反应动力学基础word版

反应动力学基础word版
反应动力学基础word版

2 反应动力学基础

2.1在一体积为4L 的恒容反应器中进行A 的水解反应,反应前 A 的含量为12.23%(重量),混合物的密度为1g/mL ,反应物A 的分子量为88。在等温常压下不断取样分析,测的组分A 的浓度随时间变化的数据如下:

解:利用反应时间与组分A 的浓度变化数据,作出C A ~t 的关系曲线,用镜面法求得t=3.5h 时该点的切线,即为水解速率。 切线的斜率为

0.760.125/.6.1α-==-mol l h

由(2.6)式可知反应物的水解速率为

0.125/.-=

=dC

A r mol l h A dt

2.2在一管式反应器中常压

300℃等温下进行甲烷化反应:

2423+→+CO H CH H O

催化剂体积为10ml ,原料气中CO 的含量为3%,其余为N 2,H 2气体,

解:是一个流动反应器,其反应速率式可用(2.7)式来表示

00000(1)(1)-=

=-=-=-A

A R

A A A A A A A A

dF r dV F F X Q C X dF Q C dX

故反应速率可表示为:

000

0(/)==A A

A A A R R dX dX r Q C C dV d V Q

用X A ~V R /Q 0作图,过V R /Q 0=0.20min 的点作切线,即得该条件下的dX A /d(V R

0.650.04 1.79

0.34α-==

故CO 的转化速率为

40030.10130.03 6.3810/8.31410573--?

===???A A P C mol l RT

4300 6.3810 1.79 1.1410/.min

(/)--==??=?A

A A R dX r C mol l d V Q

2.3已知在Fe-Mg 催化剂上水煤气变换反应的正反应动力学方程为:

20.850.4

/-=?w CO CO r k y y kmol kg h

式中y CO 和y CO2为一氧化碳及二氧化碳的瞬间摩尔分率,0.1MPa 压力及700K 时反应速率常数k W 等于0.0535kmol/kg.h 。如催化剂的比表面积为30m 2/g ,堆密度为1.13g/cm 3,试计算: (1) (1) 以反应体积为基准的速率常数k V 。 (2) (2) 以反应相界面积为基准的速率常数k g 。 (3) (3) 以分压表示反应物系组成时的速率常数k g 。 (4) (4) 以摩尔浓度表示反应物系组成时的速率常数k C 。 解:利用(2.10)式及(2.28)式可求得问题的解。注意题中所给比表面的单位换算成m 2/m 3。

33230.450.45

33

0.45(1) 1.13100.053560.46/.6(2) 1.7810/.3010

11(3)()()0.05350.1508

0.1013..()8.3110700(4)()(0.05350.333(0.1)ρρρρ-==??=-=

=

=???==?=??==?=v b w b

b

g w w

v

b n p w n

c w k k kmol m h

k k k kmol m h a kmol k k P kg h MPa m RT k k P km 0.45)().kmol ol kg h

2.4在等温下进行液相反应A+B →C+D ,在该条件下的反应速率方程为:

1.50.5

0.8/min =?A A B r C C mol l

若将A 和B 的初始浓度均为3mol/l 的原料混合进行反应,求反应4min 时A 的转化率。

解:由题中条件知是个等容反应过程,且A 和B 的初始浓度均相等,即为1.5mol/l ,故可把反应速率式简化,得

1.50.5222

00.80.80.8(1)===-A A B A A A r C C C C X 由(2.6)式可知

00

(1)??

????

--==-=A A A A A A d C X dC dX r C dt dt dt

代入速率方程式

22000.8(1)=-A A A A dX C C X dt 化简整理得

00.8(1)=-A

A A dX C dt

X 积分得

00.81=

-A

A A X C t X

解得X A =82.76%。

2.5氨合成塔入口的气体组成为

3.5%NH 3,20.8%N 2,62.6%H 2,7.08%Ar 及5.89CH 4。该塔是在30MPa 压力下操作。已知催化剂床层中某处的温度为490℃,反应气体中氨含量为10%(mol ),试计算该处的反应速率。在Fe 催化剂上氨合成反应速率式为:

32

232

1.531.512/=-?NH H N NH H p p r k p k kmol m h

p p

逆反应的活化能4

17.5810/=?E J mol 。450℃时

30.5322277()/=?k m MPa m h ,且2

12/=P

k k K ,490℃时,Kp 可按下式计算:

472log 2047.8/ 2.4943log 1.25610 1.856410 3.206--=--?+?+p K T T T T 注:m 3为标准立方米。

解:题中给出450℃时的k 2值,而反应是在490℃下,故首先要求出490℃时的k 2值。

利用(2.27)试,求出频率因子A:

44217.5810/8.31472316

2'1617.5810/8.314723430.532exp()

exp()2277/ 1.14510exp() 1.14510 1.05510()/.-??-??-=-===?-==?=?E k A RT

E A k e RT

E k A e m MPa m h

RT

490℃的Kp 值由题给公式计算出

4722

log 2047.8/763 2.4943log763 1.25610763 1.8564107633.206 1.25245.59210 ---=--??+??+=-=?p p K K 求k 1值:

22'

1

12

'

2

2243 1.531(5.59210) 1.0551033()/.--===???=p p k K k K k k k m MPa m h

求各组分的分压值:

22

3

3122+?N H NH

5716

.0.14160*(-2)*2087.01.1416

0*2087.0*3-626.0 1y 13

y y 1904

.0 .14160*(-2)*2087.01)1416.0-(12087.0 1y y y 1416.05.6914.45*(-2)*2087.01*2087.0*2

11

035.010.01y y y 22

123211 %87.20P

y , 1y y y 1000H H 000A A 00R 0R R 0000000==-)

+-(=

,+=

δ+-=

=+=

δ+-===+--=

δ+νν

-=

δ==δ+νν-

=δ+νν-

=

A A A A

A A

A A A

A A A A

A A

A A A

A A

A A i i A

A A A A A

i

i i A

A A A A A

i

i i X y X X y X X X X X X y X y p X y X X y X p p p P y i i p =

反应速率为:

3

2

2

32

1.5 1.5

4

1.5

12 1.5

3333

17.153

33.0 5.718 1.05510

317.15

4.02310/.(179.6/.)

=-=??-??

=?

NH

H

N

NH H

p

p

r k p k

p p

m m cat h kmol m cat h

2.6下面是两个反应的T-X图,图中AB是平衡曲线,NP是最佳

温度曲线,AM是等温线,HB是等转化率线。根据下面两图回答:

(1)(1)是可逆反应还是不可逆反应?

(2)(2)是放热反应还是吸热反应?

(3)(3)在等温线上,A,D,O,E,M点中哪一点速率最大,哪一点速率最小?

(4)(4)在等转化率线上,H,C,R,O,F及B点中,哪一点速率最大,哪一点速率最小?

(5)(5)在C,R两点中,谁的速率大?

(6)(6)根据图中所给的十点中,判断哪一点速率最大?

解:图2.1 图2.2

(1)可逆反应可逆反应

(2)放热反应吸热反应

(3)M点速率最大,A点速率最小 M点速率最大,A点速

率最小

(4)O点速率最大,B点速率最小 H点速率最大,B点速

率最小

(5)R点速率大于C点速率 C点速率大于R点速

(6)M点速率最大根据等速线的走向来

判断H,M点的速率大小。

2.7在进行一氧化碳变换反应动力学研究中,采用B106催化剂

进行试验,测得正反应活化能为

49.62910/?J mol ,如果不考虑逆反应,试问反应温度是550℃时的速率比反应温度是400℃时的速率大多少倍?

