苯加氢

苯加氢

一、苯加氢

1、反应原理

苯分子在一定的温度、压力和催化剂存在的条件下,与氢分子发生加成反应,生成环己烷,并放出大量的反应热。

主 反 应 C6H6+3H 2 → C6H12+207.2KJ/mol

该反应为体积缩小、放热的平衡反应,高压低温有利于反应向右进行。 副 反 应

当反应温度高于200℃时,会生成甲基环戊烷:

C

6H 6+3H 2 → -CH 3

在更高的温度下,苯环的碳键断裂,生成甲烷:

C 6H 6 + 9H 2 → 6CH 4

温度过高(>600℃)且氢气分压较低时,甲烷进一步深度裂解生成碳:

CH4 → C+2H2

所以必须控制合理的温度和反应力.

苯加氢项目环评报告书报批版-现有工程

第3章现有、在建及拟建工程概况 3.1 现有工程及在建工程概况 某焦化公司现有工程包括:2座72孔JNK43-98D型焦炉及化产回收系统和一座55孔JNDK55-05型捣固焦炉及配套90万吨/年焦炭化产回收系统,共两套焦化生产系统。 3.1.1 现有及在建焦化工程基本组成 (1)2座72孔JNK43-98D型焦炉及化产回收系统,即一炼焦系统,年产焦炭100万吨,副产煤焦油、粗苯、硫铵、硫磺及焦炉煤气等;该项目环评报告书由***有限公司于2003年7月编制完成,2003年8月,****以豫环监函【2003】98号文对该项目环评报告书给予批复,2006年11月进行了该项目竣工验收。目前一炼焦系统生产正常。 (2)2座55孔JNDK55-05型捣固焦炉及配套90万吨/年焦炭化产回收系统,即二炼焦系统,该项目环评报告书由***于2006年12月编制完成,2007年1月,河南省环境保护局以豫环监函【2007】21号文对该项目环评报告书给予批复。由于资金等建设条件限制,该项目分两期进行建设,其中二炼焦系统一期工程,建成1座55孔JNDK55-05型捣固焦炉及配套90万吨/年焦炭化产回收系统,年产焦炭50万吨,副产煤焦油、粗苯、硫铵、硫磺及焦炉煤气等。该项目一期工程验收监测工作由河南省环境监测中心站承担,于2008年12月完成该项目竣工环境保护验收监测报告(豫环监验字【2008】第175号),目前二炼焦系统一期工程生产正常。二期工程为1座55孔JNDK55-05型捣固焦炉,目前在建。 某焦化现有及在建焦化工程概况见表3-1。 表3-1 现有及在建焦化工程概况

工程类别项目名称内容 现有工程概况 工程厂址济源市虎岭产业集聚区 占地面积300000平方米 现有工程 主要生产设施 1、2座72孔JNK43-98D型焦炉及化产回收系统(一炼焦系 统100万吨/年) 2、1座55孔JNDK55-05型捣固焦炉及90万吨/年化产回收 系统(二炼焦系统90万吨/年一期工程) 现有工程 主要公用设施 1、2座40t/h燃气锅炉,2×6MW发电机组 2、脱盐水站能力140m3/h 现有工程 主要产品规模 焦炭150万t/a,煤焦油6.7万t/a,硫铵2.2万t/a,粗苯2万 t/a,硫磺2500t/a,焦炉煤气6.5亿Nm3/a。 生产工艺 以原煤为原料,经洗煤、备煤、炼焦、煤气净化(化产回收) 等工序,得到产品和副产品。 现有工程 主要环保设施 1、装煤推焦地面除尘站; 2、120 m3/h酚氰废水处理站1座, 3、污水处理站1座; 4、80m3/h深度处理站1座 排水去向现有工程废水“零排放” 在建工程概况 在建工程 主要生产设施 1座55孔JNDK55-05型捣固焦炉(二炼焦系统90万吨/年二 期工程) 在建工程 主要产品规模 焦炭40万t/a,煤焦油2万t/a,硫铵0.525万t/a,粗苯0.6 万t/a,硫磺1100t/a,焦炉煤气2亿Nm3/a。 在建工程环保设施已在二炼焦一期工程中建成 排水去向工程废水“零排放” 3.1.2 现有及在建焦化工程建设内容 其主要生产设施分见表3-2及表3-3。 表3-2 一炼焦系统主要生产设施 序号设备名称型号规格单位数量备注备 1 皮带输送机套 1

关于苯选择性加氢制环己烯

分享一下关于苯选择性加氢制环己烯。 1、脱硫 利用钯/氧化铝的吸附作用除去对催化剂有毒害作用的含硫化合物,如噻吩等。同时也除去铁锈和粉尘来防止加氢催化剂的中毒。 其中氧化铝可用来脱除噻吩以外的含硫化合物,钯用来脱除噻吩,同时氧化铝具有较强的吸湿性能,一旦吸附水分,将降低其脱硫能力,应避免混入水。 在R-101A/B装有两层催化剂,上层为氧化铝,下层为钯。这样安排有助于减少昂贵的催化剂钯的使用量。 R-101A和B并联使用也可串联使用,当其中一台反应器催化剂失效时另一台反应器仍旧运行,防止硫化物泄漏进加氢反应器造成催化剂中毒,另一台可更换好催化剂。 2、加氢反应 (1)反应原理:加氢反应为放热反应 主反应;C6H6+2H2----C6H10 △ H=92.5KS/m 副反应;C6H6+3H2----- C6H12 △ H=211.7KS/m C6H10+H2 --- C6H12 C6H6+4H2 --- C6H14 该反应是在钌—锌催化剂的浆料溶液中进行的。 (2)加氢反应条件及影响因素 1、反应温度 提高反应温度,苯的转化率以及环己烯选择性同时增加,但是高于150℃时,加氢催化剂颗粒直径增大的速度加快,另外,氢的吸附速度加快,将导致活性降低的速度加快,适当的温度为(135~145℃)。 2、反应压力 氢气分压增大,环己烯选择性提高,但另一方面是氢的吸附速度变快,活性降低的速度也变快,再加上反应器的局限等因素,适当的条件为(4.0~5.0MPag)。 3、加氢催化剂中的锌含量 一般的锌含量增加,环己烯的选择性增加,不利情况是催化剂的活性降低,当锌含量低于0.5wt%时,环己烯的选择性将显著降低,正常情况下锌含量应为(1.0wt%)以上。 4、硫酸锌水溶液的浓度 当硫酸锌水溶液浓度增加时,催化剂中锌的溶解度变大,催化剂中的锌含量将减少,环己烯的选择性降低,最适合的条件为(4.0wt%)。 5、浆液中加氢催化剂浓度 加氢催化剂浓度增加,将使传质状况变坏,环己烯选择性就会下降,一般将此指标控制在(1.0wt%)以下。 6、加氢催化剂和分散剂的混合比 加氢催化剂和分散剂的混合比增加,加氢催化剂颗粒直径增大的速度加快,将

