虚拟现实技术资料讲解

虚拟现实技术资料讲解
虚拟现实技术资料讲解

虚拟现实技术

虚拟现实技术具有超越现实的虚拟性。它是伴随多媒体技术发展起来的计算机新技术,它利用三维图形生成技术、多传感交互技术以及高分辨率显示技术,生成三维逼真的虚拟环境,用户需要通过特殊的交互设备才能进入虚拟环境中。这是一门崭新的综合性信息技术,它融合了数字图像处理、计算机图形学、多媒体技术、传感器技术等多个信息技术分支,从而大大推进了计算机技术的发展。它的一个主要功能是生成虚拟境界的图形,故此又称

商生产的专用工作站,但近来基于Intel奔腾Ⅲ(Ⅳ代)代芯片的和图形加速卡的微机图形工作站性能价格比优异,有可能异军突起。图像显示设备是用于产生立体视觉效果的关键外设,目前

档的头盔显示器在屏蔽现实世界的同时,提供高分辨率、大视场

天领域的需求,但近年来,虚拟现实技术的应用已大步走进工业、建筑设计、教育培训、文化娱乐等方面。它正在改变着我们的生活。

虚拟与现实两词具有相互矛盾的含义,把这两个词放在一起,似乎没有意义,但是科学技术的发展却赋予了它新的含义。

虚拟现实的明确定义不太好说,按最早提出虚拟现实概念的学者https://www.360docs.net/doc/b98870320.html,niar的说法,虚拟现实,又称假想现实,意味着“用电子计算机合成的人工世界”。从此可以清楚地看到,这个领域与计算机有着不可分离的密切关系,信息科学是合成虚拟现实的基本前提。

多感知性(Multi-Sensory)——所谓多感知是指除了一般计算机技术所具有的视觉感知之外,还有听觉感知、力觉感知、触觉感知、运动感知,甚至包括味觉感知、嗅觉感知等。理想的虚拟现实技术应该具有一切人所具有的感知功能。由于相关技术,特别是传感技术的限制,目前虚拟现实技术所具有的感知功能仅限于视觉、听觉、力觉、触觉、运动等几种。

浸没感(Immersion)——又称临场感或存在感,指用户感到作为主角存在于模拟环境中的真实程度。理想的模拟环境应该使用户难以分辨真假,使用户全身心地投入到计算机创建的三维虚拟环境中,该环境中的一切看上去是真的,听上去是真的,动起来是真的,甚至闻起来、尝起来等一切感觉都是真的,如同在现实世界中的感觉一样。

交互性(Interactivity)——指用户对模拟环境内物体的可操作程度和从环境得到反馈的自然程度(包括实时性)。例如,用户可以用手去直接抓取模拟环境中虚拟的物体,这时手有握着东西

的感觉,并可以感觉物体的重量,视野中被抓的物体也能立刻随着手的移动而移动。

构想性(Imagination)——又称为自主性——强调虚拟现实技术应具有广阔的可想像空间,可拓宽人类认知范围,不仅可再现真实存在的环境,也可以随意构想客观不存在的甚至是不可能发生的环境。

一般来说,一个完整的虚拟现实系统由虚拟环境、以高性能计算机为核心的虚拟环境处理器、以头盔显示器为核心的视觉系统、以语音识别、声音合成与声音定位为核心的听觉系统、以方位跟踪器、数据手套和数据衣为主体的身体方位姿态跟踪设备,以及味觉、嗅觉、触觉与力觉反馈系统等功能单元构成

生成虚拟现实需要解决以下三个主要问题:

以假乱真的存在技术。即怎样合成对观察者的感官器官来说与实际存在相一致的输入信息,也就是如何可以产生与现实环境一样的视觉,触觉,嗅觉等。

相互作用。观察者怎样积极和能动地操作虚拟现实,以实现不同的视点景象和更高层次的感觉信息。实际上也就是怎么可以看得更像,听得更真等等。

自律性现实。感觉者如何在不意识到自己动作、行为的条件下得到栩栩如生的现实感。在这里,观察者、传感器、计算机仿真系统与显示系统构成了一个相互作用的闭环流程。

虚拟现实是多种技术的综合,其关键技术和研究内容包括以下几个方面:

1、环境建模技术

即虚拟环境的建模,目的是获取实际三维环境的三维数据,并根据应用的需要,利用获取的三维数据建立相应的虚拟环境模型。

2、立体声合成和立体显示技术

在虚拟现实系统中消除声音的方向与用户头部运动的相关性,同时在复杂的场景中实时生成立体图形。

3、触觉反馈技术

在虚拟现实系统中让用户能够直接操作虚拟物体并感觉到虚拟物体的反作用力,从而产生身临其境的感觉。

4、交互技术

虚拟现实中的人机交互远远超出了键盘和鼠标的传统模式,利用数字头盔、数字手套等复杂的传感器设备,三维交互技术与语音识别、语音输入技术成为重要的人机交互手段。

5、系统集成技术

由于虚拟现实系统中包括大量的感知信息和模型,因此系统的集成技术为重中之重:包括信息同步技术、模型标定技术、数据转换技术、识别和合成技术等等。

虚拟现实是在计算机中构造出一个形象逼真的模型。人与该模型可以进行交互,并产生与真实世界中相同的反馈信息,使人们获得和真实世界中一样的感受。当人们需要构造当前不存在的环境(合理虚拟现实)、人类不可能达到的环境(夸张虚拟现实)或构造纯粹虚构的环境(虚幻虚拟现实)以取代需要耗资巨大的真实环境时,就可以利用虚拟现实技术。

为了实现和在真实世界中一样的感觉,就需要有能实现各种感觉的技术。人在真实世界中是通过眼睛、耳朵、手指、鼻子等器官来实现视觉、触觉(力觉)、嗅觉等功能的。人们通过视觉观看到色彩斑斓的外部环境,通过听觉感知丰富多彩的音响世界,通过触觉了解物体的形状和特性,通过嗅觉知道周围的气味。总之,通过各种各样的感觉,使我们能够同客观真实世界交互(交流),使我们浸沉于和真实世界一样的环境中。

在这里,实现听觉最为容易;实现视觉是最基本的也是必不可少的和最常用的;实现触觉只有在某些情况下需要,现在正在

完善;实现嗅觉还刚刚开始。人从外界获得的信息,有80%—90%来自视觉。因此在虚拟环境中,实现和真实环境中一样的视觉感受,对于获得逼真感、浸沉感至为重要。

在虚拟现实中和通常图像显示不同的是,要求显示的图像要随观察者眼睛位置的变化而变化。此外,要求能快速生成图像以获和实时感。例如,制作动画时不要求实时,为了保证质量每幅画面需要多长时间生成不受限制。而虚拟现实时生成的画面通常为30帧/秒。有了这样的图像生成能力,再配以适当的音响效果,就可以使人有身临其境的感受。

能够提供视觉和听觉效果的虚拟现实系统,已被用于各种各样的仿真系统中。城市规划中,这样的系统正发挥着巨大作用。例如,许多城市都有自己的近期、中期和远景规划。在规划中需要考虑各个建筑同周围环境是否和谐相容,新建筑是否同周围的原有的建筑协调,以免造成建筑物建成后,才发现它破坏了城市原有风格和合理布局。

这样的仿真系统还可用以保护文物、重现古建筑。把珍贵的文物用虚拟现实技术展现出来供人参观,有利于保护真实的古文物。山东曲阜的孔子博物院就是这么做的。它把大成殿也制成模型,观众通过计算机便可浏览到大成殿几十根镂空雕刻的盘龙大石柱,还可以绕到大成殿后面游览。

用虚拟现实技术建立起来的水库和江河湖泊仿真系统,更能使人一览无遗。例如建立起三峡水库模型后,便可在水库建成之

前,直观地看到建成后的壮观景象。蓄水后将最先淹没哪些村庄和农田,哪些文物将被淹没,这样能主动及时解决问题。如果建立了某地区防汛仿真系统,就可以模拟水位到达警戒线时哪些堤段会出现险情,万一发生决口将淹没哪些地区。这对制定应急预案有莫大的帮助。

虚拟现实的广泛用途,把计算机应用提高到一个崭新的水平,其作用和意义显而易见。此外,还可从更高的层次上来看待其作用和意义。一是在观念上,从“以计算机为主体”变成“以人为主体”。二是在哲学上使人进一步认识“虚”和“实”之间的关系。

过去的人机界面(人同计算机的交流)要求人去适应计算机,而使用虚拟现实技术后,人可以不必意识到自己在同计算机打交道,而可以像在日常环境中处理事情一样同计算机交流。这就把人从操作计算机的复杂工作中解放出来。在信息技术日益复杂、用途日益广泛的今天,这充分发挥信息技术的潜力具有重大的意义。

虚和实的关系是一个古老的哲学命题。我们是处于真实的客观世界中,还是只处于自己感觉世界中,一直是唯物论和唯心论争论的焦点。以视觉为例,我们所看到的一切,不过是视网膜上的影像。过去,视网膜上的影像都是真实世界的反映,因此客观的真实世界同主观的感觉世界是一致的。现在,虚拟现实导致了二重性,虚拟现实的景物对人感官来说是实实在在的存在,但它

又的的确确是虚构的东西。可是,按照虚构东西行事,往往又会得出正确的结果。因此就引发了哲学上要重新认识“虚”和“实”之间关系的课题。

在VR系统中,有许多有趣的、功能不同的专用设备,下面选一些代表性的设备加以介绍。

BOOM可移动式显示器

它是一种半投入式视觉显示设备。使用时,用户可以把显示器方便地置于眼前,不用时可以很快移开。BOOM使用小型的阴极射线管,产生的像素数远远小于液晶显示屏,图像比较柔和,分辨率为1280×1024像素,彩色图像。