解:从题中可知,反应条件除了温度不同外,其它条件都相同,而温度的影响表现在反应速率常数k 上,故可用反应速率常数之比来描述反应速率之比。

400550

119629011()()5505505508.314673823400400400exp()23exp()

(倍)---=====-E R T T E A r k RT e e r k E A RT

2.8常压下,在钒催化剂上进行SO 2氧化反应,原料气组成为7%O 2

及82%N 2。试计算转化率为80%时的最佳温度。二氧化硫在钒催化剂

上氧化的正反应活化能为4

9.21110/?J mol ,化学计量数等于2,反应式为:

223

12+?SO O SO

其平衡常数与温度的关系为:

log 4905.5/ 4.6455=-p e K T

该反应的热效应4

9.62910/-=?r H J mol 。

解:(1)求出转化率为80%时各组分的分压:

2222332233320.1013 1.4/97.2 1.4610()0.10138.2/97.28.5510()0.1013 5.6/97.2 5.8410()0.101382/97.28.5510()

----==?=?==?=?==?=?==?=?SO SO O O SO SO N N p Py MPa p Py MPa p Py MPa p Py MPa

(2)求与上述组成对应的平衡常数K P 值:

3

2230.50.5335.841043.261.46108.5510---?? ?

??

?===??SO P SO o p K p p

(3)求平衡温度Te

log 4905.5/ 4.6455

4905.5780.96.282=-==p e e K T T K

(4)利用(2.31)式求逆反应活化能值

4

459.629109.21110 1.40310/2ν-??=-=?-=?r

r H E E J mol

(5)利用(2.31)式求最佳温度T OP

4

780.9739.0048.314780.914.031ln 1ln 9.211(14.039.211)10===?++-?-e

OP e T T K

RT E E E E

2.9在一恒容反应器中进行下列液相反应:

+→A B R 3

1.6/=?R A

r C kmol m h 2→A D 23

8.2/=?D A

r C kmol m h 式中r R ,r D 分别表示产物R 及D 的生成速率。反应用的原料为A 与B 的混合物,其中A 的浓度为2kmol/m 3,试计算A 的转化率达到95%时所需的反应时间。

解:反应物A 的消耗速率应为两反应速率之和,即

2

2 1.616.4 1.6(110.25)=+=+=+A R D A A A A R r r C C C C 利用(2.6)式

1.6(110.25)-=+A A A dC

C C dt

积分之

0001(1)10.2510.2511.6()ln(1)ln 10.2511110.250.6463/1.60.4038??

-+??=--=--+???++????

==A A A

C A A A C A A A X C t dC X C C C t h 2.10在催化剂上进行三甲基苯的氢解反应:

6333264324(())+→+C H CH H C H CH CH 643226534()+→+C H CH H C H CH CH

反应器进口原料气组成为66.67%H 2,33.33%三甲基苯。在0.1Mpa 及523K 下等温反应,当反应器出口三甲基苯的转化率为80%时,其混合气体的氢含量为20%,试求: (1) (1) 此时反应器出口的气体组成。 (2) (2) 若这两个反应的动力学方程分别为:

0.5

36300/=?A A B r C C kmol m h

0.5

33400/=?E C B r C C kmol m h

则出口处二甲基苯的生成速率是多少?

解:以100mol 为计算基准,设X 为三甲基苯的转化率,Y 为生成的甲苯摩尔数。 (1) (1)

66.67-33.33X-Y=20

解得Y=66.67-33.33×0.8-20=20.01kmol (甲苯量) 生成的二甲基苯量:33.33×0.8-20.01=6.654kmol 生成的甲烷量:33.33×0.8+20.01=46.67kmol 剩余的三甲基苯量:33.33×(1-0.8)=6.666kmol 氢气含量为:20kmol

故出口尾气组成为:三甲基苯6.666%,氢气20%,二甲基苯6.654%,甲烷46.67%,甲基苯20.01%。 (2) (2) 由题给条件可知,三甲基苯的出口浓度为:

33

003333

00.10.33337.66910/8.31410523

(10.8)7.66910(10.8) 1.53410/----?===???=-=?-=?A A A A p C kmol m

RT C C kmol m

333333

333

333

0.20 1.53410 4.610/0.06666

0.06654 1.53410 1.53210/0.06666

0.4667 1.53410 1.07410/0.06666

0.2001 1.53410 4.60310/0.06666--------=

??=?=??=?=??=?=??=?B C D E C kmol m C kmol m C kmol m C kmol m

0.50.5

330.5330.5

3630034006300 1.53410(4.610)3400 1.53210(4.610)0.65550.35330.3022/.----=-=-=????-????=-=C A E A B C B R r r C C C C kmol m h

2.11在210℃等温下进行亚硝酸乙脂的气相分解反应:

2523251122→++C H NO NO CH CHO C H OH

该反应为一级不可逆反应,反应速率常数与温度的关系为

14411.3910exp( 1.89710/)()-=?-?k T s ,若反应是在恒容下进行,系统的起始总压为0.1013MPa ,采用的是纯亚硝酸乙脂,试计算亚硝酸乙脂分解率为80%时,亚硝酸乙脂的分解速率及乙醇的生成速率。 若采用恒压反应,乙醇的生成速率又是多少?

解:(1)恒容过程,其反应式可表示为: 1122→++A B C D

反应速率式表示为:

0(1)==-A A A A r kC kC X

设为理想气体,反应物A 的初始浓度为:

2003140014260.1013 2.52310/8.31410483

(1) 1.3910exp(18973/)(1)

1.3910exp(18973/483)

2.52310(100.8) 6.11210/.----===???=-=?-?-=?-???=?A A A A A A A Py C mol l RT r kC X T C X mol l s 亚硝酸乙脂的分解速率为:

66.11210/.-==?A A R r mol l s 乙醇的生成速率为:

61 3.05610/.2-==?D A R r mol l s

(2)恒压过程,由于反应前后摩尔数有变化,是个变容过程,由(2.49)式可求得总摩尔数的变化。

10.50.51/1

1δυυ++-===∑A t A

由于反应物是纯A ,故有:y A0=1。

由(2.52)式可求得组分的瞬间浓度:

22001426(1) 2.52310(10.8) 2.80310/11110.8

1.3910exp(18973/483)

2.80310

3.39510/.δ-----?-===?++??==?-??=?A A A A A A A A C X C mol l

y X r kC mol l s 乙醇的生成速率为:

61

1.69810/.2-==?D A R r mol l s

2.12甲烷与水蒸气在镍催化剂及750℃等温下的转化反应为:

422224+→+CH H O CO H

原料气中甲烷与水蒸气的摩尔比为1:4,若这个反应对各反应物均为一级,已知k=2l/mol.s,试求: (1) (1) 反应在恒容下进行,系统的初始总压为0.1013MPa ,

当反应器出口的CH 4转化率为80%时,CO 2和H 2的生成速率是多少? (2) (2) 反应在恒压下进行,其他条件如(1),CO 2的生成速

率又是多少? 解:(1)由题意可将反应速率表示为: 24+→+=C A B A B C D r kC C 对于恒容过程,则有

0003

003

3300(1)

