对太阳能燃料电池发电技术的调研报告

对太阳能燃料电池发电技术的调研报告
对太阳能燃料电池发电技术的调研报告

关于太阳能燃料电池发电技术调研报告

本文概述了太阳能燃料电池的工作特点和原理,介绍了发电系统的组成、国内外的研究现状,对我国应用太阳能太阳能燃料电池发电的资源条件进行了评估,展望了这一技术在电力系统的应用前景、将对电力系统产生的重要阻碍,它将使传统的电力系统产生重大的变革,它会使电力系统更加安全、经济。最后提出了进展太阳能燃料电池发电的具体建议。

1.引言

能源是经济进展的基础,没有能源工业的进展就没有现代文明。人类为了更有效地利用能源一直在进行着不懈的努力。历史上利用能源的方式有过多次革命性的变革,从原始的蒸汽机到汽轮机、高压汽轮机、内燃机、燃气轮机,每一次能源利用方式的变革都极大地推进了现代文明的进展。

随着现代文明的进展,人们逐渐认识到传统的能源利用方式有两大弊病。一是储存于燃料中的化学能必需首先转变成热能后才能被转变成机械能或电能,受卡诺循环及现代材料的限制,在机端所获得的效率只有33~35%,一半以上的能量白白地损失掉了;二是传统的能源利用方式给今天人类的生活环境造成了巨量的废水、废气、废渣、废热和噪声的污染。关于发电行业来讲,尽管采纳的技术在不断地升级,如开发出了超高压、超临界、超超临界机组,开发出了流化床燃烧和整体气化联合循环发电技术,但这种努力的结果是:机组规模巨大、超高压远距离输电、投资上升,到用户的综合能源效率仍然只有35%左右,大规模的污染仍然没有得到全然解决。多年来人们一直在努力查找既有较高的能源利用效率又不污染环境的能源利用方式。这确实是太阳能燃料电池发电技术。

1839年英国的Grove发明了太阳能燃料电池,并用这种以铂黑为电极催化剂的简单的氢氧太阳能燃料电池点亮了伦敦讲演厅的照明灯。1889年Mood和Langer首先采纳了太阳能燃料电池这一名称,并获得200mA/m2电流密度。由于发电机和电极过程动力学的研究未能跟上,太阳能燃料电池的研究直到20世纪50年代才有了实质性的进展,英国剑桥大学的Bacon用高压氢氧制成了具有有用功率水平的太阳能燃料电池。60年代,这种电池成功地应用于阿波罗(Appollo)登月飞船。从60年代开始,氢氧太阳能燃料电池广泛应用于宇航领域,同时,兆瓦级的

磷酸太阳能燃料电池也研制成功。从80年代开始,各种小功率电池在宇航、军事、交通等各个领域中得到应用。

太阳能燃料电池是一种将储存在燃料和氧化剂中的化学能,直接转化为电能的装置。当源源不断地从外部向太阳能燃料电池供给燃料和氧化剂时,它能够连续发电。依据电解质的不同,太阳能燃料电池分为碱性太阳能燃料电池(AFC)、磷酸型太阳能燃料电池(PAFC)、熔融碳酸盐太阳能燃料电池(MCFC)、固体氧化物太阳能燃料电池(SOFC)及质子交换膜太阳能燃料电池(PEMFC)等。太阳能燃料电池不受卡诺循环限制,能量转换效率高,洁净、无污染、噪声低,模块结构、积木性强、比功率高,既能够集中供电,也适合分散供电。

大型电站,火力发电由于机组的规模足够大才能获得令人中意的效率,但装有巨型机组的发电厂又受各种条件的限制不能贴进用户,因此只好集中发电由电网输送给用户。然而机组大了其发电的灵活性又不能适应户户的需要,电网随用户的用电负荷变化有时呈现为高峰,有时则呈现为低谷。为了适应用电负荷的变化只好备用一部分机组或修建抽水蓄能电站来应急,这在总体上差不多上以牺牲电网的效益为代价的。传统的火力发电站的燃烧能量大约有近70%要消耗在锅炉和汽轮发电机这些庞大的设备上,燃烧时还会排放大量的有害物质。而使用太阳能燃料电池发电,是将燃料的化学能直接转换为电能,不需要进行燃烧,没

有转动部件,理论上能量转换率为100%,装置不管大小实际发电效率可达40%~60%,能够实现直接进入企业、饭店、宾馆、家庭实现热电联产联用,没有输电输热损失,综合能源效率可达80%,装置为集木式结构,容量可小到只为手机供电、大到和目前的火力发电厂相比,特不灵活。

太阳能燃料电池被称为是继水力、火力、核能之后第四代发电装置和替代内燃机的动力装置。国际能源界预测,太阳能燃料电池是21世纪最有吸引力的发电方法之一。我国人均能源资源贫乏,在目前电网由要紧缺少电量转变为要紧缺少系统备用容量、调峰能力、电网建设滞后和传统的发电方式污染严峻的情况下,研究和开发微型化太阳能燃料电池发电具有重要意义,这种发电方式与传统的大型机组、大电网相结合将给我国带来巨大的经济效益。

2. 太阳能燃料电池的特点与原理

由于太阳能燃料电池能将燃料的化学能直接转化为电能,因此,它没有像通常的火力发电机那样通过锅炉、汽轮机、发电机的能量形态变化,能够幸免中间的转换的损失,达到专门高的发电效率。同时还有以下一些特点:

1、不管是满负荷依旧部分负荷均能保持高发电效率;

不管装置规模大小均能保持高发电效率;

具有专门强的过负载能力;

通过与燃料供给装置组合的能够适用的燃料广泛;

发电出力由电池堆的出力和组数决定,机组的容量的自由度大;

电池本体的负荷响应性好,用于电网调峰优于其他发电方式;

用天然气和煤气等为燃料时,NOX及SOX等排出量少,环境相容性优。

如此由太阳能燃料电池构成的发电系统对电力工业具有极大的吸引力。

太阳能燃料电池按其工作温度是不同,把碱性太阳能燃料电池(AFC,工作温度为100℃)、固体高分子型质子膜太阳能燃料电池(PEMFC,也称为质子膜太阳能燃料电池,工作温度为100℃以内)和磷酸型太阳能燃料电池(PAFC,工作温度为200℃)称为低温太阳能燃料电池;把熔融碳酸盐型太阳能燃料电池(MCFC,工作温度为650℃)和固体氧化型太阳能燃料电池(SOFC,工作温度为1000℃)称为高温太阳能燃料电池,同时高温太阳能燃料电池又被称为面向高质量排气而进行联合开发

的太阳能燃料电池。另一种分类是按其开发早晚顺序进行的,把

PAFC称为第一代太阳能燃料电池,把MCFC称为第二代太阳能燃料电池,把SOFC称为第三代太阳能燃料电池。这些电池均需用可燃气体作为其发电用的燃料。

太阳能燃料电池其原理是一种电化学装置,其组成与一般电池相同。其单体电池是由正负两个电极(负极即燃料电极和正极即氧化剂电极)以及电解质组成。不同的是一般电池的活性物质贮存在电池内部,因此,限制了电池容量。而太阳能燃料电池的正、负极本身不包含活性物质,只是个催化转换元件。因此太阳能燃料电池是名符事实上的把化学能转化为电能的能量转换机器。电池工作时,燃料和氧化剂由外部供给,进行反应。原则上只要反应物不断输入,反应产物不断排除,太阳能燃料电池就能连续地发电。那个地点以氢-氧太阳能燃料电池为例来讲明太阳能燃料电池的差不多工作原理。

氢-氧太阳能燃料电池反应原理

那个反映是电觧水的逆过程。电极应为:

