无穷小与无穷大,极限运算法则讲义

无穷小与无穷大,极限运算法则讲义
无穷小与无穷大,极限运算法则讲义

函数极限及运算法则

教学目标:掌握函数极限的运算法则,并会求简单的函数的极限 教学重点:运用函数极限的运算法则求极限 教学难点:函数极限法则的运用 教学过程: 一、引入: 一些简单函数可从变化趋势找出它们的极限,如o x x x x x x o ==→∞→lim ,01 lim .若求极限的函数比较复杂,就要分析已知函数是由哪些简单函数经过怎样的运算结合而成的,已知函数 的极限与这些简单函数的极限有什么关系,这样就能把复杂函数的极限计算转化为简单函数的极限的计算. 二 、新课讲授 对于函数极限有如下的运算法则: 限,分别等于这两个函数的极限的和、差、积、商(作为除数的函数的极限不能为0). 说明:当C 是常数,n 是正整数时,)(lim )]([lim x f C x Cf o o x x x x →→= n x x n x x x f x f o o )](lim [)]([lim →→= 这些法则对于∞→x 的情况仍然适用. 三 典例剖析 例1 求)3(lim 2 2 x x x +→ 例2 求1 1 2lim 231++-→x x x x 例3 求4 16 lim 24--→x x x 分析:当4→x 时,分母的极限是0,不能直接运用上面的极限运用法则.注意函数

4 162--=x x y 在定义域4≠x 内,可以将分子、分母约去公因式4-x 后变成4+x ,由此即 可求出函数的极限. 例4 求1 3 3lim 22++-∞→x x x x 分析:当∞→x 时,分子、分母都没有极限,不能直接运用上面的商的极限运算法则.如果分子、分母都除以2 x ,所得到的分子、分母都有极限,就可以用商的极限运用法则计算。 总结:),(lim ,lim * N k x x C C k o k x x x x o o ∈==→→ )(01lim ,lim * N k x C C k x x ∈==∞→∞ → 例5 求1 34 2lim 232+--+∞→x x x x x 分析:同例4一样,不能直接用法则求极限. 如果分子、分母都除以3 x ,就可以运用法则计算了。 四 课堂练习(利用函数的极限法则求下列函数极限) (1))32(lim 2 1-→ x x ; (2))132(lim 2 2 +-→x x x (3))]3)(12[(lim 4 +-→x x x ; (4)1431 2lim 221-++→x x x x (5)11lim 21+--→x x x (6)9 6 5lim 223-+-→x x x x (7)13322lim 232+--+∞→x x x x x (8)5 2lim 32--∞→y y y y 五 小结

幂的运算教案

《幂的运算》教案 教学目标 1.熟记同底数幂的乘法的运算性质,了解法则的推导过程. mnmn aaa2a.+.能熟练地进行同底数幂的乘法运算.会逆用公式= 3.使学生掌握幂的乘方的法则,并能够用式子表示; 4.通过自主探索,让学生明确幂的乘方法则是根据乘方的意义和同底数幂法则推导出来的,并能利用乘方的法则熟悉地进行幂的乘方运算; 5.使学生理解.掌握和运用积的乘方的法则; 6.使学生通过探索,明确积的乘方是通过乘方的意义和乘法的交换律以及同底数幂的运算法则推导而得的; 7.让学生通过类比,对三个幂的运算法则在应用时进行选择和区别; 8.了解同底数幂的除法法则,注意运算顺序. 教程方法:经历法则的探索过程,感受法则的来龙去脉,加深学生对知识的掌握. 情感态度:通过法则的习题教学,训练学生的归纳能力,感悟从未知转化成已知的思想. 教学重点 掌握并能熟练地运用同底数幂的乘法法则进行乘法运算; 幂的乘方法则的应用; 积的乘方法则的理解和应用; 同底数幂的除法法则的应用. 教学难点 对法则推导过程的理解及逆用法则; 理解幂的乘方的意义; 积的乘方法则的推导过程的理解; 同底数幂的除法法则的应用. 教学过程 【一】 引入 1.填空. 122222aaa=,( )( ) ··…·()××××=m个2指出各部分名 称.)(

