传感器大全

传感器大全
传感器大全

霍尔位移传感器外形编号HK外观尺寸M12×1*50可检测物体永磁铁检测距离埋入式:0-15mm额定工作电压4.5~10.5VDC功耗检测时:≤20mA…<4mA;无检测时:≤20mA负载电阻电流型:0~300Ω;电压型:≥2.2KΩ输出电流型:4~20mA;电压型:0~5V允许电压波动≤5%输出信号PNP模拟线形误差≤1.5%温度飘移≤0.01mm/℃重复精度≤1%环境温度 -40℃~150℃外壳材料金属防护等级IP67

BURKERT宝德液位传感器技术参数:测量范围:1Hz~45KHz输出方式:低电平有效,驱动能力不小于15mA输出信号:波形:矩形波幅值:高电平接近供电电源,低电平≤0.5V 供电电源:(4.5~24)VDC,(12~18)V最值每转脉冲数:与贴的磁片数量一致检测距离:≤4mm 正常工作条件温度:-20℃~+80℃相对湿度:不大于85%大气压力:86KPa~106KPa周围无爆炸性、腐蚀性气体□外形及开孔尺寸总长:L+21.9(不包括输出导线)

外螺纹:M12×1螺纹有效长度:L,L=50,75,100mm输出导线:2m

?极限参数参数符号量值单位电源电压V CC :4.5-24 V磁感应强度

B 不限mT输出反向击穿电压V ce 40 V输出低电平电流I OL 25 mA工作环境温度T A -40~150℃

高温贮存温度T S 150℃磁场

?低噪音模拟信号路径可通过新的滤波引脚设置器件带宽5 μs 输出上升时间,对应步进输入电流 80 千赫带宽总输出误差为 1.5%(当 T A= 25°C时)小型低厚度 SOIC8 封装 1.2 mΩ内部传导电阻引脚 1-4 至 5-8 之间 2.1 V RMS 最小绝缘电压 5.0 伏特,单电源操作 66 至 185 mV/A 输出灵敏度输出电压与交流或直流电流成比例出厂时精确度

校准极稳定的输出偏置电压近零的磁滞电源电压的成比例输出ACS712ELCTR-20A-T

霍尔电流传感器

超声波 液位UTG2000

主要 参数 量程: 0-3、5、8、10、15、20m 、60m 精度: 0.25% 、

0.5% 盲区: 0.3-0.5m 工作温度: -20℃-+55℃ 电源: 24VDC 、220VAC 输出: 4-20mA (可加上下开关量控制) 防护等级: IP65 显示方式: 4位LED 耐腐型传感器外壳采用四氟乙烯

T30UX

测距 量 程 0.1-1M/0.2-2M/0.3-3M

分 辨 率 1-2mm

精 度 检测距离的0.2%

响应时间 45ms

输 出 模拟量0-10V 4-20mA 和开关量 NPN/PNP

电 压 18-30VDC

声波频率:224KHZ

尺寸:52×40×45mm

使用温度 -30-70℃

防护等级 IP67

探头延迟

扫描延迟

红外

主要技术数据名称:GXH-1050型红外线气体分析器量程:最小量程为0~50ppm;最大量程为0~100%(根据需要确定)重复性:≤1% (分辨率:常量:≤ 0.01% v/v, 微量:1ppm)稳定性:零点漂移≤±1%F.S/48h 量程漂移≤±1%F.S/48h 线性误差: ≤±1%F.仪器的响应时间:T90≤15s 被测气体的流量:0.5~3L/min使用环境温度:0~40℃;相对湿度:≤90%电源:220V±10% ;50±0.5Hz 150W 测量值输出:0~20mA; 0~10mV;

0.01,1,1k,1m,1G

国内磁测量领域中最普及的测磁工具。可测直流磁场及各种磁性材料表面及间隙磁场强度。每台配有二支霍尔传感器探

)翻传装置的模拟显示。供电方式:交流电源

1.5 kg

OHK系列霍尔接近开关产品规格:概述

OHK系列霍尔接近开关是根据霍尔效应原理制成的新型自动化开关器件。是以永磁体或导磁体作为触发媒介的无触点电子开关,通过霍尔效应元件接受磁力线的信号,经放大、整形后控制输出状态的通断。由霍尔开关电路、保护器、状态指示灯、防水外壳等组成,可将磁讯号转换成数字电压输出。是实现位置控制、状态控制、测速、计数、方向鉴别、自动保护的优选品种。其检测对象须是磁性物体。

?产品特点,响应频率高,多重保护:反向极性保护、浪涌电压保护和过热保护,重复精度高,多种类型:通用型、增强负载型、智能型,带工作状态指示

?多种工作模式:常开、常闭、自锁、NPN输出、PNP输出,同可编程控制器直接接口

方向计数光电传感器可提供以下系统功能

? 由微处理器组成的计数/方向判别系统,8位LED显示。

? USB接口(可选),windows 软件(可选),统计进/出数目

光电比色仪系列(微量硅酸根/二氧化硅、磷酸根、铁、铜、联氨、全铁、余氯、氨等)型号:GXY3(805X-812X)

技术指标,磷酸根:0~10mg/L 0~20mg/L 805X硅酸根:0~100μg/L 0~2000μg/L 806X铜:0~100μg/L 0~200μg/L 807X铁:0~100μg/L 808X联氨:0~100μg/L 809X氨:0~2.5mg/L 810X余氯:0~1.5mg/L 811X全铁:0~200μg/L 812X测量精度:±2%FS(满量程)重复性:≤±1%稳定性:≤±1%FS环境温度: 5~55℃相对湿度:≤90%电源:198V~242V,50~99.9Hz外型: 200x200x208(mm)重量: 2.5Kg

光纤

压力传感器AP1200

戴维森公司为严苛的工业环境提供最安全,最可靠和低成本的仪器。

AP1200是绝对型光纤压力传感器,适用于对温度有要求的高精度测量环境。压力范围1 Torr~50 Torr 或15~20,000 psia,精度为满量程的±0.25%,运转温度高达500℃。

KD-300 光纤位移传感器

品牌型号:恒兴星/GCS光栅尺位移传感器光栅尺数显表显示器

【基本性能指标】:轴数:单轴、双轴、三轴;解析度:0。001-20;显示功能:8位LED数码管,高档液晶片;运行速度:每分钟100米以上;电源:AC110V/AC220V、50~60Hz30VA;温度范围:-20~40测量范围0—3000mm精度1UM

大量适用于卷烟厂等测量薄膜要求较高单位

可对测量值进行高精度的处理;零点可设置在量程范围内任意一点;

按一次按钮就可获得准确的实际值;统计功能:x-bar与s,r和n的其中的一个参数;