负极: H2 + 2OH- →2H2O + 2e-

正极: 1/2O2 + H2O + 2e- →2OH-

电池反应:H2 + 1/2O2==H2O

另外,只有太阳能燃料电池本体还不能工作,必须有一套相应的辅助系统,包括反应剂供给系统、排热系统、排水系统、电性能操纵系统及安全装置等。

太阳能燃料电池通常由形成离子导电体的电解质板和其两侧配置的燃料极(阳极)和空气极(阴极)、及两侧气体流路构成,气体流路的作用是使燃料气体和空气(氧化剂气体)能在流路中通过。

在有用的太阳能燃料电池中因工作的电解质不同,通过电解质与反应相关的离子种类也不同。PAFC和PEMFC反应中与氢离子(H+)相关,发生的反应为:

燃料极:H2 =2H+ + 2e- (1)

空气极:2H+ + 1/2O2 +2e-= H2O (2)

全体:H2+1/2O2 = H2O (3)

氢氧太阳能燃料电池组成和反应循环图

在燃料极中,供给的燃料气体中的H2 分解成H+ 和e- ,H+ 移动到电解质中与空气极侧供给的O2发生反应。e- 经由外部的负荷回路,再反回到空气极侧,参与空气极侧的反应。一系例的反应促成了e- 不间断地经由外部回路,因而就构成了发电。同时从上式中的反应式(3)能够看出,由H2 和O2 生成的H2O ,除此以外没有其他的反应,H2 所具有的化学能转变成了电能。但实际上,伴随着电极的反应存在一定的电阻,会引起了部分热能产生,由此减少了转换成电能的比例。

引起这些反应的一组电池称为组件,产生的电压通常低于一伏。因此,为了获得大的出力需采纳组件多层迭加的方法获得高电压堆。组件间的电气连接以及燃料气体和空气之间的分离,采纳了称之为隔板的、上下两面中备有气体流路的部件,PAFC

和PEMFC的隔板均由碳材料组成。堆的出力由总的电压和电流的乘积决定,电流与电池中的反应面积成比。

单电极组装示意图

PAFC的电解质为浓磷酸水溶液,而PEMFC电解质为质子导电性聚合物系的膜。电极均采纳碳的多孔体,为了促进反应,以

Pt作为触媒,燃料气体中的CO将造成中毒,降低电极性能。为此,在PAFC和PEMFC应用中必须限制燃料气体中含有的CO 量,特不是关于低温工作的PEMFC更应严格地加以限制。

磷酸型太阳能燃料电池差不多组成和反应原理

磷酸太阳能燃料电池的差不多组成和反应原理是:燃料气体或都市煤气添加水蒸气后送到改质器,把燃料转化成H2、CO和水蒸气的混合物,CO和水进一步在移位反应器中经触媒剂转化成H2和CO2。通过如此处理后的燃料气体进入燃料堆的负极(燃料极),同时将氧输送到燃料堆的正极(空气极)进行化学反应,借助触媒剂的作用迅速产生电能和热能。

相对PAFC和PEMFC,高温型太阳能燃料电池MCFC和SOFC 则不要触媒,以CO为要紧成份的煤气化气体能够直接作为燃料应用,而且还具有易于利用其高质量排气构成联合循环发电等特点。

MCFC主构成部件。含有电极反应相关的电解质(通常是为Li与K混合的碳酸盐)和上下与其相接的2块电极板(燃料极与空气极),以及两电极各自外侧流通燃料气体和氧化剂气体的气室、电极夹等,电解质在MCFC约600~700℃的工作温度下呈现熔融状态的液体,形成了离子导电体。电极为镍系的多孔质体,气室的形成采纳抗蚀金属。

MCFC工作原理。空气极的O2(空气)和CO2 与电相结合,生成CO23- (碳酸离子),电解质将CO23-移到燃料极侧,与作为燃料供给的H+ 相结合,放出e-,同时生成H2O和CO2 。化学反应式如下:

燃料极:H2 + CO23- = H2O+2e- + CO2 (4)

空气极:CO2 + 1/2O2 +2e-=CO23- (5)

全体:H2 + 1/2O2 =H2O (6)

在这一反应中,e- 同在PAFC中的情况一样,它从燃料极被放出,通过外部的回路反回到空气极,由e- 在外部回路中不间断的流淌实现了太阳能燃料电池发电。另外,MCFC的最大特点是,必须要有有助于反应的CO23-离子,因此,供给的氧化剂气体中必须含有碳酸气体。同时,在电池内部充填触媒,从而将作为天然气主成份的CH4 在电池内部改质,在电池内部直接生成H2 的方法也已开发出来了。而在燃料是煤气的情况下,其主成份CO 和H2O反应生成H2,因此,能够等价地将CO作为燃料来利用。为了获得更大的出力,隔板通常采纳Ni和不锈钢来制作。

SOFC是以陶瓷材料为主构成的,电解质通常采纳ZrO2 (氧化锆),它构成了O2- 的导电体Y 2O3 (氧化钇)作为稳定化的YSZ(稳定化氧化锆)而采纳。电极中燃料极采纳Ni与YSZ 复合多孔体构成金属陶瓷,空气极采纳LaMnO3 (氧化镧锰)。隔板采纳LaCrO3 (氧化镧铬)。为了幸免因电池的形状不同,电解质之间热膨胀差造成裂纹产生等,开发了在较低温度下工作的

SOFC。电池形状除了有同其他太阳能燃料电池一样的平板型外,还有开发出了为幸免应力集中的圆筒型。SOFC的反应式如下:燃料极:H2 + O2- = H2O + 2e- (7)

空气极:1/2O2 + 2e- =O2- (8)

全体:H2 + 1/2O2 =H2O (9)

燃料极,H2 经电解质而移动,与O2- 反应生成H2O和e-。空气极由O2和e- 生成O2-。全体同其他太阳能燃料电池一样由H2 和O2 生成H2O。在SOFC中,因其属于高温工作型,因此,在无其他触媒作用的情况下即可直接在内部将天然气主成份CH4 改质成H2 加以利用,同时煤气的要紧成份CO能够直接作为燃料利用。

非晶硅太阳能电池研究毕业论文

非晶硅太阳能电池 赵准 (吉首大学物理与机电工程学院,湖南吉首 416000) 摘要:随着煤炭、石油等现有能源的频频告急和生态环境的恶化.使得人类不得不尽快寻找新的清洁能源和可再生资源。其中包括水能、风能和太阳能,而太阳能以其储量巨大、安全、清洁等优势使其必将成为21世纪的最主要能源之一。太阳是一个巨大的能源,其辐射出来的功率约为其中有被地球截取,这部分能量约有的能量闯过大气层到达地面,在正对太阳的每一平方米地球表面上能接受到1kw左右的能量。 目前分为光热发电和光伏发电两种形式。太阳能热发电是利用聚光集热器把太阳能聚集起来,将一定的工质加热到较高的温度(通常为几百摄氏度到上千摄氏度),然后通过常规的热机动发电机发电或通过其他发电技术将其转换成电能。光伏发电是利用界面的而将光能直接转变为电能的一种技术。目前光—电转换器有两种:一种是光—伽伐尼电池,另一种是光伏效应。由一个或多个太阳能电池片组成的太阳能电池板称为光伏组件,将光伏组件串联起来再配合上功率控制器等部件就形成了光伏发电装置。因为光伏发电规模大小随意、能独立发电、建设时间短、维护起来也简单.所以从70年代开始光伏发电技术得到迅速发展,日本、德国、美国都大力发展光伏产业,他们走在了世界的前列,我国在光伏研究和产业方面也奋起直追,现在以每年20%的速度迅速发展。 关键词:光伏发电;太阳能电池;硅基太阳能电池;非晶硅太阳能电池