2.应用题计算. 51110千克煤所产生的热)(平方千米的土地上,一年内从太阳中吸收的能量相当于燃烧510平方千米的土地上,一年内从太阳中吸收的能量相当于燃烧多少千克煤?量.那么 51l03279×(米/秒,求卫星绕地球)卫星绕地球运行的速度为第一宇宙速度,达到×.30秒走过的路程?新课教学一.探索,概括53212,=×( ).试一试,要求学生说出每一步变形的根据之后,再提问让学生直接说出6733=( )×,由此可发现什么规律? 35( )2221,( )×)=×=(( )34( )5525,( )=×=( )(×)34( )aa3a.=×= ( )(( ))mn43ana34m2anam的结果分别换成字母为正整数和和.如果把)(×,你能写出.中指数吗?你写的是否正确? mnmn+manaa为正整数)即这就是同底数幂的乘法法则.·.= (二.举例及应用 11计算:.例 343353aaa11010a2a )×(·(())··三.拓展延伸(公式的逆用) mnmnmnmn++aamanaaa为正整数.,可得(=由) .=mmmn+aa8a23==例已知,则=,( ) 提问:通过以上练习,你对同底数是如何理解的?在应用同底数幂的运算法则中,应注意什么?课堂小结 1.在运用同底数幂的乘法法则解题时,必须知道运算依据. 2.“同底数”可以是单项式,也可以是多项式. 3.不是同底数时,首先要化成同底数. 【二】. 一.知识回顾: 1.什么叫乘方?什么叫幂? 2.口述幂的乘法法则. 二.计算观察: 试一试:根据乘方的意义及同底数幂的乘法填空 3233()2?2??(22)1 ())23222(33?3?)?3?(32 ())34333(3aaaaa(?)?a3 )( 问题:上述几题有什么共同的特点? 通过对学生对这几题的分析,我们可以得到:

微积分公式与运算法则

微积分公式与运算法则 1、基本公式 (1)导数公式 (2) 微分公式 (xμ)ˊ=μxμ-1d(xμ)= μxμ-1 dx (ax)ˊ= axlna d(a x)= a x lnadx (logax)ˊ=1/(xlna) d(loga x)= 1/(xlna) dx (sin x)ˊ= cos x d(sin x)= cos xdx (con x)ˊ=-sin x d(con x)= -sin xdx (tan x)ˊ=sec2 x d(tan x)= sec2 x dx (cotx)ˊ= -csc2x d(cot x)= -csc2x dx (sec x)ˊ= sec x·tan x d(secx)= sec x·tan x dx (csc x)ˊ= -csc x·cot x d(csc x)= -csc x·cot x dx (arcsin x)ˊ= 1/(1-x2)1/2d(arcsin x)=1

/(1-x2)1/2 dx (arccos x)ˊ= -1/(1-x2)1/2 d(arccos x)= -1/(1-x2)1/2 dx (arctan x)ˊ= 1/(1+x2) d(arctan x)= 1/(1+x2) dx (arccot x)ˊ= -1/(1+x2) d(arccot x)=-1/(1+x2) dx (sinh x)ˊ= cosh x d(sinh x)= cosh x dx (cosh x)ˊ= sinh x d(cosh x)= sinh x dx 2、运算法则(μ=μ(x),υ=υ(x),α、β∈R) (1)函数的线性组合积、商的求导法则 (αμ+βυ)ˊ=αμˊ+βυˊ (μυ)ˊ=μˊυ+μυˊ (μ/υ)ˊ=(μˊυ-μυˊ)/υ2 (2)函数与差积商的微分法则 d(αμ+βυ)= αdμ+βdυ d(μυ)=υdμ+μdυ d(μ/υ)= (υdμ-μdυ)/υ2

极限四则运算法则

极限四则运算法则 由极限定义来求极限是不可取的,也是不行的,因此需寻求一些方法来求极限。 定理1:若B x g A x f ==)(lim ,)(lim ,则)]()(lim[x g x f ±存在,且 )(lim )(lim )]()(lim[x g x f B A x g x f ±=±=±。 证明: 只证B A x g x f +=+)]()(lim[,过程为0x x →,对0,01>?>?δε,当 100δ<-?δ,当2 00δ<-

幂的运算法则复习

幂的运算法则复习 慕的运算 学习目标 1 ?理解幕的乘方和积的乘方是学习整式乘法的基础. 2 ?理解幕的乘方和积的乘方法则的导出是根据乘方的定义以及同底数幕的乘法法则. 3 ?同底数幕的乘法、幕的乘方、积的乘方这三个运算法则是整式乘法的基础,也是整 式乘法的主要依据.所以要求每个学生都能得三个运算法则的数学表达式 都为正整数)”和语言表述“同底数幕相乘, 底数不变,指数相加,幕的乘方,底数不变,指数相乘,积的乘方,等于把积的每一个因 式分别乘方”搞清楚,并能正确运用. 知识结构 同底数显 耳的乘方 r 单顶式樂以藝顶武 r 同底数号 a —P= ' csH 山F 是 正整數) 整式的乘法 參项式乘以參 整式的乘 乘沬公 单项彌以单项 多项式餘 以雾项式 单项式 除 整式的除法

重点难点 本节的重点是:正确理解幕的三个运算法则,并能熟练运用这三个法则进行计算与化简. 本节的难点是: (1) 正确运用有关的运算法则,防止发生以下的运算错误,女口: '■- - = 等; (2) 正确处理运算中的“符号”,避免以下错误,女口: - - ^ = -^. ':-<■-=-:—工:: 等; (3) 在进行加、减、乘、除、乘方的混合运算时处理好运算程序问题,防止用运算程 序混乱产生的错误,如..八 丨一……等等. 典型例题 【点评】 在运用幕的运算法则进行计算时,要避免出现繁杂运算的现象,如 3町工=0?护?少=沪, 运算的结果虽然没有错误,但由于运算的过程中没有直接运用幕的乘方法则,而采取幕的 乘法法则,致使运算出现了思维回路,达不到“简洁”的要求. [解] 1 3 例1计算: (1) 3) (2) ( — 2泅)\