20.10130.2 2.38210/8.314101023

44 2.382109.52810/----=-=-?=

==???==??=?A A A B B A A

A A

B A

C C X C C C X P C mol l RT C C mol l 当X A0=0.8时

3403330043665(1) 2.382100.2 4.76410/29.528102 2.382100.8 5.71710/2 4.76410 5.71710 5.44710/.44 5.44710 2.17910/.----------=-=??=?=-=?-???=?===????=?==??=?A A A B B A A C C A B D C C C X mol l

C C C X mol l R r kC C mol l s R r mol l s

(2)对于恒压过程,是个变容反应过程,由(2.49)式可求得总摩尔数的变化

1412/2

1

δυυ+--===∑A t A

反应物A 的原始分率:

01

0.2

14==+A y

由(2.52)式可求得转化率为80%时的浓度:

3400(1) 2.38210(10.8) 3.60910/1120.20.8δ---?-===?++??A A A A A A C X C mol l

y X 33500029.528102 2.382100.8 4.33110/1120.20.8

δ----?-???===?++??B A A B A A A C C X C mol l

y X 45662 3.60910 4.33110 3.12610/.3.12610/.----==????=?==?A A B C C r kC C mol l s R r mol l s

2.13在473K 等温及常压下进行气相反应:

(1)3→A R 1.2/min =?R A r C mol l (2)2→A S 0.5/min =?S A r C mol l

(3)→A T 2.1/min =?T A r C mol l

式中C A 为反应物A 的浓度(mol/l ),原料中A 和惰性气体各为一半(体积比),试求当A 的转化率达85%时,其转化速率是多少?

解:方法(1),先求出总摩尔变化数δA 。 首先将产物的生成速率变为对应的反应物的转化速率:

1

0.431

0.252

2.1======AR R A

AS S A

AT T A r r C r r C r r C 总反应速率为:

2.75=++=A AR AS AT A R r r r C

以一摩尔反应物A 为基准,总摩尔变化数为:

0.40.25 2.13210.382

2.75 2.75 2.75δ=?+?+-=A

初始浓度为:

2

0003

0.10130.5 1.28810/8.31410473--?===???A A P y C mol l RT

则有

230033(1) 1.288100.15 1.662510/110.50.380.852.75 2.75 1.662510 4.57210/.min δ-----??===?++??==??=?A A A A A A A A C X C mol l

y X R C mol l 方法(2),可将C A 表示为:

00(1)

1312

1211

1

δδδδ-=

+-==-===∑A A A A Aj Aj

AR AS AT C X C y X

23330.40.25

20.8510.850.3245

2.75 2.751.288100.15 1.662310/10.32450.5

2.75 2.75 1.662310 4.57110/.min δ----=??+??=??==?+?==??=?∑Aj Aj A A A X C mol l

R C mol l 方法(3),利用物料衡算可分别求出反应物A 生成R 及S 的瞬间选择性S R ,S S ,因而可求出产物R 及S 的收率y R ,y S ,求得A 转化率为85%时的分率:

0002333(1)0.06453

122 1.288100.064532 1.662310/2.75 2.75 1.662310 4.57110/.min -------==++==???=?==??=?A R S T A A R A S

A AO A A A y y y y y y y y y C C y mol l R C mol l

其中:

0.40.4

(0.40.25 2.1) 2.75

0.250.25

(0.40.25 2.1) 2.75

0.4

0.850.12362.750.250.850.07727

2.75==

++==

++=

?==?=A R A A S A R S C S C C S C y y

2.14在Pt 催化剂上进行异丙苯分解反应:

65326636()?+C H CH CH C H C H

以A,B 及R 分别表示异丙苯,苯及丙烯,反应步骤如下:

(1)σσ+?A A (2)σσ?+A B R (3)σσ?+B B

若表面反应为速率控制步骤,试推导异丙苯分解的速率方程。

解:根据速率控制步骤及定态近似原理,除表面反应外,其它两步达到平衡,描述如下:

θσσθθθ+?==A V

A A A A V

A

p A A K K p

σσθθ?+=-A A R B A B R r k kp

θσσθθθ?+==B V

B B B B V

B

p B B K K p

以表面反应速率方程来代表整个反应的速率方程:

θθ=-A A R B r k kp 由于1θθθ++=A B V

将,θθA B 代入上式得:

1θθθ++=A A V B B V V K p K p 整理得:

1

1θ=

++V A A B B K p K p

将,,θθθA B V 代入速率方程中

()/111-=

-=

++++++A A R B B A B R P

A A A

B B A A B B A A B B kK p kp K p k p p p K r K p K p K p K p K p K p

其中

/==A P A B k kK K kK kK

2.15在银催化剂上进行乙烯氧化反应:

2422422+→C H O C H O

化作22()()2()+→A B R

其反应步骤可表示如下:

(1)σσ+?A A (2)222σσ+?B B (3)σσσσ+?+A B R (4)σσ?+R R

若是第三步是速率控制步骤,试推导其动力学方程。

解:根据速率控制步骤及定态近似原理,除表面反应步骤外,其余近似达到平衡,写出相应的覆盖率表达式:

(1)σσθθ+?=A A A V A A K p

2(2)22σσθ+?=B V B B (4)σσθ?+=R R R V R R K p

整个反应的速率方程以表面反应的速率方程来表示:

θθθθ=-A A B R V r k k

根据总覆盖率为1的原则,则有:

1θθθθ+++=A B R V 或

1θθθ+++=A A V V R R V V K p K p 整理得:

θ=

V

将,,,θθA B R V

代入反应速率方程,得:

22

θθ=-=

A A A

B B V R R V r kK p K p kp K 其中

/==A B R k kK K K k kK

2.16设有反应→+A B D ,其反应步骤表示如下:

(1)σσ+?A A (2)σσ→+A B D (3)σσ?+B B

若(1)速率控制步骤,试推导其动力学方程。

解:先写出各步的速率式: 123(1)(2)(3)σσθθσσθσσθθ+?=-→+=?+=-aA A V dA A

S A

dB B aB A V A A r k p k A B D

r k B B r k k p

由于(1)是速率控制步骤,第(2)步是不可逆反应,其反应速率应等于(1)的吸附速率,故有:

θθθ-=aA A V dA A S A k p k k 整理得:

θθ=+aA A V

A S dA k p k k

根据定态近似原则

南京大学《物理化学》练习 第十章 化学动力学基础(一)

第十章化学动力学基础(一) 返回上一页 1. 298 K时N2O5(g)分解反应半衰期t1/2为5.7 h,此值与N2O5的起始浓度无关,试求: (1) 该反应的速率常数. (2) 作用完成90%时所须的时间. 2. 某人工放射性元素放出α粒子,半衰期为15 min ,试问该试样有80%分解,需时若干? 3. 把一定量的PH3(g)迅速引入温度为950 K的已抽空的容器中,待反应物达到该温度时开始计时(此时已有部分分解),测得实验数据如下: t/s 0 58 108 ∞ P/kPa 35.00 36.34 36.68 36.85 已知反应 4pH3(g) P4(g) + 6H2(g) 为一级反应,求该反应的速率常数k值(设在t=∞时反应基本完成) 4. 在某化学反应中随时检测物质A的含量,1小时后,发现A已作用了75%,试问2小时后A还剩余多少没有作用?若该反应对A 来说是: (1) 一级反应. (2) 二级反应(设A与另一反应物B起始浓度相同) (3) 零级反应(求A作用完所用时间) 5. 在298 K时, NaOH与CH3COOCH3皂化作用的速率常数k2与NaOH与CH3COOC2H5皂化作用的速率常数k2' 的关系为k2=2.8k2' .试问在相同的实验条件下,当有90% CH3COOCH3被分解时, CH3COOC2H5的分解百分数为若干?