1.引言 1976年卡尔松和路昂斯基报告了无定形硅(简称a一Si)薄膜太阳电他的诞生。当时、面积样品的光电转换效率为2.4%。时隔20多年,a一Si太阳电池现在已发展成为最实用廉价的太阳电池品种之一。非晶硅科技已转化为一个大规模的产业,世界上总组件生产能力每年在50MW以上,组件及相关产品销售额在10亿美元以上。应用范围小到手表、计算器电源大到10Mw级的独立电站。涉及诸多品种的电子消费品、照明和家用电源、农牧业抽水、广播通讯台站电源及中小型联网电站等。a一Si太阳电池成了光伏能源中的一支生力军,对整个洁净可再生能源发展起了巨大的推动作用。非晶硅太阳电他的诞生、发展过程是生动、复杂和曲折的,全面总结其中的经验教训对于进一步推动薄膜非晶硅太阳电池领域的科技进步和相关高新技术产业的发展有着重要意义。况且,由于从非晶硅材料及其太阳电池研究到有关新兴产业的发展是科学技术转化为生产力的典型事例,其中的规律性对其它新兴科技领域和相关产业的发展也会有有益的启示。本文将追述非晶硅太阳电他的诞生、发展过程,简要评述其中的关键之点,指出进一步发展的方向。 2.太阳能电池概述 .太阳能电池原理 太阳能电池是通过光电效应或者光化学效应把光能转化成电能的装置。太阳能电池以光电效应工作的结晶体太阳能电池和薄膜式太阳能电池为主流,而以光化学效应工作的湿式太阳能电池则还处于萌芽阶段。太阳能电池工作原理的基础是半导体PN结的光生伏特效应。所谓光生伏特效应就是当物体受到光照时,物体内的电荷分布状态发生变化而产生电动势和电流的一种效应。 为了理解太阳能电池的运做,我们需要考虑材料的属性并且同时考虑太阳光的属性。太阳能电池包括两种类型材料,通常意义上的P型硅和N型硅。在纯净的硅晶体中,自由电子和空穴的数目是相等的。如果在硅晶体掺杂了能俘获电子的硼、铝、镓、铟等杂质元素,那么就构成P型半导体。如果在硅晶体面中掺入能够释放电子的磷、砷、锑等杂质元素,那么就构成了N型半导体。若把这两种半导体结合在一起,由于电子和空穴的扩散,在交接面处便会形成PN结,并在结的两边形成内建电场。太阳光照在半导体 p-n结上,形成新的空穴-电子对,在p-n结电场的作用下,空穴由n 区流向p区,电子由p区流向n区,接通电路后就形成电流。这就是光电效应,也是太阳能电池的工作原理。 太阳能电池种类 太阳能电池的种类有很多,按材料来分,有硅基太阳能电池(单晶,多晶,非晶),化合物半导体太阳能电池(砷化镓(GaAs),磷化铟(InP),碲化镉(CdTe), 铜铟镓硒(CIGS)),有机聚合物太阳能电池(酞青,聚乙炔),染料敏化太阳能电池,纳米晶太阳能电池;按结构来分,有体结晶型太阳能电池和薄膜太阳能电池。

浅析光伏电站发电量与光伏组件衰减的关系

浅析光伏电站发电量与光伏组件衰减的关系 摘要:在光伏电站建设前期的项目可行性评估中,对光伏电站的发电量进行估算具有非常重要的意义,因为这将直接影响到项目的收益预期。目前系统设计人员常用软件来模拟第一年的发电量,本文将基于第一年估算的发电量,并试图计算随后24年发电量。 关键词:光伏电站组件衰减发电量估算 PVSYST模拟 1 前言 由于全球的能源危机问题,风能、太阳能等资源丰富的新能源逐渐占有重要的地位。世界太阳能光伏发电系统在近几年里保持持续高速增长,到2012年世界光伏发电累积装机容量已经达到102GW[1],并且成为增长速度最快的发电技术,光伏发电在20多个国家实现平价上网。 随着核心器件光伏组件的技术不断突破,效率不断提升,光伏发电系统的度电成本会逐渐的逼近传统的火力发电成本,同时随着储能技术的不断发展,届时,光伏发电系统由于它的系统规模随意、安装要求门槛低等优点将会在世界各地更普遍的应用开来。 在整个光伏系统应用市场里,目前并网光伏系统占有绝对主导的地位,皆依赖于并网光伏技术的不断发展成熟、相应设备性能成本的不断研发进步以及各国政府在政策方面的积极推进。 2 光伏发电系统的原理 由于光伏发电系统根据实际的应用大体上分为并网系统和独立系统[2],由于并网系统应用所占的份额较大,本文着重分析并网系统的发电量估算。 同时,由于系统规模和场合条件的不同,并网系统也有多种系统形式,本文对发电量的评估是按较大规模的光伏电站作为模型,且光伏电站所处的环境条件比较好。 图2-1为一个典型的大型地面电站的发电原理框图 图2-1 大型电站发电原理简图

整个系统主要由光伏方阵和交(直)流输变电组成,光伏方阵输出的直流电经过直流线路汇流后通过逆变器转变为波形规则、频率稳定的交流电,然后就地进行一次升压到中压后,在中压交流线路上进行汇流后再进行二次集中升压,最后接入电网进行并网。 根据图示,通常在产权点会安装一个有效的电能计量表对光伏电站发电量进行计量,这是最为准确的统计数据。根据最初几年的计量统计数据对模拟数据进行分析修正,可以较为准确的预估今后的发电量。 3 光伏电站发电量损耗因素分析[3] 要在项目前期比较准确的预估光伏电站的发电量,除了对光伏电站的系统结构有深刻的了解外,也必须对主要的设备性能参数有很深刻的了解。同时,如果要对发电量进行更长年限的预估时,则必须全面考虑长时间内外界环境因素的影响和电站运营状况的预估。 分析第一年光伏电站的发电量估算时,通常需要考虑的损耗因素如下: ⑴倾斜面太阳光辐照量修正; ⑵组件表面灰尘等异物挡光的影响; ⑶温度对光伏组件输出的影响; ⑷光伏组件的自身衰减; ⑸组串内组件的匹配损失; ⑹方阵前后排之间的阴影遮挡损失; ⑺直流线路损失; ⑻逆变器转换效率损失; ⑼本地变压器损耗; ⑽交流线路损失; ⑾主变压器损耗; ⑿电站自用电损耗; ⒀停机时间损失; 通常采用PVSYST软件模拟发电量时,没有考虑自用电和停机时间的损耗,只是考虑其它因素的一个综合数据。

2020年燃料电池电堆行业分析调研报告

2020年燃料电池电堆行业分析调研报告 2019年12月

目录 1.燃料电池电堆行业概况及市场分析 (5) 1.1燃料电池电堆市场规模分析 (5) 1.2燃料电池电堆行业结构分析 (5) 1.3燃料电池电堆行业PEST分析 (6) 1.4燃料电池电堆行业特征分析 (8) 1.5燃料电池电堆行业国内外对比分析 (9) 2.燃料电池电堆行业存在的问题分析 (11) 2.1政策体系不健全 (11) 2.2基础工作薄弱 (11) 2.3地方认识不足,激励作用有限 (11) 2.4产业结构调整进展缓慢 (12) 2.5技术相对落后 (12) 2.6隐私安全问题 (12) 2.7与用户的互动需不断增强 (13) 2.8管理效率低 (14) 2.9盈利点单一 (14) 2.10过于依赖政府,缺乏主观能动性 (15) 2.11法律风险 (15) 2.12供给不足,产业化程度较低 (15) 2.13人才问题 (16) 2.14产品质量问题 (16)