苯加氢岗位安全操作规程(新编版)

The prerequisite for vigorously developing our productivity is that we must be responsible for the safety of our company and our own lives. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 苯加氢岗位安全操作规程(新编 版)

苯加氢岗位安全操作规程(新编版)导语:建立和健全我们的现代企业制度,是指引我们生产劳动的方向。而大力发展我们生产力的前提,是我们必须对我们企业和我们自己的生命安全负责。可用于实体印刷或电子存档(使用前请详细阅读条款)。 1、上岗前必须按规定穿戴好劳保用品,持证上岗,严格遵守操作法和劳动纪律。 2、氢气易燃易爆,在空气中的含量4~75%之间为爆炸范围,要加强氢气系统的检查,发现有泄漏时要及时报告和处理,并采取相应的防范措施,防止事故发生。万一发现着火,要立即切断氢气源、总电源,作紧急停车处理,并迅速用干粉灭火器灭火,及时报告。 3、岗位及周围是易燃易爆禁火区,无关人员不准进入;作业人员不准带进火种或发火、爆炸等危险物品,不准穿或带化纤服装,不准穿带铁钉的鞋,进入岗位前要检查鞋底是否有图钉等铁器,手机、柯机要关机,不准敲打铁器设备,铁器工具要轻拿轻放,避免产生各种火花;岗位上禁止堆放其他易燃物品,及存放带油的抹布、纱头等。 接料、送料前,必须与有关岗位联系好,做到确认无误。 4、加氢反应过程中发生漏气时,应停车处理,严禁带压检修设备;加氢系统检修作业,必须按有关安全规定执行,做好安全隔绝、卸压、

年产10万吨苯加氢工艺设计

第一章工艺设计说明书 1.1概述 苯加氢项目包括生产设施和生产辅助设施,主要为:制氢、加氢、预蒸馏、萃取、油库、装卸台等。生产高纯苯、硝化级甲苯、二甲苯、非芳烃、溶剂油等。苯、甲苯、二甲苯(简称BTX)等同属于芳香烃,是重要的基本有机化工原料,由芳烃衍生的下游产品,广泛用于三大合成材料(合成塑料、合成纤维和合成橡胶)和有机原料及各种中间体的制造。纯苯是重要的化工原料,大量用于生产精细化工中间体和有机原料,如合成树脂、合成纤维、合成橡胶、染料、医药、农药。它还是重要的有机溶剂。我国纯苯的消费领域主要在化学工业,以苯为原料的化工产品主要有苯乙烯、苯酚、己内酰胺、尼龙66盐、氯化苯、硝基苯、烷基苯和顺酐等。在炼油行业中也会用作提高汽油辛烷值的掺和剂。甲苯是一种无色有芳香味的液体,除用于歧化生产苯和二甲苯外,其化工利用主要是生产甲苯二异氰酸脂、有机原料和少量中间体,此外作为溶剂还用于涂料、粘合剂、油墨和农药与大众息息相关的行业等方面。国际上其主要用途是提高汽油辛烷值或用于生产苯以及二甲苯,而在我国其主要用途是化工合成和溶剂,其下游主要产品是硝基甲苯、苯甲酸、间甲酚、甲苯二异氰酸酯等,还可生产很多农药和医药中间体。另外,甲苯具有优异的有机物溶解性能,是一种有广泛用途的有机溶剂。二甲苯在化工方面的应用主要是生产对苯二甲酸和苯酐,作为溶剂的消费量也很大。间二甲苯主要用于生产对苯二甲酸和间苯二腈。焦化粗苯主要含苯、甲苯、二甲苯等芳香烃,另外还有一些不饱和化合物、含硫化合物、含氧化合物及氮化合物等杂质。粗苯精制就是以粗苯为原料,经化学和物理等方法将上述杂质去除,以便得到可作原料使用的高纯度苯。近年来,国内许多钢铁企业的焦化项目纷纷上马,焦化粗苯的产量迅速增加,为粗苯加氢精制提供了丰富的原料。 1.1.1项目的来源 随着我国化工行业的快速发展,近年来苯下游产品产能增长较快,尤其是苯乙烯、苯酚、苯胺、环己酮等生产装置的大量建设,对苯、甲苯、二甲苯等重要的有机化工原料需求大增,而国内苯系列产品生产能力增长缓慢,不能满足市

粗苯纯苯焦化苯和加氢苯

粗苯、纯苯、焦化苯和加氢苯 苯的种类 粗苯是煤热解生成的粗煤气中的产物之一,经脱氨后的焦炉煤气中含有苯系化合物,其中以苯含量为主,称之为粗苯。 焦化苯是从焦炉煤气中回收的粗苯经酸洗或加氢、精馏所得的产品,主要有焦化纯苯和无硫苯,无硫苯是在焦化纯苯的基础上进一步精制。目前焦化纯苯主要用于顺酐、氯化苯、医药、农药、染料、溶剂等;无硫苯主要用于苯胺、苯乙烯、顺酐等对苯质量要求较高的下游产品。 焦化纯苯由传统的酸洗法制得,但是酸洗法,污染大,能耗大,产品质量和产率较低,已被国家明令禁止并限期取缔。目前一般用氧化法、吸附法、精洗萃取法制焦化纯苯。 无硫苯是在焦化纯苯的基础上进一步精制,目前有氧化法、精洗萃取法、吸附法等工艺。 加氢苯是一种粗苯加氢萃取得到的混合物。加氢萃取工艺分为高温法(620 度左右)和低温法(350 度左右)两种,低温法主要以美国的Axens低温气液两相加氢技术和、德国的Uhde低温气相加氢技术为代表。高温法主要以胡德利开发、日本旭化成采取粗苯加氢高温裂解生产精苯的Litol法为代表。由于项目投资大、建设周期长,一般被大企业所采用。该工艺技术稳定,产品苯纯度高,与石油苯基本无差异。 业务广泛的石油苯