6. 对反应2NO(g) +2H2(g)---> N2(g) +2H2O(l) 进行了研究,起始时NO与H2的物质的量相等.采用不同的起始压力相应的有不同的半衰期,实验数据为: p0 /kPa 47.20 45.40 38.40 33.46 26.93 t1/2/min 81 102 140 180 224 求该反应级数为若干? 7. 反应A+B P的动力学实验数据如下, [A]0/(mol·dm-3) 1.0 2.0 3.0 1.0 1.0 [B]0/(mol·dm-3) 1.0 1.0 1.0 2.0 3.0 r0/(mol·dm-3·s-1) 0.15 0.30 0.45 0.15 0.15 若该反应的速率方程为 ,求x和y的值. 8. 碳的放射性同位素在自然界树木中的分布基本保持为总碳量的 1.10×%.某考古队在一山洞中发现一些古代木头燃烧的灰烬,经分析的含 量为总碳量的9.87×%,已知的半衰期为5700年,试计算这灰距今约有多少年? 9. 某抗菌素在人体血液中呈现简单级数的反应,如果给病人在上午8点注射一针抗菌素,然后在不同时刻t测定抗菌素在血液中的浓度c(以mg/100 cm3表示),得到以下数据 t/h 4 8 12 16 c /(mg/100 cm3) 0.480 0.326 0.222 0.151 (1) 确定反应的级数. (2) 求反应的速率常数k和半衰期t1/2.

反应动力学基础第二章复习.

第二章 反应动力学基础 一、化学反应速率的定义 1、均相反应 单位时间内单位体积反应物系中某一组分的反应量。 恒容反应: 连续流动过程: 2、多相反应 单位时间内单位相界面积或单位固体质量反应物系中某一组分的反应量。 二、反应速率方程 1、速率方程(动力学方程):在溶剂及催化剂和压力一定的情况下,定量描述反应速率和温度及浓度的关系。即: 2、反应速率方程的形式主要有两类:双曲函数型和幂级数型。 3、反应级数: ) ,(T f r c =

速率方程中各浓度项上方的指数分别代表反应对组分的反应级数,而这些指数的代数和称为总反应级数。反应级数仅表示反应速率对各组分浓度的敏感程度,不能独立地预示反应速率的大小。 4、反应速率常数: 方程中的k称为速率常数或比反应速率,在数值上等于是各组分浓度为1时的反应速度。它和除反应组分浓度以外的其它因素有关,如温度、压力、催化剂、溶剂等。当催化剂、溶剂等因素固定时,k就仅为反应温度的函数,并遵循阿累尼乌斯 Arrhenius方程: 可分别用分压、浓度和摩尔分率来表示反应物的组成,则相应的反应速率常数分别用k p,k c ,k y来表示;相互之间的关系为: 5、化学平衡常数与反应速率常数之间的关系 三、温度对反应速率的影响 1、不可逆反应 由阿累尼乌斯方程,温度升高,反应速率也升高(例外的极少),而且为非线性关系,即温度稍有变化,反应速率将剧烈改

变。也就是说,反应温度是影响化学反应速率的一个最敏感因素。 2、可逆反应 (1)可逆吸热反应 反应速率将总是随反应温度的升高而增加 (2)可逆放热反应 反应速率在低温时将随反应温度的升高而增加,到达某一极大值后,温度再继续升高,反应速率反而下降。再升高温度,则可能到达平衡点,总反应速率为零。 最优温度与平衡温度关系: 四、复合反应 1、反应组分的转化速率和生成速率 我们把单位之间内单位体积反应混合物中某组分i的反应量叫做该组分的转化速率或生成速率。 2、复合反应包括并列反应、平行反应、连串反应三种基本类型。 3、瞬时选择性 生成目的产物消耗关键组分的速率与关键组分转化速率之比,瞬时选择性将随反应进行而改变。

第二章反应动力学基础.

2 反应动力学基础 2.1在一体积为4L 的恒容反应器中进行A 的水解反应,反应前 A 的含量为12.23%(重量),混合物的密度为1g/mL ,反应物A 的分子量为88。在等温常压 解:利用反应时间与组分A 的浓度变化数据,作出C A ~t 的关系曲线,用镜面法求得t=3.5h 时该点的切线,即为水解速率。 切线的斜率为 0.760.125/.6.1 α-==-mol l h 由(2.6)式可知反应物的水解速率为 0.125/.-==dC A r mol l h A dt 2.2在一管式反应器中常压300℃等温下进行甲烷化反应: 2423+→+CO H CH H O 催化剂体积为10ml ,原料气中CO 的含量为3%,其余为N 2,H 2气体,改变进口原料气流量Q 0解:是一个流动反应器,其反应速率式可用(2.7)式来表示 00000(1)(1)-= =-=-=-A A R A A A A A A A A dF r dV F F X Q C X dF Q C dX 故反应速率可表示为: 000 0(/)==A A A A A R R dX dX r Q C C dV d V Q 用X A ~V R /Q 0作图,过V R /Q 0=0.20min 的点作切线,即得该条件下的dX A /d(V R /Q 0)值α。 0.650.04 1.79 0.34 α-== 故CO 的转化速率为 40030.10130.03 6.3810/8.31410573--? ===???A A P C mol l RT

430 0 6.3810 1.79 1.1410/.min (/)--==??=?A A A R dX r C mol l d V Q 2.3已知在Fe-Mg 催化剂上水煤气变换反应的正反应动力学方程为: 20.850.4 /-=?w CO CO r k y y kmol kg h 式中y CO 和y CO2为一氧化碳及二氧化碳的瞬间摩尔分率,0.1MPa 压力及700K 时反应速率常数k W 等于0.0535kmol/kg.h 。如催化剂的比表面积为30m 2/g ,堆密度为1.13g/cm 3,试计算: (1) 以反应体积为基准的速率常数k V 。 (2) 以反应相界面积为基准的速率常数k g 。 (3) 以分压表示反应物系组成时的速率常数k g 。 (4) 以摩尔浓度表示反应物系组成时的速率常数k C 。 解:利用(2.10)式及(2.28)式可求得问题的解。注意题中所给比表面的单位换算成m 2/m 3。 33230.450.45 33 0.45(1) 1.13100.053560.46/.6(2) 1.7810/.3010 11(3)()()0.05350.15080.1013..()8.3110700(4)()(0.05350.333(0.1)ρρρρ-==??=-= = =???==?=??==?=v b w b b g w w v b n p w n c w k k kmol m h k k k kmol m h a kmol k k P kg h MPa m RT k k P km 0.45)().kmol ol kg h 2.4在等温下进行液相反应A+B →C+D ,在该条件下的反应速率方程为: 1.50.5 0.8/min =?A A B r C C mol l 若将A 和B 的初始浓度均为3mol/l 的原料混合进行反应,求反应4min 时A 的 转化率。 解:由题中条件知是个等容反应过程,且A 和B 的初始浓度均相等,即为1.5mol/l ,故可把反应速率式简化,得 1.50.5222 00.80.80.8(1)===-A A B A A A r C C C C X 由(2.6)式可知 00 (1)?? ???? --==-=A A A A A A d C X dC dX r C dt dt dt 代入速率方程式 22 00.8(1)=-A A A A dX C C X dt 化简整理得 00.8(1)=-A A A dX C dt X 积分得 00.81= -A A A X C t X 解得X A =82.76%。