数据手套:数据手套

一种输入装置,它可以把人手的动作转化为计算机的输入信号。它由很轻的弹性材料构成。该弹性材料紧贴在手上,同时附着许多位置、方向传感器和光纤导线,以检测手的运动。光纤可以测量每个手指的弯曲和伸展,而通过光电转换,手指的动作信息可以被计算机识别。

TELETACT手套

它是一种用于触觉和力觉反馈的装置,利用小气袋向手提供触觉和力觉的刺激。这些小气袋能被迅速地加压和减压。当虚拟

手接触一件虚拟物体时,存储在计算机里的该物体的力模式被调用,压缩机迅速对气袋充气或放气,使手部有一种非常精确的触觉。

数据衣

为了让VR系统识别全身运动而设计的输入装置。数据衣对人体大约50多个不同的关节进行测量,包括膝盖、手臂、躯干和脚。通过光电转换,身体的运动信息被计算机识别。通过BOOM显示器和数据手套与虚拟现实交互数据衣。

桌面级的虚拟现实

桌面虚拟现实利用个人计算机和低级工作站进行仿真,计算机的屏幕用来作为用户观察虚拟境界的一个窗口,各种外部设备一般用来驾驭虚拟境界,并且有助于操纵在虚拟情景中的各种物体。这些外部设备包括鼠标,追踪球,力矩球等。它要求参与者使用位置跟踪器和另一个手控输入设备,如鼠标,追踪球等,坐在监视器前,通过计算机屏幕观察360度范围内的虚拟境界,并操纵其中的物体,但这时参与者并没有完全投入,因为它仍然会受到周围现实环境的干扰。桌面级的虚拟现实最大特点是缺乏完全投入的功能,但是成本也相对低一些,因而,应用面比较广。常见桌面虚拟现实技术有:

基于静态图像的虚拟现实技术:这种技术不采用传统的利用计算机生成图像的方式,而采用连续拍摄的的图像和视频,在计算机中拼接以建立的实景化虚拟空间,这使得高度复杂和高度逼真的虚拟场景能够以很小的计算代价得到,从而使得虚拟现实技术可能在PC平台上实现。

VRML(虚拟现实造型语言):它是一种在Internet网上应用极具前景的技术,它采用描述性的文本语言描述基本的三维物体的造型,通过一定的控制,将这些基本的三维造型组合成虚拟场景,当浏览器浏览这些文本描述信息时,在本地进行解释执行,生成虚拟的三维场景。VRML的最大特点在于利用文本描述三维空间,大大减少了在Internet网上传输的数据量,从而使得需要大量数据的虚拟现实得以在Internet网上实现。

桌面CAD系统:利用Open GL、DirectDraw等桌面三维图形绘制技术对虚拟世界进行建模,通过计算机的显示器进行观察,并有能自由地控制的视点和视角。这种技术在某种意义上来说也是一种虚拟现实技术,它通过计算机计算来生成三维模型,模型的复杂度和真实感受桌面计算机计算能力的限制。

投入的虚拟现实

高级虚拟现实系统提供完全投入的功能,使用户有一种置身于虚拟境界之中的感觉。它利用头盔式显示器或其它设备,把参与者的视觉、听觉和其它感觉封闭起来,并提供一个新的、虚拟的感觉空间,并利用位置跟踪器、数据手套、其它手控输入设

备、声音等使得参与者产生一种身在虚拟环境中、并能全心投入和沉浸其中的感觉。常见的沉浸式系统有:

基于头盔式显示器的系统:在这种系统中,参与虚拟体验者要戴上一个头盔式显示器,视听觉与外界隔绝,根据应用的不同,系统将提供能随头部转动而随之产生的立体视觉、三维空间。通过语音识别、数据手套、数据服装等先进的接口设备,从而使参与者以自然的方式与虚拟世界进行交互,如同现实世界一样。这是目前沉浸度最高的一种虚拟现实系统。

投影式虚拟现实系统:它可以让参与者从一个屏幕上看到他本身在虚拟境界中的形象,为此,使用中电视技术中的"键控"的技术,参与者站在某一纯色(通常为兰色)背景下,架在参与者前面的摄像机捕捉参与者的形象,并通过连接电缆,将图像数据传送给后台处理的计算机,计算机将参与者的形象与纯色背景分开,换成一个虚拟空间,与计算机相连的视频投影仪将参与者的形象和虚拟境界本身一起投射到参与者观看的屏幕上,这样,参与者就可以看到他自己在虚拟空间中的活动情况。参与者还可以与虚拟空间进行实时的交互,计算机可识别参与者的动作,并根据用户的动作改变虚拟空间,比如来回拍一个虚拟的球或走动等,这可使得参与者感觉就象是在真实空间中一样。

远程存在系统:远程存在系统是一种虚拟现实与机器人控制技术相结合的系统,当某处的参与者操纵一个虚拟现实系统时,其结果却在另一个地方发生,参与者通过立体显示器获得深度

感,显示器与远地的摄像机相连;通过运动跟踪与反馈装置跟踪操作员的运动,反馈远地的运动过程(如阻尼、碰撞等),并把动作传送到远地完成。

增强现实性的虚拟现实

增强现实性的虚拟现实不仅是利用虚拟现实技术来模拟现实世界、仿真现实世界,而且要利用它来增强参与者对真实环境的感受,也就是增强现实中无法感知或不方便感知感受。这种类型虚拟现实典型的实例是战机飞行员的平视显示器,它可以将仪表读数和武器瞄准数据投射到安装在飞行员面前的穿透式屏幕上,它可以使飞行员不必低头读座舱中仪表的数据,从而可集中精力盯着敌人的飞机和导航偏差。

分布式虚拟现实

如果多个用户通过计算机网络连接在一起,同时参加一个虚拟空间,共同体验虚拟经历,那虚拟现实则提升到了一个更高的境界,这就是分布式虚拟现实系统。目前最典型的分布式虚拟现实系统是作战仿真互联网和SIMNET,作战仿真互联网(Defense Simulation Internet, DSI)是目前最大的VR项目之一。该项目是由美国国防部推动的一项标准,目的是使各种不同的仿真器可以在巨型网络上互联,它是美国国防高级研究计划局1980年提出的SIMNET计划的产物。SIMNET由坦克仿真器(Cab类型的)通过网络连接而成,用于部队的联合训练。通过SIMNET,位于德国的

仿真器可以和位于美国的仿真器一样运行在同一个虚拟世界,参与同一场作战演习。

早在20世纪70年代便开始将虚拟现实用于培训宇航员。由于这是一种省钱、安全、有效的培训方法,现在已被推广到各行各业的培训中。目前,虚拟现实已被推广到不同领域中,得到广泛应用。

1.在科技开发上

虚拟现实可缩短开发周期,减少费用。例如克莱斯勒公司1998年初便利用虚拟现实技术,在设计某两种新型车上取得突破,首次使设计的新车直接从计算机屏幕投入生产线,也就是说完全省略了中间的试生产。由于利用了卓越的虚拟现实技术,使克莱斯勒避免了1500项设计差错,节约了8个月的开发时间和8000万美元费用。利用虚拟现实技术还可以进行汽车冲撞试验,不必使用真的汽车便可显示出不同条件下的冲撞后果。

在虚拟现实技术已经和理论分析、科学实验一起,成为人类探索客观世界规律的三大手段。用它来设计新材料,可以预先了解改变成分对材料性能的影响。在材料还没有制造出来之前便知道用这种材料制造出来的零件在不同受力情况下是如何损坏的。

2.商业上

虚拟现实常被用于推销。例如建筑工程投标时,把设计的方案用虚拟现实技术表现出来,便可把业主带入未来的建筑物里参观,如门的高度、窗户朝向、采光多少、屋内装饰等,都可以感同身受。它同样可用于旅游景点以及功能众多、用途多样的商品推销。因为用虚拟现实技术展现这类商品的魅力,比单用文字或图片宣传更加有吸引力。

3.医疗上

虚拟现实应用大致上有两类。一是虚拟人体,也就是数字化人体,这样的人体模型医生更容易了解人体的构造和功能。另一是虚拟手术系统,可用于指导手术的进行。

4.军事上

利用虚拟现实技术模拟战争过程已成为最先进的多快好省的研究战争、培训指挥员的方法。也是由于虚拟现实技术达到很高水平,所以尽管不进行核试验,也能不断改进核武器。战争实验室在检验预定方案用于实战方面也能起巨大作用。1991年海湾战争开始前,美军便把海湾地区各种自然环境和伊拉克军队的各种数据输入计算机内,进行各种作战方案模拟后才定下初步作战方案。后来实际作战的发展和模拟实验结果相当一致。