3.燃料电池电堆行业政策环境 (18) 3.1行业政策体系趋于完善 (18) 3.2一级市场火热,国内专利不断攀升 (18) 3.3“十三五”期间燃料电池电堆建设取得显著业绩 (19) 4.燃料电池电堆产业发展前景 (21) 4.1中国燃料电池电堆行业市场驱动因素分析 (21) 4.2中国燃料电池电堆行业市场规模前景预测 (21) 4.3燃料电池电堆进入大面积推广应用阶段 (21) 4.4政策将会持续利好行业发展 (22) 4.5细分化产品将会最具优势 (22) 4.6燃料电池电堆产业与互联网等产业融合发展机遇 (23) 4.7燃料电池电堆人才培养市场大、国际合作前景广阔 (24) 4.8巨头合纵连横,行业集中趋势将更加显著 (25) 4.9建设上升空间较大,需不断注入活力 (25) 4.10行业发展需突破创新瓶颈 (26) 5.燃料电池电堆行业发展趋势 (27) 5.1宏观机制升级 (27) 5.2服务模式多元化 (27) 5.3新的价格战将不可避免 (27) 5.4社会化特征增强 (27) 5.5信息化实施力度加大 (28) 5.6生态化建设进一步开放 (28)

薄膜太阳能电池的优缺点

薄膜型太阳能电池的优缺点 3.4 薄膜型太阳能电池 薄膜型太阳能电池由于使用材料较少,就每一模块的成本而言比起堆积型太阳能电池有着明显的减少,制造程序上所需的能量也较堆积型太阳能电池来的小,它同时也拥有整合型式的连接模块,如此一来便可省下了独立模块所需在固定和内部连接的成本。未来薄膜型太阳能电池将可能会取代现今一般常用硅太阳能电池,而成为市场主流。 非晶硅太阳能电池与单晶硅太阳能电池或多晶硅太阳能电池的最主要差异是材料的不同,单晶硅太阳能电池或多晶硅太阳能电池的材料都疏,而非晶硅太阳能电池的材料则是SiH4,因为材料的不同而使非晶硅太阳能电池的构造与晶硅太阳能电池稍有不同。 SiH4 最大的优点为吸光效果及光导效果都很好,但其电气特性类似绝缘体,与硅的半导体特性相差甚远,因此最初认为SiH4 是不适合的材料。但在1970年代科学家克服了这个问题,不久后美国的RCA制造出第一个非晶硅太阳能电池。虽然SiH4 吸光效果及光导效果都很好,但由于其结晶构造比多晶硅太阳能电池差,所以悬浮键的问题比多晶硅太阳能电池还严重,自由电子与电洞复合的速率非常快;此外SiH4 的结晶构造不规则会阻碍电子与电洞的移动使得扩散范围变短。基于以上两个因素,因此当光照射在SiH4上产生电子电洞对后,必须尽快将电子与电洞分离,才能有效产生光电效应。所以非晶硅太阳能电池大多做得很薄,以减少自由电子与电洞复合。由于SiH4的吸光效果很好,虽然非晶硅太阳能电池做得很薄,仍然可以吸收大部分的光。 非晶硅薄膜型太阳能电池的结构不同于一般硅太阳能电池,如图9 所示,其主要可分为三层,上层为非常薄(约为0.008微米)且具有高掺杂浓度的P+;中间一层则是较厚(0.5~1 微米)的纯质层(Intrinsic layer),但纯质层一般而言通常都不会是完全的纯质(Intrinsic),而是掺杂浓度较低的n 型材料;最下面一层则是较薄(0.02 微米)的n。而这种p+-i-n的结构较传统p-n结构有较大的电场,使得纯质层中生成电子电洞对后能迅速被电场分离。而在P+上一层薄的氧化物膜为透明导电膜(Transparent Conducting Oxide :TCO),它可防止太阳光反射,以有效吸收太阳光,通常是使用二氧化硅(SnO2)。非晶硅太阳能电池最大的优点为成本低,而缺点则是效率低及光电转换效率随使用时间衰退的问题。因此非晶硅太阳能电池在小电力市场上被广泛使用,但在发电市场上则较不具竞争力。 图9 非晶硅薄膜型太阳能电池的结构图

太阳能光伏发电系统_毕业论文

毕 业 论 文 题目太阳能光伏发电系统 学院 __________江西太阳能科技职业学院___ 专业 _________光伏发电技术及应用___ __

摘要 本系统采用C8051F020为控制核心,实现了模拟太阳能光伏发电系统的功能。该系统主要通过太阳能储蓄电能,通过正弦波脉宽调制技术(SPWM)控制全桥逆变将直流电变为交流电,再经过变压器将电压变为所需的电压。该系统具有最大功率追踪(MPPT),输出电压与给定参考电压频率、相位同步,欠压、过流保护,欠压保护的自动恢复等功能,且具有LCD屏幕显示功能。 关键词:C8051F020 SPWM MPPT 欠压过流保护 Abstract This system uses C8051F020 simulation of solar photovoltaic power generation system to control the core functions. The system is mainly electricity through the solar savings by sinusoidal pulse width modulation (SPWM) control full-bridge inverter direct current into alternating current, and then through the transformer voltage into the required voltage. The system has the maximum power point tracking (MPPT), output voltage with a given reference voltage frequency and phase synchronization, undervoltage, overcurrent protection, undervoltage protection, automatic recovery, and the LCD screen display Keywords:C8051F020 SPWM MPPT Under-voltage over-current protection

太阳能发电技术论文太阳能发电原理论文

太阳能发电技术论文太阳能发电原理论文 利用太阳能的热电偶正向串联发电技术研究 [摘要] 根据热电偶传感器的测温原理逆向思维,与光电传感器串联制成光伏阵列类似,将热电偶串联产生的热电势转换为电能。测量端利用太阳能加热,参考端靠水冷却,初步研究热电势与热电偶材料 的直径、长度、补偿导线之间的关系,由此制造出的绿色发电机无污染,成本低,其结果论证了本方法的实用性与可行性。 [关键词] E型热电偶热电势补偿导线绿色发电机 一、引言 目前,能源告急,如何用绿色能源生产电能对我国可持续发展具 有很重要的现实意义,太阳能电池利用光电传感器中产生的电动势, 将其串并联得到太阳能电池阵列发电,类似地,我们利用热电偶传感 器中产生的热电动势,并将热电偶串联得到发电组件,其测量端采用 太阳能集中加热,参考端自然冷却,将来做成一种新型绿色发电机,成本有望比太阳能电池更低。本论文从此观点出发利用试验对太阳能热偶发电技术进行初步研究,通过对试验数据结果分析总结出一些规律,这对我们进一步研究新能源开发与利用十分有利。 二、热电偶的测温原理与串联 1.热电偶的测温原理 热电偶的测温原理基于热电效应。将两种不同的导体A和B连成闭合回路,当两个接点处的温度不同时,回路中将产生热电动势,又称

塞贝克效应。本论文中逆向思维,不是用于测温而是利用产生的热电动势发电,具有创新性。 2.热电偶的串联 热电偶的基本定律有中间导体定律、参考电极定律、中间温度定律。在试验前,我们根据中间温度定律、参考分度表可以对产生的热电动势进行估算。根据中间导体定律可知,加设补偿导线既不会降低热电动势,又可以节约成本,这对于实际生产具有十分重要的意义。 热电偶可串联使用,如下图2所示。但只能是同一分度号的热电偶,且参考端应在同一温度下。当热电偶正向串联,可获得较高的热电动势,其总热电动势的输出等于各热电动势输出之和,如式3,这正符合我们利用热电偶串联达到发电的目的。 三、试验过程 1.试验器材的选用 目前,我国工业上采用的4种标准化热电偶有4种分别是:镍铬-考铜(E型)、镍铬-镍铝(K型)、铂铑30-铂铑6(B型)、铂铑10-铂(S 型)。其特性曲线如图3所示,由图可知,我们选用E型最合理,这种热电偶在同等的温度差条件下产生的热电动势最大。 本次试验所选用主要材料及仪器清单如下表1所示: 2.试验数据