微积分公式与运算法则 (1)

微积分公式与运算法则 1.基本公式 (1)导数公式 (2) 微分公式 (xμ)ˊ= μxμ-1 d(xμ)= μxμ-1 dx (a x)ˊ= a x lna d(a x)= a x lna dx (loga x)ˊ= 1/(xlna) d(loga x)= 1/(xlna) dx (sin x)ˊ= cos x d(sin x)= cos x dx (con x)ˊ= -sin x d(con x)= -sin x dx (tan x)ˊ= sec2 x d(tan x)= sec2 x dx (cot x)ˊ= -csc2 x d(cot x)= -csc2 x dx (sec x)ˊ= sec x·tan x d(sec x)= sec x·tan x dx (csc x)ˊ= -csc x·cot x d(csc x)= -csc x·cot x dx (arcsin x)ˊ= 1/(1-x2)1/2 d(arcsin x)= 1/(1-x2)1/2 dx (arccos x)ˊ= -1/(1-x2)1/2 d(arccos x)= -1/(1-x2)1/2 dx (arctan x)ˊ= 1/(1+x2) d(arctan x)= 1/(1+x2) dx (arccot x)ˊ= -1/(1+x2) d(arccot x)= -1/(1+x2) dx (sinh x)ˊ= cosh x d(sinh x)= cosh x dx (cosh x)ˊ= sinh x d(cosh x)= sinh x dx 2.运算法则(μ=μ(x),υ=υ(x),α、β∈R) (1)函数的线性组合积、商的求导法则 (αμ+βυ)ˊ=αμˊ+βυˊ(μυ)ˊ=μˊυ+μυˊ(μ/υ)ˊ= (μˊυ-μυˊ)/υ2

七年级数学下册预习幂的四大运算法则基础练习(含答案)

七年级数学下册预习幂的四大运算法则基础练 习 试卷简介:本卷共5道选择题,满分100分,时间30分钟。 一、单选题(共5道,每道20分) 1.在代数式,-1,x2-3x,π,,x2+中是整式的有() A.3个 B.4个 C.5个 D.6个 答案:B 解题思路:=+是多项式从而是整式,-1和π是单独的数所以是整式,x2-3x 是多项式所以是整式,而,x2+不是整式。故答案是B. 易错点:整式定义的理解 试题难度:二颗星知识点:整式 2.下列各式的计算中,正确的是()。 A.(-x3)3=x9 B.(-x2)5=-x10 C.-(-x2)4=x8 D.(x2)3=x5 答案:B 解题思路:(-x3)3=x9奇数个负号相乘最后的结果为正所以应该为(-x3)3=-x9,(-x2)5=-x10计算正确,-(-x2)4=x8,4次方并不作用于括号外面的负号所以负号照写结果应该为-x8,(x2)3=x5幂的乘方,底数不变指数相乘,结果应该为x6故答案为B. 易错点:幂的乘方的运算法则,负数的奇、偶次幂的区别 试题难度:三颗星知识点:幂的乘方与积的乘方 3.计算25m÷5m的结果为() A.5 B. C.5m D.20

答案:C 解题思路:25m=52m∴25m÷5m=52m÷5m=∴C为正确答案. 易错点:根据幂的乘方法则的逆用将25m转化为52m. 试题难度:三颗星知识点:幂的乘方与积的乘方 4.计算等于() A.- B. C.1 D.-1 答案:B 解题思路:=0.256×45=0.25=故答案为B. 易错点:积的乘方的运用和幂的乘方的应用 试题难度:三颗星知识点:幂的乘方与积的乘方 5.下列说法中正确的是() A.和一定是互为相反数 B.当n为奇数时,和相等 C.当n为偶数时,和相等 D.和一定不相等 答案:B 解题思路:当n为奇数时,=当n为偶数时,=故答案为B 易错点:积的乘方运算法则. 试题难度:三颗星知识点:幂的乘方与积的乘方

高数微积分公式大全 ()