虚拟现实技术在军事模拟中的应用现状与前景

虚拟现实在军事模拟中的应用,是外军于 2O 世纪 9O 年代开始兴起并逐步推广的一种新的现代模拟训练方式,它是综合运用虚拟现实技术,在视觉、听觉、触觉等方面为受训者生成一个极为逼真的未来战争虚拟环境,使受训者最大限度地得到近似实战化的训练[1]。虚拟战场环境采用虚拟现实技术使受训者在视觉和听觉上真实体验战场环境、熟悉将作战区域的环境特征。用户通过必要的设备可与虚拟环境中的对象进行交互作用、相互影响,从而产生“沉浸”于等同真实环境的感受和体验。虚拟战场环境的实现方法可通过相应的三维战场环境图形图像库,包括作战背景、战地场景、各种武器装备和作战人员等。通过背景生成与图像合成创造一种险象环生、几近真实的立体战场环境。使演练者“真正”进入形象逼真的战场。从而可以增强受训者的临场感觉,大大提高训练质量。虚拟现实技术在军事模拟中的运用主要体现在以下方面:虚拟战争环境,单兵模拟训练,近战战术训练,多兵种联合演习以及武器装备研制的模拟。虚拟战争环境,即通过相应的三维战场环境图形图像库,包括作战背景、战地场景、各种武器装备和作战人员等,为使用者创造一种险象环生、几近真实的立体战场环境,以增强其临场感觉,提高训练质量[2]。单兵模拟训练,即让士兵穿上数据服,戴上头盔显示器和数据手套,通过操作传感装置选择不同的战场背景,输入不同的处置方案,体验不同的作战效果,进而像参加

实战一样,锻炼和提高技战术水平、快速反应能力和心理承受力。与常规的训练方式相比较,虚拟现实训练具有环境逼真,“身临其境”感强、场景多变,训练针对性强和安全经济,可控制性强等特点。如美空军用虚拟现实技术研制的飞行训练模拟器,能产生视觉控制,能处理三维实时交互图形,且有图形以外的声音和触感,不但能以正常方式操纵和控制飞行器,还能处理虚拟现实中飞机以外的各种情况,如气球的威胁、导弹的发射轨迹等。近战战术训练,近战战术训练系统把在地理上分散的各个学校、战术分队的多个训练模拟器和仿真器连接起来,以当前的武器系统、配置、战术和原则为基础,把陆军的近战战术训练系统、空军的合成战术训练系统、防空合成战术训练系统、野战炮兵合成战术训练系统、工程兵合成战术训练系统,通过局域网和广域网连接起来[3]。这样的虚拟作战环境,可以使众多军事单位参与到作战模拟之中,而不受地域的限制,具有动态分布交互作用;可以进行战役理论和作战计划的检验,并预测军事行动和作战计划的效果;可以评估武器系统的总体性能,启发新的作战思想。多兵种联合演习,建立一个“虚拟战场” ,使参战双方同处其中,根据虚拟环境中的各种情况及其变化,实施“真实的”对抗演习。

利用虚拟现实技术,根据侦察情况资料合成出战场全景图,让受训指挥员通过传感装置观察双方兵力部署和战场情况,以便判断敌情。在这样的虚拟作战环境中,可以使众多军事单位参与到作战模拟来中,而且不受地域的限制,可以大大提高战役训练的效益;还可

以评估武器系统的总体性能,启发新的作战思想。虚拟军事演习系统可以任意增加联合演习的次数,这样便于作战方案与理论的研究。传统的实兵演习周期长、耗费大,如果借助虚拟军事演习系统进行训练,就可以较小的代价、较短的时间实施大规模战区、战略级演习,并可通过多次演习或一次演习多种方案,发现、解决实战中可能出现的问题。武器装备研制的模拟, 在武器装备研制的过程中,广泛采用 VR 技术可以使设计研发人员在研制出真实系统之前,先设计一个虚拟武器系统,对其进行先期的虚拟实验,并根据未来战争的特点和各种作战设想,设置多种典型战场环境、作战背景进行反复验证评估;还可以让研制者和用户同时进入虚拟的作战环境中操作虚拟的武器系统,充分利用系统提供的各种虚拟环境,检验武器系统的设计方案和战技术性能指标及其操作的合理性。这样不仅可以大大缩短武器系统的研制周期,节省大量的研制经费,并能对武器系统的作战效能进行合理评估,从而使武器的性能指标更接近实战要求。虚拟现实在军事模拟上有很多的运用,因此其前景也很可观。下面主要从国内和国外两个视角研究虚拟现实在军事上的前景。美国 VR 研究技术走在国际前列。上个世纪八十年代美军在加利福尼亚 Fort Irwin 建立了国家培训中心,应用战术演习仿真系统TES(Tactical Engage: merit Simulation system)对士兵进行培训。这个做法很快就被英、德、法、瑞士等国军队采纳并装备类似的系统。虚拟现实技术是从用于驾驶员训练的军事模拟器发展起来的。最早的分布式虚拟战场环境则是 1983 年

美国陆军制定的 SIMNET(Simulator Networking)研究计划,其目的是把 200 多个虚拟系统模拟器联网,组成一个实时的可供多人共享的虚拟环境.主要用于模拟坦克、飞机、车辆等各种武器装备。每个 SIMNET 模拟器都是一个独立的装置,它复现 MI 主战坦克的内部,包括:导航设备、武器、传感器和显示器等。车载武器、传感器和发动机由车载计算机动态模拟,该计算机还包含整个虚拟战场的数据库生成。坦克乘员之间的通信是借助于车内通信系统实现的,而与其它模拟器之间的通信是通过远程网络由话音和电子报文实现的。 1987 年已有 250 个模拟器投入运行。

1988 年整个系统开始启动,目前已进入运行阶段[4]。美陆军1992 年提出了“近战战术训练系统”(CCTT),投资 10 亿美元。它利用许多先进的主干系统光纤网络结合分布式交互仿真,建立一个虚拟作战环境,供单兵在人工合成环境中完成作战训练任务。这个由美陆军主持的国防仿真网,通过局域网和广域网联结着从韩国到欧洲的大约 65 工作站,各站之间可迅速传递模型和数据。它包括“艾布拉姆斯”坦克、“布雷得利”战车、HUMVEES 武器系统,使士兵能在虚拟环境的动态地形进行作战。美空军用虚拟现实技术研制的飞行训练模拟器,能产生视觉控制,能处理三维实时交互图形,且有图形以外的声音和触感,不但能以正常方式操纵和控制飞行器,还能处理虚拟现实中飞机以外的各种情况,如气球的威胁、导弹的发射轨迹等。美国西南研究所为美国海军部队研制了近距离战斗系统。它的头盔显示器可以让战士进行射击训练,还可以使战

士在虚拟世界中进行各种操作.驾驶车辆纵横驰骋。另外,英国Virtalis 公司推出了便携的立体图形投影系统和用于交互、跟踪的无线数据手套,在工业、商业、医疗、文化和教育行业等领域得到了广泛的运用。和一些发达国家相比,我国 VR 技术还有一定的差距,但已引起政府有关部门和科学家们的高度重视。国内一些院校和科研单位,陆续开展了 VR 技术的研究。像北京航空航天大学计算机系虚拟现实与可视化新技术研究室集成的分布式虚拟环境 DVENET (Distributed Virtual Environment Network),浙江大学心理学国家重点实验室开发的虚拟故宫,清华大学计算机系对虚拟现实和临场感方面进行了研究;另外,西安交通大学、国防科技大学、中科院软件所等单位也进行了不同领域、不同方面 VR 研究 [5]。军事运用方面,空军第二航空学院研制的飞行训练模拟系统可使操作者在虚拟环境下产生与现实一致的身临其境的视觉、触觉效果。通过视、听、手的动作参与虚拟环境中事物的运动过程,该技术的开发和应用将使模拟训练以全新的面貌出现,为解决贵重装备的训练开拓了新的重要途径。目前已研制成功了国内第一套头盔式大视场、立体视觉显示系统,数据手套和软件系统,超声波、全方位、六自由度空间位置检测系统,用于计算机成像的立体显示和控制软件系统。

解放军信息工程大学战场环境仿真工程实验室取得了以“地形环境仿真系统”为代表的成果。该系统是运用虚拟现实技术,在军事测绘数据库的支持下,实现战场环境仿真的一个实用系统。主要模拟

虚拟现实课程标准

《虚拟现实》课程标准 一、课程概况 注:课程类别填公共基础课、专业基础课、专业核心课、岗位方向课。 二、专业对课程要求 虚拟现实课程是岗位方向课,操作性强,应用前景广阔。该课程主要以学习VR交互的实现流程与技术。课程主要考核学生制作VR游戏的模型制作、UI设计、交互功能等。重视学生分析问题和解决问题能力的培养,使他们具有进一步学习相关知识和技能的能力。另外通过该课程的“教、学、做”一体化教学,培养学生良好的创新能力,提高学生的职业技能与职业素养,为培养创新型、发展型的高素质数字媒体技术人才服务。 三、课程培养目标 1、总体目标 通过学习这门课程使学生掌握Unity的基础知识,熟悉Unity游戏制作的工作流程、创作方法。更重要的是让学生能熟悉VR制作与开发的整体设计与实现过程,提高学生实践操作能力。同时培养吃苦耐劳、爱岗敬业、团队协作的工匠精神和诚实、守信、善于沟通与合作的良好品质,为发展职业能力奠定良好的基础。 2、知识目标 (1)掌握虚拟现实技术基础知识; (2)掌握Unity3d软件的基本使用流程; (3)掌握三维交互的基本原理。 3、能力目标 (1)能操作Unity软件,完成地形的制作; (2)掌握虚拟场景中的UI设计流程;