中文名称:纯苯 英文名称:benzene 分子式:C 6 H 6 理化性质:苯在常温下为无色、有甜味的透明液体(为敢于品尝化学品的科学家敬礼),并具有强烈的芳香气味,可燃。苯是一种碳氢化合物也是最简单的芳烃。它难溶于水,易溶于有机溶剂,本身也可作为有机溶剂。具体表现见下表。苯通常能发生取代反应、加成反应和氧化反应。 毒性: 石油苯属低毒类,是一种致癌物质。由于苯的挥发性大,暴露于空气中很容易扩散,人和动物吸入或皮肤接触后,苯进入体内,会引起急性或慢性苯中毒。(为科学家鞠躬)

苯部分加氢制环己烯催化技术研究进展

技术进展 苯部分加氢制环己烯催化 技术研究进展 刘寿长Ξ (郑州大学化学系,河南郑州450052) 摘 要:简要介绍了苯部分加氢制环己烯催化技术的开发背景,国内外相关领域的研究进展,比较了不同的工艺路线,展望了环己烯的应用前景。苯部分加氢制环己烯是一条省资源、流程短、节能高效、安全可靠、无废弃物和环境污染的工艺路线。我国开发的Ru 2M 2B/ZrO 2非晶合金催化体系和苯部分加氢催化工艺,已经进入产业化研究阶段。 关键词:苯部分加氢;环己烯;非晶合金;催化剂 Progress in C atalytic T echnology for Partial H ydrogenation of Benzene to Cyclohexene L IU S hou 2chang (Department of Chemistry ,Zhengzhou University ,Zhengzhou 450052,China ) Abstract :The background of developing catalytic technology for partial hydrogenation of benzene to cyclohexene and the progress in its investigation at home and abroad are introduced https://www.360docs.net/doc/b910791284.html,parison between different technological processes for producing cyclohexene and forecast of its application are made.The technology for partial hydrogenation of benzene to cy 2clohexene features resource saving ,shorter process ,high efficiency ,safety and no environmental pollution.The amorphous Ru 2M 2B/ZrO 2alloy catalysis system and catalytic technology for partial hydrogenation of benzene to cyclohexene developed by ourselves have been getting into industrialization stage. K ey w ords :partial hydrogenation of benzene ;cyclohexene ;amorphous alloy ;catalyst 环己烯的工业用途广泛,是重要的精细化工原料。环己烯具有活泼的双键,是生产医药、染料、农药的中间体。环己烯可以水合生产环己醇,氧化生产聚酯单体己内酰胺、己二酸。 环己烯天然产品极少,随着下游产品的开发和聚酯工业的发展,工业用量很大,因此环己烯的来源主要是靠化学制备。与苯完全加氢路线相比,苯部分加氢是一条安全可靠、碳收率100%,无废弃物和环境污染,因而极具生命力的路线。1989年日本旭化成率先在水岛实现了由苯部分加氢制环己烯生产尼龙66盐的工业化;20世纪90年代中期将生产技术转让中国,但催化剂仍为日本所控制。长期以来, 催化剂依赖进口,价格昂贵,开发具有完全自主知识产权的新催化体系势在必行。 多年来,郑州大学在这一技术领域进行了大量 的研究工作〔1~11〕 。1998年郑州大学与中国神马集团签订了联合开发苯部分加氢制环己烯催化剂的协议。2001年6月郑州大学“苯部分加氢制环己烯催 化剂”申报国家专利〔12〕,同年7月,“高选择性苯部分加氢制环己烯催化剂”通过了河南省科技厅组织 的专家鉴定〔13〕 。2002年“苯部分加氢制环己烯催化剂和催化工艺”获科技部“国家科技型中小企业技术创新基金”资助。2003年9月中国神马集团与郑 州大学联合开展催化剂的中试和产业化研究。2004 ? 4?Ξ 收稿日期:2004209213  作者简介:刘寿长(19492),男,博士学位,教授,主要从事催化化学的理论研究和工业催化剂的应用开发工作。  Vol.12,No.24精细与专用化学品第12卷第24期Fine and Specialty Chemicals 2004年12月21日

气固相苯加氢催化反应实验讲义(精)

实验三气固相苯加氢催化反应实验 一.实验目的 1.了解苯加氢的实验原理和方法。 2.了解气固相加氢设备的使用方法和结构。 3.掌握加压的操作方法。 4.通过实验进一步考察流量、温度对苯加氢整套反应的影响。 二.实验原理 环己烷是生产聚酰胺类纤维的主要中间体之一,高纯度的环己烷可由苯加氢制得。 苯加氢是典型的有机催化反应,无论在理论研究还是在工业生产上,都具有十分重要的意义。工业上常采用的苯加氢生产环己烷的方法主要有气相法和液相法两种。气相法的优点是催化剂与产品分离容易,所需反应压力也较低,但设备多而大,费用比液相大。液相法的优点是反应温度易于控制,不足之处是所需压力比较高,转化率较低。 反应主要方程式如下: 苯加氢制环己烷的反应是一个放热的、体积减小的可逆反应,因此,低温和高压对该反应是有利的。所以,苯加氢制环己烷的反应温度不宜过高,但也不能太低,否则

反应分子不能很好地活化,进而导致反应速率缓慢。如果催化剂活性较好,选择性可达95%以上。 本实验选择在加压固定床中进行催化反应,催化剂采用r-Al 2O 3载Ni 或Cu 。 原料:苯,氢气,氮气(吹扫用,环己烷三、流程示意图与面板布置图1、流程示意图 截止阀, S- 三通转换阀, TCI- 控温, TI-测温, PI-测压 气体钢瓶, 过滤器, 稳压阀, 干燥器, 质量流量计, 止逆阀 缓冲器, 预热器, 预热炉, 反应炉, 反应器, 冷却器气液分离器背压阀, 取样器, 湿式流量计加料泵V V V 10 11