第二章 化学反应动力学基础(答案)

第二章 反应动力学基础 一、填空题 1. 生成主产物的反应称为 主反应 ,其它的均为 副反应 。 2. 化学反应的总级数为n ,如用浓度表示的速率常数为C K ,用逸度表示的速率常数f K ,则C K =n f K 。 3. 化学反应的总级数为n ,如用浓度表示的速率常数为C K ,用气体摩尔分率表示的速率常数y K , 则C K = n p RT ???? ?? y K 。 4. 化学反应速率式为βαB A C A C C K r =-,用浓度表示的速率常数为C K ,假定符合理想气体状态方程,如用压力表示的速率常数P K ,则C K =____)()(βα+RT ___P K 。 5. 反应A + B → C ,已知115.0-=s k ,则反应级数n= 1 。 6. 反应3A → P ,已知s l mol k ?=/15.0,则反应级数n=___0____。 7. 活化能的大小直接反映了 反应速率 对温度的敏感程度。 8. 对于一非恒容均相化学反应B A B A αα?,反应组分A 的化学反应速率=-A r Vdt dn r A A -=- 。( V d t dn r A A -=-、 Vdt dn r B A -=-、dt dC r A A -=-、dt dC r B A -=-) 9. 气相反应A + B → 3P + S 进料时无惰性气体,A 与B 以1∶1摩尔比进料,则膨胀因子A δ=____2___。 10. 气相反应3A + B → P + S 进料时无惰性气体,A 与B 以2∶1摩尔比进料,则膨胀因子A δ=___-2/3____ 11. 在一间歇恒容反应器中进行如下平行反应12k k A P A S ??→??→,P 为目的产物,已知0A c 的单位为[]/mol L ,1k 的单位为1s -????,2k 的单位为[]/L mol s ?,活化能12E E >。则R A = )(221A A C k C k +- 。目的产物P 的瞬时选择性P S = 1212A A A k c k c k c + ,为了提高P S ,A c 要控制得较 低 ,T 要控制得较 高 。

化学反应动力学习题

化学动力学基础(习题课) 1. 某金属的同位素进行β放射,经14d(1d=1天后,同位素的活性降低6.85%。求此同位素的蜕变常数和半衰期;要分解 90.0%,需经多长时间? 解:设反应开始时物质的质量为100%,14d后剩余未分解者为100%-6.85%,则 代入半衰期公式得 一、是非题 下列各题中的叙述是否正确?正确的选“√”,错误的选“×”。 √× 1.反应速率系数k A与反应物A的浓度有关。 √× 2.反应级数不可能为负值。 √× 3.对二级反应来说,反应物转化同一百分数时,若反应物的初始浓度愈低,则所需时间愈短。 √× 4.对同一反应,活化能一定,则反应的起始温度愈低,反应的速率系数对温度的变化愈 敏感。 √× 5. Arrhenius活化能的定义是。

√× 6.若反应A?Y,对A为零级,则A的半衰期。 二、选择题 选择正确答案的编号: 某反应,A → Y,其速率系数k A=6.93min-1,则该反应物A的浓度从1.0mol×dm-3变到0.5 mol×dm-3所需时间是: (A)0.2min;(B)0.1min;(C)1min;(D)以上答案均不正确。 某反应,A → Y,如果反应物A的浓度减少一半,它的半衰期也缩短一半,则该反应的级数 为: (A)零级;(B)一级;(C)二级;(D)以上答案均不正确。 三、填空题 在以下各小题的“ 1.某化学反应经证明是一级反应,它的速率系数在298K时是k=( 2.303/3600)s-1,c0=1mol×dm-3。 (A)该反应初始速率u0为 (B)该反应的半衰期t1/2 (C)设反应进行了1h,在这一时刻反应速率u1为 2.只有一种反应物的二级反应的半衰期与反应的初始浓度的关系为 3.反应A → B+D中,反应物A初始浓度c A,0=1mol×dm-3,初速度u A,0=0.01mol×dm-3×s-1,假定该反 应为二级,则其速度常数k A为t1/2为。 4.某反应的速率系数k=4.62′10-2min-1,则反应的半衰期为 5.反应活化能E a=250kJ×mol-1,反应温度从300K升高到310K时,速率系数k增加

第十一章 化学动力学基础(一)习题

化学动力学基础(一) 一、简答题 1.反应Pb(C 2H 5)4=Pb+4C 2H 5是否可能为基元反应?为什么? 2.某反应物消耗掉50%和75%时所需要的时间分别为t 1/2和 t 1/4,若反应对该反应物分别是一级、二级和三级,则t 1/2: t 1/4的比值分别是多少? 3.请总结零级反应、一级反应和二级反应各有哪些特征?平行反应、对峙反应和连续反应又有哪些特征? 4.从反应机理推导速率方程时通常有哪几种近似方法?各有什么适用条件? 5.某一反应进行完全所需时间时有限的,且等于k c 0(C 0为反应物起始浓度),则该反应是几级反应? 6. 质量作用定律对于总反应式为什么不一定正确? 7. 根据质量作用定律写出下列基元反应速率表达式: (1)A+B→2P (2)2A+B→2P (3)A+2B→P+2s (4)2Cl 2+M→Cl 2+M 8.典型复杂反应的动力学特征如何? 9.什么是链反应?有哪几种? 10.如何解释支链反应引起爆炸的高界限和低界限? 11.催化剂加速化学反应的原因是什么? 二、证明题 1、某环氧烷受热分解,反应机理如下: 稳定产物?→??+?+??→??++??→??? +??→?432134 33k k k k CH R CH R CH RH CO CH R H R RH

证明反应速率方程为()()RH kc dt CH dc =4 2、证明对理想气体系统的n 级简单反应,其速率常数()n c p RT k k -=1。 三、计算题 1、反应2222SO Cl SO +Cl →为一级气相反应,320℃时512.210s k --=?。问在320℃ 加热90min ,22SO Cl 的分解百分数为若干?[答案:11.20%] 2、某二级反应A+B C →初速度为133105---???s dm mol ,两反应物的初浓度皆为 32.0-?dm mol ,求k 。[答案:11325.1---??=s mol dm k ] 3、781K 时22H +I 2HI →,反应的速率常数3-1-1HI 80.2dm mol s k =??,求2H k 。[答 案:113min 1.41---??=mol dm k ] 4、双光气分解反应32ClCOOCCl (g)2COCl (g)→可以进行完全,将反应物置于密 闭恒容容器中,保持280℃,于不同时间测得总压p 如下: [答案: 1.1581a =≈;-14-12.112h 5.8710s k -==?] 5、有正逆反应均为一级反应的对峙反应: D-R 1R 2R 32L-R 1R 2R 3CBr 已知半衰期均为10min ,今从D-R 1R 2R 3CBr 的物质的量为1.0mol 开始,试计算10min 之后,可得L-R 1R 2R 3CBr 若干?[答案:0.375mol] 6、在某温度时,一级反应A →B ,反应速率为0.10mol ·dm -3·s -1时A 的转化率 为75%,已知A 的初始浓度为0.50mol ·dm -3,求(1)起始反应初速率;(2)速率常数。[答案:r 0=0.40s -1 ; k = 0.80 dm 3·mol -1·s -1 ] 7、在某温度时,对于反应A+B →P ,当反应物初始浓度为0.446和0.166mol ·dm -3 时,测 得反应的半衰期分别为4.80和12.90min ,求反应级数。[答案:2] 8、某二级反应,已知两种反应物初始浓度均为0.1mol ·dm -3,反应15min 后变