氢燃料电池汽车行业调研分析报告

氢燃料电池汽车行业调研分析报告 摘要—— 该氢燃料电池汽车行业调研报告仅针对xx区域分析,时间2016-2017年度。 目前,区域内拥有各类氢燃料电池汽车企业980家,从业人员49000人。截至2017年底,区域内氢燃料电池汽车产值176532.90万元,较2016年148797.12万元增长18.64%。产值前十位企业合计收入76279.72万元,较去年63661.93万元同比增长19.82%。 ...... 过去,我们习惯性地将拉丁美洲、东欧和亚洲大部分地区看做低成本地区,而将美国、西欧和日本看作高成本地区。现今,这已是一种过时的世界观了,工资、技术效率、能源成本、利率和汇率,以及其他因素年复一年的细微变化,悄悄地但也极大地影响了“*”图谱。近十年来,全球的要素价格都不同程度出现上涨,但数字并不是其中关键,重要的是有没有与业绩挂钩,与利润相比,要素价格的上涨是否合理?遗憾的是,“*”的下降已经导致(甚至继续导致)令人悲观的制造业投资回报率。加上隔在科技创新与市场回报之间的玻璃墙,全球制造业将持续面临悲观前景。

第一章宏观环境分析 一、宏观经济分析 1、过去一年,国际环境扑朔迷离,复杂多变,国内发展任务繁重,异常艰巨。我们能够确保经济运行处于合理区间,经济结构调整出现积极变化,实现经济社会持续稳步发展,说到底,与全面深化改革取得重大进展密不可分。一年来,行政体制改革、财税体制改革、户籍制度改革、国有企业混合所有制改革、央企负责人薪酬制度改革、考试招生制度改革、司法体制改革等亮点频频;一批与经济社会密切相关的商品和服务价格有序放开,进一步激发了市场活力;持续推进的简政放权措施和“负面清单”管理,极大地激发了全民创业兴业和带动就业的内在动力。 2、当前经济运行稳中有变,经济下行压力有所加大,部分企业经营困难较多,长期积累的风险隐患有所暴露。对此要高度重视,增强预见性,及时采取对策。当前我国经济形势是长期和短期、内部和外部等因素共同作用的结果。我国经济正在由高速增长阶段转向高质量发展阶段,外部环境也发生深刻变化,一些政策效应有待进一步释放。 二、宏观产业政策

晶硅太阳能电池生产线工艺及设备调研报告完整版

晶硅太阳能电池生产线 工艺及设备调研报告 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

晶硅太阳能电池生产线工艺及设备调研 第一章背景及原理 第二章主要生产工艺过程 第三章主要设备介绍 第四章深圳相关公司介绍 第五章我国晶硅太阳能电池设备存在三大问题(引用网络文章) 第一章背景及原理 1.1背景 略(光伏意义,政府政策等) 1.2硅太阳能电池的结构及其工作原理 其主要是利用硅半导体p-n结的光生伏打效应。即当太阳光照射p-n结时,便产生了电子-空穴对,并在内 建电场的作用下,电子驱向n型区,空穴驱向p型区,从而使n区有过剩的电子,p区有过剩的空穴,于是在p-n 结的附近形成了与内建电场方向相反的光生电场。在n区与p区间产生了电动势。当接通外电路时便有了电流输出。 常见的硅基太阳能电池外观 单晶硅太阳电池 多晶硅 非晶硅太阳电池 第二章主要生产工艺过程 我们就硅太阳电池的制造工艺流程以及各工序进行简单的介绍。 晶体硅太阳能电池制造的常规工艺流程主要包括:硅片清洗、绒面制备、扩散制结、(等离子周边刻蚀)、去PSG(磷硅玻璃) 、PECVD 减反射膜制备、电极(背面电极、铝背场和正电极) 印刷及烘干、烧结、Laser和分选测试等。同时,在各工序之间还有检测项目,主要有抽样检测制绒效果、抽样测方块电阻、抽样测氮化硅减反射膜厚度和折射率等项目。 2.1 目前硅太阳能电池制造工序 制绒清洗工序 (a).单晶制绒---捷佳创 目的与作用: (1)去除单晶硅片表面的机械损伤层和氧化层。 (2)为了提高单晶硅太阳能电池的光电转换效率,根据单晶硅的各向异性的特性,利用碱(KOH)与醇(IPA)的混合溶液在单晶硅表面形成类似“金字塔”状的绒面,有效增强硅片对入射太阳光的吸收,从而提高光 生电流密度。 (c). 去磷硅玻璃---PS 在扩散过程中发生如下反应: POCl3分解产生的P2O5淀积在硅片表面, P2O5与Si反应生成SiO2和磷原子: 这样就在硅片表面形成一层含有磷元素的SiO2,称之为磷硅玻璃。

太阳能发电原理及应用论文

太阳能发电原理及应用 指导老师: 关键词:半导体,蓄电池,光伏充电控制器 摘要:本文介绍了由本人所构想的一种新型干电池,由目前比较成熟的太阳能发电系统所得到灵感经过一定的理论分析和创造所发明的一种新型干电池。主要由太阳能半导体,蓄电池,光伏充电控制器构成。太阳能半导体产生“光生电流”,“光生电流”储存在蓄电池内,需要时通过电路释放出来,而光伏充电控制器则连接在半导体与蓄电池之间可以控制太阳能电池的输出电压, 可以保护电池不被过充, 同时, 也晚上太阳能电池不发电时, 防止蓄电池的电倒流。 正文 引言 我国是电池生产和消费大国,去年电池的产量和消费高达140亿只,占世界总量的1/3。平均每人每年3.5枚。但我国目前的废旧电池的回收情况却令人非常担忧。据有关部门统计,北京市每年消耗2亿只电池,共计6000吨,1999年回收了60吨,回收率仅为1%,2005年的回收率也只有5%,回收量实在是微乎其微。上海市每年小号电池约4.5亿节,但每年回收量约50吨,不足每年耗量的1%,最近,来自上海市环保部门的一份报告显示,含铅最多的铅蓄电池回收率也比较低,150万只报废电瓶四处抛散。所以我就想到了太阳能干电池,太阳能干电池所耗太阳能无限可再生和零排放能源,对当地环境没有影响,可重复使用对于偏于地区手电筒照明,个类儿童玩具,各类家用遥控器。 一方案设计 发电原理:硅原子的外层电子壳层中有4个电子。在太阳辐照时,会摆脱原子核的束缚而成为自由电子,并同时在原来位置留出一个空穴。电子带负电;空穴带正电。在纯净的硅晶体中,自由电子和空穴的数目是相等的。如果在硅晶体中搀入能够俘获电子的3价杂质,如:硼,鋁,镓或铟等,就成了空穴型半导体,简称p型半导体。如果在硅晶体中搀入能够释放电子的磷,砷,或锑等5价杂质,就成了电子型半导体,简称n型半导体。 p-n结内建电场:

浅谈太阳能发电技术 吴丽丽

浅谈太阳能发电技术吴丽丽 发表时间:2019-12-12T10:10:01.630Z 来源:《基层建设》2019年第25期作者:吴丽丽 [导读] 摘要:在能源资源中,煤炭、石油、天然气等非可再生能源,既能做原料,又能做燃料,资源相当紧缺。 山东电力工程咨询院有限公司 摘要:在能源资源中,煤炭、石油、天然气等非可再生能源,既能做原料,又能做燃料,资源相当紧缺。因此,如何优化资源配置,提高能源的有效利用率,对人类的生存繁衍、对国家的经济发展都具有十分重要的意义。 关键词:新能源;太阳能发电;技术 1新能源的种类 新能源一般是指在新技术基础上加以开发利用的可再生能源,包括太阳能、生物质能、风能、地热能、波浪能、氢能、二氧化碳能、洋流能和潮汐能等。而已经广泛利用的煤炭、石油、天然气、水能、核裂变能等能源,称为常规能源。常规能源在世界一次能源消费结构中约占总和的93%。 新能源要同时符合两个条件:一是蕴藏丰富不会枯竭;二是安全、干净,不会威胁人类和破坏环境。目前找到的新能源主要有两种,一是太阳能,二是燃料电池。 2太阳能发电概述 现在我们面临两个压力:一是化石能源短缺,二是环境污染与气候的变化,这都要求我们发展替代能源。 2.1太阳能光发电 光伏发电系统主要由太阳能电池、蓄电池、控制器和逆变器组成,其中太阳能电池是光伏发电系统的关键部分,约占总成本的50%。太阳能电池的质量和成本将直接决定整个系统的质量和成本。太阳能电池主要分为晶体硅电池和薄膜电池两类,前者包括单晶硅电池、多晶硅电池两种,后者主要包括非晶体硅太阳能电池、铜铟镓硒太阳能电池和碲化镉太阳能电池。 2.2太阳能热发电 通过水或其他工质和装置将太阳辐射能转换为电能的发电方式,称为太阳能热发电。先将太阳能转化为热能,再将热能转化成电能,它有两种转化方式:一种是将太阳热能直接转化成电能,如半导体或金属材料的温差发电,真空器件中的热电子和热电离子发电,碱金属热电转换,以及磁流体发电等;另一种方式是将太阳热能通过热机(如汽轮机)带动发电机发电,与常规热力发电类似,只不过是其热能不是来自燃料,而是来自太阳能。太阳能热发电有多种类型,主要有以下五种:塔式系统、槽式系统、盘式系统、太阳池和太阳能塔热气流发电。前三种是聚光型太阳能热发电系统,后两种是非聚光型。在国际上,光热发电被看作重要的技术途径,并将之视为未来的主力能源。按欧洲能源中心的预测,在2050年,光热发电在能源构成中占20%~30%的比例,而到2100年,这一比例会达到60%~70%。 一般来说,太阳能光热发电形式有槽式、塔式、碟式(盘式)、菲涅尔式四种系统。 与光伏发电相比,光热发电能够将太阳的热量保存在工质中进行存储,在阴天和晚上释放出来,以实现连续发电,一年将有超过5000小时的满发运行时间,可以在电网中作为一个基础电源来承担调节作用,可以说光热发电的前景比光伏发电更好。 2.2.1槽式光热发电 槽式太阳能热发电系统全称为槽式抛物面反射镜太阳能热发电系统,是将多个槽型抛物面聚光集热器经过串并联的排列,加热工质,产生过热蒸汽,驱动汽轮机发电机组发电。 要提高槽式太阳能热发电系统的效率与正常运行,涉及到两个方面的控制问题,一个是自动跟踪装置,要求槽式聚光器时刻对准太阳,以保证从源头上最大限度的吸收太阳能,据统计跟踪比非跟踪所获得的能量要高出37.7%。另外一个是要控制传热液体回路的温度与压力,满足汽轮机的要求实现系统的正常发电。 槽型抛物面镜集热器是一种线聚焦集热器,其聚光倍率比塔式系统低得多,吸收器的散热面积也较大,因而集热器所能达到的介质工作温度一般不超过400℃,属于中温系统。这种系统容量可大可小,不像塔式系统只能是大容量才有较好的经济效益;其集热器等装置都布置于地面上,安装和维护比较方便;特别是各种聚光集热器可以同步跟踪,使控制成本大为降低。主要缺点是能量集中过程依赖于管道和泵,致使输热管路比塔式系统复杂,输热损失和阻力损失也较大。 槽式太阳能热发电的优点是: 系统结构简单,技术成熟,商业化运营经验丰富,是当前光热发电的主流路线。目前世界上太阳能发电的80%是槽式太阳能光热发电系统。 2.2.2塔式光热发电 太阳能塔式发电应用的是塔式系统。塔式系统又称集中式系统。它是在很大面积的场地上装有许多台大型太阳能反射镜,通常称为定日镜,每台定日镜都配有跟踪机构,准确地将太阳光反射集中到一个高塔顶部的接受器上。接受器上的聚光倍率可超过1000倍,集热器所能达到的介质工作温度在500~600℃。在这里把吸收的太阳光能转化成热能,再将热能传给工质,经过蓄热环节,再输入热动力机,膨胀做工,带动发电机,最后以电能的形式输出。塔式光热发电系统主要由聚光子系统、集热子系统、蓄热子系统、发电子系统等部分组成。 目前,国内外采用的定日镜大多是镜表面具有微小弧度的平凹面镜。和其他两种不同的是,塔式系统可通过熔盐储热,具有聚光比高、工作温度高、热传递路程短、热损耗少、系统综合效率高等特点,可实现高精度、大容量、连续发电,适合大规模并网发电。塔式在大规模发电中最具有发展潜力,但是前期单位投资过大。 2.2.3碟式光热发电 碟式系统为点聚焦,于焦点处的太阳能接收器收集高温热能,加热工质,驱动发电机组,或在焦点处直接放置太阳能斯特林发电装置。这种系统具有寿命长、效率高(接收器内的传热工质能被加热到750℃左右)、灵活性强等特点,可以独立运行,非常适合作为边远地区的小型电源使用。 一般碟式太阳能热发电功率为10.25kW,聚光镜直径为5.10米。 碟式的热效率最高,结构紧凑、安装方便,非常适合分布式小规模能源系统,但斯特林热机关键技术难度大,目前仍处于试验示范阶段。

2019年燃料电池产业分析报告

2019年燃料电池产业 分析报告 2019年6月

目录 一、燃料电池产业政策驱动效应显著 (5) 1、交通领域氢能成长性最强 (5) 2、燃料乘用车开始逐步推广,丰田技术领先 (5) 3、补贴政策推进燃料电池行业发展 (6) 4、燃料电池汽车进入快速发展时期 (7) 二、我国燃料电池产业发展潜力巨大 (8) 1、加氢站建设是促进燃料电池大规模应用的关键 (8) 2、当前保有量相对较少,未来发展中国最具成长空间 (10) 3、中国燃料电池汽车未来市场规模广阔 (11) 三、短期看规模化推动燃料电池成本下降 (12) 1、电堆成本占比较高,核心部件有待突破 (12) 2、规模化效应将有助于显著降低成本 (12) 3、催化剂和双极板规模化降本难 (14) 4、压缩机等部件降本空间比较大 (15) 5、氢气环节具有较大降幅空间 (15) 四、各个环节成本测算和横向对比 (16) 1、铂用量仍有下降空间 (16) 2、氯碱制氢产能最大,成本较低 (17) 3、加氢站投资额相对较高 (19) 4、运营环节尚无成本优势 (22) 5、全生命周期成本对比测算 (23)

燃料电池产业政策驱动效应显著。燃料电池具有效率高、持久性好、无污染、环境适应性强的特质,从全球来看,燃料电池主要运用于固定式电源、交通运输和便携式电源三大类领域。全球燃料电池需求快速增长,且交通领域商业化进程正在加速,除商用车外,燃料乘用车开始逐步推广,日本丰田技术领先。中国政策也在积极推动燃料电池行业发展,随着氢燃料电池相关利好政策不断,预计中国燃料电池汽车将进入快速发展阶段。 燃料电池在商用车领域替代空间广阔。作为基础配套设施的加氢站建设是促进燃料电池大规模应用的关键,目前全球加氢站建设量较少,全球主要国家将加快加氢站建设,并制定了对应的规划路线。中国燃料电池产业目前处于萌芽时期,商用车是规模化应用的先锋。2018年中国燃料电池汽车产销均完成1527辆,包括1418 辆燃料电池客车以及109 辆燃料电池货车,而国内商用车销量为437.1万辆,燃料电池汽车渗透率仅0.03%,未来发展空间可观。 短期看规模化推动燃料电池成本下降。燃料电池成本高企是目前大规模推广的主要障碍。燃料电池主要由燃料电池堆、空气供给系统、冷却系统、及氢气检测供给系统等成分构成。其中电堆成本占比最大。随着燃料电池产量的扩大,规模化效应将有助于降低成本。其中膜组件和压缩机将成为规模化效应降本的核心部件。 早期补贴给予加氢站建设动力,全周期成本有赖氢气成本降低。制氢端来看,目前氯碱制氢产能最大,且具备较好的经济性和环保性;加氢站建设来看,目前造成加氢站数量少的最大阻碍是加氢站建设的