高等数学微积分公式大全 一、基本导数公式 ⑴()0c '=⑵1x x μμμ-=⑶()sin cos x x '= ⑷()cos sin x x '=-⑸()2tan sec x x '=⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=?⑻()csc csc cot x x x '=-? ⑼()x x e e '=⑽()ln x x a a a '=⑾()1ln x x '= ⑿()1 log ln x a x a '= ⒀( )arcsin x '=⒁( )arccos x '= ⒂()21arctan 1x x '= +⒃()2 1arccot 1x x '=-+⒄()1x '= ⒅ '=二、导数的四则运算法则 三、高阶导数的运算法则 (1)()()()()()()()n n n u x v x u x v x ±=±????(2)()() () ()n n cu x cu x =???? (3)()() () ()n n n u ax b a u ax b +=+???? (4)()()() ()()()() n n n k k k n k u x v x c u x v x -=?=????∑ 四、基本初等函数的n 阶导数公式 (1)()()!n n x n =(2)()()n ax b n ax b e a e ++=?(3)()() ln n x x n a a a = (4)()()sin sin 2n n ax b a ax b n π??+=++??? ?????(5)()()cos cos 2n n ax b a ax b n π??+=++??? ???? ? (6)() () () 1 1! 1n n n n a n ax b ax b +???=- ? +?? +(7)()() () ()() 1 1! ln 1n n n n a n ax b ax b -?-+=-????+ 五、微分公式与微分运算法则 ⑴()0d c =⑵()1d x x dx μμμ-=⑶()sin cos d x xdx = ⑷()cos sin d x xdx =-⑸()2tan sec d x xdx =⑹()2cot csc d x xdx =- ⑺()sec sec tan d x x xdx =?⑻()csc csc cot d x x xdx =-?

无穷大量与无穷小量极限的运算法则

第五讲 Ⅰ 授课题目: §2.4无穷大量与无穷小量;§2.5极限的运算法则。 Ⅱ 教学目的与要求: 1、理解无穷大与无穷小的概念,弄清无穷大与无穷小的关系; 2、掌握极限的运算法则。 Ⅲ 教学重点与难点: 1、无穷大与无穷小的概念、相互关系; 2、用极限的运算法则求极限。 Ⅳ 讲授内容: §2.4无穷大量与无穷小量 一、无穷大的概念: 引例:讨论函数 1 1 )(-==x x f y ,当 1→x 时的变化趋势。 当 1→x 时, 1 1 -x 越来越大(任意大),即:+∈?R E ,要 E x >-11?E x 1 1<-, 也即:+∈?R E ,01>?E ,当 E x 1 1<-时,有: E x >-11。 定义2.9:+∈?R E ,变量y 在其变化过程中,总有一时刻,在那个时刻以后,E y >成立,则称变量y 是无穷大量,或称变量y 趋于无穷大,记:∞=y lim 。 如:∞=-→11 lim 1 x x ,-∞=+→x x lg lim 0,+∞=-→ tgx x 2 lim π。 注 1. 若:∞=y lim ,则习惯地称此时)(x f y =的极限为无穷(大); 2.无穷大不能与很大的数混淆; 3.无穷大与无界变量的区别; 例如:x x f y sin 1 )(= = 当)2,1,0(,ΛΛ±±==k k x π时,∞→)(x f ,无界,但非无穷大,πk x ≠Θ时,)(x f 为有限数。 例1 函数 ?),(cos 内是否有界在+∞-∞=x x y 又当 +∞→x 时,此函数是否为无穷大?为什么? 解 用反证法

若:当+∞→x 时,x x y cos =非无穷大, )1(,cos ,,0,0M x x X x X M >>>?>?有时当则,取2 2π π+ =n x n ,当n 充分大时 必有X x n >,而 0cos =n n x x 与(1)式矛盾。 ∴ +∞→x 时,x x y cos =,非无穷大。 4.无穷大运算的结论: (1)有界变量与无穷大量之和是无穷大量; (2)两个无穷大量之积是无穷大量; (3)有限个无穷大量之积是无穷大量。 二、无穷小量: 1.概念: 定义2.10 以零为极限的变量称为无穷小量。 例如:021lim =∞→n n ,则称 ∞→n 时,变量 n n y 21 =是无穷小量。 注 无穷小量非很小的数,但零是可作为无穷小量的唯一的数。 2.两个重要结论: 结论1 定理2.9 A y =lim ,?α+=A y ,0lim =α。 例如: ?56lim =+∞→x x x ,Θx x x 5656+=+,而:05lim =∞→x x ,∴65 6lim =+∞→x x x 。 结论2 定理2.10 若:0lim =α,且:0,>≤M M y ,?0lim =y α 推论 若:C 为常数,0lim =α?0lim =αC 。 例如:?1 sin lim 0=→x x x 0lim 0=→x x Θ,11sin ≤x ,∴01 sin lim 0=→x x x 。 三、无穷大量与无穷小量的关系: 定理2.11 若:∞=y lim ,? 01lim =y ;若:)0(,0lim ≠=αα?∞=α 1 lim 。 例如:∞=+∞ →x x e lim ,? 01 lim =+∞→x x e 。 注 无穷大、无穷小与极限过程有关。 四、无穷小的阶(无穷小的比较): 1.概念: 定义2.11 设βα,是关于同一过程的无穷小,α β lim 也是关于同一过程的极限, 若:0lim =α β ,则称β是比α较高阶的无穷小,记:)(αβο=;