化学反应动力学基础-学生整理版

5202 反应 2O 3→ 3O 2的速率方程为 - d[O 3]/d t = k [O 3]2[O 2]-1 , 或者 d[O 2]/d t = k '[O 3]2[O 2]-1,则速率常数 k 和 k ' 的关系是: ( ) (A) 2k = 3k ' (B) k = k ' (C) 3k = 2k ' (D) -k /2 = k '/3 5203 气相反应 A + 2B ─→ 2C ,A 和 B 的初始压力分别为 p A 和 p B ,反应开始时 并无 C ,若 p 为体系的总压力,当时间为 t 时,A 的分压为: ( ) (A) p A - p B (B) p - 2p A (C) p - p B (D) 2(p - p A ) - p B 5204 对于反应 2NO 2= 2NO + O 2,当选用不同的反应物和产物来表示反应速率时,其相互关系为:( ) (A) -2d[NO 2]/d t = 2d[NO]/d t = d[O 2]/d t (B) - d[NO 2]/2d t = d[NO]/2d t = d[O 2]/d t = d ξ /d t (C) - d[NO 2]/d t = d[NO]/d t = d[O 2]/d t (D) - d[NO 2]/2d t = d[NO]/2d t = d[O 2]/d t = 1/V d ξ /d t 5207 气相基元反应 2A k 1 B 在一恒容的容器中进行,p 0为 A 的初始压力, p t 为时间 t 时反应 体系总压,此反应速率方程 d p t / d t = 。 - k (2p t - p 0)2 5208 有一反应 mA → nB 是一简单反应,其动力学方程为 -d c A / d t = kc A m , c A 的单位为 mol ·dm -3, 时间单位为 s ,则: (1) k 的单位为 ___________ mol 1- m ·dm 3( m -1)·s -1 (2) 以d c B /d t 表达的反应速率方程和题中给的速率方程关系为 B A A A 1d 1d 'd d m m c c k c k c n t m t m =-== 5209 反应 2N 2O 5─→ 4NO 2+ O 2 在328 K 时,O 2(g)的生成速率为0.75×10-4 mol ·dm -3·s -1。 如 其间任一中间物浓度极低, 难以测出, 则该反应的总包反应速率为 _______________mol ·dm -3·s -1, N 2O 5 之消耗速率为__________ mol ·dm -3·s -1,NO 2之生成速率为_______________mol ·dm -3·s -1 。0.75×10-4, 1.50×10-4, 3.00×10-4 5210 O 3分解反应为 2O 3─→3O 2 ,在一定温度下, 2.0 dm 3容器中反应。实验测出O 3每秒消耗1.50× 10-2 mol, 则反应速率为_______________mol ·dm -3·s -1氧的生成速率为_______________mol ·dm -3·s -1, d ξ /d t 为_______________ 0.75×10-2, 2.25×10-2, 1.50×10-2.。 5211 2A +B =2C 已知反应某一瞬间, r A =12.72 mol ·dm -3·h -1, 则 r B = , r C =_____________r B =6.36 mol ·dm -3·h -1, r C =12.72mol ·dm -3·h -1 5212分别用反应物和生成物表示反应A +3B =2C 的反应速率, 并写出它们间关系为: 。 r A =13r B =12 r C 5222 有关基元反应的描述在下列诸说法中哪一个是不正确的: ( ) (A) 基元反应的级数一定是整数 (B) 基元反应是“态-态”反应的统计平均结果 (C) 基元反应进行时无中间产物,一步完成 (D) 基元反应不一定符合质量作用定律 5223 400 K 时,某气相反应的速率常数k p = 10-3(kPa)-1·s -1,如速率常数用 k C 表示,则 k C 应为: (A) 3.326 (mol ·dm -3)-1·s -1 k C = k p (RT ) (B) 3.0×10-4 (mol ·dm -3)-1·s -1 (C) 3326 (mol ·dm -3)-1·s -1 (D) 3.0×10-7 (mol ·dm -3)-1·s -1 5224 如果反应 2A + B = 2D 的速率可表示为:

化学动力学基础(一、二)习题

化学动力学基础(一、二)习题

化学动力学基础(一、二)习题 一、选择题: 1、某反应的速率常数k=0.0462分-1,又知初始浓度为0.1mol.dm-3,则该反应的半衰期为: (A) 1/(6.93×10-2×0.12) (B) 15分(C) 30分(D) 1/(4.62×102×0.1)分 答案:(B) 2、某一级反应, 当反应物的浓度降为起始浓度的1%时,需要t1秒, 若将反应物的浓度提高一倍, 加快反应速率, 当反应物浓度降低为起始浓度的1%时, 需时为t2, 则: (A ) t1﹥t2(B) t1=t2 (C) t1﹤t2(D) 不能确定二者关系 答案:(B) 3、某反应物反应掉7/8所需的时间恰好是它反应掉1/2所需时间的3倍, 则该反应的级数是: (A) 零级(B) 一级反应(C) 三级反应(D) 二级反应 答案:(B )

4、反应A→B(Ⅰ);A→D(Ⅱ), 已知反应Ⅰ的活化能E1大于反应Ⅱ的活化能E2, 以下措施中哪一种不能改变获得B和D的比例: (A)提高反应温度(B) 降低反应温度 (C) 延长反应时间(D) 加入适当的催化剂 答案:C 5、由基元步骤构成的复杂反应:2A→2B+C A+C→2D,以C物质的浓度变化表示反应速率的速率方程(已知:-dC A/dt=K A1C A2-K A2C B2C c+K A3C A C C ) 则 (A)dC c/dt=K A1C A2-K A2C B2C c+K A3C A C C (B)dC c/dt=1/2K A1C A2-1/2K A2C B2C c+1/2K A3C A C C (C)dC c/dt=2K A1C A2-2K A2C B2C c+2K A3C A C C (D)dC D/dt=-K A3C A C C 答案:(B) 6、反应Ⅰ, 反应物初始浓度C0’, 半衰期t1/2’, 速率常数K1, 反应Ⅱ, 反应物初始浓度C0”, 半衰期t1/2”, 速率常数K2,