(3)掌握C#编程在Unity中的使用; (4)Unity在实际项目中的开发能力。 4、素养目标 (1)具有正确的职业观; (2)具有胜任相关工作的良好业务素质; (3)具备基本的审美修养和创造性思维能力; (4)具备运用所学知识分析和解决问题的能力。 四、课程设计思路 《虚拟现实》课程目标的设计主要遵循前导课程的掌握情况以及学生个体能力发展方向的需求与特点,旨在体现《虚拟现实》课程标准的整体性、灵活性。 1、根据实际项目制作为教学主线,整个课程内容由以下几个模块组成,构建由“Unity 基础知识——UI交互——C#编程语言——项目开发”的课程内容体系,每个模块都有相关的项目与任务来支撑。运用“以训带练,以练带学”的教学方法构建以实践为主渠道的教学体系。以能力培养为主线,把知识传授、能力培养和素质教育融为一体。 2、在教学中,采取个别辅导、分组教学等多种手段,激发学生学习的主动性和创造性。让学生学会发现问题、研究问题,并能独立解决问题。 3、以推动学科建设为目的,不断更新教学手段和方法,学习其它先进的教学成果来丰富课堂教学,使本课程的教学始终适应专业发展的要求,并为学生后续的专业学习提供强有力的支撑。 五、课程内容设计 1、课程整体设计

力全章复习与巩固基础知识讲解

《力》全章复习及巩固(基础) 【学习目标】 1、知道力的概念、力的单位、力的作用效果; 2、知道力的三要素,能用示意图表示力; 3、了解物体间力的作用是相互的,并能解释有关现象; 4、理解重力、弹力产生的条件; 5.知道滑动摩擦力的概念,影响滑动摩擦力大小的因素; 6.了解摩擦在日常生活中的利用和防止。 【知识网络】 【要点梳理】 要点一、力 1、力的概念: (1)力是物体对物体的作用。 (2)力不能脱离物体而存在,发生力的作用时,一定有物体存在。 (3)直接接触的物体间可以发生力的作用,不直接接触的物体间也能发生力的作用,例如磁铁间的吸引力。 2、力的单位:国际单位:牛顿,简称:牛,符号:N。托起两个鸡蛋的力大约是1N。 3、力的作用效果:

(1)使物体的运动状态发生改变。 (2)使物体发生形变。 4、力的三要素:大小、方向、作用点。 5、力的示意图: (1)力的示意图是在分析物体受力时,只需要标明物体受力的大致情况,只画力的方向、作用点、不用画标度和大小。 (2)画法:首先找到力的作用点;其次从力的作用点,沿力的方向画一条直线;最后用箭头标出力的方向。 6、相互作用力:物体间力的作用是相互的,施力物体同时也是受力物体。作用力及反作用力大小相等、方向相反、作用在两个物体上。同时增大,同时减小,同时存在,同时消失,没有先后之分。 要点诠释: 1、从字面上看“物体对物体”说明有力的存在时,至少需要两个物体,力是不能脱离物体而存在的。这就是力的物质性。“对”字前面的物体,我们常把它叫施力物体(因为它施加了力),“对”字后面的物体,我们把它叫受力物体。有力存在时,一定有施力物体和受力物体。例如:人推车,人对小车施加了力,小车受到了力,所以人是施力物体,车是受力物体。 2、物体间只有发生相互作用时才会有力,若只有物体,没有作用,也不会有力。例如:人踢球,使球在草坪上滚动,人踢球时,人对球施加了力,人是施力物体,球是受力物体,当球离脚之后,人不再对球施力,球也就不再受踢力。 3、力的作用效果往往是两种效果同时都有,我们研究一个力的作用效果时,只研究主要的作用效果,例如,用脚踢足球时,脚对足球的力,同时使球发生了形变和使球的运动状态改变了,但主要的作用效果应该是运动状态改变了。 4、力的作用效果及力的三要素有关。力的三要素中任一要素都影响着力的作用效果,只要其中一要素改变了,力的作用效果就会发生改变。 要点二、弹力、弹簧测力计 1、弹力概念:物体发生弹性形变后,力图恢复其原来的形状,而对另一个物体产生力,这个力叫做弹力。 2、弹簧测力计的原理:在弹性限度内弹簧受的拉力越大,它的伸长量就越长。 3、弹簧测力计的使用 使用口诀:看量程、看分度、要校零;一顺拉、不摩擦、不猛拉;正对看、记数值、带单位。

VR+BIM基础知识介绍[详细]

BI米+VR BI米(Building Infor米ation米odeling,建筑信息模型)将成为建筑供给端同时也是最前端(设计环节)引领行业变革的重要推动力之一,VR(虚拟现实)提升BI米应用效果并加速其推广应用.BI米是以建筑工程项目各项相关信息数据作为模型的基础,进行建筑模型的建立,通过数字信息仿真模拟建筑物所具有的真实信息,具有可视化,协调性,模拟性,优化性和可出图性五大特点.VR沉浸式体验,加强了具象性及交互功能,大大提升BI米应用效果,从而推动其在建筑设计加速推广使用. BI米同时受益于国家政策支持、工业4.0需求(精益建造及工业化生产)以及互联网技术进步的推动,可提高生产效率、节约工程造价和缩短建设工期,也是建筑工业化生产最核心的推动力之一.建筑工程管理长期面临着工期紧张、工程复杂、协作困难等问题,应用BI米进行项目管理有助于协助各施工部门沟通、加强成本管理和安全管理,从而降低工程复杂度,缩短工期,加速资金周转.房地产行业健康发展,居民对住房质量及个性化需求,国家智慧城市、工业4.0战略要求企业采用数字化建筑平台,大数据、云计算以及3D打印等技术进步,共同推动BI米系统加速发展. VR逐步照进建筑设计领域,已有效应用于西方工业设计;未来五年内有望在中国建筑设计领域广泛推广使用,目前已在样板房展示等营销领域落地.目前国外在视频拍摄、电子游戏等领域已经有了完善的VR产品,在工业设计中谷歌、微软、索尼等产品逐渐进入工业设计中.欧美知名建筑设计公司目前已在建筑设计模型测试中使用VR技术,英国IVR NATION公司搭建了的VR模型应用于建筑设计,模型真实度达到90%.我们预计未来五年VR技术有望在建筑设计中逐步推

总复习:压力 压强(基础)知识讲解

总复习:压力压强(基础) 撰稿:冯保国审稿:史会娜【考纲要求】 1、理解压力的概念、压强的概念单位和公式; 2、固体压强的计算,增大减小压强的办法及应用; 3、液体压强的特点及相关计算; 4、大气压强与流体压强 【知识网络】

【考点梳理】 考点一、压强(高清课堂《压强》) 1.压力: (1)压力是垂直压在物体表面上的力。 (2)方向:垂直于受力面,指向被压物体。 (3)压力与重力的关系:力的产生原因不一定是由于重力引起的,所以压力大小不一定等于重力。 2.压强 (1) 定义:物体所受压力的大小与受力面积之比 (2) 公式:P=F/S。式中P表示压强,单位是帕斯卡;F表示压力,单位是牛顿; S表示受力面积,单位是平方米。 (3) 国际单位:帕斯卡,简称帕,符号是Pa。1Pa=lN/m2, 其物理意义是:lm2的面积上受到的压力是1N。 3.增大和减小压强的方法 (1)增大压强的方法:①增大压力;②减小受力面积。 (2)减小压强的方法:①减小压力;②增大受力面积。 考点二、液体压强(高清课堂《液体压强》) 1.液体压强的特点 (1)液体向各个方向都有压强。

(2)同种液体中在同一深度处液体向各个方向的压强相等。 (3)同种液体中,深度越深,液体压强越大。 (4)在深度相同时,液体密度越大,液体压强越大。 2.液体压强的大小 (1)液体压强与液体密度和液体深度有关。 (2)公式:P=ρgh。式中, P表示液体压强单位帕斯卡(Pa); ρ表示液体密度,单位是千克每立方米(kg/m3); h表示液体深度,单位是米(m)。 3.连通器——液体压强的实际应用 (1)原理:连通器里的液体在不流动时,各容器中的液面高度总是相同的。 (2)应用:水壶、锅炉水位计、水塔、船闸、下水道的弯管。 考点三、大气压强 1.大气压产生的原因:由于重力的作用,并且空气具有流动性,因此发生挤压而产生的。 2.证明大气压存在:马德堡半球实验,覆杯实验,瓶吞鸡蛋实验。 3.大气压的测量——托里拆利实验 要点诠释: (1)实验方法:在长约1m一端封闭的玻璃管里灌满水银,用手指将管口堵住,然后倒插 在水银槽中。放开手指,管内水银面下降到一定高度时就不再下降,这时测出管内