2组电杆测头输入用于单个,累加和比较测量;公差监控(滞后调节);公差带可在整个量程内设置。薄膜厚度分辨率0.01um

SMB365

●性能指标XK601/602系列电感式液位传感器

有效检测范围:0-0.2-20m 输出信号:4-20mA、二线制

精度:0.5级、1级、1.5级供电电源:负载电阻0-750Ω DC24V

承压范围:负压、常压、高压(32MPa以下) 固定方式:螺纹安装M20×1.5、M27×2法兰

工作温度:-50~240℃安装DN15、DN25、DN50、DN80。

环境温度:-20~75℃特殊规格可根据用户要求定制

适用介质:酸、碱、盐或对聚四氟乙烯无现场显示:模拟显示0-100%、数字显示、现腐蚀的任意介质场深度

ZS-8型汽车转速传感器频响范围:0-20kHz 2.齿轮参数:模数≥1.5,材料为导磁体材料 3.安装间隙:0.5-2.0mm,典型值为1.0mm 6.输出幅度:高电平:Ub-(1.6V±30%),低电平:〈2V±30% 9.适用温度范围:-20~+120°C 10.输出电缆耐温:-40~200°C 11.供电电压:(5~28)VDC,建议15Vdc±30%

SEYT系列一体化电涡流位移传感器是在SE系列电涡流位移传感器基础上,通过表面贴装微形封装技术,将前置器和探头集成一体,是一种高性能、低成本的新型电涡流位移传感器,可非接触式振动测量工作温度: 0~60℃3、输出形式:三线制电压输出。4、频响:0~5kHz(-3dB)5、传感器供电电源:-24V,输出范围-4~-20V 6、纹波(测量间隙恒定时最大输出噪声峰峰值):不大于20mV

7、负载能力:电压输出形式的传感器输出阻抗不大于10Ω,最大电流40mA,最大驱动信号电缆长度300m PCD100型一体化电涡流传感器主要用于监测旋转机械的位移、振动、转速等参数,并直接输出线性标准信号。

一体化电涡流传感器技术指标:供电电源:±24Vdc工作频率范围:0~6kHz位移测量量程:2mm或4mm误差范围:≤1.0%工作温度:-20℃~80℃灵敏度:8V/mm、8mA/mm、4V/mm、4mA/mm纹波:≤20mV 分辨率:0.1μm 温度漂移:0.5‰

表1测量范围(m/s)> 0.5~10 ,0.1~0.精确度±0.5%R;±1.0%R5.公称压力:1.0;1.6;2.5;4.0;6.3;16;25;32Mpa7.介质温度:0 60 ℃;0 70℃;0 90℃;0 130℃(0 180℃协议)

8.使用环境:温度:变送器-25 +60℃;一体型-10 +40℃9.工作电压:220V % Ac;24V % DC 10.基本输出配置:电流输出4 20mA(允许负载电阻为0 400Ω)(光电隔离)容积脉冲输出,幅值24V 宽度5ms

感` 压力传感器PF20

插头连接,系统接口,用于Aseptoflex转接头;齐平安装;可旋转的外壳350;

可设定零点和测量范围值;功能可以编程

2个输出;OUT1=开关输出;OUT2=开关输出或模拟输出;7段LED显示;

测量范围:-13...250 mbar;-5,0...100 inH2O;-1,3...25,0 kPa;

应用范围:卫生系统、粘性介质及带悬浮粒子的液体液体和气体;

电气设计:DC PNP/NPN;

输出功能:2x常开/常关可选或1x常开/关可选+1x模拟(4...20mA/0..10V;可标度的1:4);

规格YG38

量程 1tonf~500tonf 温度补偿范围-10℃~50℃

输出 2mv/v±0.1%安全温度范围-20℃~70℃

非直线性 0.05%R.O 0平衡时温度影响0.05%R.O/10℃

磁滞 0.05% R.O 输出时温度影响 0.05%Loa d10℃

反复性 0.05% R.O 允许电压 10V DC

输入阻抗350±5Ω安全负荷 150% R.C

输出阻抗350±5Ω电缆线 7 Shield 3m

绝缘电阻 2000MΩ

`

规格YM13

量程 1kgf~2tonf 温度补偿范围-10℃~70℃

输出 2mv/v±0.4%安全温度范围-20℃~80℃

非直线性 0.15%R.O 0平衡时温度影响0.05%R.O/10℃

磁滞 0.1% R.O 输出时温度影响0.1%Load10℃

反复性 0.05% R.O 允许电压 10V DC

输入阻抗350±5Ω安全负荷 150% R.C

输出阻抗350±5Ω电缆线 5 Shield 3m

STF系列煤气流量计采用新型电容力感应式传感器● 适用温度范围广:-196°C ~ 500°C;● 适用高/低压力工况:0~42MPa;● 适用各种介质:气体、液体(包括高粘度液体、浆体)、蒸汽;● 适用于低流速介质,其可测量最低流速为0.08m/s。【产品参数】产品名称:焦炉煤气流量计口径:DN15~DN3000mm至更大公称压力:0.6~42MPa 工况温度:-20~+300℃(需更高温度请与工厂联系)精度:±0.2~±1.5%FS 量程比:1:10 壳体:碳钢(衬氟);不锈钢供电方式:内置3.6VDC锂电池(可用两年);外供24VDC 输出信号:4~20mA二线制;脉冲0~1000HZ;RS485 防护等级:IP65 防爆标志:本安型ExiallCT4;隔爆型ExdllCT4 表头显示:累积流量;瞬时流量;满量程百分比;故障自检连接方式:管道法兰式(DN15-300mm);插入式(DN100- DN3000mm至更大)。

电感式SMB365加速度传感器性能参数

测量范围:±2g,±10g(通过SPII切换)灵敏度(校准):2g:256 LSB/g 10g:51 LSB/g

分辨率:4mg非线性:±0.5%FS轴融合:0.2%零点加速度偏置(校准):±40mg偏置温度飘移:±2mg/℃噪音:<4 mg rms带宽: 50HZ(一阶低通滤波器)数字输入/输出:SPI工作电压范围:2.3v-3.6v电流损耗:600μA(10 bit 分辨率)500μA(7 bit 分辨率)闲置电流:5μA温度范围:- 40℃-85℃(工作模式)

电容式位移传感器及检测仪型号:JNYM-JDC-2000主要技术指标和仪器配置一)、1)、测量范围(间距):0~2000μm 2)、分辨率:(采用4位半面板表LED显示) 0.1μm 。3)、非线性误差(或示值误差)〈0.8—1 %〉4)、示值稳定性(温度漂移)开机预热0.5小时后示值漂移(变化)≯0.05—0.09μm/H 5)、动态频响:0—3KHZ 6)、噪声:示波器测试:其峰—峰值Vp—Vp ≤ 3—10mv 如下表所示有效直径(mm) 示值范围(μm) 分辨率(μm) 线性度(F.S.%) 精度(μm) 安装外径(mm)Φ3 ±50 0.01 0.5 0.05 φ8 Φ9.8 ±1000 0.1 0.8 0.5 φ20