12 14 15 2 2 1 3 S 1 6 3 1 45 2 6 7 89V V 17 V 2

苯加氢制环己烷

四、苯加氢制环己烷 环己烷主要(占总产量90%以上)用来生产环己醇、环己酮及己二酸,后三者是制造尼龙-6和尼龙-66的重要原料。环己烷还用作树脂、油脂、橡胶和增塑剂等的溶剂。 用作尼龙原料的高纯度的环己烷主要由苯加氢制得。 工业上苯加氢生产环己烷有气相法和液相法两种。虽然美国杜邦公司早已开发成功气相加氢工艺,但大多数工厂仍采用液相加氢工艺,例如美国的Uop公司,法国石油研究所(IFP)等。气相法的优点是催化剂与产品分离容易,所需反应压力也较低,但设备多而大,投资费用比液相法高。 1.反应原理 (1)化学反应在反应条件下,苯与氢可能发生下面各种反应:

+nH2→C+CH4(4)

反应(1)若为气相法固定床,用还原Ni 作催化剂,反应温度为65~250℃,压力 0.5~3.5MPa;若为液相加氢,采用骨架镍或还原Ni为催化剂,反应温度为160~220℃,压力2.7MPa左右,环己烷收率在99%以上。反应(2)和(4)在250℃左右的低温下不显著,它们可能是由第Ⅷ族金属催化的氢解型机 理引起的,也可能是由双功能催化剂的加氢裂解型机理引起的。双功能催化剂为具有加氢催化活性的某些金属(如Pt,Pd或Ni)负载在酸性载体(SiO2或SiO2/Al2O3)上构成,在载体上往往存在强酸中心,它对反应(2)和(4)有明显促进作用。因此,选择非酸性载体可以避免这种加氢裂解作用。反应(3)是环己烷的异构化,它往往被酸催化,在200℃下,异构化反应达到平衡时环己烷生成甲基环 戊烷的转化率为68%,将温度升高到300℃时其转化率达83%,因此也必须选择不会引起这种异构化反应的催化剂。在镍催化剂 上,250℃时才开始产生甲基环戊烷。 (2)热力学平衡由反应(1)可知,苯加氢生成环己烷的反应是一个放热的体积(摩尔数)缩小的可逆反应。在127℃时的平衡常

纯苯

纯苯 1.1 纯苯的基本概况 名称:苯,纯苯; 英文名称:Benzene; 分子式:C6H6 ; 分子量:78.11 ; 结构: 1.2 纯苯基本理化性质 性状:在常温常压下为具有芳香气味的无色透明挥发性液体。能放出有毒蒸气,含量:99.90%. 沸点:80.1℃, 液体密度(20℃):879.4kg/m3,气体密度:2.770kg/m3,相对 密度(38℃,空气=1): 1.4,粘度(20℃): 0.647mPa.S,燃点:562.2℃,爆炸界限:1.3%-7.1%(体积),最大爆炸压力:9kg/cm2,最大爆炸压力的浓度:3.9%,最易 引燃浓度:5%. 溶解情况:不溶于水,溶于乙醇、乙醚等许多有机溶剂。水溶性:0.18 g/100 mL。 1.3 焦化纯苯质量指标 项目单位指标 外观透明液体,无不溶水及机械杂质颜色(Hazen单位:铂-钴色号)≤20 密度(20℃)kg/m3878-881 苯% ≥99.9 甲苯% ≤0.05 非芳烃% ≤0.05 酸洗比色≤0.2 结晶点℃≥5.35 噻吩g/100ml ≤0.06

二氧化碳g/101ml ≤0.006总硫ppm ≤1 溴价g/101ml ≤0.15 氯化物ppm ≤1 总氮化合物ppm ≤1 1.4 上下游产业链 纯苯来源于乙烯装置联产、炼油厂重整芳烃抽提、对二甲苯装置甲苯歧化和煤焦油抽提。 上下游产业链见下图。 由乙烯和纯苯反应先得到乙苯,然后通过催化脱氢得到苯乙烯。 国内纯苯主要有4个途径获得: (1)乙烯裂解装置所副产的裂解汽油;(2)重整装置所产生的重整生成油;(3)对二甲苯(PX)联合装置所产生的副产品;(4)煤焦化过程所产生的副产品。前3种途径获得的纯苯称为石油苯,第4种途径获得的纯苯称为焦化苯。焦化苯是酸洗苯、精制苯和加氢苯的统称,其上游原料均为焦化粗苯。焦化粗苯是焦炭煤气净化过程中的衍生副产物。酸洗苯则是将焦化粗苯用硫酸进行酸洗,再经过蒸馏提纯后的产物。精制苯实际卜就是对酸洗苯再次进行精加工,工艺方法主要有酸洗、萃