幂的运算法则

幂的运算法则 1、同底数幂的乘法a a a n m n +=m ,即同底数幂相乘,底数不变,指数 相加。在考试过程中通常需要用其逆运算a a a n n m =+m ,即当在运算 中出现指数相加时,我们往往将其拆分成同底数幂相乘的形式。 2、同底数幂的除法a a a n m n -m =÷,即同底数幂相除,底数不变,指数 相减。在考试过程中通常需要用其逆运算a a a n n m ÷=-m ,即当在运算中出现指数相减时,我们往往将其拆分成同底数幂相除的形式。 3、幂的乘方a a mn m =)(n ,即当出现内、外指数(m 是内指数,n 是外指数)时,底数不变,指数相乘。在考试过程中通常需要用其逆运算)()(n m n a a a m mn ==,这时注意:具体用何种拆法要根据题目给出的是a m 还是a m 的形式。常在比较两个幂的大小等题目中出现。而在比较幂的大小类题目中,常用方法是转化为同底数幂或者同指数幂的形式。 如:(1)、化同指数比较。比较3275100与的大小,观察可以发现,底数2与3之间不存在乘方关系,因此,我们将其转化为同指数的幂进行比较,()1622225254251004===?,()2733325 25325753===?,因为27>16,所以16272525>,即2310075> (2)化同底数比较。比较934589与观察可以发现,底数9与3之间存 在着乘方关系即392=,因此,对于这样的题,我们将其转化为同底数幂进行比较,()33399045224545===?,而90>89,∴338990>即3989 45>。 规律小结:在幂的大小比较中,底数之间存在乘方关系时,化为同底数幂,比较指数大小;底数之间不存在乘方关系时,化为同指数

微积分公式与运算法则

微积分公式与运算法则文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

微积分公式与运算法则 1.基本公式 (1)导数公式(2)微分公式 (xμ)ˊ=μxμ-1d(xμ)=μxμ-1dx (a x)ˊ=a x lnad(a x)=a x lnadx (loga x)ˊ=1/(xlna)d(loga x)=1/(xlna)dx (sinx)ˊ=cosxd(sinx)=cosxdx (conx)ˊ=-sinxd(conx)=-sinxdx (tanx)ˊ=sec2xd(tanx)=sec2xdx (cotx)ˊ=-csc2xd(cotx)=-csc2xdx (secx)ˊ=secx·tanxd(secx)=secx·tanxdx (cscx)ˊ=-cscx·cotxd(cscx)=-cscx·cotxdx (arcsinx)ˊ=1/(1-x2)1/2d(arcsinx)=1/(1-x2)1/2dx (arccosx)ˊ=-1/(1-x2)1/2d(arccosx)=-1/(1-x2)1/2dx (arctanx)ˊ=1/(1+x2)d(arctanx)=1/(1+x2)dx (arccotx)ˊ=-1/(1+x2)d(arccotx)=-1/(1+x2)dx (sinhx)ˊ=coshxd(sinhx)=coshxdx (coshx)ˊ=sinhxd(coshx)=sinhxdx 2.运算法则(μ=μ(x),υ=υ(x),α、β∈R) (1)函数的线性组合积、商的求导法则 (αμ+βυ)ˊ=αμˊ+βυˊ(μυ)ˊ=μˊυ+μυˊ

(μ/υ)ˊ=(μˊυ-μυˊ)/υ2 (2)函数和差积商的微分法则 d(αμ+βυ)=αdμ+βdυ d(μυ)=υdμ+μdυ d(μ/υ)=(υdμ-μdυ)/υ2 3.复合函数的微分法则 设y=f(μ),μ=ψ(x),则复合函数y=f[ψ(x)]的导数为 dy/dx=fˊ[ψ(x)]·ψˊ(x) 所以复合函数的微分为 dy=fˊ[ψ(x)]·ψˊ(x)dx 由于fˊ[ψ(x)]=fˊ(μ),ψˊ(x)dx=dμ,因此上式也可写成dy=fˊ(μ)dμ 由此可见,无论μ是自变量,还是另一变量的可微函数,微分形式dy=fˊ(μ)dμ保持不变,这一性质称为微分形式不变性。

(完整版)极限四则运算法则.doc

极限四则运算法则 由极限定义来求极限是不可取的,也是不行的,因此需寻求一些方法来求极限。 定理 1:若lim f (x) A,lim g (x) B ,则 lim[ f ( x) g (x)] 存在,且 lim[ f ( x) g ( x)] A B lim f (x) lim g( x) 。 证明:只证 lim[ f ( x) g ( x)] A B ,过程为 x x0,对0, 1 0 ,当 0 x x0 1时,有 f (x) A ,对此, 2 0 ,当0 x x0 2 2 时,有 g ( x) B ,取min{ 1 , 2 } ,当0 x x0 时,有 2 ( f ( x) g( x)) ( A B) ( f (x) A) ( g( x) B) f ( x) A g( x) B 2 2 所以 lim ( f ( x) g( x)) A B 。 x x0 其它情况类似可证。 注:本定理可推广到有限个函数的情形。 定理 2:若lim f (x)A,lim g(x) B ,则 lim f ( x) g( x) 存在,且 lim f (x) g( x) AB lim f ( x) lim g( x) 。 证明:因为 lim f ( x) A, lim g( x) B , f ( x) A, g (x) B, (,均为无穷小) f ( x) g(x) ( A)( B) AB ( A B) ,记 A B,为无穷小,lim f ( x) g(x) A B 。 推论 1:lim[ cf ( x)]clim f ( x) ( c 为常数)。 推论 2:lim[ f ( x)]n[lim f ( x)] n( n 为正整数)。 定理 3:设lim f ( x) A, lim g( x) B 0 ,则 lim f ( x) A lim f ( x) 。 g( x) B lim g (x) 证明:设 f ( x) A, g(x) B(,为无穷小),考虑差:

微积分公式与运算法则

创作编号:BG7531400019813488897SX 创作者:别如克* 微积分公式与运算法则 1.基本公式 (1)导数公式 (2) 微分公式 (xμ)ˊ= μxμ-1 d(xμ)= μxμ-1 dx (a x)ˊ= a x lna d(a x)= a x lna dx (loga x)ˊ= 1/(xlna) d(loga x)= 1/(xlna) dx (sin x)ˊ= cos x d(sin x)= cos x dx (con x)ˊ= -sin x d(con x)= -sin x dx (tan x)ˊ= sec2 x d(tan x)= sec2 x dx (cot x)ˊ= -csc2 x d(cot x)= -csc2 x dx (sec x)ˊ= sec x·tan x d(sec x)= sec x·tan x dx (csc x)ˊ= -csc x·cot x d(csc x)= -csc x·cot x dx (arcsin x)ˊ= 1/(1-x2)1/2 d(arcsin x)= 1/(1-x2)1/2

dx (arccos x)ˊ= -1/(1-x2)1/2 d(arccos x)= -1/(1-x2)1/2 dx (arctan x)ˊ= 1/(1+x2) d(arctan x)= 1/(1+x2) dx (arccot x)ˊ= -1/(1+x2) d(arccot x)= -1/(1+x2) dx (sinh x)ˊ= cosh x d(sinh x)= cosh x dx (cosh x)ˊ= sinh x d(cosh x)= sinh x dx 2.运算法则(μ=μ(x),υ=υ(x),α、β∈R) (1)函数的线性组合积、商的求导法则 (αμ+βυ)ˊ=αμˊ+βυˊ(μυ)ˊ=μˊυ+μυˊ (μ/υ)ˊ= (μˊυ-μυˊ)/υ2 (2)函数和差积商的微分法则 d(αμ+βυ)= αdμ+βdυ d(μυ)=υdμ+μdυ d(μ/υ)= (υdμ-μdυ)/υ2

高中数学教案:极限与导数函数极限的运算法则

函数极限的运算法则(4月30日) 教学目标:掌握函数极限的运算法则,并会求简单的函数的极限 教学重点:运用函数极限的运算法则求极限 教学难点:函数极限法则的运用 教学过程: 一、引入: 一些简单函数可从变化趋势找出它们的极限,如o x x x x x x o ==→∞→lim ,01lim .若求极限的函数比较复杂,就要分析已知函数是由哪些简单函数经过怎样的运算结合而成的,已知函数的极限与这些简单函数的极限有什么关系,这样就能把复杂函数的极限计算转化为简单函数的极限的计算. 二 、新课讲授 限,分别等于这两个函数的极限的和、差、积、商(作为除数的函数的极限不能为0). 说明:当C 是常数,n 是正整数时,)(lim )]([lim x f C x Cf o o x x x x →→= n x x n x x x f x f o o )](lim [)]([lim →→= 这些法则对于∞→x 的情况仍然适用. 三 典例剖析 例1 求)3(lim 2 2x x x +→

例2 求1 12lim 231++-→x x x x 例3 求4 16lim 24--→x x x 分析:当4→x 时,分母的极限是0,不能直接运用上面的极限运用法则.注意函数 4 162--=x x y 在定义域4≠x 内,可以将分子、分母约去公因式4-x 后变成4+x ,由此即可求出函数的极限. 例4 求1 33lim 22++-∞→x x x x 分析:当∞→x 时,分子、分母都没有极限,不能直接运用上面的商的极限运算法则.如果分子、分母都除以2 x ,所得到的分子、分母都有极限,就可以用商的极限运用法则计算。 总结:),(lim ,lim *N k x x C C k o k x x x x o o ∈==→→ )(01lim ,lim *N k x C C k x x ∈==∞→∞→

幂的四大运算法则(整式的运算)解读

幂的四大运算法则 一、知识提要 1. 一个单项式中,所有字母的叫做这个单项式的次数;一个多项式中,,叫做这个多项式的次数. 2. 幂的四大运算法则: ①同底数幂相乘,,.表示; ②同底数幂相除,,.表示; ③幂的乘方,,.表示; ④积的乘方等于.表示. 3. 我们规定: ①单独的一个数或字母也是; ②单独一个非零数的次数是; ③a 0 ; ④a -P . 二、精讲精练