XL110X系列内装IC应变式加速度传感器

灵敏度V/ms-2 频率响应Hz(±10%) 量程范围ms-2 抗冲击ms-2 重量g 噪声mVrms 安装方式

壳体材料XL1101 0.1 DC-100 ±10 5000 27 ≤2.5 4-Ф2 不锈钢XL1102 0.05 DC-150 ±20 5000 27 ≤2.5 4-Ф2工作温度5~16VDC(典型值:5.2 VDC) 2.5±0.1VDC ≤3% ≤0.5% 22×22×9mm -40~+150℃

传感器的分类_传感器的原理与分类_传感器的定义和分类

传感器的分类_传感器的原理与分类_传感器的定义和分类 传感器的分类方法很多.主要有如下几种: (1)按被测量分类,可分为力学量、光学量、磁学量、几何学量、运动学量、流速与流量、液面、热学量、化学量、生物量传感器等。这种分类有利于选择传感器、应用传感器 (2)按照工作原理分类,可分为电阻式、电容式、电感式,光电式,光栅式、热电式、压电式、红外、光纤、超声波、激光传感器等。这种分类有利于研究、设计传感器,有利于对传感器的工作原理进行阐述。 (3)按敏感材料不同分为半导体传感器、陶瓷传感器、石英传感器、光导纤推传感器、金属传感器、有机材料传感器、高分子材料传感器等。这种分类法可分出很多种类。 (4)按照传感器输出量的性质分为摸拟传感器、数字传感器。其中数字传感器便干与计算机联用,且坑干扰性较强,例如脉冲盘式角度数字传感器、光栅传感器等。传感器数字化是今后的发展趋势。 (5)按应用场合不同分为工业用,农用、军用、医用、科研用、环保用和家电用传感器等。若按具体便用场合,还可分为汽车用、船舰用、飞机用、宇宙飞船用、防灾用传感器等。 (6)根据使用目的的不同,又可分为计测用、监视用,位查用、诊断用,控制用和分析用传感器等。 主要特点传感器的特点包括:微型化、数字化、智能化、多功能化、系统化、网络化,它不仅促进了传统产业的改造和更新换代,而且还可能建立新型工业,从而成为21世纪新的经济增长点。微型化是建立在微电子机械系统(MEMS)技术基础上的,已成功应用在硅器件上做成硅压力传感器。 主要功能常将传感器的功能与人类5大感觉器官相比拟: 光敏传感器——视觉 声敏传感器——听觉 气敏传感器——嗅觉 化学传感器——味觉 压敏、温敏、传感器(图1) 流体传感器——触觉 敏感元件的分类: 物理类,基于力、热、光、电、磁和声等物理效应。 化学类,基于化学反应的原理。 生物类,基于酶、抗体、和激素等分子识别功能。 通常据其基本感知功能可分为热敏元件、光敏元件、气敏元件、力敏元件、磁敏元件、湿敏元件、声敏元件、放射线敏感元件、色敏元件和味敏元件等十大类(还有人曾将敏感元件分46类)。 1)光纤传感器 光纤传感器技术是随着光导纤维实用化和光通信技术的发展而形成的一门崭新的技术。光纤传感器与传统的各类传感器相比有许多特点,如灵敏度高.抗电磁干扰能力强,耐腐蚀,绝缘性好,结构简单,体积小.耗电少,光路有可挠曲性,以及便于实现遥测等. 光纤传感器一般分为两大类,一类是利用光纤本身的某种敏感特性或功能制成的传感器.称为功能型传感器;另一类是光纤仅仅起传输光波的作用,必须在光纤端面或中间加装其他敏感元件才能构成传感器,称为传光型传感器。无论哪种传感器,其工作原理都是利用被测量的变化调制传输光光波的某一参数,使其随之变化,然后对已调制的光信号进行检测,从而得到被测量。

常用传感器的工作原理及应用

常用传感器的工作原理及应用

3.1.1电阻式传感器的工作原理 应变:物体在外部压力或拉力作用下发生形变的现象 弹性应变:当外力去除后,物体能够完全恢复其尺寸和形状的应变 弹性元件:具有弹性应变特性的物体 3.1.3电阻应变式传感器 电阻应变式传感器利用电阻应变片将应变转换为电阻值变化的传感器。 工作原理:当被测物理量作用于弹性元件上,弹性元件在力、力矩或压力等的作用下发生变形,产生相应的应变或位移,然后传递给与之相连的应变片,引起应变片的电阻值变化,通过测量电路变成电量输出。输出的电量大小反映被测量的大小。 结构:应变式传感器由弹性元件上粘贴电阻应变片构成。 应用:广泛用于力、力矩、压力、加速度、重量等参数的测量。 1.电阻应变效应 ○

电阻应变片的工作原理是基于应变效应,即导体或半导体材料在外界力的作用下产生机械变形时,其电阻值相应发生变化,这种现象称为“应变效应”。 2.电阻应变片的结构 基片 b l 电阻丝式敏感栅 金属电阻应变片的结构 4.电阻应变式传感器的应用 (1)应变式力传感器 被测物理量:荷重或力 一

二 主要用途:作为各种电子称与材料试验机的 测力元件、 发动机的推力测试、水坝坝体承载状况监测等。 力传感器的弹性元件:柱式、筒式、环式、悬臂式等 (2)应变式压力传感器 主要用来测量流动介质的动态或静态压力 应变片压力传感器大多采用膜片式或筒式 弹性元件。 (3)应变式容器内液体重量传感器 感压膜感受上面液体的压力。 (4)应变式加速度传感器 用于物体加速度的测量。 依据:a =F/m 。 3.2电容式传感器 3.2.1电容式传感器的工作原理 由绝缘介质分开的两个平行金属板组成的 平板电容器,如果不考虑边缘效应,其电容量为 当被测参数变化使得S 、d 或ε发生变化时, 电容量C 也随之变化。 d S C ε=

汽车 传感器与执行器

2. 传感器与执行器 2.1 传感器 有了形式各样的传感器,车载控制模块才能监控整个电气系统的工作状况,获得它想要得到的信息,并对系统的工作状况进一步作出有必要的调整。 传感器可以用来监测不同的物理属性值,比如:位置、速度、压力、温度等。这些属性值最终均以电信号的形式与其他数据流一起,传送至控制网络。 2.1.1 信号 1.信号的类型 1)按照信号的波形图特征,传感器信号可以分为数字信号(Digital Signal)和模拟信号(Analog Signal)。 (1)数字信号 Digital Signal 图2-1 数字信号波形图 由于车载控制单元的基础是单片机,所有能接受的数字信号也是二进制信号,如图2-1所示。二进制信号是电压信号,也叫方波信号,最大的特点是,随着时间的变化,电压值只在两个域值之间瞬间切换,并不存在过渡区,每一个电压值代表着一种状态。(例如:Vmax表示开,Vmin表示关)。虽然开关并不属于传感器,但开关信号是最简单的数字信号的例子,开关的状态无非有两种,打开和关闭;对应的电压信号值,就是12V(或5V)和0V。 (2)模拟信号 Analog Signal