国内虚拟现实的技术现状

国内虚拟现实的技术现状 在国内,虚拟现实技术正逐渐受到人们重视。1990年,我国将“虚拟现实技术”正式列入国家“863计划”。近年来,虚拟现实技术在我国取得了长足的进步。一些重要的成果已推向市场。 北京科技大学虚拟现实实验室成功开发出了纯交互式汽车模拟驾驶培训系统。由于开发出的三维图形非常逼真,虚拟环境与真实的驾驶环境几乎没有什么差别,因此投入使用后效果良好。到目前为止,已经有150余人通过这个系统的学习取得驾驶执照,路考通过率达到98%。 北京航空航天大学虚拟现实与多媒体研究室在分布式虚拟环境网络上开发了直升机虚拟仿真器、坦克虚拟仿真器、虚拟战场环境观察器、计算机兵力生成器;连接了装甲兵工程学院提供的坦克仿真器;基本完成分布式虚拟环境网络下分布交互仿真使用的真实地形;并正在联合多家单位开发J7、F22、F16及单兵等虚拟仿真器。他们的总设计目标是为我国军事模拟训练与演习提供一个多武器协同作战或对抗的战术演练系统。 国防科技大学研制的虚拟空间会议系统1999年12月在长沙通过专家鉴定。虚拟空间会议系统随着虚拟现实技术的发展而被提出,是国际上公认的前沿性高难度课题,具有"终极会议系统" 之称。国防科技大学于1995年开始进行前期研究,1997年正式立项,研究人员经过5年的艰苦探索,大胆创新,终于解决了对象提取、三维虚拟对象、会场合成、场景感知、视音频压缩与传输及高分辨率显示等一系列关键技术,使中国虚拟现实技术获得突破性进展。虚拟会议空间通过多个大屏幕投影机无缝组成虚拟会场显示环境,采用视频合成技术构造一个超高分辨率、宽视角、一体化的虚拟会议空间,实现了与会者之间相互关注及对会场虚拟场景的感知等普通多媒体会议系统无法实现的功能。在虚拟会议空间系统中,所有与会者仿佛在同一个会议室开会,每个与会者所处的空间位置、行为动作及面部表情都能相互感知,并能通过多种形式进行信息交流。发言人也可通过对每个与会者的反应和提出的问题,调整讲话内容、回答有关问题。 位于上海浦东陆家嘴地区的正大商业广场,采用了中国建筑第三工程局和华中理工大学合作开发的虚拟现实技术,在国内首次将“虚拟实境”应用于建筑领域。在盖大楼前,可先用计算机系统模拟一下周围的环境、施工的过程,身临其境地感受和研究一番。 杭州大学用虚拟现实技术开发出故宫漫游器,使用者骑在“自行车”上,戴上头盔式显示器,便可远远地看到天安门。当蹬动“自行车”的脚蹬时,便走近天安门、越过金水桥、穿过午门,https://www.360docs.net/doc/b98870320.html,经由太和门来到太和殿前的广场。甚至可以“破墙”而入“冲”进太和殿,看到金銮殿内盘龙的柱子、庄严的殿堂。然后“骑”着车来到御花园,看到红墙、绿树、亭台楼阁。 目前,我国已有越来越多的科研单位和企业投入了虚拟现实技术的研究和产品的开发,这一方兴未艾的计算机技术必将产生巨大的生产力,让人们的工作和生活更加轻松,更加富有色彩。像中央电视台,正在积极考虑使用虚拟演播室,因为采用虚拟场景不仅成本低,而且创作人员可以自由发挥想象力,不受现实条件的束缚。这样,节目的感染力也更强。故宫博物院就“故宫文化资产数字化应用研究”项目与日本凸版印刷株式会社签订了合作

vr技术基本常识

vr技术基本常识 虚拟现实技术是一种可以创建和体验虚拟世界的计算机仿真系统它利用计算机生成一种模拟环境是一种多源信息融合的交互式的三维动态视景和实体行为的系统仿真使用户沉浸到该环境中。 简介虚拟现实技术是仿真技术的一个重要方向是仿真技术与计算机图形学人机接口技术多媒体技术传感技术网络技术等多种技术的集合是一门富有挑战性的交叉技术前沿学科和研究领域。虚拟现实技术(VR)主要包括模拟环境、感知、自然技能和传感设备等方面。模拟环境是由计算机生成的、实时动态的三维立体逼真图像。感知是指理想的VR应该具有一切人所具有的感知。除计算机图形技术所生成的视觉感知外,还有听觉、触觉、力觉、运动等感知,甚至还包括嗅觉和味觉等,也称为多感知。自然技能是指人的头部转动,眼睛、手势、或其他人体行为动作,由计算机来处理与参与者的动作相适应的数据,并对用户的输入作出实时响应,并分别反馈到用户的五官。传感设备是指三维交互设备。发展历史虚拟现实技术演变发展史大体上可以分为四个阶段有声形动态的模拟是蕴涵虚拟现实思想的第一阶段(1963)年以前虚拟现实萌芽为第二阶段(1963 -1972 )虚拟现实概念的产生和理论初步形成为第三阶段(1973 -1989 )虚拟现实理论进一步的完善和应用为第四阶段(1990 -2004 )。 特征多感知性 指除一般计算机所具有的视觉感知外,还有听觉感知、触觉感知、运动感知,甚至还包括味觉、嗅觉、感知等。理想的虚拟现实应该具有一切人所具有的感知功能。 虚拟现实存在感 指用户感到作为主角存在丁模拟环境中的真实程度。理想的模拟环境应该达到使用户难辨真假的程度。 虚拟现实交互性 指用户对模拟环境内物体的可操作程度和从环境得到反馈的自然程度。 虚拟现实自主性

力的平衡(基础) 知识讲解

力的平衡(基础) 【学习目标】 1、知道合力、分力,能够处理同一直向上二力的合成 2、知道什么是平衡状态,平衡力,理解二力平衡的条件; 3、会用二力平衡的条件解决问题; 4、掌握力与运动的关系。 【要点梳理】 要点一、力的合成 1.合力:如果一个力产生的效果跟几个力共同作用产生的效果相同,这个力就叫做那几个力的合力 2.分力:组成合力的每一个力叫分力 要点诠释: 同一直线上二力的合成: (1)同一直线上,方向相同的两个力的合力,大小等于这两个力的大小之和,方向跟着两个力的方向相同,即F=1F +2F ; (2)同一直线上,方向相反的两个力的合力,大小等于这两个力的大小之差,方向跟较大的那个力的方向相同,即F=1F -2F (1F >2F ) 要点二、平衡状态和平衡力 物体处于静止状态或匀速直线运动状态,我们就说这个物体处于平衡状态。物体在受到几个力作用时,如果保持静止状态或匀速直线运动状态,我们就说这几个力是平衡力。 要点诠释: 1.平衡力与平衡状态的关系:物体在平衡力的作用下,处于平衡状态,物体处于平衡状态时要么不受力,若受力一定是平衡力。 2.物体受平衡力或不受力保持静止或匀速直线运动状态。 要点三、二力平衡 作用在同一物体上的两个力,如果大小相等、方向相反,并且在同一条直线上,这两个力就彼此平衡。要点诠释: 1.二力平衡的条件 概括说就是“同物、等大、反向、共线”。 (1)同物:作用在同一物体上的两个力。 (2)等大:大小相等。 (3)反向:两个力方向相反。 (4)共线:两个力作用在同一条直线上。 2.二力平衡的条件的应用: (1)根据平衡力中一个力的大小和方向,判定另一个力的大小和方向。 (2)根据物体的平衡状态,判断物体的受力情况。

国内外虚拟现实技术发展现状和发展趋势

浅析:国内外虚拟现实技术发展现状和发展趋势 国外虚拟现实技术及产品有Google Earth, Microsoft Map Live, Intel Shockwave3D, Cult3D, ViewPoint, Quest3D,Virtools,WEBMAX等…… 一. 国内外虚拟现实几种主流技术的介绍 VRML技术 虚拟现实技术与多媒体、网络技术并称为三大前景最好的计算机技术。自1962年,美国青年(Morton Heilig),发明了实感全景仿真机开始。虚拟现实技术越来越受到大众的关注。以三个I,即Immersion沉浸感,Interaction交互性,Imagination思维构想性,作为虚拟现实技术最本质的特点,并融合了其它先进技术。在国际互联网发展迅猛的今天,具有广泛的应用前景。重大的发展过程如下: VRML开始于20世纪90年代初期。1994年3月在日内瓦召开的第一届WWW大会上,首次正式提出了VRML这个名字。1994年10月在芝加哥召开的第二届WWW大会上公布了规范的VRML1.0标准。VRML1.0可以创建静态的3D景物,但没有声音和动画,你可以在它们之间移动,但不允许用户使用交互功能来浏览三维世界。它只有一个可以探索的静态世界。 1996年8月在新奥尔良召开的优秀3D图形技术会议-Siggraph'96上公布通过了规范的VRML2.0标准。它在VRML1.0的基础上进行了很大的补充和完善。它是以SGI公司的动态境界Moving Worlds提案为基础的。比VRML1.0增加了近30个节点,增强了静态世界,使3D场景更加逼真,并增加了交互性、动画功能、编程功能、原形定义功能。 1997年12月VRML作为国际标准正式发布,1998年1月正式获得国际标准化组织ISO 批准(国际标准号ISO/IEC14772-1:1997)。简称VRML97。VRML97只是在VRML2.0基础进行上进行了少量的修正。但它这意味着VRML已经成为虚拟现实行业的国际标准。 1999年底,VRML的又一种编码方案X3D草案发布。X3D整合正在发展的XML、JA V A、流技术等先进技术,包括了更强大、更高效的3D计算能力、渲染质量和传输速度。以及对数据流强有力的控制,多种多样的交互形式。 2000年6月世界web3D协会发布了VRML2000国际标准(草案),2000年9月又发布了VRML2000国际标准(草案修订版)。预计将在2002年,正式发表X3D标准。及相关3D浏览器。由此,虚拟现实技术进入了一个崭新的发展时代。 Wed3D协会其组织包括各种97家会员公司。主要公司如下:Sun、Sony、Hp、Oracle 、Philips 、3Dlabs 、ATI 、3Dfx 、Autodesk /Discreet、ELSA、Division、MultiGen、Elsa、NASA、Nvidia、France Telecom等等。 其中以Blaxxun和ParallelGraphics公司为代表,它们都有各自的VR浏览器插件。并各自开发基于VRML标准的扩展节点功能。使3D的效果,交互性能更加完美。支持MPEG,Mov、Avi等视频文件,Rm等流媒体文件,Wav、Midi、Mp3、Aiff等多种音频文件,Flash 动画文件,多种材质效果,支持Nurbs曲线,粒子效果,雾化效果。支持多人的交互环境,VR眼镜等硬件设备。在娱乐、电子商务等领域都有成功的应用。并各自为适应X3D的发展,以X3D为核心,有Blaxxun3D等相关产品。在虚拟场景,尤其是大场景的应用方面,以VRML标准为核心的技术具有独特的优势。相关网址如下:https://www.360docs.net/doc/b98870320.html, , https://www.360docs.net/doc/b98870320.html, 应用的画面:慕尼黑机场(电子商务)