苯催化加氢制环己烯Ru系催化剂共沉淀法的制备

试验研究 0引言 环己烯是一种重要的有机合成中间体,可以直接水合制环己醇,也被广泛应用于多种下游和深加工产品,如环己醇、环己酮、己二酸、尼龙-66、尼龙-6、苯酚、聚酰胺、聚酯、氯代环己烷、橡 胶助剂和赖氨酸等,以及其他精细化学品的生产,其还可作为催化剂溶剂和石油萃取剂,以及高辛烷值汽油稳定剂等。工业上传统的生产环己烯所采取的方法主要是催化环己醇脱水、环己烷氧化脱氢和Birch 还原法等。上述几种环己烯生产方法存在着催化剂具有一定污染性、工艺流程复杂、原料较为 苯催化加氢制环己烯Ru 系催化剂共沉淀法的制备 闫皙 (河北胜尔邦环保科技有限公司,河北石家庄 050000) 摘要:采用共沉淀法,选取Ru 作为催化剂活性组分,Zn 或与金属M 作为催化剂助剂,在醇-水体系中制备了无负载的单助剂Ru 系催化剂(Ru-Zn)和双助剂Ru 系催化剂(Ru-Zn-M )。对所制催化剂和工业用Ru-Zn 催化剂在相同实验条件下进行了活性评价、表征和对比。结果表明,制备出的单助剂Ru-Zn 催化剂效果优于双助剂Ru 系催化剂,且接近工业催化剂的催化效果;在苯转化率为74.1%时,环己烯选择性为65.6%,环己烯收率为48.6%;共沉淀法制备催化剂的过程中,添加乙醇作为分散剂,作用是有助于维持反应体系pH 值的稳定等,从结果上会提高催化剂活性;还原过程中离子液体的添加起到了一定缓冲效果,使催化剂得到适度还原;催化剂中部分Zn 的溶去有助于催化剂形成一定的孔结构,提高了其活性和选择性。关键词:苯加氢;环己烯;Ru 系催化剂;共沉淀法;表征中图分类号:O643.38文献标识码:A 文章编号:2095-5979(2017)03-0086-05 Catalytic hydrogenation of benzene to cyclohexene over ruthenium catalysts made by co-precipitation method Yan Xi (Hebei Superior and Federal Environmental Protection Scienec and Technology Corporation Ltd.,Shijiazhuang 050000,China )Abstract :Carrier free ruthenium catalysts of single agent (Ru-Zn)and double agent (Ru-Zn-M )were prepared using co-precipitation method with Ru as active constituent and Zn or metal M as promoter.Both homemade catalysts and industrial catalyst were experimented under the same conditions in order to conduct the activity evaluation,characterization and comparison of the catalysts.The results show that the effect of homemade ruthenium catalysts of single agent is better than double agent and close to industrial catalyst ;the cyclohexene selectivity was 65.6%and the cyclohexene yield reached 48.6%when the benzene conversion was 74.1%;ethanol was added as dispersant in the process of catalyst preparation using co-precipitation method in order to maintain the pH value of the reactionand so on,and improve the catalyst activity in the result of the experiment;the addition of ionic liquid in the process of reduction has buffer effect that the catalyst could get a modest reduction;the partial dissolution of Zn in catalyst contributed to form a certain pore structure of catalyst,which improved the activity and selectivity. Key words :hydrogenation of benzene;cyclohexene;ruthenium catalysts;co-precipitation;characterization 责任编辑:杨超 DOI:10.19286/https://www.360docs.net/doc/b910791284.html,i.2017.03.026 作者简介:闫皙(1987—),男,河北石家庄人,工程师。E-mail :yanxiway@https://www.360docs.net/doc/b910791284.html, 引用格式:闫皙.苯催化加氢制环己烯Ru 系催化剂共沉淀法的制备[J ].煤炭与化工,2017,40(3):86-90. 煤炭与化工 Vol.40No.3M ar.2017 Coal and Chemical Industry 第40卷第3期 2017年3月 86

年处理25万吨轻苯加氢精制车间初步设计毕业论文

年处理25万吨轻苯加氢精制车间初步设 计毕业论文 目录 摘要...................................................................................... 错误!未定义书签。Abstract ................................................................................ 错误!未定义书签。第1章绪论.. (1) 1.1设计的目的和意义 (1) 1.1.1毕业设计的目的和意义 (1) 1.1.2本设计的目的和意义 (1) 1.2产品的组成和成分及物性参数 (1) 1.3产品的质量指标价格供需关系 (3) 1.4设计地点,气候参数 (5) 第2章工艺论证 (6) 2.1国内外工艺流线论证 (6) 2.1.1粗苯加氢精制原理 (6) 2.1.2粗苯加氢精制工艺 (6) 2.1.3粗苯加氢精制工艺特点 (10) 2.2主要设备论证类型的确定 (12) 2.2.1填料萃取塔 (12) 2.2.2筛板萃取塔 (12) 2.2.3脉冲筛板萃取塔 (13) 2.2.4往复筛板萃取塔 (13) 2.2.5转盘萃取塔及偏心转盘萃取塔 (14) 2.3萃取剂选择的依据 (14) 2.4结论 (15)

第3章工艺详述 (16) 3.1本设计选择的工艺 (16) 3.1.1工艺原理 (16) 3.1.2工艺流程 (16) 3.2工艺参数列表 (17) 第4章工艺计算 (19) 4.1总物料衡算 (19) 4.2纯苯塔的设计计算 (20) 4.2.1计算数据 (20) 4.2.2塔的物料衡算 (23) 4.2.3气液负荷计算 (28) 4.2.4精馏塔塔体尺寸计算 (33) 4.2.5塔的工艺结构尺寸的设计与计算 (34) 4.2.6塔板布置及浮阀数目与排列 (36) 4.2.7塔板流动性能校核 (38) 4.2.8塔板负荷性能图 (43) 4.2.10纯苯塔热量衡算 (48) 4.2.11塔的机械设计 (51) 4.3设备一览表 (53) 第5章设备布置 (57) 5.1设备布置原则 (57) 5.1.1满足生产工艺要求 (57) 5.1.2符合经济原则 (57) 5.1.3符合安全生产要求 (57) 5.1.4良好的生产操作 (58) 5.1.5便于安装与检修 (58) 5.2几种设备布置的具体方式 (58) 5.2.1塔的布置 (58) 5.2.2反应器的布置 (59) 5.2.3冷换设备的布置 (59) 第6章非工艺部分 (61) 6.1车间布置(土建要求) (61)

苯加氢简介

苯加氢作业区简介 一、概况 苯加氢作业区位于鞍钢厂区西北部,原址矿渣山,占地面积4.5万平方米,2007年10月破土动工,2009年8月将投产运行。其项目是采用德国伍德公司专利加氢技术,低温低压加氢萃取工艺法,是国内焦化企业单套生产能力最大,具有易燃易爆特性的石化类工艺项目,属重大危险源、省甲级要害部位。 苯加氢项目固定资产投资为37756.36万元(含外汇1186.42万美元), 铺底流动资金2171.20万元。 苯加氢工艺有6个生产单元及其它辅助设施组成,主要主要生产高纯苯、甲苯、二甲苯、重苯残油、非芳烃及C9馏分。广泛用作制造合成纤维、合成橡胶、炸药、塑料、医药和染料、油漆等产品的原料,也可用作树脂工业以及作为溶剂用于涂料、农药和橡胶加工工业等。 苯加氢作业区及辅助设施自动化控制水平较高,安全性能高,能耗低,环境保护效益明显,其加氢产品质优价高,可以出口外销。增产的非芳烃可以作为燃料销售,创建很可观的经济效益。是国内目前生产能力最大,技术最先进的苯加氢工艺装置。 二、工艺特点