图2-2 模拟信号波形图 模拟信号与电压信号最大的不同在于,随着时间的变化,输入的电压值是连续变化的,如图2-2所示。在某一时刻的电压值,具体指的是什么状态,控制单元无法识别出来。最简单的例子就是温度传感器:测量的时间不同,物体不同,那么测量的结果就是电压值在0―5V之间的任意值。 2)按照传感器类型的不同,传感器信号可以分为:电阻信号(Resistive Signal)、开关信号(Switches Signal)、和感应电压信号(Voltage Generating)。 (1)电阻信号 Resistive Signal 随着机械位置发生改变,电阻值也跟着变化,这一类的传感器称为电阻传感器。传感器的阻值发生变化,那么传感器上的电压也会随之变化。控制模块通过监测传感器上的电压值变化,并与参考标志电压相比较,就可以知道测量值所代表的状态。 (2)开关信号 Switches Signal 开关本身不是传感器,但其可以用作信号输入,最简单的例子就是制动踏板开关。 (3)感应电压信号 Voltage Generating 正如字面意义所透露的,该类型的传感器可以产生感应电压信号。不同的信号电压值表示不同的机械状况,控制模块通过感应电压信号值,就可以知道其对应的机械状况。 2. 信号利用 车载控制模块的基础是只能识别二进制信号的单片机,所以能够直接使用数字信号,因为数字信号只有两个阈值信号(0V或5V),要么有、要么没有,但不能识别模拟信号。所以模拟信号必须要经过转换,才能被控制模块所识别、理解其所包含的信号含义。 2.1.2 传感器的类型 按照核心元件工作原理不同,传感器可以分为电阻型、感应电压型和开关型传感器。 1. 电阻型传感器 电阻型传感器是一类传感器,根据电阻元件物理特性的不同,分为电位计(Potentiometer)、热敏电

传感器的种类

传感器的种类 (一)电阻式 电阻式传感器是将被测量,如位移、形变、力、加速度、湿度、温度等这些物理量转换式成电阻值这样的一种器件。主要有电阻应变式、压阻式、热电阻、热敏、气敏、湿敏等电阻式传感器件。 (二)变频功率 变频功率传感器通过对输入的电压、电流信号进行交流采样,再将采样值通过电缆、光纤等传输系统与数字量输入二次仪表相连,数字量输入二次仪表对电压、电流的采样值进行运算,可以获取电压有效值、电流有效值、基波电压、基波电流、谐波电压、谐波电流、有功功率、基波功率、谐波功率等参数。 (三)称重 称重传感器是一种能够将重力转变为电信号的力→电转换装置,是电子衡器的一个关键部件。 能够实现力→电转换的传感器有多种,常见的有电阻应变式、电磁力式和电容式等。电磁力式主要用于电子天平,电容式用于部分电子吊秤,而绝大多数衡器产品所用的还是电阻应变式称重传感器。电阻应变式称重传感器结构较简单,准确度高,适用面广,且能够在相对比较差的环境下使用。因此电阻应变式称重传感器在衡器中得到了广泛地运用。 (四)电阻应变式

传感器中的电阻应变片具有金属的应变效应,即在外力作用下产生机械形变,从而使电阻值随之发生相应的变化。电阻应变片主要有金属和半导体两类,金属应变片有金属丝式、箔式、薄膜式之分。半导体应变片具有灵敏度高(通常是丝式、箔式的几十倍)、横向效应小等优点。 (五)压阻式 压阻式传感器是根据半导体材料的压阻效应在半导体材料的基片上经扩散电阻而制成的器件。其基片可直接作为测量传感元件,扩散电阻在基片内接成电桥形式。当基片受到外力作用而产生形变时,各电阻值将发生变化,电桥就会产生相应的不平衡输出。 用作压阻式传感器的基片(或称膜片)材料主要为硅片和锗片,硅片为敏感材料而制成的硅压阻传感器越来越受到人们的重视,尤其是以测量压力和速度的固态压阻式传感器应用最为普遍。 (六)热电阻 热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,已开始采用镍、锰和铑等材料制造热电阻。 热电阻传感器主要是利用电阻值随温度变化而变化这一特性来测量温度及与温度有关的参数。在温度检测精度要求比较高的场合,这种传感器比较适用。较为广泛的热电阻材料为铂、铜、镍等,它们具有电阻温度系数大、线性好、性能稳定、使用温度范围宽、加工容易等特点。用于测量-200℃~+500℃范围内的温度。

传感器分类及常见传感器的应用

机电一体化技术常用传感器及其原理 班级:机械设计制造及其自动化姓名: 学号:

一、传感器的分类 传感器有许多分类方法,但常用的分类方法有两种,一种是按被测物理量来分;另一种是按传感器的工作原理来分。按被测物理量划分的传感器,常见的有:温度传感器、湿度传感器、压力传感器、位移传感器、流量传感器、液位传感器、力传感器、加速度传感器、转矩传感器等。 按工作原理可划分为: 1.电学式传感器 电学式传感器是非电量电测技术中应用范围较广的一种传感器,常用的有电阻式传感器、电容式传感器、电感式传感器、磁电式传感器及电涡流式传感器等。 电阻式传感器是利用变阻器将被测非电量转换为电阻信号的原理制成。电阻式传感器一般有电位器式、触点变阻式、电阻应变片式及压阻式传感器等。电阻式传感器主要用于位移、压力、力、应变、力矩、气流流速、液位和液体流量等参数的测量。 电容式传感器是利用改变电容的几何尺寸或改变介质的性质和含量,从而使电容量发生变化的原理制成。主要用于压力、位移、液位、厚度、水分含量等参数的测量。 电感式传感器是利用改变磁路几何尺寸、磁体位置来改变电感或互感的电感量或压磁效应原理制成的。主要用于位移、压力、力、振动、加速度等参数的测量。 磁电式传感器是利用电磁感应原理,把被测非电量转换成电量制成。主要用于流量、转速和位移等参数的测量。 电涡流式传感器是利用金屑在磁场中运动切割磁力线,在金属内形成涡流的原理制成。主要用于位移及厚度等参数的测量。 2.磁学式传感器 磁学式传感器是利用铁磁物质的一些物理效应而制成的,主要用于位移、转矩等参