1. 代数式x x 32 52-,y x 22πx 1,5-,a ,0中,单项式的个数是. 2. 在代数式a 3,4 x ,y +2,-5m 中,为单项式, 3. 2 32y x -的系数是;22b a π-的系数是,次数是. 4. 若62y x -与n m y x 313-的和仍是单项式,则=n m . 5. 多项式-3x 2y 2+6xyz +3xy 2-7是次项式,其中最高次项为. 6. 多项式(1231224+-+-+xy y x y x y x a b 是关于x ,y 的四次多项式,则 a b 7. 如果一个多项式的次数是6,则这个多项式的任何一项的次数都( A .小于6 B .等于6 C .不大于6 D .不小于6 8. 65105104???; x a ?x 2a -1?x b +1; 2034a a a a a =?=?)()(. 9. 已知a m =2,a n =3,则a m +n ; 已知a n -3a 2n +1=a 10则n = ;

已知a =10,a =2,则a 10. (-12n -1?(-12n ?(-12n +1 m 3?m 6-(-m 2?m 3(-m 4; (x -y 6?(x -y 4(y -x 3; ((=-+?+--?-+342 (c b a c b a c b a 11. -0.2-3;当x (3x + 21 0=1; (02 3(1----π;=-÷--02 14. 3( 4 3(π 12. (-a 3n +1÷(-a n ; ÷a m =1(a ≠0 ; a 2m ÷a m -1 . 13. (3 n a (m 2 3?m n =m 9, 则n ; (3a 2 3+(a 2 2?a 2 14. [(a 2 1- 3]2; [(-x 3]4?(-x 5 (-x 2 3?(-y 2-(-x 3 2?(-y 2 15. =?-1011002 5. 0(;

幂的运算法则及整式的乘除

幂的运算法则及整式的乘除 一、知识提要 幂的运算法则: a m ·a n = a m+n (a m ) n = a mn (a b ) n = a n b n a m ÷a n = a m-n 二、专项训练 【板块一】幂的运算法则的应用 1. 下面计算中,正确的是( ) A. (-2mn )3=-8m 3n 3 B. (m +n )3(m +n )2=m 5+n 5 C.-(-a 3b 2)3=-a 9b 6 D. 26246 1)31(b a b a =- 2. -(-2ab 3)2=___________ .________)21(2 2=?? ????-- 10n ·10000·10n -2=_________(n 为大于2的整数) 若3x ·9x ·27x =96,则x =________ 12311234)2 1()2(?-= 3. 若n 为整数,x 2n =2,则(3x 3n ) 2-4(x 2) 2n 的值是( ) A .28 B .8 C .48 D .56 4. 数3555,4444,5333的大小关系是( ) A. 3555<4444<5333 B. 4444<3555<5333 C. 5333<4444<3555 D. 5333<3555<4444 5. 若m =-2,则-m 2·(-m )4·(-m )3的值是______. 6. 若x ,y 互为相反数且都不等于0,n 为正整数,则下列各组中互为相反数的是( ) A.x n 和y n B.x 2n 和y 2n C.x 2n ·x 和y 2n ·y D.x 2n -1和-y 2n -1 7. 2(4a 5) 2·(a 2) 2-(a 2)4·(a 3) 2

《函数极限的运算法则》教案(优质课)

《函数极限的运算法则》教案 【教学目标】:掌握函数极限的运算法则,并会求简单的函数的极限 【教学重点】:运用函数极限的运算法则求极限 【教学难点】:函数极限法则的运用 【教学过程】: 一、引入: 一些简单函数可从变化趋势找出它们的极限,如o x x x x x x o ==→∞→lim ,01 lim .若求极限的函数比较复杂,就要分析已知函数是由哪些简单函数经过怎样的运算结合而成的,已知函数的极限与这些简单函数的极限有什么关系,这样就能把复杂函数的极限计算转化为简单函数的极限的计算. 二 、新课讲授 对于函数极限有如下的运算法则: 也就是说,如果两个函数都有极限,那么这两个函数的和、差、积、商组

成的函数极限,分别等于这两个函数的极限的和、差、积、商(作为除数的函数的极限不能为0). 说明:当C 是常数,n 是正整数时,)(lim )]([lim x f C x Cf o o x x x x →→= n x x n x x x f x f o o )](lim [)]([lim →→= 这些法则对于∞→x 的情况仍然适用. 三 典例剖析 例1 求)3(lim 22 x x x +→ 例2 求1 1 2lim 231++-→x x x x 例3 求4 16 lim 24--→x x x 分析:当4→x 时,分母的极限是0,不能直接运用上面的极限运用法则.