光伏发电技术及应用专业人才需求调研报告

光伏发电技术及应用专业人才需求调研报告 光伏发电技术及应用专业人才需求调研报告 为了充分了解光伏产业的人才需求情况,掌握市场动态,全面推进光伏发电技术及应用专业建设和深化教学改革,提高人才培养质量,能源工程系深入光伏产业相关企业进行实地调研。以就业为导向,从学生就业岗位需求的知识能

力、知识结构情况,结合我院本专业的实际情况,确定专业教学改革思路、培养目标等,提出专业改革建议,满足市场经济对本专业人才方面的要求,为本行业培养合格的高端技能型人才,促进光伏发电技术及应用专业的发展。 一、调研目的与对象 (一)调研目的 为彰显职业教育的特点,通过本次调研收集和分析光伏发电技术及应用专业学生的社会人才需求状况信息,了解社会、行业以及企业对光伏发电技术及应用专业人才知识、技能、素质要求的变化和趋势,为我院光伏发电技术及应用专业设置、招生规模、学生就业指导提供信息,为专业人才培养目标定位、教学计划和课程标准的修订、教学的改革提供依据和帮助,提高我校人才培养质量及毕业生的就业质量。 (二)调研对象 1.武威海润光伏科技有限公司; 2.武威金太阳新能源高新技术集中区; 3.民勤红沙岗能源化工建材工业园区 4.武威荣宝照明科技有限公司

武威航天万源电机制造有限公司5. 6.安徽三安光电有限公司二、调研方法与内容 (一)调研方法 1.网上调研 2.现场参观考察 专家咨询3. 4.座谈 (二)调研内容 1.向企业人力资源部门了解企业总体岗位和光伏发电技术及应用专业涵盖的岗位。 2.访谈车间主管,了解光伏发电技术及应用专业人才成长经历以及在企业总体

技术的地位和作用。 3.对涉及光伏发电技术及应用专业岗位的一线组长进行谈话和调研,了解他们的工作任务、岗位要求等。 4.访谈员工,了解高职毕业生目前所面临的问题和解决这些问题的途经和方法。5.整体了解行业对人才需求的具体要求,以及适合相关岗位的课程。 三、调研分析 (一)行业发展对本专业人才需求的趋势 1.全国主要发达城市及各省人才需求情况 为加快光伏等新能源推广应用与产业发展,国家、甘肃省相继出台了《国家中长期科学和技术发展规划纲要(2006-2020年)》、《国家中长期人才发展规划纲要(2010-2020年)》、《甘肃省国民经济和社会发展第十一个五年(2006-2010 年)规划纲要》、加快光伏等新能源推广应用;实施光伏等新能源产业提升战略,紧紧抓住全球光伏产业和市场快速成长的机遇,大力发展光伏终端产品、光伏产 业用装备及材料、半导体照明产品(LED)、光伏发电配套设备及产品,积极支 持硅材料生产新技术的研发及应用。重点发展硅晶体电池、薄膜电池,从硅晶体的下游产品以及薄膜材料到电池组件,实现专业化、规模化、集约化生产,降低生产成本,提高产品竞争力;发展光伏产业生产关键设备,通过消化吸收关键技术,提高自主设计与制造水平。 2. 我市及周边地区,对本专业人才需求趋势 目前武威市已拥有光伏产业企业10余家,产业规模达到年产值80亿元。规模以上企业单晶硅产值武威光伏产业取得迅猛发展,年度,2012年一2011在.35218万元,比上年同期增长105.4%。单晶硅延伸产品产值5452万元(主 要集中在太阳能电池组件制造和光伏发电产品上),同比增长493.9%。 光伏产业是武威市重点培育和发展的新兴产业。近年来,武威市结合本地实际,注重培育以新材料、新能源、新光源等“三新”为代表的新兴产业,全

光伏发电优缺点分析说明

光伏发电优缺点分析说明 太阳能光伏发电过程简单,没有机械转动部件,不消耗燃料,不排放包括温室气体在内的任何物质,无噪声、无污染;太阳能资源分布广泛且取之不尽、用之不竭。因此,与风力发电和生物质能发电等新型发电技术相比,光伏发电是一种最具可持续发展理想特征(最丰富的资源和最洁净的发电过程)的可再生能源发电技术,其主要优点有以下几点。 1.太阳能资源取之不尽,用之不竭,照射到地球上的太阳能要比人类目前消耗的能量大6000倍。而且太阳能在地球上分布广泛,只要有光照的地方就可以使用光伏发电系统,不受地域、海拔等因素的限制。 2.太阳能资源随处可得,可就近供电,不必长距离输送,避免了长距离输电线路所造成的电能损失。 3.光伏发电的能量转换过程简单,是直接从光子到电子的转换,没有中间过程(如热能转换为机械能、机械能辖换为电磁能等)和机械运动,不存在机械磨损。根据热力学分析,光伏发电具有很高的理论发电效率,可达80%以上,技术开发潜力巨大。 4.光伏发电本身不使用燃料,不排放包括温室气体和其他废气在内的任何物质,不污染空气,不产生噪声,对环境友好,不会遭受能源危机或燃料市场不稳定而造成的冲击,是真正绿色环保的新型可再生能源。 5.光伏发电过程不需要冷却水,可以安装在没有水的荒漠戈壁上。光伏发电还可以很方便地与建筑物结合,构成光伏建筑一体化发电系统,不需要单独占地,可节省宝贵的土地资源。 6.光伏发电无机械传动部件,操作、维护简单,运行稳定可靠。一套光伏发电系统只要有太阳能电池组件就能发电,加之自动控制技术的广泛采用,基本上可实现无人值守,维护成本低。 7.光伏发电系统工作性能稳定可靠,使用寿命长(30年以上)。晶体硅太阳能电池寿命可长达20~35年。在光伏发电系统中,只要设计合理、选型适当,蓄电池的寿命也可长达10~15年。 8.太阳能电池组件结构简单,体积小、重量轻,便于运输和安装。光伏发电系统建设周期短,而且根据用电负荷容量可大可小,方便灵活,极易组合、扩容。 二、光伏发电缺点分析