数的测量。

3.光电式传感器 光电式传感器在非电量电测及自动控制技术中占有重要的地位。它是利用光电器件的光电效应和光学原理制成的,主要用于光强、光通量、位移、浓度等参数的测量。 4.电势型传感器 电势型传感器是利用热电效应、光电效应、霍尔效应等原理制成,主要用于温度、磁通、电流、速度、光强、热辐射等参数的测量。 5.电荷传感器 电荷传感器是利用压电效应原理制成的,主要用于力及加速度的测量。 6.半导体传感器 半导体传感器是利用半导体的压阻效应、内光电效应、磁电效应、半导体与气体接触产生物质变化等原理制成,主要用于温度、湿度、压力、加速度、磁场和有害气体的测量。 7.谐振式传感器 谐振式传感器是利用改变电或机械的固有参数来改变谐振频率的原理制成,主要用来测量压力。 8.电化学式传感器 电化学式传感器是以离子导电为基础制成,根据其电特性的形成不同,电化学传感器可分为电位式传感器、电导式传感器、电量式传感器、极谱式传感器和电解式传感器等。电化学式传感器主要用于分析气体、液体或溶于液体的固体成分、液体的酸碱度、电导率及氧化还原电位等参数的测量。 另外,根据传感器对信号的检测转换过程,传感器可划分为直接转换型传感器和间接转换型传感器两大类。前者是把输入给传感器的非电量一次性的变换为电信号输出,如光

各种传感器的分类、比较和应用

传感器的定义传感器是一种能把物理量或化学量转变成便于利用的电信号的器件。国际电工委员会(IEC:International Electrotechnical Committee)的定义为:“传感器是测量系统中的一种前置部件,它将输入变量转换成可供测量的信号”。按照Gopel等的说法是:“传感器是包括承载体和电路连接的敏感元件”,而“传感器系统则是组合有某种信息处理(模拟或数字)能力的系统”。传感器是传感系统的一个组成部分,它是被测量信号输入的第一道关口。 传感器把某种形式的能量转换成另一种形式的能量。有两类:有源的和无源的。有源传感器能将一种能量形式直接转变成另一种,不需要外接的能源或激励源。 无源传感器不能直接转换能量形式,但它能控制从另一输入端输入的能量或激励能,传感器承担将某个对象或过程的特定特性转换成数量的工作。其“对象”可以是固体、液体或气体,而它们的状态可以是静态的,也可以是动态(即过程)的。对象特性被转换量化后可以通过多种方式检测。对象的特性可以是物理性质的,也可以是化学性质的。按照其工作原理,它将对象特性或状态参数转换成可测定的电学量,然后将此电信号分离出来,送入传感器系统加以评测或标示。 传感器原理结构在一段特制的弹性轴上粘贴上专用的测扭应片并组成变桥,即为基础扭矩传感器;在轴上固定着:(1)能源环形变压器的次级线圈,(2)信号环形变压器初级线圈,(3)轴上印刷电路板,电路板上包含整流稳定电源、仪表放大电路、V/F变换电路及信号输出电路。在传感器的外壳上固定着: (1)激磁电路,(2)能源环形变压器的初级线圈(输入),(3) 信号环形变压器次级线圈(输出),(4)信号处理电路 工作过程 向传感器提供±15V电源,激磁电路中的晶体振荡器产生400Hz的方波,经过TDA2030功率放大器即产生交流激磁功率电源,通过能源环形变压器T1从静止的初级线圈传递至旋转的次级线圈,得到的交流电源通过轴上的整流滤波电路得到±5V的直流电源,该电源做运算放大器AD822的工作电源;由基准电源AD589与双运放AD822组成的高精度稳压电源产生±4.5V的精密直流电源,该电源既作为电桥电源,又作为放大器及V/F转换器的工作电源。当弹性轴受扭时,应变桥检测得到的mV级的应变信号通过仪表放大器AD620放大成 1.5v±1v的强信号,再通过V/F转换器LM131变换成频率信号,通过信号环形变压器T2 从旋转的初级线圈传递至静止次级线圈,再经过外壳上的信号处理电路滤波、整形即可得到与弹性轴承受的扭矩成正比的频率信号,该信号为TTL电平,既可提供给专用二次仪表或频率计显示也可直接送计算机处理。由于该旋转变压器动--静环之间只有零点几毫米的间隙,加之传感器轴上部分都密封在金属外壳之内,形成有效的屏蔽,因此具有很强的抗干扰能力。 传感器分类倾角传感器 倾角传感器在军事、航天航空、工业自动化、工程机械、铁路机车、消费电子、海洋船舶等领域得到广泛运用。辉格公司为国内用户提供全球最全面、最专业的产品方案和服务。提供超过500种规格的伺服型、电解质型、电容型、电感型、光纤型等原理的倾角传感器。 加速度传感器(线和角加速度)

传感器原理及应用习题答案(完整版)