浅谈虚拟现实技术特点教学提纲

浅谈虚拟现实技术特 点

浅谈虚拟现实技术特点,组成和分类。常用的虚拟现实软件,硬件和优缺点。 经过3节课的老师的讲解和上网资料的查看,我对虚拟现实技术有了浅显的了解。 一:虚拟现实技术特点: 虚拟现实(VirtualReality)又称灵境技术是利用三维图形生成技术、多传感交互技术以及高分辨显示技术,生成三维逼真的虚拟环境,使用者戴上特殊的头盔、数据手套等传感设备,或利用键盘、鼠标等输入设备,便可以进入虚拟空间,成为虚拟环境的一员,进行实时交互,感知和操作虚拟世界中的各种对象,从而获得身临其境的感受和体会。 虚拟现实技术具有以下五个主要特征: (1)沉浸性使之所创造的虚拟环境能使学生产生“身临其境”感觉,使其相信在虚拟环境中人也是确实存在的,而且在操作过程中它可以自始至终的发挥作用,就像真正的客观世界一样。 (2)交互性是在虚拟环境中,学生如同在真实的环境中一样与虚拟环境中的任务、事物发生交互关系,其中学生是交互的主体,虚拟对象是交互的客体,主体和客体之间的交互是全方位的。 (3)构想性是虚拟现实是要能启发人的创造性的活动,不仅要能使沉浸于此环境中的学生获取新的指示,提高感性和理性认识,而且要能使学生产生新的构思。

(4)动作性是指学生能以客观世界的实际动作或以人类实际的方式来操作虚拟系统,让学生感觉到他面对的是一个真实的环境。 (5)自主性是虚拟世界中物体可按各自的模型和规则自主运动。 二:虚拟现实技术组成和分类: 1 :虚拟现实系统的组成 用户通过头盔、手套和话筒等输入设备为计算机提供输入信号,虚拟现实软件收到输入信号后加以解释,然后对虚拟环境数据库进行必要更新,调整当前虚拟环境视图,并将这一新视图及其它信息如声音立即传送给输出设备,以便用户及时看到效果。 系统由输入部分、输出部分、虚拟环境数据库、虚拟现实软件组成。 2:虚拟现实系统的分类 虚拟现实系统按照不同的标准有不同的分类,通常分为以下四类:(1)桌面虚拟现实系统(Desktop VR) (2)沉浸式虚拟现实系统(Immersive VR) (3)分布式虚拟现实系统(Distributed VR) (4)增强式虚拟现实系统(Augmented Reality AR) 2.1桌面虚拟现实系统(简称PCVR) 桌面虚拟现实系统是一套基于普通PC平台的小型虚拟现实系统。利用中低端图形工作站及立体显示器,产生虚拟场景,参与者使用位置跟踪器、数据手套、力反馈器、三维鼠标、或其它手控输入设备,实现虚拟现实技术的重要技术特征:多感知性、沉浸感、交互性、真实性。

虚拟现实系统的组成

虚拟现实系统的组成 1 构建虚拟现实系统的目的 使参与者沉浸于多维信息空间中,进行仿真、建模,获取知识和形成新概念。 目标:利用并集成高性能的计算机软硬件及各类先进的传感器,去构建一个使参与者处于身临其境的沉浸感、具有完善的交互作用、能帮助和启发构思的信息环境。 技术支持:各种传感器技术、三维显示和音响器、虚拟环境产生器、程序设计工具集、计算机高速网络和高性能计算机平台。 2 虚拟现实系统的组成 用户通过头盔、手套和话筒等输入设备为计算机提供输入信号,虚拟现实软件收到输入信号后加以解释,然后对虚拟环境数据库进行必要更新,调整当前虚拟环境视图,并将这一新视图及其它信息如声音立即传送给输出设备,以便用户及时看到效果。 系统由输入部分、输出部分、虚拟环境数据库、虚拟现实软件组成。 2.1输入部分 虚拟现实系统通过输入部分接收来自用户的信息。用户基本输入信号包括用户的头、手位置及方向、声音等。其输入设备主要有: (1)数据手套 用来监测手的姿态,将人手的自然动作数字化。用户手的位置与

方向用来与虚拟环境进行交互。如在使用交互手套时,手势可用来启动或终止系统。类似地,手套可用来拾起虚拟物体,并将物体移到别的位置。 (2)三维球 用于物体操作和飞行控制。 (3)自由度鼠标 用于导航、选择及与物体交互。 (4)生物传感器 用来跟踪眼球运动。 (5)头部跟踪器 通常装在HMD头盔上跟踪头部位置,以便使HMD显示的图像随头部运动而变化。用户头的位置及方向是系统重要的输入信号,因为它决定了从哪个视角对虚拟世界进行渲染。 (6)语音输入设备 通过话筒等声音输入设备将语音信息输入,并利用语音识别系统将语音信号变成数字化信号。 2.2 输出系统 虚拟现实系统根据人的感觉器官的工作原理,通过虚拟现实系统的输出设备,https://www.360docs.net/doc/b98870320.html,使人对虚拟现实系统的虚拟环境得到虽假犹真、身临其境的感觉。主要是由三维图像视觉效果、三维声音效果和触觉 (力觉)效果来实现的。 (1)三维图像生成与显示

初二物理经典《力》全章复习与巩固(基础) 知识讲解

《力》全章复习与巩固(基础) 【学习目标】 1、知道力的概念、力的单位、力的作用效果; 2、知道力的三要素,能用示意图、力的图示表示力; 3、了解物体间力的作用是相互的,并能解释有关现象; 4、理解重力、弹力产生的条件和特性。 【知识网络】 【要点梳理】 要点一、力 1、力的概念: (1)力是物体对物体的作用。 (2)力不能脱离物体而存在,发生力的作用时,一定有物体存在。 (3)直接接触的物体间可以发生力的作用,不直接接触的物体间也能发生力的作用,例如磁铁间的吸引力。 2、力的单位:国际单位:牛顿,简称:牛,符号:N。托起两个鸡蛋的力大约是1N。 3、力的作用效果: (1)使物体的运动状态发生改变。 (2)使物体发生形变。 4、力的三要素:大小、方向、作用点。 5、力的示意图: (1)力的示意图是在分析物体受力时,只需要标明物体受力的大致情况,只画力的方向、作用点、不用画标度和大小。 (2)画法:首先找到力的作用点;其次从力的作用点,沿力的方向画一条线段;最后用箭头标出力的方向。 6、相互作用力:物体间力的作用是相互的,施力物体同时也是受力物体。作用力与反作用力大小相等、方向相反、作用在两个物体上。同时增大,同时减小,同时存在,同时消失,没有先后之分。 要点诠释: 1、从字面上看“物体对物体”说明有力的存在时,至少需要两个物体,力是不能脱离物体而存在的。这就是力的物质性。“对”字前面的物体,我们常把它叫施力物体(因为它施加了力),“对”字后面的物体,我们把它叫受力物体。有力存在时,一定有施力物体和受力物体。例如:人推车,人对小车施加了力,小车受到了力,所以人是施力物体,车是受力物体。 2、物体间只有发生相互作用时才会有力,若只有物体,没有作用,也不会有力。例如:人踢球,使球

