料的电阻随温度的增加而减小,具有负的电阻温度系数。在半导体中原子核对价电子的约束力要比金属中大,因而自由载流子数少,故半导体的电阻率较大而纯金属的电阻率较小。由于半导体中载流子数目是随着温度的升高而按指数规律急剧增加,载流子越多,导电能力越强,电阻率就越小,因此半导体热敏电阻的阻值随着温度的升高电阻率将按指数 规律减少。如温度由?-C 100变至?+C 400时,由铂丝材料制成的电阻,其阻值变化10倍 左右;而热敏电阻的阻值在上述温度变化相同的情况下变化可达到710倍。 实验表明,在一定温度范围内,半导体材料的电阻率ρ和绝对温度T 的关系可表示为: T b e a 0=ρ 其中0a 、b 为常数,仅与材料的物理性质有关。 由欧姆定律得热敏电阻的阻值: T b T b T ae S L e a S L R ===/0ρ (1) 上式中令S L a a 0= 、S 、L 分别为热敏电阻的横截面积和电极间的距离。 对式(1)取对数有:T b a R T +=ln ln 或写作BX A Y += (线性变化关系) 式中T X b B a A R Y T 1,,ln ,ln ====,改变被测样品的温度,分别测出不同的温度T 以及对应的T R 值,重复7—10次,可用图解法、计算法或最小二乘法求出A 、a 、b 值。 2、测量电路

NTC10D-15热敏电阻参数分享

案例【NTC10D-15】 MF72热敏电阻器尧丰发科技讲义三: 摘要:NTC热敏电阻:热敏电阻:MF72热敏电阻: 价格战是一场没有硝烟的战争,现实生活中有许多企业陷入价格战的泥潭不能自拔。同行之间相互压价,排挤,挖墙脚,这些扰乱市场规则和次序的行为,从来都是无时无刻存在,而且也是无法避免的。如此恶性循环只能是两败俱伤,产品越来越差,质量越来越没有保障,受害者只能是供求双方。深圳市尧丰发科技十年磨一剑坚持以质量为基本,服务为先导,坚绝不盲从,不跟风以伤害客户来达到目的。下面就有我们来一起学习【热敏电阻案例NTC3D-20】来给同行和客户们加深对产品的了解。 MF72热敏电阻定义: NTC(负温度系数)热敏电阻是一种热敏性半导体电阻器,其电阻值随着温度的升高而下降,电阻温度系数在-2%/k~- 6%/k范围内,约为金属电阻温度系数的10倍。NTC热敏电阻器电阻值的变化可以由外部环境温度的变化引起,也可以因有电流流过,自身发热而造成。他的各种用途都是基于这种特性。NTC热敏电阻器由混合氧化物的多晶陶瓷构成。这种材料的导电机理是相当复杂的。 1.产品简介 为了避免电子电路中在开机的瞬间产生的浪涌电流,在电源电路中串接一个功率型NTC热敏电阻,能有效地抑制开机时的浪涌电流,并且在完成抑制浪涌电流作用以后,由于通过其电流的持续作用,功率型NTC热敏电阻的电阻值将下降到非常小的程度,它消耗的功率可以忽略不计,不会对正常的工作电流造成影响,所以,在电源回路中使用功率型NTC热敏电阻,是抑制开机时的浪涌,以保证电子设备免遭破坏的最为简便而有效的措施。 2:型号命名: 4.特点:

·体积小,功率大,抑制浪涌电流能力强 ·反应速度快 ·材料常数(B 值)大,残余电阻小 ·寿命长,可靠性高 ·系列全,工作范围宽 5.应用范围 适用于转换电源、开关电源、UPS 电源、各类电加热器、电子节能灯、电子镇流器、各种电子装置电源电路的保护以及彩色显示像管、白炽灯及其它照明灯具的灯丝保护。 6:NTC 热敏电阻产品图片: 7:案例【NTC10D-15 】参数分析: 尧丰发科技

相关文档
最新文档