粗苯中主要含有苯(约70%)、甲苯(约14%)、二甲苯(约4%)和三甲苯等芳香烃,其总含量占85%以上,这些物质都是重要的化工原料。此外,粗苯中还含有不饱和化合物(烯烃)、含硫化合物(噻吩)、含氧化合物(苯酚)及含氮化合物(吡啶)等杂质。粗苯精制工艺是以粗苯为原料,经化学和物理等方法提纯精制为高纯度苯类产品的过程。 1、加氢分类及国内情况 粗苯加氢根据操作条件不同,可分为高温加氢(580-630℃,6.0Mpa),中温加氢(480-550℃,5.0Mpa)及低温加氢(300-380℃,4.0Mpa)。宝钢一期引进的是莱托法高温脱烷基工艺;北京焦化厂的苯加氢装置,是焦耐院自行开发设计的中温加氢工艺;石家庄焦化厂于97年引进并建成了国内第一套5万t/a低温加氢装置是德国K·K公司(现为伍德公司)的技术,其加氢工艺是德国BASF公司开发经K·K 公司改进的,萃取蒸馏工艺是莫菲兰(MORPHYLANER)法,近三年,太化、昆钢等企业先后从德国伍德公司引进低温加氢工艺并相继投产。 2、装置组成及工艺流程 本装置共分以下几个部分: 1)加氢部分:蒸发器、闪蒸槽、反应器、高压分离槽、稳定塔; 2)蒸馏部分:预蒸馏塔、萃取蒸馏塔、汽提塔、二甲苯

纯苯的生产现状与生产分析预测

纯苯的生产现状与生产分析 预测 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

纯苯的生产现状与生产分析预测 世界纯苯的发展及现状分析 世界纯苯的生产能力主要集中在亚洲、北美和西欧,据美国化学品制造联合公司(CMAI)统计,2007年的世界纯苯产能中,亚洲占42%、北美占23%、西欧占22%。2008年全球纯苯生产能力达到5 153万t/a,产量为4 090万t。装置平均开工率为79%。苯的生产主要集中在亚洲、北美和西欧地区,2008年产能分别占全球总能力的%、%和%。世界主要的纯苯生产国为美国、日本、我国和韩国,亚洲和中东是世界苯生产发展最快的地区。据CMAI预测,全球纯苯生产能力增速,…… 表 2008年世界纯苯产能产量情况表 图 2008年世界纯苯主要地区产能结构图

中国纯苯的发展及现状分析 纯苯生产现状 我国纯苯行业经历了近些年的长足发展,不仅从产量、技术等方面得到大幅提升,而且产业链发展迅速,涉及上万种产品,并且国际地位也得到进一步巩固和提升。 目前,我国纯苯产量主要由4部分组成,乙烯装置联产、炼油厂重整芳烃抽提、对二甲苯装置甲苯歧化和煤焦油抽提。过去国内煤焦油抽提制纯苯的精制过程以酸洗法为主,制的苯纯度低,污染严重,被淘汰。自2006年国内开发的焦化苯加氢工艺工业化后,国内新建了多套这类装置,其产品质量基本可以满足下游化工装置的需求,规模以5万t/a或8万t/a为主。2010年,国内纯苯生产企业70余家,生产能力约800万t/a,石油苯产能650万吨/年,产量约530万t;焦化苯和加氢苯产量130万吨。 近几年石油苯产能增长迅速,主要来自三方面:一是现有乙烯装置改扩建使其配套芳烃抽提装置能力提高和新建大型乙烯工程中的芳烃装置投产;二是炼厂芳烃装置的改扩建及新建能力;三是PX装置的新、扩建增加苯的生产能力。 焦化苯加氢作为趋势产业,近年发展迅速,目前已经达到了相当规模。加氢焦化苯在质量上不仅完全达到了石油苯的技术指标要求,可实现甲苯、二甲苯等化学品的有效分离,而且价格上也具有较强的竞争优势。目前,以粗苯为原料的加氢焦化苯生产成本较石油苯约低1 600元/t,最高时相差3 500元/t,高额利润推动了焦化苯加氢工艺迅猛发展。目前,已投产焦化苯加氢的企业总计22家,粗苯加工能力234万t/a。加氢焦化苯的市场表现对于焦化及石油芳烃格局势必有较大影响,必将快速挤占酸洗工艺的焦化纯苯市场份额。国内焦化苯加氢主要厂家产能统计见表3。 未来两年,国内焦化粗苯产量为200万-250万t/a,而粗苯加工能力将达到500万-600万t/a,即使在焦化企业满负荷生产的情况下,原料缺口仍将达到50%以上。粗苯资源少、价格高,纯苯产能大、需求少,必将促使纯苯加工企

10万吨苯加氢项目催化剂装填、硫化和再生方案

100kt/a苯精制项目 催化剂的装填、硫化和再生方案 本方案编写人: 方案编写日期: 本方案审核人: 本方案批准人: 方案批准日期: 20**年*月*日

100kt/a苯精制项目 催化剂的装填、硫化和再生方案 1. 总则 1.1 方案制定的原则 为保证催化剂的正确装填,为提高催化剂活性,正确掌握催化剂的硫化和再生的方法,特制定本方案。 1.2 装填、硫化和再生组织机构和职责 1.2.1 组织机构 安装公司: 建设单位:公司各专业及各部门:工艺专业、工程部门、安全专业、仪表专业、化验专业和各相关车间主任。 要求上述各专业、各部门及承建单位共同参与本方案制定的吹扫工作。 1.2.2 职责 工艺专业:统筹管理催化剂的装填、硫化和再生的指挥工作,协调并督促本方案的落实情况;负责编制催化剂的装填、硫化和再生方案;负责监督本方案的执行情况。 十二化建:负责对催化剂的装填提供人力资源,需要加装临时性盲板的要及时安装,提前备好;负责组织装填人员并及时到位;负责提供对催化剂的筛选、瓷球过磅等所需人力。 工程部门:负责联系相应的安装公司进行消除缺陷工作。 安全专业:负责落实本方案所涉及到的安全工作;负责登高作业票、安全作业票、进塔入罐作业票及其他与安全有关事项的审批及检查等工作;负责监督安全措施落实情况;负责准备呼吸面具或自给式空气呼吸器等安全防护用品。 各车间主任:负责准备催化剂装填工具;负责所需临时性的阀门、法兰、盲板等备品备件及其他各种应急物资的准备工作;负责组织催化剂装填过程中所需人力物力调配事项;负责组织人员对催化剂进行检查、分析,检查催化剂内是否有杂质、油污和催化剂受潮湿浸蚀情况、机械强度是否符合要求等事项;负责组织人员填写催化剂的装填记录,对检查出的缺陷做出标记;负责催化剂硫化和再生全过程中各相关阀门的开启和关闭等指挥工作;负责协调取样化验分析等具体事宜。 仪表专业:负责组织调校DCS系统,使压力、流量、温度、液位等指示准确、操作可靠;负责对DCS系统出现的紧急故障进行维护工作。