虚拟现实技术的国内外研究现状与发展

138 虚拟现实技术的国内外研究现状与发展 杨江涛 (铜仁职业技术学院,贵州铜仁554300) 摘要:虚拟现实技术是一项新兴技术,结合了多种技术如多媒体技术、计算及图形技术、网络技术、人机交互技术、仿真技 术以及立体显示技术等等,前景非常的广阔。文章结合了虚拟现实技术国内外的研究现状对虚拟现实技术的发展趋势进行了分析。关键词:虚拟现实;三维现实;分布式中图分类号:F061.3 文献标识码:A 文章编号:1673-1131(2015)01-0138-01 虚拟现实(Virtual Reality ,简称VR )是一种综合了多媒体技术、计算机图形技术、网络技术、人机交互技术、仿真技术以及立体显示技术等多种科学技术综合发展起来的计算机最新技术,综合应用了力学、光学、数学、机构运动学等学科。这种技术的特点就是用模仿的方式给用户创造一种虚拟的环境,通过感知行为如视觉、听觉和触觉等让用户有一种身临其境的感觉,并带有交互作用。现在虚拟现实的发展速度越来越快,内容也扩大了很多。 1国外虚拟现实技术研究现状 (1)虚拟现实技术在美国的研究现状。美国是虚拟现实技术的发源地,对于虚拟现实技术的研究最早是在20世纪40年代。一开始用于美国军方对宇航员和飞行驾驶员的模拟训练。随着科技和社会的不断发展,虚拟现实技术也逐渐转为民用,集中在用户界面、感知、硬件和后台软件四个方面。20世纪80年代,美国国防部和美国宇航局组织了一系列对于虚拟现实技术的研究,研究成果惊人。到了现在,已经建立了空间站、航空、卫星维护的VR 训练系统,也建立了可供全国使用的VR 教育系统;乔治梅森大学研制出了一套在动态虚拟环境中的流体实时仿真系统;波音公司利用了虚拟现实技术在真实的环境上叠加了虚拟环境,让工件的加工过程得到有效的简化;施乐公司主要将虚拟现实技术用于未来办公室上,设计了一项基于VR 的窗口系统。传感器技术和图形图像处理技术是上述虚拟现实项目的主要技术,从目前来看,时间的实时性和空间的动态性是虚拟现实技术的主要焦点。 (2)虚拟现实技术在欧洲的研究现状。在欧洲,英国在辅助设备设计、分布并行处理和应用研究方面是领先的,在硬件和软件的领域处于领先地位。欧洲其它一些比较发达的国家如德国以及瑞典等也积极进行了虚拟现实技术的研究和应用:德国将虚拟现实技术应用在了对传统产业的改造、产品的演示以及培训三个方面,可以降低成本,吸引客户等等;瑞典的DIVE 分布式虚拟交互环境是一个在不同节点上的多个进程可以在同一个师姐中工作的一直分布式系统。 2国内虚拟现实技术研究现状 我国对于虚拟现实技术的研究和国外一些发达国家还存在相当大的一段距离,但随着计算机系统工程以及计算机图形学等技术的发展速度越来越快,我国各界人士对于虚拟现实技术也越来越重视,正在积极进行虚拟环境的建立以及虚拟场景模型分布式系统的开发等等。国内许多高校和研究机构也都在积极的进行虚拟现实技术的研究以及应用,并取得了不错的成果: 北京航空航天大学时国内最早进行虚拟现实技术研究的 单位之一,建立了一种分布式虚拟环境,可以提供虚拟现实演示环境、实施三维动态数据库、用于飞行员训练的虚拟现实系统以及虚拟现实应用系统的开发平台等等,并对虚拟环境中物体物理特性的表示和处理着重进行了研究,并在虚拟显示的视觉接口硬件方面进行开发,并提出了相关的算法和实现方法。 清华大学国家光盘工程研究中心采用了QuickTime 技术实现了大全景VR 制布达拉宫;哈尔品工业大学计算机系成功解决了表情和唇动合成的技术问题等。 3虚拟现实技术的发展趋势 (1)动态环境建模技术。虚拟环境的建立是虚拟现实技术的核心内容,而动态环境建模技术的目的就是对实际环境的三维数据进行获取,从而建立对应的虚拟环境模型,创建出虚拟环境。 (2)实时三维图形生成和显示技术。在生成三维图形方面,目前的技术已经比较成熟,关键是怎么样才能够做到实时生成,在不对图形的复杂程度和质量造成影响的前提下,如何让刷新频率得到有效的提高是今后重要的研究内容。另外,虚拟现实技术还依赖于传感器技术和立体显示技术的发展,现有的虚拟设备还不能够让系统的需要得到充分的满足,需要开发全新的三维图形生成和显示技术。 (3)适人化、智能化人机交互设备的研制。虽然手套和头盔等设备能够让沉浸感增强,但在实际使用当中效果并不尽如人意。交互方式使用最自然的视觉、听觉、触觉和自然语言的话,能够让虚拟现实的交互性效果得到有效的提高。 (4)大型网络分布式虚拟现实的研究与应用。网络虚拟现实是指多个用户在一个基于网络的计算机集合当中,对新型的人机交互设备进行一个用,介入计算机中,产生适用于用户的虚拟情景环境。分布式虚拟环境系统除了要让复杂虚拟环境计算的需求得到满足之外,还需要让协同工作以及分布式仿真等应用对共享虚拟环境的自然需要得到满足。分布式虚拟现实可以看成是一种基于网络的虚拟现实系统,可以让多个用户同时参与,让不同地方的用户进入到同一个虚拟现实环境当中。目前,分布式虚拟现实系统已经成为了全世界的研究热点,我国也由杭州大学、北京航空航天大学、中国科学院软件所、中国科学院计算所以及装甲兵工程学院等单位共同感开发了一个分布虚拟环境基础信息平台,为我国开展分布式虚拟现实的研究提供了必要的软硬件基础环境和网络平台。 2015 (Sum.No 145) 信息通信 INFORMATION &COMMUNICATIONS 2015年第1期(总第145期)

基于虚拟技术的沉浸式教学研究

龙源期刊网 https://www.360docs.net/doc/b98870320.html, 基于虚拟技术的沉浸式教学研究 作者:花瑞洁桑影影 来源:《传播力研究》2019年第10期 摘要:基于虚拟技术的沉浸式教学理念是沉浸式传播理论的延伸和运用,新技术的应用和推广为教育带来了新的变革和挑战,也为创新型创业型人才的培养提供了新的思路。 关键词:沉浸式;虚拟技术;教学 一、基于虚拟技术的沉浸式教学理念 基于虚拟技术的沉浸式教学理念是沉浸式传播理论的延伸和运用。李沁在《沉浸传播——第三媒介时代的传播范式》中总结:“沉浸传播是一种全新的信息传播方式,它是以人为中心、以连接了所有媒介形态的人类大环境为媒介而实现的无时不在、无处不在的传播。” 基于虚拟技术的沉浸式教育创新最大的特征是改变了教与学的地位与关系,它能更好地为学生构建学习的平台和环境,特别是VR虚拟现实技和AR增强现实技术的发展,更好地丰富了教学情境的呈现效果,加强了交互感知,给学生提供了沉浸式教学的体验,从而激发了学生主动探索、主动学习的过程,使学生的学习充满了创造性和想象力。它改变了传统的教学理念,是以知识生产、知识创新为核心的一种更高级的教学途径。 (一)以学生为服务主体 沉浸式教学是一种“以学生为中心”的教学模式,不再是“教师讲,学生听”的灌输式、填鸭式的教学,而是通过沉浸式虚拟技术将知识和信息构建成更丰富更逼真的具体情境,强调学生在学习过程中的完全沉浸和主动行为。沉浸式教学关心学生的生理和心理体验,让学习变成一种快乐的事情,学生通过和媒介的主动接触,进入深度学习,使学生在潜移默化中获得教育,是一种更有效更友好的教学手段。 (二)虚拟与现实的交互学习 虚拟现实技术可以通过计算机创建和模拟一种三维交互的虚拟环境,使受众沉浸其中,获取信息,进行互动,从而获得动态实景的交互体验。特别是运用在实践技能的学习中,虚拟现实技术可以提供很好地互动环境。媒介是沟通虚拟与现实的桥梁,学生在虚拟环境中可调动视觉、听觉、触觉去感受世界,模拟人体的运动知觉,并进行操控和反馈,真正参与到教学实践中来。更有利于激发学生的想象力和创造性。 (三)媒介融合的泛在学习

多媒体技术应用基础知识要点

《多媒体技术应用》基础知识要点 一、多媒体技术基础(书本第一章和第二章内容) 1、媒体、多媒体及多媒体技术的概念 (1)媒体的含义 媒体(medium)在计算机领域有两种含义:一是指存储信息的实体,如磁带、磁盘、光盘等,二是指承载信息的载体,如数字、文字、声音、图形和图像等。多媒体技术中的媒体是指后者。 (2)多媒体及多媒体技术的概念 多媒体是指对多种媒体的综合,多媒体技术是指以计算机为平台综合处理多种媒体信息。通常情况下,多媒体不仅指多媒体本身,也包括多媒体技术。 2、多媒体技术的特征 多媒体技术有三个显着的特征:集成性、交互性、实时性。 3、多媒体技术的应用 (1)生活中的多媒体 MP3音乐、影视动画、数字电视等。 (2)多媒体技术的现状 音频技术、视频技术、数据压缩技术、网络传输技术。 (3)多媒体技术的发展前景 虚拟现实、多媒体数据库和基于内容检索、多媒体通信技术。 4、多媒体计算机系统的组成 (1)多媒体计算机的概念 多媒体计算机是指具有多媒体信息处理功能的个人计算机。 (2)多媒体计算机配置标准 多媒体计算机一般应包括:具有多媒体功能的操作系统;硬件部分至少应包括光盘驱动器、声卡、音箱或耳机等。 (3)常见多媒体硬件设备 CD—ROM驱动器、音频卡、视频卡、扫描仪、数码相机、数码摄像机等。 (4)常用的多媒体软件工具 多媒体软件根据它的应用层面可以分为多媒体操作系统、多媒体数据采集和编辑软件、多媒体创作和集成软件三大部分。 常见的多媒体数据采集和编辑软件有:Windows系统附件中的“录音机”、PhotoShop、Flash、3DSMAX、Premiere等;常见的多媒体创作和集成软件有:Authorware、方正奥思、Director、PowerPoint等。 5、多媒体作品的规划和设计 制作多媒体作品是一个集文本、图像、声音、动画、视频之大成的工程。 多媒体作品设计的一般步骤:需求分析、规划设计、脚本编写。 需求分析包括应用需求分析和创作需求分析。规划设计包括系统结构设计和功能模块设计。 6、多媒体数据压缩技术 数据压缩是为了减少文件所占的存储空间。数据之所以能够被压缩,首先是因为数据本身确实存在着冗余,其次是在许多情况下媒体本身允许有少量的失真。

力 复习与巩固基础 知识讲解

复习与巩固力 审稿:吴楠楠编稿:周军 【知识络】 重力 力弹力 相互作用摩擦力力 力的合成 力的合成与分解 力的分解 大小:G=mg ,g=9.8N/kg 重力方向:竖直向下 等效作用点:重心