化学反应动力学基础(一)-学生

5202 反应 2O 3→ 3O 2的速率方程为 - d[O 3]/d t = k [O 3]2[O 2]-1 , 或者 d[O 2]/d t = k '[O 3]2[O 2]-1,则速率常数 k 和 k ' 的关系是: ( ) (A) 2k = 3k ' (B) k = k ' (C) 3k = 2k ' (D) -k /2 = k '/3 5203 气相反应 A + 2B ─→ 2C ,A 和 B 的初始压力分别为 p A 和 p B ,反应开始时 并无 C ,若 p 为体系的总压力,当时间为 t 时,A 的分压为: ( ) (A) p A - p B (B) p - 2p A (C) p - p B (D) 2(p - p A ) - p B 5204 对于反应 2NO 2= 2NO + O 2,当选用不同的反应物和产物来表示反应速率时,其相互关系为:( ) (A) -2d[NO 2]/d t = 2d[NO]/d t = d[O 2]/d t (B) - d[NO 2]/2d t = d[NO]/2d t = d[O 2]/d t = d ξ /d t (C) - d[NO 2]/d t = d[NO]/d t = d[O 2]/d t (D) - d[NO 2]/2d t = d[NO]/2d t = d[O 2]/d t = 1/V d ξ /d t 5207 气相基元反应 2A k 1 B 在一恒容的容器中进行,p 0为 A 的初始压力, p t 为时间 t 时反应 体系总压,此反应速率方程 d p t / d t = 。 - k (2p t - p 0)2 5208 有一反应 mA → nB 是一简单反应,其动力学方程为 -d c A / d t = kc A m , c A 的单位为 mol ·dm -3, 时间单位为 s ,则: (1) k 的单位为 ___________ mol 1- m ·dm 3( m -1)·s -1 (2) 以d c B /d t 表达的反应速率方程和题中给的速率方程关系为 B A A A 1d 1d 'd d m m c c k c k c n t m t m =-== 5209 反应 2N 2O 5─→ 4NO 2+ O 2 在328 K 时,O 2(g)的生成速率为0.75×10-4 mol ·dm -3·s -1。 如其间任一中间物浓度极低, 难以测出, 则该反应的总包反应速率为 _______________mol ·dm -3·s -1, N 2O 5之消耗速率为__________ mol ·dm -3·s -1,NO 2之生成速率为_______________mol ·dm -3·s -1 。0.75×10-4, 1.50×10-4, 3.00×10-4 5210 O 3分解反应为 2O 3─→3O 2 ,在一定温度下, 2.0 dm 3容器中反应。实验测出O 3每秒消耗1.50×10-2 mol, 则反应速率为_______________mol ·dm -3·s -1氧的生成速率为_______________mol ·dm -3·s -1, d ξ /d t 为_______________ 0.75×10-2, 2.25×10-2, 1.50×10-2.。 5211 2A +B =2C 已知反应某一瞬间, r A =12.72 mol ·dm -3·h -1, 则 r B = , r C =_____________r B =6.36 mol ·dm -3·h -1, r C =12.72mol ·dm -3·h -1 5212分别用反应物和生成物表示反应A +3B =2C 的反应速率, 并写出它们间关系为: 。r A = 13r B =1 2 r C 5222 有关基元反应的描述在下列诸说法中哪一个是不正确的: ( ) (A) 基元反应的级数一定是整数 (B) 基元反应是“态-态”反应的统计平均结果 (C) 基元反应进行时无中间产物,一步完成 (D) 基元反应不一定符合质量作用定律 5223 400 K 时,某气相反应的速率常数k p = 10-3(kPa)-1·s -1,如速率常数用 k C 表示,则 k C 应为: (A) 3.326 (mol ·dm -3)-1·s -1 k C = k p (RT ) (B) 3.0×10-4 (mol ·dm -3)-1·s -1 (C) 3326 (mol ·dm -3)-1·s -1 (D) 3.0×10-7 (mol ·dm -3)-1·s -1 5224 如果反应 2A + B = 2D 的速率可表示为:

最新2反应动力学基础汇总

2反应动力学基础

2 反应动力学基础 2.1在一体积为4L 的恒容反应器中进行A 的水解反应,反应前 A 的含量为12.23%(重量),混合物的密度为1g/mL ,反应物A 的分子量为88。在等温常压下不断取样分析,测的组分A 的浓度随时 试求反应时间为3.5h 的A 的水解速率。 解:利用反应时间与组分A 的浓度变化数据,作出C A ~t 的关系曲线,用镜面法求得t=3.5h 时该点的切线,即为水解速率。 切线的斜率为 0.760.125/.6.1α-==-mol l h 由(2.6)式可知反应物的水解速率为 0.125/.-= =dC A r mol l h A dt 2.2在一管式反应器中常压300℃等温下进行甲烷化反应: 2423+→+CO H CH H O 催化剂体积为10ml ,原料气中CO 的含量为3%,其余为N 2,H 2气体,0进行实验,测得出口CO 的转化率为: 试求当进口原料气体流量为50ml/min 时CO 的转化速率。 解:是一个流动反应器,其反应速率式可用(2.7)式来表示 00000(1)(1) -= =-=-=-A A R A A A A A A A A dF r dV F F X Q C X dF Q C dX 故反应速率可表示为: 000 0(/)==A A A A A R R dX dX r Q C C dV d V Q 用X A ~V R /Q 0作图,过V R /Q 0=0.20min 的点作切线,即得该条件下的dX A /d(V R /Q 0)值α。

0.650.04 1.79 0.34α-== 故CO 的转化速率为 40030.10130.03 6.3810/8.31410573--? ===???A A P C mol l RT 4300 6.3810 1.79 1.1410/.min (/)--==??=?A A A R dX r C mol l d V Q 2.3已知在Fe-Mg 催化剂上水煤气变换反应的正反应动力学方程为: 20.850.4 /-=?w CO CO r k y y kmol kg h 式中y CO 和y CO2为一氧化碳及二氧化碳的瞬间摩尔分率,0.1MPa 压力及700K 时反应速率常数k W 等于0.0535kmol/kg.h 。如催化剂的比表面积为30m 2/g ,堆密度为1.13g/cm 3,试计算: (1) (1) 以反应体积为基准的速率常数k V 。 (2) (2) 以反应相界面积为基准的速率常数k g 。 (3) (3) 以分压表示反应物系组成时的速率常数k g 。 (4) (4) 以摩尔浓度表示反应物系组成时的速率常数 k C 。 解:利用(2.10)式及(2.28)式可求得问题的解。注意题中所给比表面的单位换算成m 2/m 3。 3323 0.450.45 33 0.45(1) 1.13100.053560.46/.6(2) 1.7810/.3010 11(3)()()0.05350.1508 0.1013..()8.3110700(4)()(0.05350.333(0.1)ρρρρ-==??=-= = =???==?=??==?=v b w b b g w w v b n p w n c w k k kmol m h k k k kmol m h a kmol k k P kg h MPa m RT k k P km 0.45)().kmol ol kg h 2.4在等温下进行液相反应A+B →C+D ,在该条件下的反应速率方程为: 1.50.5 0.8/min =?A A B r C C mol l 若将A 和B 的初始浓度均为3mol/l 的原料混合进行反应,求反应4min 时A 的转化率。

化学反应动力学

化学反应动力学 既是异想天开,又实事求是,这是科学工作者特有的风格,让我们在 无穷的宇宙长河中探索无穷的真理吧。 郭沫若 经典化学热力学从静态的角度(相对静止)去研究化学反应,解决了化学反应进行中能量转换、过程方向、限度、以及各种平衡性质的计算问题。由于经典热力学只研究过程的起始状态与终结状态,不研究过程的各瞬间状态,故对于一个化学反应,其实际产量是多少?需要多少时间?反应中经历了怎样的过程等问题,经典热力学无法解决,这些问题均有待于化学反应动力学来解决。 “静止是相对的,而运动则是绝对的”,化学动力学是从动态的角度(绝对运动) 去研究化学反应即化学运动全过程的学科,它的任务较热力学更为复杂和艰巨。化学动力学的主要任务是研究反应速率和探求反应机理,具体可包括三方面内容:1.研究化学反应过程的各种因素(如分子结构、温度、压力、浓度、介质、催化剂等)对化学反应速率的影响;2.揭示化学反应宏观与微观的机理(反应物按何种途径、经何步骤才转化为最终产物);3.定量地研究总包反应与各种基元反应。 如果一个化学反应在热力学上判断是可能发生的,要使这种可能性变为现实,则该 反应必须要以一定的速率进行,可以说“速度就是效率,速度就是效益”。化学反应的体系内的许多性质及外部条件都会影响平衡和反应速率,平衡问题和速率问题是相互关连的,由于目前仍未有处理它们相关的定量方法,故还需要分别去研究平衡问题和化学反应速率问题。化学动力学作为一门独立的学科,近百年来发展相对较为迅速,但目前动力学理论与热力学相比,尚有较大差距。本章着重介绍了化学动力学的唯象规律、有关反应机理及反应速率理论的基本内容。 1、反应速率 反应物分子经碰撞后才可能发生反应,在一定温度下,化学反应的速率正比于反应分子的碰撞次数,而在单位体积中,单位时间内的碰撞次数又与反应物的浓度成正比,可见反应速率与反应物浓度直接相关,反应速率就是参加反应的某一物质的浓度随时间的变化率。 对于等容体系中进行的反应:aA+bB →dD+eE ,可以分别用体系中各物质的浓度变化 写出速率表示式,如反应物消耗速率 (负号表示反应期间反应物浓度是减少,以保证速率为正值),产物生成速率: dt dC r dt dC r B B A A -=-=,