苯加氢技术资料

苯加氢技术 轻苯进行加氢精制工艺早在20世纪50年代就在国外得到了工业应用。目前发达的国家,如美、英、法、德、日等均已广泛采用这个先进的加氢精制工艺。国内,直到上世纪70年代,北京燕山石油化工公司从西德引进第一套“Pyrotol制苯”装置,利用裂解汽油为原料,经加氢以获得高纯度石油苯;接着,80年代初,宝钢的一、二期工程从日本引进了一套“高温Litol”加氢装置,对焦化轻苯进行加氢精制;尔后,河南“平顶山帘子布厂”也引进了一套“高温Litol”装置。近年来,石家庄焦化厂、宝钢三期工程引进了德国的“K.K技术”,即:“低温Litol”装置。北京焦化厂也建成了国内自行设计的“低温加氢”装置,并已过关。另外,山西太原等地也正在建设了轻苯加氢装置。 粗苯产品是苯系家族产品的混合物,不能单独使用,需要深加工才能成为客户的最终消费,粗苯产品的这一特征决定了其市场出路主要是销售到下游精苯生产厂家,只有少量产品进入溶剂、农药厂家。目前国内对粗苯进行深加工,制成纯苯的生产厂家主要分为两大类:一类是酸洗法生产纯苯,另一类是采用粗苯加氢工艺生产纯苯。酸洗法工艺投资少,见效快,生产装置易建设,国内大多数精苯生产装置均采用该生产工艺。但是,酸洗法工艺生产的苯纯度低,而且不能有效分离甲苯、二甲苯,无法实现环保达标排放,而且产品质量低,生产成本高,销售价格上不去。粗苯加氢工艺则不同,装置投资大,建设周期长,但是生产技术

先进,生产的苯纯度高,能达到石油苯产品质量,能实现与甲苯、二甲苯等的有效分离,而且能消耗低、成本低、产品质量好、销售价格高、竞争力强,表了粗苯加工精制的发展方向。目前,有实力的焦化企业或化工企业都在争取建设大型精苯装置。并且可以看出粗苯加氢工艺必将成为粗苯精制的一种趋势。目前国外用于焦化粗苯加氢有代表性的工艺技术有美国Axens低温汽液两相加氢技术、德国Uhde低温气相加氢技术、胡德利开发日本旭化成应用于粗苯加氢的高温热裂解法生产纯苯的Litol法技术。 一、苯加氢技术 1、美国Axens低温气液两相加氢技术。 美国Axens采用自行开发的两段加氢技术。粗苯经脱重组分由高压泵提压进入预反应器,进行加氢反应,在此容易聚合的物质,如双烯烃、本苯烯烃、二硫化碳在有活性的Ni-Mo催化剂作用下液相加氢变为单烯烃。由于加氢反应温度低,有效的抑制双烯烃的聚合。 预反应物经高温循环氢汽化后经加热炉加热到主反应温度后进入主反应器,在高选择性Co-Mo催化剂作用下进行气相加氢反应,单烯烃经加氢生成相应的饱和烃。硫化物主要是噻吩。氮化物及氧化物被加氢转化成烃类、硫化氢、水及氨,同时抑制芳烃的转化,芳烃损失率应〈0.5%。反应产物经一系列换热后经分离,液相组分经稳定塔将氨等气体除去,塔底得到含噻吩〈0.5mg/kg 的加氢油。由于预反应温度低,且为液相加氢,预反应产物靠热

苯加氢制环己烷

苯加氢制环己烷 四、苯加氢制环己烷 环己烷主要(占总产量90%以上)用来生产环己醇、环己酮及己二酸,后三者是制造尼龙-6和尼龙-66的重要原料。环己烷还用作树脂、油脂、橡胶和增塑剂等的溶剂。 用作尼龙原料的高纯度的环己烷主要由苯加氢制得。 工业上苯加氢生产环己烷有气相法和液相法两种。虽然美国杜邦公司早已开发成功气相加氢工艺,但大多数工厂仍采用液相加氢工艺,例如美国的Uop公司,法国石油研究所(IFP)等。气相法的优点是催化剂与产品分离容易,所需反应压力也较低,但设备多而大,投资费用比液相法高。 1.反应原理 (1)化学反应在反应条件下,苯与氢可能发生下面各种反应 : +nH2→C+CH4 (4) 反应(1)若为气相法固定床,用还原Ni作催化剂,反应温度为65~250℃,压力0.5~3.5MPa;若为液相加氢,采用骨架镍或还原Ni为催化剂,反应温度为160~220℃,压力 2.7MPa左右,环己烷收率在99%以上。反应(2)和(4)在250℃左右的低温下不显著,它们可能是由第Ⅷ族金属催化的氢解型机理引起的,也可能是由双功能催化剂的加氢裂解型机理引起的。双功能催化剂为具有加氢催化活性的某些金属(如Pt,Pd或Ni)负载在酸性载体(SiO2或SiO2/Al2O3)上构成,在载体上往往存在强酸中心,它对反应(2)和 (4)有明显促进作用。因此,选择非酸性载体可以避免这种加氢裂解作用。反应(3)是环己烷的异构化,它往往被酸催化,在200℃下,异构化反应达到平衡时环己烷生成甲基环戊烷的转化率为68%,将温度升高到300℃时其转化率达83%,因此也必须选择不会引起这种异构化反应的催化剂。在镍催化剂上,250℃时才开始产生甲基环戊烷。 (2)热力学平衡由反应(1)可知,苯加氢生成环己烷的反应是一个放热的体积(摩尔数)缩小的可逆反应。在127℃时的平衡常 数为7×10,在227℃时为1.86×10。氢压和温度对环己烷中苯的平衡浓度的影响示于图3-2-18。由图3-2-18可见,低温和高压对反应是有利的。相反,反应(2)和(4)则受到抑制;环己烷异构化反应是一个等摩尔反应,压力对反应影响不大。温度对反应(3)平衡的影响示于图3-2-19。由图3-2-19可知,甲基环己烷的平衡浓度随温度的提高而上升。为抑制