大小:由物体所处的状态、所受其它外力、形变程度来决定 弹力三种性质力方向:总是跟形变的方向相反,与物体恢复形变的方向一致 胡克定律:F=-kx 相?F?F;方向:与物体相对运动方向相反滑动摩擦力:大小:互摩擦力作0?F?F;方向:与物体相对运动趋势方向相反静摩擦力:大小:m用F?F?F?F?F基本规则:平行四边形 定则,2121力的合成与分解 一个常用方法:正交分解法 【考纲要求】 1、理解重力产生的条件,清楚重心采用了等效的方法。 2、知道弹力与摩擦力产生的条件。理解弹力与摩擦力之间的关系。会求静摩擦力和滑动摩擦力。 3、理解力的合成满足平行四边形定则。知道两个力合力的范围,会求三个或多个力的合力。 4、理解力的分解是合成的逆运算,注意分解时力的作用点不能变。清楚合成与分解只是研究问题的方法,不能说物体同时受到合力与分力。 【考点梳理】 知识点一、力的概念 (1)力是物体之间的相互作用。力不能脱离物体而存在。“物体”同时指施力物体和受力物体。(2)力的作用效果:使物体发生形变或使物体的运动状态发生变化。 (3)力的三要素:大小、方向、作用点。力的三要素决定了力的作用效果。 N )力是矢量,既有大小,又有方向。力的单位:4(. (5)力的分类: 按力的性质分:可分为重力、弹力、摩擦力等。 按力的效果分:可分为压力、支持力、动力、阻力等。 知识点二、重力 (1)重力不是万有引力,重力是由于万有引力产生的。 (2)重力的大小G=mg,在同一地点,物体的重力与质量成正比。 (3)重力的方向竖直向下或与水平面垂直。但不能说重力的方向一定指向地心。

毕业论文:浅谈虚拟现实技术

论文虚拟现实技术

浅谈虚拟现实技术 摘要虚拟现实(Virtual Reality,VR)技术是近年来新兴的借助计算机及最新传感器技术创造的一种崭新的人机交互手段,其核心是建模与仿真。概括介绍了虚拟现实技术的概念、特征及应用领域,涉及的关键技术,最新研究进展,应用与前景展望。 关键词虚拟现实技术,研究现状,相关应用,信息安全 一.虚拟现实的概念、特征及应用领域 虚拟现实是一种由计算机和电子技术创造的新世界,是一个看似真实的模拟环境,通过多种传感设备,用户可根据自身的感觉,使用人的自然技能对虚拟世界中的物体进行考察和操作,参与其中的事件,同时提供视、听、触等直观而自然的实时感知,并使参与者“沉浸”于模拟环境中。虚拟现实(Virtual Reality,VR)技术是指借助计算机及最新传感器技术创造的一种崭新的人机交互手段,其核心是建模与仿真。 虚拟现实技术主要包括模拟环境、感知、自然技能和传感设各等方面。模拟环境是由计算机生成的、实时动态的三维立体逼真图像。感知是指理想的VR应该具有一切人所具有的感知。除计算机图形技术所生成的视觉感知外,还有听觉、触觉、力觉、运动等感知,甚至还包括嗅觉和味觉等,也称为多感知。自然技能是指人的头部转动,眼睛、手势、或其他人体行为动作,由计算机来处理与参与者的动作相适应的数据,并对用户的输入作出实时响应,并分别反馈到用户的五官。传感设备是指三维交互设备。常用的有立体头盔、数据于套、三维鼠标、数据衣等穿戴于用户身上的装置和设置于现实环境中的传感装置,如摄像机、地板压力传感器等。 (虚拟现实技术穿戴的装备)

GrigoreBurdea和Philippe Coiffet在著作“Virtual Reality Technology”一书中指出,虚拟现实具有三个最突出的特征,即人们称道的“3I”特性:交互性(interactivity) 、沉浸感(Illusion of Immersion) 和构想性(imagination)。交互性主要是指参与者通过使用专门输入和输出设备,用人类的自然技能实现对模拟环境的考察与操作的程度。沉浸感是虚拟现实最主要的技术特征,它是指参与者在纯自然的状态下,借助交互设备和自身的感知觉系统,对虚拟环境的投入程度。构想性是指借助虚拟现实技术,使抽象概念具像化的程度。另外还有多感知性(Multi-Sensory)。所谓多感知是指除了一般计算机技术所具有的视觉感知之外,还有听觉感知、力觉感知、触觉感知、运动感知,甚至包括味觉感知、嗅觉感知等。理想的虚拟现实技术应该具有一切人所具有的感知功能,由于相关技术,特别是传感技术的限制,目前虚拟现实技术所具有的感知功能仅限于视觉、听觉、力觉、触觉、运动等几种。 所以,“3I+M”就是虚拟现实系统的基本特征。 自1968年Ivan Sutherland发表一篇名为“The Ultimate Display”的论文至今,虚拟现实技术已经伴随着计算机技术的进步得到长足的发展。如今,众多的设备可被用于虚拟现实,包括头戴式显示器、数据手套、动作捕捉系统等[1]。虚拟现实技术已经在诸如建筑设计、军事仿真、虚拟制造、游戏娱乐、医学等领域得到广泛的应用。在教育、心理学、环保、文化艺术领域,虚拟现实技术也得到越来越多的关注[2]。 二.虚拟现实涉及的关键技术[3] 虚拟现实的关键技术主要包括:动态环境建模技术,实时三维图形生成技术,立体显示和传感器技术,应用系统开发工具,系统集成技术,实时三维计算机图形技术,广角立体显示技术,对观察者头、眼和手的跟踪技术,触觉、力觉反馈技术,立体声、语音输入输出技术。 动态环境建模技术:虚拟环境的建立是VR系统的核心内容,目的就是获取实际环境的三维数据,并根据应用的需要建立相应的虚拟环境模型。 实时三维图形生成技术:三维图形的生成技术已经较为成熟,那么关键就是“实时”生成。为了达到实时的目的,至少保证图形的刷新频率不低于15帧/秒,最好高于30帧/秒。

弹力力的测量知识讲解

弹力力的测量 【学习目标】 1、知道什么是弹力及弹力产生的条件; 2、了解弹簧测力计的原理,会使用弹簧测力计。 【要点梳理】 要点一、弹力 1、概念:发生了弹性形变的物体,由于要恢复原来的形状,对给它接触的物体会产生力的作用,这种力叫弹力。 2、方向:(1)压力和支持力的方向总是垂直于接触面指向被压或被支持的物体; (2)悬线对物体拉力的方向总是沿着悬线指向悬线收缩的方向。 要点诠释: (1)物体受力发生形变,不受力时又能自动恢复原来形状的特性叫做弹性。能自动恢复原来形状的形变叫弹性形变;物体由于弹性形变而产生的力叫做弹力。物体的弹性形变程度越大,产生的弹力越大。物体受力发生形变,不受力时无法恢复原来形状的特性叫做范性(又称塑性)。不能恢复原来形状的形变叫范性形变。 (2)日常所称的拉力、压力、支持力等,其实质都是弹力。例如,桌面对茶杯的支持力,其实质就是桌面发生了微小的形变后对茶杯向上的弹力。 注意:弹簧的弹性有一定的限度,超过了这个限度就不能完全复原。 要点二、弹簧测力计(高清课堂《弹力弹簧测力计》388539弹簧测力计) 1、弹簧测力计的原理:在弹性限度内弹簧受的拉力越大,它的伸长量就越长。 2、弹簧测力计的使用 使用口诀:看量程、看分度、要校零;一顺拉、不摩擦、不猛拉;正对看、记数值、带单位。 使用方法: (1)使用前,应使指针指在零刻度线; (2)所测的力不能大于测力计的测量限度; (3)不要让指针与刻度盘摩擦; (4)读数时,视线应穿过指针与刻度盘垂直。

【典型例题】 类型一、弹力 1、(2015?锦江区模拟)关于弹力,下列说法错误的是() A.弹力是指弹簧形变时对其他物体的作用 B.压力、支持力、拉力都属于弹力 C.在弹性限度内,同一弹簧受到的拉力越大伸长越长 D.弹力是指发生弹性形变的物体,由于要恢复原状,对接触它的物体产生的力 【思路点拨】发生弹性形变的物体,在恢复原来形状时才会产生弹力;产生弹力的条件是:有弹性形变,相互接触。 【答案】A 【解析】A、发生弹性形变的物体都会产生弹力,弹力不是仅弹簧具有的。此选项错误;B、压力、支持力、拉力都是按照作用效果命名的,都是弹力。此选项正确;C、在弹性限度内,同一弹簧的伸长与受到的拉力成正比。此选项正确;D、弹力是指物体发生弹性形变时,对跟它接触的物体产生的力。此选项正确;故选A。 【总结升华】本题解答的关键是要明确弹力的定义、产生条件、大小、方向,基础题。 举一反三: 【变式】下列哪个力不属于弹力() A、地面对人的支持力 B、重力 C、人对车的推力 D、绳子对物体的拉力 【答案】B 2、在下图中,A、B两球相互间一定有弹力作用的图是() A. B. C. D. 【思路点拨】可以用假设法去判断弹力是否一定存在 【答案】B 【解析】弹力的产生必须满足两个条件:相互接触且发生弹性形变。 由图可知:A、C中两个小球都相互接触,但它们之间并没有相互挤压的作用,也就不能发生弹性形变,从而不能产生弹力。 D无法确定两个小球之间到底有没有挤压作用,所以也就无法确定有没有弹力。 B中,两个小球所受的重力与绳子的拉力不是一对平衡力,所以这两个小球都受到了对方力的作用,从而发生弹性形变产生弹力。

相关文档
最新文档