注意函数4 16 2--=x x y 在定义域4≠x 内,可以将分子、分母约去公因式4-x 后变 成4+x ,由此即可求出函数的极限. 例4 求1 3 3lim 22++-∞→x x x x 分析:当∞→x 时,分子、分母都没有极限,不能直接运用上面的商的极限运算法则.如果分子、分母都除以2x ,所得到的分子、分母都有极限,就可以用商的极限运用法则计算。 总结:),(lim ,lim *N k x x C C k o k x x x x o o ∈==→→ )(01lim ,lim * N k x C C k x x ∈==∞→∞ →

幂的运算法则及整式的乘除

幕的运算法则及整式的乘除 、知识提要 幕的运算法则: a m a n = a m+n (a m ) n = a mn (ab) n = a n b n a m F n = a m-n 二、专项训练 【板块一】幕的运算法则的应用 1. 下面计算中,正确的是( ) A. (-2mn)3=-8m 3n 3 B. (m+n)3(m+ n)2=m 5+n 5 C.-(-a 6 7b 2)3=-a 9b 6 D. ( - a 4b)2 - a 6b 2 3 6 2. -(-2ab 3)2= __________ 10n 10000 10n-2= _________ (n 为大于 2 的整数) 若 3x 9x 27x =96,贝U x= _______ 3. 若 n 为整数,x 2n =2,则(3x 3n ) 2-4(x 2) 2n 的值是( C . 48 D . 56 4. 数3555, 4444, 5333的大小关系是() A. 3555<4444<5333 B. 4444<3555<5333 5 若 m=-2,贝U -m 2 (-m)4 (-m)3 的值是 _____ . 6 若x , y 互为相反数且都不等于0, n 为正整数,贝U 下列各组中互为相反数的 是() A.x n 和 y n B.x 2n 和 y 2n C.x 2n x 和 y 2" y 7 2(4a 5) 2 (a 2) 2-(a 2)4 (a 3) 2 (2) 1234 1 \1231 2) A . 28 2

C. 5333<4444<3555 D. 5333<3555<4444 D.x2n-1和- y2n-1

八年级数学上册幂的运算法则(习题及答案)(人教版)

第1页共4页幂的运算法则(习题) 例题示范 例1:计算23 22105()()()x x x x x x .【操作步骤】 (1)观察结构划部分:2322105()() ()x x x x x x ① ②③(2)有序操作依法则:辨识运算类型,依据对应的法则运算.第一部分:同底数幂相乘; 第二部分:先算积的乘方,再算同底数幂相乘;第三部分:同底数幂相除. (3)每步推进一点点. 【过程书写】 解:原式545() x x x x 555x x x 5x 巩固练习 1.①21 m p p __________;②2222m m n n ______;③21 ()m m x x __________________;④3222()()m m a b c a b c ____________. 2.①6222__________;②3m m a a ___________;③6 3()() a b c a b c _____________;④20151008222__________________;⑤4221()n n n a a a a _______________. 3.①22(3) n _____________;②24()a _____________;③2223() ()m c c _________;④4638()()x x _________.4.①3(2) b ___________;②233()y z ___________;③2()n p q ___________;④342442() (2)a a a a a _________;⑤20152016201512 714=_________.5.下列运算: ①3332a a a ;②326(3)9a a ;③236 (3)9a a ;

§1-2 函数极限的运算规则

第1章 函数的极限和连续函数 8 §1-2 函数极限的运算规则·单调有界原理 1.极限的运算规则 记号“(,)x c c c -+→”和“(,)x →∞+∞-∞”都称为极限过程.若把它们统一地表示成“x →?”,则各种形式的函数极限,都具有像数列极限那样的运算 规则.要证明它们,也属于高等微积分(证明在第二篇中). 设在同一个极限过程中,有极限)(lim x f x ? →和)(lim x g x ? →. ⑴ lim[()]lim ()x x c f x c f x →? →? =(c 为常数); (齐次性) ⑵ lim[()()]lim ()lim ()x x x f x g x f x g x →? →? →? ±=±; (可加性) ⑶ lim[()()]lim ()lim ()x x x f x g x f x g x →? →? →? =?; (乘积的极限等于极限的乘积) ⑷ lim ()()lim lim ()0()lim () x x x x f x f x g x g x g x →? →?→?→? ??=≠???? ; (商的极限等于极限的商) ⑸ 若()()f x g x ≤,则lim ()lim ()x x f x g x →? →? ≤; (极限运算的单调性) ⑹ 若()()()f x h x g x ≤≤,且lim ()lim ()x x f x g x C →? →? ==,则也有极限lim ()x h x C →? =. (夹挤规则) 根据夹挤规则,若lim ()0x f x →? =,且)(x g 在极限过程?→x 中是有界变量(())g x B ≤, 则应直接写成 lim[()()]0x f x g x →? = 因为 0()()()0()f x g x B f x x ≤≤→→?且lim ()()0lim[()()]0x x f x g x f x g x →? →? =??= 而不能写成 []lim ()()lim ()lim ()0x x x f x g x f x g x →? →? →? =?=[逻辑错误!] 例如函数1sin y x x =(图1-15),应当直接写成 01 lim sin 0x x x →=(因为1sin 1x ≤) 而不能写成 00011 lim sin lim limsin 0x x x x x x x →→→=?= 因为不存在极限01 limsin x x →(图1-10). 例3 设有多项式 2012()(0)n n n P x a a x a x a x a =+++ +≠ 则 2012lim ()lim lim()lim()lim()n n x c x c x c x c x c P x a a x a x a x →→→→→=+++ + 2012(lim )(lim )(lim )n n x c x c x c a a x a x a x →→→=+++ +

相关文档
最新文档