2-4、现有栅长为3mm 和5mm 两种丝式应变计,其横向效应系数分别为5%和3%,欲用来测量泊松比μ=的铝合金构件在单向应力状态下的应力分布(其应力分布梯度较大)。试问:应选用哪一种应变计为什么 答:应选用栅长为5mm 的应变计。由公式ρρ εμd R dR x + +=)21(和[]x m x K C R dR εεμμ=-++=)21()21(知应力大小是通过测量 应变片电阻的变化率来实现的。电阻的变化率主要由受力后金属丝几何尺寸变化所致部分(相对较大)加上电阻率随应变而变的部分(相对较小)。一般金属μ≈,因此(1+2μ)≈;后部分为电阻率随应变而变的部分。以康铜为例,C ≈1,C(1-2μ)≈,所以此时K0=Km ≈。显然,金属丝材的应变电阻效应以结构尺寸变化为主。从结构尺寸看,栅长为5mm 的丝式应变计比栅长为3mm 的应变计在相同力的作用下,引起的电阻变化大。 2-5、现选用丝栅长10mm 的应变计检测弹性模量E=2×1011N/m 2、密度ρ=cm 3的钢构件承受谐振力作用下的应变,要求测量精度不低于%。试确定构件的最大应变频率限。 答:机械应变波是以相同于声波的形式和速度在材料中传播的。当它依次通过一定厚度的基底、胶层(两者都很薄,可忽略不计)和栅长l 而 为应变计所响应时,就会有时间的迟后。应变计的这种响应迟后对动态(高频)应变测量,尤会产生误差。由][]e l v f e l l 66max max ππλ<= <或式中v 为声波在钢 构件中传播的速度; 又知道声波在该钢构件中的传播速度为: kg m m N E 336211108.710/102--????= = ρ ν; s m kg s m Kg /10585.18.7/8.91024228?=???=; 可算得kHz m s m e l v f 112%5.061010/10585.1||63 4max =???= = -π 。 2-6、为什么常用等强度悬臂梁作为应变式传感器的力敏元件 现用一等强度梁:有效长l =150mm ,固支处宽b=18mm ,厚h=5mm ,弹性模量E=2×105N/mm 2,贴上4片等阻值、K=2的电阻应变计,并接入四等臂差动电桥构成称重传感器。试问: 1)悬臂梁上如何布片又如何接桥为什么 2)当输入电压为3V ,有输出电压为2mV 时的称重量为多少 答:当力F 作用在弹性臂梁自由端时,悬臂梁产生变形,在梁的上、下表面对称位置上应变大小相当,极性相反,若分别粘贴应变片R 1 、 R 4 和R 2 、R 3 ,并接成差动电桥,则电桥输出电压U o 与力F 成正比。等强度悬臂梁的应变E h b Fl x 206= ε不随应变片粘贴位置变化。 1)、悬臂梁上布片如图2-20a 所示。接桥方式如图2-20b 所示。这样当梁上受力时,R1、R4受拉伸力作用,阻值增大,R2、R3受压,阻值减小,使差动输出电压成倍变化。可提高灵敏度。 2)、当输入电压为3V ,有输出电压为2mV 时的称重量为: 计算如下: 由公式: o i i x i o U KlU E bh F E h b Fl K U K U U 66220=?==ε代入各参数算F =; 1牛顿=千克力;所以,F=。此处注意:F=m*g ;即力=质量*重力加速度;1N=1Kg*s 2.力的单位是牛顿(N )和质量的单位是Kg ;所以称得的重量应该是。 ; 2-7、何谓压阻效应扩散硅压阻式传感器与贴片型电阻应变式传感器相比有什么优点,有什么缺点如何克服 答:“压阻效应”是指半导体材料(锗和硅)的电阻率随作用应力的变化而变化的现象。 优点是尺寸、横向效应、机械滞后都很小,灵敏系数极大,因而输出也大,可以不需放大器直接与记录仪器连接,使得测量系统简化。 缺点是电阻值和灵敏系数随温度稳定性差,测量较大应变时非线性严重;灵敏系数随受拉或压而变,且分散度大,一般在(3-5)%之间,因而使得测量结果有(±3-5)%的误差。 压阻式传感器广泛采用全等臂差动桥路来提高输出灵敏度,又部分地消除阻值随温度而变化的影响。 2-8 、一应变片的电阻R=120Ω,k=,用作应变片为800μm/m 的传感元件。

传感器和执行器

传感器和执行器 9.2.1传感器的选择应符合下列规定: 1 当以安全保护和设备状态监视为目的时,宜选择温度开关、压力开关、风流开关、水流开关、压差开关、水位开关等以开关量形式输出的传感器,不宜使用连续量输出的传感器; 2 传感器测量范围和精度应与二次仪表匹配,并高于工艺要求的控制和测量精度; 3 易燃易爆环境应采用防燃防爆型传感器。 9.2.2温度、湿度传感器的设置,应符合下列规定: 1 温度、湿度传感器测量范围宜为测点温度范围的1.2~1.5倍,传感器测量范围和精度应与二次仪表匹配,并高于工艺要求的控制和测量精度; 2 供、回水管温差的两个温度传感器应成对选用,且温度偏差系数应同为正或负; 3 壁挂式空气温度、湿度传感器应安装在空气流通,能反映被测房间空气状态的位置;风道内温度、湿度传感器应保证插入深度,不应在探测头与风道外侧形成热桥;插入式水管温度传感器应保证测头插入深度在水流的主流区范围内,安装位置附近不应有热源及水滴; 4 机器露点温度传感器应安装在挡水板后有代表性的位置,应避免辐射热、振动、水滴及二次回风的影响。 9.2.3压力(压差)传感器的设置,应符合下列规定: 1 压力(压差)传感器的工作压力(压差)应大于该点可能出现的最大压力(压差)的1.5倍,量程宜为该点压力(压差)正常变化范围的1.2~1.3倍; 2 在同一建筑层的同一水系统上安装的压力(压差)传感器宜处于同一标高; 3 测压点和取压点的设置应根据系统需要和介质类型确定,设在管内流动稳定的地方并满足产品需要的安装条件。 9.2.4流量传感器的设置,应符合下列规定: 1 流量传感器量程宜为系统最大工作流量的1.2~1.3倍; 2 流量传感器安装位置前后应有保证产品所要求的直管段长度或其他安装条件; 3 应选用具有瞬态值输出的流量传感器; 4 宜选用水流阻力低的产品。

市场上常见的压力传感器的种类及原理分析

市场上常见的压力传感器的种类及原理分析 什么是压力传感器呢?压力传感器是指将接收的气体、液体等压力信号转变成标准的电流信号(4~20mADC),以供给指示报警仪、记录仪、调节器等二次仪表进行测量、指示和过程调节的元器件。它主要是由测压元件传感器、测量电路和过程连接件等组成的(进气压力传感器)。 那么压力传感器的种类有哪些呢?就目前市场而言,压力传感器一般有差压传感器、绝压传感器、表压传感器,静态压力传感器和动态压力传感器。对于这几者之间的关系,我们可以这样定义定义:差压是两个实际压力的差,当差压中一个实际压力为大气压时,差压就是表压力。绝压是实际压力,而有意义的是表压力,表压力=绝压-大气压力。静态压力是管道内流体不流动时的压力。动态压力可以简单理解为管道内流体流动后发生的压力。 根据不同的方式压力传感器的种类也不尽相同。小编通过搜集整理资料,将与压力传感器的种类相关的知识做如下介绍,下面我们来看具体分析。 1.扩散硅压力传感器 扩散硅压力传感器工作原理是被测介质的压力直接作用于传感器的膜片上(不锈钢或陶瓷),使膜片产生与介质压力成正比的微位移,使传感器的电阻值发生变化,和用电子线路检测这一变化,并转换输出一个对应于这一压力的标准测量信号。 扩散硅压力传感器原理图 2.压电式压力传感器 (1)压电式压力传感器原理 压电式压力传感器原理基于压电效应。压电效应是某些电介质在沿一定方向上受到外力的作用而变形时,其内部会产生极化现象,同时在它的两个相对表面上出现正负相反的电荷。当外力去掉后,它又会恢复到不带电的状态,这种现象称为正压电效应。当作用力的方向改变时,电荷的极性也随之改变。相反,当在电介质的极化方向上施加电场,这些电介质也会发生变形,电场去掉后,电介质的变形随之消失,这种现象称为逆压电效应。 (2)压电式压力传感器的种类与应用 压电式压力传感器的种类和型号繁多,按弹性敏感元件和受力机构的形式可分为膜片式和活塞式两类。膜片式主要由本体、膜片和压电元件组成。压电元件支撑于本体上,由膜片将被测压力传递给压电元件,再由压电元件输出与被测压力成一定关系的电信号。这种传感器的特点是体积小、动态特性好、耐高温等。 现代测量技术对传感器的性能出越来越高的要求。例如用压力传感器测量绘制内燃机示功图,在测量中不允许用水冷却,并要求传感器能耐高温和体积小。压电材料最适合于研制这种压力传感器。石英是一种非常好的压电材料,压电效