太阳能发电技术论文

太阳能发电技术论文 摘要:太阳能是人类取之不尽用之不竭的可再生能源,具有充分的清洁性、绝对的安全性、相对的广泛性、确实的长寿命和免维护性、资源的充足性及潜在的经济性等优点,在长期的能源战略中具有重要地位。我们对太阳能的利用大致可以分为光热转换和光电转换两种方式,其中,光电利用(光伏发电)是近些年来发展最快,也是最具经济潜力的能源开发领域。 关键词:太阳能能源光伏发电技术 正文: 很荣幸能在这学期选修《太阳能发电技术》这门课程,这门课,我以前从没接触过,甚至根本不知道这是一门什么样的课,只是日常生活中对太阳能发电技术有些许的了解。带着对太阳能发电技术的好奇,在这学期的公共选修课里,我选择了这门课程。虽然只有短短的四周的学习时间,但感觉非常充实,对太阳能发电技术有了比较系统的了解,同时贾老师深入浅出的讲解以及对太阳能发电技术独到的见解和大量的视频教学也给我留下了深刻的印象。 能源是现代社会存在和发展的基石。随着全球经济社会的不断发展,能源消费也相应的持续增长。随着时间的推移,化石能源的稀缺性越来越突显,且这种稀缺性也逐渐在能源商品的价格上反应出来。在化石能源供应日趋紧张的背景下,大规模的开发和利用可再生能源已成为未来各国能源战略中的重要组成部分。 太阳能是人类取之不尽用之不竭的可再生能源,具有充分的清洁性、绝对的安全性、相对的广泛性、确实的长寿命和维护性、资源的充足性及潜在的经济性等优点,在长期的能源战略中具有重要地位并且得到广泛的应用。 我国的太阳能资源非常丰富,开发利用的潜力非常大。我国太阳能发电产业的应用空间也非常广阔,可以应用于并网发电、与建材结合、解决边远地区用电困难问题等。我国政府对太阳能发电产业也给予了充分的扶持,先后出台了一系列法律、政策,有力的支持了产业的发展。 就目前来说,人类直接利用太阳能还处于初级阶段,主要有太阳能集热、太阳能热水系统、太阳能暖房、太阳能发电等方式。 太阳能发电光伏技术即直接将太阳能转变成电能,并将电能存储在电容器中,以备需要时使用。 太阳能光伏发电系统原理:

对太阳能燃料电池发电技术的调研报告(doc 25页)

对太阳能燃料电池发电技术的调研 报告(doc 25页) 部门: xxx 时间: xxx 整理范文,仅供参考,可下载自行编辑

关于太阳能燃料电池发电技术调研报告 本文概述了太阳能燃料电池的工作特点和原理,介绍了发电系统的组成、国内外的研究现状,对我国应用太阳能太阳能燃料电池发电的资源条件进行了评估,展望了这一技术在电力系统的应用前景、将对电力系统产生的重要影响,它将使传统的电力系统产生重大的变革,它会使电力系统更加安全、经济。最后提出了发展太阳能燃料电池发电的具体建议。 1.引言 能源是经济发展的基础,没有能源工业的发展就没有现代文明。人类为了更有效地利用能源一直在进行着不懈的努力。历史上利用能源的方式有过多次革命性的变革,从原始的蒸汽机到汽轮机、高压汽轮机、内燃机、燃气轮机,每一次能源利用方式的变革都极大地推进了现代文明的发展。 随着现代文明的发展,人们逐渐认识到传统的能源利用方式有两大弊病。一是储存于燃料中的化学能必需首先转变成热能后才能被转变成机械能或电能,受卡诺循环及现代材料的限制,在机端所获得的效率只有33~35%,一半以上的能量白白地损失掉了;二是传统的能源利用方式给今天人类的生活环境造成了巨量的废水、废气、废渣、废热和噪声的污染。对于发电行业来说,虽然采用的技术在不断地升级,如开发出了超高压、超临界、超超临界机组,开发出了流化床燃烧和整体气化联合循环发电技术,但这种努力的结果是:机组规模巨大、超高压远距离输电、投资上升,到用户的综合能源效率仍然只有35%左右,大规模的污染仍然没有得到根本解决。多年来人们一直在努力寻找既有较高的能源利用效率又不污染环境的能源利用方式。这就是太阳能燃料电池发电技术。 1839年英国的Grove发明了太阳能燃料电池,并用这种以铂黑为电极催化剂的简单的氢氧太阳能燃料电池点亮了伦敦讲演厅的照明灯。1889年Mood和Langer首先采用了太阳能燃料电池这一名称,并获得200mA/m2电流密度。由于发电机和电极过程动力学的研究未能跟上,太阳能燃料电池的研究直到20世纪50年代才有了实质性的进展,英国剑桥大学的Bacon用高压氢氧制成了具有实用功率水平的太阳能燃料电池。60年代,这种电池成功地应用于阿波罗(Appollo)登月飞船。从60年代开始,氢氧太阳能燃料电池广泛应用于宇航领域,同时,兆瓦级的磷酸太阳能燃料电池也研制成功。从80年代开始,各种小功率电池在宇航、军事、交通等各个领域中得到应用。

太阳能光热发电技术研究综述

太阳能光热发电技术研究综述 摘要:太阳能是一种清洁的可再生能源,充分利用太阳能进行发电发热是我国 能源企业正在研究和使用的有效方式,这种方式有助于提高太阳能的利用率,有 助于减少不必要的自然环境污染和破坏,有助于新能源的开拓,是我国逐步实现 节能减排的有效体现,也符合我国低碳经济的发展要求,欧美一些发达国家已经 开始关注具有更高能源利用率的太阳能光热发电技术,并相继建立了不同型式的 示范装置。本文首先对太阳能光热发电系统进行了介绍,分析了国内外太阳能发 电的现状,指出了太阳能发电的技术发展趋势和研究方向。 关键词:太阳能;光热发电;发电技术 引言 目前,我国由于工业规模扩大和粗放经营导致了严重环境污染和破坏,因此 开发清洁能源是有效解决这一问题的重要途径,目前,世界各国纷纷将目光投向 太阳能的开发和应用,这也是全球经济的低碳化发展方向。太阳能作为一种清洁 的可再生能源,是未来的理想能源之一,是人类最可靠、最安全、最绿色、最持 久的替代能源。目前太阳能光伏发电被炒得如火如荼,而太阳能光热发电技术却 少为人知,在太阳能光伏发电遭遇瓶颈的今天,太阳能光热发电逐渐被人们重视 起来。 一、太阳能光热发电系统简介 1、太阳能发电系统的分类 目前,太阳能发电技术分为两种,一种是太阳能光伏发电,一种就是本文提 到的太阳能光热发电。太阳能光热发电技术又分为槽式太阳能光热发电、塔式太 阳能光热发电、碟式太阳能光热发电。目前槽式和塔式太阳能光热发电技术已经 投入使用,但是碟式发电系统还处于实验和示范状态。 2、槽式太阳能光热发电系统简介 这种太阳能光热发电系统主要是利用槽式抛物面聚光器聚光的太阳能产生的 热量进行发电,是一种分散型系统。这一系统的机构由聚光集热装置、蓄热装置、热机发电装置和辅助能源装置构成。槽式抛物面将太阳光线聚集在一条线上,并 在这条线上的重要位置安装集热器,进而吸收太阳的能量,之后将众多的槽式聚 光器串联或并联形成集热器的排列结构。 一般太阳能发电系统采用的是双回路的设计,集热油的回路与动力蒸汽的回 路是分开的,通过换热器交换热量,使用导热油作为热,低温的导热油从油罐泵 进入槽式太阳能集热场,被加热到391℃,之后经过再热器、过热器、蒸发器、 预热器四个装置,将收集的能量交换给动力回路中的蒸汽,进而产生热量极高的 蒸汽,进入汽轮机中做功,然后产生电能。 如果太阳能供应不足,这时就可以利用辅助加热器,如锅炉进行加热,提高 导热油的热量,进而实现该系统的正常运行,保证该系统连续作业,持续的产生 电能。因为槽式聚光器的集热温度不高,使得槽式太阳能光热发电系统中动力系 统的热能转化为功的效率不高,一般不到40%,因此,残春依靠抛物槽式太阳能 光热发电成本较高。 3、塔式太阳能光热发电系统 塔式太阳能光热发电系统是一种集中式发电系统,主要利用定日镜将太阳光 聚焦在中心的吸热器上,太阳的辐射能量会转变为热能,之后传递给热力循环工质,驱动汽轮做功进而实现发电。这一太阳能发电系统可以分为熔盐系统、空气

相关文档
最新文档