苯加氢项目

粗苯经脱重组分后由高压泵提压加入预反应器,进行加氢反应,在此容易聚合的物质,如双烯烃、苯烯烃、二硫化碳在有活性的Ni-Mo催化剂作用下液相加氢变为单烯烃。由于加氢反应温度低,有效的抑制双烯烃的聚合。加氢原料可以是粗苯也可以是轻苯,原料适应性强。预反应物经高温循环氢汽化后经加热炉加热到主反应温度后进入主反应器,在高选择性Co-Mo催化剂作用下进行气相加氢反应,单烯烃经加氢生成相应的饱和烃。硫化物主要是噻吩,氮化物及氧化物被加氢转化成烃类、硫化氢、水及氨,同时抑制芳烃的转化,芳烃损失率应〈0.5%。反应产物经一系列换热后经分离,液相组分经稳定塔将H2S、NH3等气体除去,塔底得到含噻吩〈0.5mg/kg的加氢油。由于预反应温度低,且为液相加氢,预反应产物靠热氢汽化,需要高温循环氢量大,循环氢压缩机相对大,且要一台高温循环氢加热炉。 工艺流程简图如下: ??加氢条件;加氢为液相,反应温度800C,压力3.0~4.4MPa。主反加氢为气相加氢,反应温度300~ 3800C,压力 3.0~4.0MPa。由于液相加氢温度较低,加氢可以是粗苯加氢也可以是轻苯,对原料适应性强,经过预反后的原料需由循环氢汽化,循环氢量大,经预反应器和主反应器加氢后得到加氢油在高分器中分离出循环气循环使用,分离出的加氢油在稳定塔排出尾气后进入预分馏塔,塔底的C8馏分去二甲苯塔生产混合二甲苯,塔顶分离出的苯、甲苯馏分进入萃取蒸馏塔分离出非芳烃后经汽提塔和纯苯塔得到高纯苯和高纯甲苯产品。预反应器加氢采用的新氢是用PSA法制得的氢气。

来自制氢工序的1.0~1.2MPa(G)新鲜氢气首先进入氢气缓冲罐,分离掉其中的游离水和机械杂质,然后经氢气压缩机加压至3.5MPa(G)送入加氢系统;加氢来的循环氢气进入循环氢压机分液罐,分离掉其中的游离水和机械杂质,最后进入循环氢压机,加压至3.5MPa(G),送到加氢工序。 加氢工序 经过预处理后的轻苯由加氢原料油泵从罐区打入原料油换热器与加氢反应气换热后与加热后的循环氢同时进入蒸发器的底部进行混合汽化。经循环氢压机加压后的循环氢气先进入氢气换热器与加氢反应气换热后与经预热后的轻苯油混合后进入蒸发器下部,使轻苯汽化。从蒸发器底部排出含有聚合物的蒸发残油,经蒸发残油过滤器除渣后,去重质苯油水分离器。将顶部排出苯类蒸汽和氢气的混合气体,由顶部进入预反应器,在NiMo 催化剂的作用下不饱和化合物加氢饱和,反应后的油气与氢的混合物,从预反应器底部出来进入油气换热器,升温后进入主反应器加热炉,加热后进入两个串联的主反应器,在CoMo系催化剂的作用下,进行脱硫、脱碳、脱氧、脱烷基和非芳烃裂解反应。为控制反应器内的温升,在两个串联的主反应器之间加入新氢。 从主反应器出来的加氢混合气体,经过一系列换热器、降温后进入油气冷却器冷却到25~30℃,气液两相全部进入高压分离器进行气、液分离。分离出的气相循环使用。分离出来的加氢油去进行精馏提纯。 为了抑制苯的聚合,从阻聚剂高位槽将阻聚剂计量后加入输送轻质苯油的管道中,用泵将阻聚剂送入阻聚剂高位槽。二硫化碳贮槽和二硫化碳计量泵是加氢催化剂活化过程中用来预硫化催化剂用的,二硫化碳计量泵将二硫化碳贮槽中的CS2液按计量打入系统,以达到预硫化催化剂的目的。软水贮槽中的软水,用软水加压泵将软水打入软水高位槽,再经过计量后加入加氢产物中可溶解和洗去部分杂质;为了使循环氢反应所需要的氢气浓度需连续排放一部分循环氢气至煤气管道,同时由压缩机向系统补充一部分新鲜氢气以维持系统平衡。 预精馏工序 由高压分离器来的加氢油进入稳定塔。稳定塔塔底用蒸汽加热的稳定塔再沸器连续加热,加氢油在塔内蒸馏,C5以下的烃类和溶解在加氢油中的H2S等酸性气体被蒸出由塔顶排出。塔顶馏出物经稳定塔冷凝器冷冷凝却后进入稳定塔油水分离器,经分离后的冷凝液一部分用稳定塔回流泵送到塔顶打回流,另一部分送至罐区贮存,稳定塔油水分离器排出的不凝性气体排入驰放气管道。稳定塔塔底排出BTX馏分。 BTX馏分进入预蒸馏塔中部精馏,环己烷等烃类与苯和甲苯物由塔顶排出,经冷凝器冷凝冷却后进入油水分离器,经分离后的冷凝液一部分用回流泵送到塔顶打回流,另一部分送至罐区待进一步精制(即BT组分)。塔底釜液送至罐区待进一步精制。 精馏工序 来自罐区的BT组分进入萃取塔中部。萃取塔塔底用萃取塔再沸器连续加热,甲酰吗啉为萃取剂。碳四、碳五以及碳六碳七的饱和烃由塔顶排出。塔顶馏出物经冷凝器冷凝后一部分用萃取塔回流泵送到塔顶打回流,另一部分为非芳烃送至罐区贮存。 来自萃取塔塔底的富溶剂进入中部回收溶剂。溶剂再生塔塔底用一个以蒸汽加热的溶剂塔再沸器连续加热,苯

相关文档
最新文档