传感器原理及应用

《传感器原理及应用》讨论课报告书 电感式传感器的基本原理及典型应用 学院:机械工程学院 班级:13-1机械电子工程(卓越) 组员:李响夏中岩张轩赫 贡献率:李响资料查询,整理40% 夏中岩资料整理,编辑30% 张轩赫PPT设计编写30% 指导教师:边辉 完成日期:2016.05

目录 摘要............................................................................................................................... - 2 - 1 物料分拣系统简述................................................................................................... - 3 - 2 物料分拣系统中的传感器....................................................................................... - 3 - 2.1 电机起停控制传感器.................................................................................... - 3 - 2.1.1 漫反射光电接近开关......................................................................... - 3 - 2.1.2 电容式接近开关................................................................................. - 4 - 2.1.3 霍尔接近开关..................................................................................... - 4 - 2.1.4 电感式接近开关................................................................................. - 4 - 2.1.5传感器应用比较.................................................................................. - 4 - 2.2 物料计数用传感器........................................................................................ - 5 - 2.2.1 对射型红外光电开关......................................................................... - 5 - 2.2.2 电涡流式传感器................................................................................. - 5 - 2.2.3 霍尔传感器......................................................................................... - 6 - 2.3 测速及定位传感器........................................................................................ - 6 - 2.3.1 光电耦合器,码盘............................................................................. - 7 - 2.3.2 增量编码器......................................................................................... - 7 - 2.3.3 传感器功能对比................................................................................. - 7 - 2.4 物料分类传感器............................................................................................ - 7 - 2.4.1色标传感器.......................................................................................... - 8 - 2.5 固态继电器.................................................................................................... - 8 - 3 传感器前景展望....................................................................................................... - 9 - 3.1 传感器在科技发展中的重要性.................................................................... - 9 - 3.2 先进传感器的发展趋势................................................................................ - 9 - 4 反思与收获............................................................................................................... - 9 -参考文献..................................................................................................................... - 10 -

传感器类型

传感器的种类 传感器有许多分类方法,但常用的分类方法有两种,一种是按被测物理量来分;另一种是按传感器的工作原理来分。按被测物理量划分的传感器,常见的有:温度传感器、湿度传感器、压力传感器、位移传感器、流量传感器、液位传感器、力传感器、加速度传感器、转矩传感器等。 按工作原理可划分为: 1.电学式传感器 电学式传感器是非电量电测技术中应用范围较广的一种传感器,常用的有电阻式传感器、电容式传感器、电感式传感器、磁电式传感器及电涡流式传感器等。 电阻式传感器是利用变阻器将被测非电量转换为电阻信号的原理制成。电阻式传感器一般有电位器式、触点变阻式、电阻应变片式及压阻式传感器等。电阻式传感器主要用于位移、压力、力、应变、力矩、气流流速、液位和液体流量等参数的测量。 电容式传感器是利用改变电容的几何尺寸或改变介质的性质和含量,从而使电容量发生变化的原理制成。主要用于压力、位移、液位、厚度、水分含量等参数的测量。 电感式传感器是利用改变磁路几何尺寸、磁体位置来改变电感或互感的电感量或压磁效应原理制成的。主要用于位移、压力、力、振动、加速度等参数的测量。 磁电式传感器是利用电磁感应原理,把被测非电量转换成电量制成。主要用于流量、转速和位移等参数的测量。 电涡流式传感器是利用金屑在磁场中运动切割磁力线,在金属内形成涡流的原理制成。主要用于位移及厚度等参数的测量。 2.磁学式传感器 磁学式传感器是利用铁磁物质的一些物理效应而制成的,主要用于位移、转矩等参数的

测量。 3.光电式传感器 光电式传感器在非电量电测及自动控制技术中占有重要的地位。它是利用光电器件的光电效应和光学原理制成的,主要用于光强、光通量、位移、浓度等参数的测量。 4.电势型传感器 电势型传感器是利用热电效应、光电效应、霍尔效应等原理制成,主要用于温度、磁通、电流、速度、光强、热辐射等参数的测量。 5.电荷传感器 电荷传感器是利用压电效应原理制成的,主要用于力及加速度的测量。 6.半导体传感器 半导体传感器是利用半导体的压阻效应、内光电效应、磁电效应、半导体与气体接触产生物质变化等原理制成,主要用于温度、湿度、压力、加速度、磁场和有害气体的测量。 7.谐振式传感器 谐振式传感器是利用改变电或机械的固有参数来改变谐振频率的原理制成,主要用来测量压力。 8.电化学式传感器 电化学式传感器是以离子导电为基础制成,根据其电特性的形成不同,电化学传感器可分为电位式传感器、电导式传感器、电量式传感器、极谱式传感器和电解式传感器等。电化学式传感器主要用于分析气体、液体或溶于液体的固体成分、液体的酸碱度、电导率及氧化还原电位等参数的测量。 另外,根据传感器对信号的检测转换过程,传感器可划分为直接转换型传感器和间接转换型传感器两大类。前者是把输入给传感器的非电量一次性的变换为电信号输出,如光敏电

传感器种类及用途

1、Gsensor:(重力感应传感器)作用:根据使用者的动作进行相应的软件应用,例如:重力感应游 戏,用户挥动手机,游戏做出相应的反应。 2、Psensor:(距离传感器) 作用:当使用者接通电话并将电话贴近耳朵时,使屏幕变黑以免引起误操作,远离时屏 幕开启,恢复可以正常工作状态。 3、Msensor (磁传感器):作用:目前仅是作为指南针的功能,可用于增强型电压控制。 4、Gyro (陀螺)作用:测量设别自身的旋转运动,内置陀螺仪可以测量手机自身的运动。可以配 合摄像头做防抖用。 5、线性加速度传感器:作用:测量三个轴的绝对加速度,与陀螺仪配合可以在无卫星信号的情况下 进行定位。 6、旋转矢量传感器:作用:测量三个轴绕固定轴旋转过的角度,可以用来输出设备当前的与水平放 置状态相比各个轴绕过的角度状态。 7、压差传感器:作用:测量设备内外的压力差值,可用来监控当前设备内外的压差。 8、光线感应传感器: 作用:根据手机所处环境的光线来调节手机屏幕的亮度和键盘灯。比如在光线充足的地方,屏幕很亮,键盘灯就会关闭;相反,在暗处,键盘灯就会亮,屏幕较暗。 9、Gap Sensor :作用:用于检测用户肢体与手机的接触方式,左手,右手接触等,并可与重力传 感器等联合使用准确测出手机的当前状态。 10、气压传感器: 作用:用来测量天气变化并可以在不开启GPS 的情况下测量所处位置的海拔高度,还可以用来辅助导航。 11 、色温传感器:作用:在手机影像处理中可以得到精确、稳定的工作,色温与环境光水平一致,得到稳定的屏幕色温及精确地图像色彩。 12、电子罗盘:作用:与磁传感器同,可以用来作为指南针用。 13、风速风向传感器:作用:用于测量当前所处位置的风速计风向信息。 14、温度传感器作用:监控设备当前温度,可用于在温度过高的情况下查询是否关闭相应程序。 15、位移传感器 作用:设定安全距离,超出安全距离则发出警报。

各种温度传感器分类及其原理.

各种温度传感器分类及其原理.

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化, 在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1. 热电偶的工作原理 当有两种不同的导体和半导体 A 和 B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为 T ,称为工作端或热端,另一端温度为 TO ,称为自由端 (也称参考端 或冷端,则回路中就有电流产生,如图 2-1(a所示,即回路中存在的电动势称为热电 动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。 与塞贝克有关的效应有两个:其一, 当有电流流过两个不同导体的连接处时, 此处便吸收或放出热量 (取决于电流的方向 , 称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量(取决 于电流相对于温度梯度的方向 ,称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势 EAB(T, T0 是由接触电势和温差电势合成的。接触电势是指两种不同 的导体或半导体在接触处产生的电势, 此电势与两种导体或半导体的性质及在接触点的温度有关。 温差电势是指同一导体或半导体在温度不同的两端产生的电势, 此电势只与导体或半导体的性质和两端的温度有关, 而与导体的长度、截面大小、沿其长度方向的温度分布无关。 无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势, 热电偶测量的热电势是二者的合成。当回路断开时,在断开处 a , b 之间便有一电动势差△ V ,其极性和大小与回路中的热电势一致,如图 2-1(b所示。并规定在冷端,当电流由 A 流向 B 时, 称 A 为正极, B 为负极。实验表明,当△ V 很小时,△ V 与△ T 成正比关系。定义△ V 对△ T

各种温度传感器分类及其原理

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化,在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1.热电偶的工作原理 当有两种不同的导体和半导体A和B组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端或热端,另一端温度为TO,称为自由端(也称参考端)或冷端,则回路中就有电流产生,如图2-1(a)所示,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。与塞贝克有关的效应有两个:其一,当有电流流过两个不同导体的连接处时,此处便吸收或放出热量(取决于电流的方向),称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量(取决于电流相对于温度梯度的方向),称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势EAB(T,T0)是由接触电势和温差电势合成的。接触电势是指两种不同的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关。温差电势是指同一导体或半导体在温度不同的两端产生的电势,此电势只与导体或半导体的性质和两端的温度有关,而与导体的长度、截面大小、沿其长度方向的温度分布无关。无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势,热电偶测量的热电势是二者的合成。当回路断开时,在断开处a,b之间便有一电动势差△V,其极性和大小与回路中的热电势一致,如图2-1(b)所示。并规定在冷端,当电流由A流向B时,称A为正极,B为负极。实验表明,当△V很小时,△V与△T成正比关系。定义△V对△T的微分热电势为热电势率,又称塞贝克系数。塞贝克系数的符号和大小取决于组成热电偶的两种导体的热电特性和结点的温度差。 2.热电偶的种类 目前,国际电工委员会(IEC)推荐了8种类型的热电偶作为标准化热电偶,即为T型、E型、J型、K型、N型、B型、R型和S型。

最新传感器分类(最全总结)

繁杂,分类方法也很多。现将常采用的分类方法归纳如下: 1、按输入量即测量对象的不同分: 如输入量分别为:温度、压力、位移、速度、湿度、光线、气体等非电量时,则相应的传感器称为温度传感器、压力传感器、称重传感器等。 这种分类方法明确地说明了传感器的用途,给使用者提供了方便,容易根据测量对象来选择所需要的传感器,缺点是这种分类方法是将原理互不相同的传感器归为一类,很难找出每种传感器在转换机理上有何共性和差异,因此,对掌握传感器的一些基本原理及分析方法是不利的。因为同一种型式的传感器,如压电式传感器,它可以用来测量机械振动中的加速度、速度和振幅等,也可以用来测量冲击和力,但其工作原理是一样的。 这种分类方法把种类最多的物理量分为:基本量和派生量两大类.例如力可视为基本物理量,从力可派生出压力、重量,应力、力矩等派生物理量.当我们需要测量上述物理量时,只要采用力传感器就可以了。所以了解基本物理量和派生物理量的关系,对于系统使用何种传感器是很有帮助的。 2、按工作(检测)原理分类 检测原理指传感器工作时所依据的物理效应、化学效应和生物效应等机理。有电阻式、电容式、电感式、压电式、电磁式、磁阻式、光电式、压阻式、热电式、核辐射式、半导体式传感器等。

如根据变电阻原理,相应的有电位器式、应变片式、压阻式等传感器;如根据电磁感应原理,相应的有电感式、差压变送器、电涡流式、电磁式、磁阻式等传感器;如根据半导体有关理论,则相应的有半导体力敏、热敏、光敏、气敏、磁敏等固态传感器。 这种分类方法的优点是便于传感器专业工作者从原理与设计上作归纳性的分析研究,避免了传感器的名目过于繁多,故最常采用。缺点是用户选用传感器时会感到不够方便。 有时也常把用途和原理结合起来命名,如电感式位移传感器,压电式力传感器等,以避免传感器名目过于繁多. 3、按照传感器的结构参数在信号变换过程中是否发生变化可分为: a、物性型传感器:在实现信号的变换过程中,结构参数基本不变,而是利用某些物质材料(敏感元件)本身的物理或化学性质的变化而实现信号变换的。 这种传感器一般没有可动结构部分,易小型化,故也被称作固态传感器,它是以半导体、电介质、铁电体等作为敏感材料的固态器件。如:热电偶、压电石英晶体、热电阻以及各种半导体传感器如力敏、热敏、湿敏、气敏、光敏元件等。 b、结构型传感器:依靠传感器机械结构的几何形状或尺寸(即结构参数)的变化而将外界被测参数转换成相应的电阻、电感、电容等物理量的变化,实现信号变换,从而检测出被测信号。 如:电容式、电感式、应变片式、电位差计式等。 4、根据敏感元件与被测对象之间的能量关系(或按是否需外加能源)来分:

相关文档
最新文档