第七章 化学反应动力学

第七章化学反应动力学 一.基本要求 1.掌握化学动力学中的一些基本概念,如速率的定义、反应级数、速率系数、基元反应、质量作用定律与反应机理等。 2.掌握具有简单级数反应的共同特点,特别就是一级反应与a = b的二级反应的特点。学会利用实验数据判断反应的级数,能熟练地利用速率方程计算速率系数与半衰期等。 3.了解温度对反应速率的影响,掌握Arrhenius经验式的4种表达形式,学会运用Arrhenius经验式计算反应的活化能。 4.掌握典型的对峙、平行、连续与链反应等复杂反应的特点,学会用合理的近似方法(速控步法、稳态近似与平衡假设),从反应机理推导速率方程。学会从表观速率系数获得表观活化能与基元反应活化能之间的关系。 5.了解碰撞理论与过渡态理论的基本内容,会利用两个理论来计算一些简单反应的速率系数,掌握活化能与阈能之间的关系。了解碰撞理论与过渡态理论的优缺点。 6.了解催化反应中的一些基本概念,了解酶催化反应的特点与催化剂之所以能改变反应速率的本质。 7.了解光化学反应的基本定律、光化学平衡与热化学平衡的区别,了解光敏剂、量子产率与化学发光等光化反应的一些基本概念。 二.把握学习要点的建议 化学动力学的基本原理与热力学不同,它没有以定律的形式出现,而就是表现为一种经验规律,反应的速率方程要靠实验来测定。又由于测定的实验条件限制,同一个反应用不同的方法测定,可能会得到不同的速率方程,所以使得反应速率方程有许多不同的形式,使动力学的处理变得比较复杂。反应级数就是用幂函数型的动力学方程的指数与来表示的。由于动力学方程既有幂函数型,又有非幂函数型,所以对于幂函数型的动力学方程,反应级数可能有整数(包括正数、负数与零)、分数(包括正分数与负分数)或小数之分。对于非幂函数型的动力学方程,就无法用简单的数字来表现其级数。对于初学者,要求能掌握具有简单级数的反应,主要就是一级反应、a = b的二级反应与零级反应的动力学处理方法及其特点。

第十二章化学动力学基础(二)

第十二章 化学动力学基础(二) 1.在K 300时,将)(0.12g gO 和)(1.02g gH 在30.1gdm 的容器内混合,试计算每秒钟、每单位体积内分子碰撞的总数?设)(2g O 和)(2g H 为硬球分子,其直径分别为 nm 339.0和nm 247.0。 解:)(1093.2102 247 .0339.02 1092 2m d d d H O AB --?=?+= += )(10896.110016 .200.32016 .200.321332 222---??=?+?= +?= mol kg M M M M H O H O μ )(10881.11011 1002.600.320.13253 232--?=????==m n n O A )(10968.210 111002.6016.21.03253 232 --?=????==m n n H B 25 253 2102 10 986.210881.110896.114.3300314.88)1093.2(14.38????????? ??==--B A AB AB n n RT d Z πμ π )(1077.21335--??=s m Z AB 2.请计算恒容下,温度每增加K 10时, (1)碰撞频率增加的百分数; (2)碰撞时在分子连心线上的对平动能超过180-?=mol kJ E c 的活化分子对的增加百分数; (3)由上述计算结果可得出什么结论? 解:(1)B A AB AB n n RT d Z πμ π82 = T n n R d Z B A AB AB ln 2 1 )8ln(ln 2 +=∴πμπ T dT Z d AB 21 ln = 或T dT Z dZ AB AB 2= 当温度变化范围不太大时,有 T T Z Z AB AB 2?= ? 如K T 298=,K T 10=?时,有 %68.1298 210=?= ?AB AB Z Z

化学反应动力学考题及答案

研究生课程考试成绩单 (试卷封面) 任课教师签名: 日期: 注:1. 以论文或大作业为考核方式的课程必须填此表,综合考试可不填。“简要评语”栏缺填无效。 2. 任课教师填写后与试卷一起送院系研究生秘书处。 3. 学位课总评成绩以百分制计分。

第一部分 1.简答题 (1)简述化学反应动力学与化学反应热力学、化学反应工程的关系。 答:化学反应动力学与化学反应热力学是综合研究化学反应规律的两个不可缺少的重要组成部分。由于二者各自的研究任务不同,研究的侧重而不同,因而化学反应动力学与化学反应热力学既有显著的区别又互有联系。 化学反应热力学特别是平衡态热力学是从静态的角度出发研究过程的始态和终态,利用状态函数探讨化学反应从始态到终态的可能性,即变化过程的方向和限度,而不涉及变化过程所经历的途径和中间步骤。所以,化学反应热力学不考虑时间因素,不能回答反应的速率历程。因此,即使一个反应在热力学上是有利的,但如果在动力学上是不利的,则此反应事实上是不能实现的。因此,要开发一个新的化学过程,不仅要从热力学确认它的可能性,还要从动力学方面研究其反应速率和反应机理,二者缺一不可。从研究程序来说,化学反应热力学研究是第一位的,热力学确认是不可能的反应,也就没有必要再进行动力学的研究。显然只有对热力学判定是可能的过程,才有进行动力学研究的必要条件。 (2)简述速控步、似稳态浓度法、似平衡浓度法的适用条件及其应用。 答:速控步:连续反应的总反应的速率决定于反应速率常数最小的反应步骤——最难进行的反应,称此为决定速率的步骤。此结论也适应于一系列连续进行的反应;而且要满足一个条件即反应必须进行了足够长的时间之后。 似稳态浓度法:是对于不稳定中间产物的浓度的一种近似处理方法,视之近似看作不随时间变化,不仅常用于连续反应,对于其他类似的反应只要中间物不稳定,也可适用。 似平衡浓度法:在一个包括有可逆反应的连续反应中,如果存在速控步,则可以认为其他各反应步骤的正向、逆向间的平衡关系可以继续保持而不受速控步影响,且总反应速率及表观速率常数仅取决于速控步及它以前的反应步骤,与速控步以后的各步反应无关。 对于综合反应进行简化处理的方法有:①对于平行反应,总反应速率由快步反应确定;②对于连续反应,总反应速率由慢步反应确定,一般把中间物质视为不稳定化合物,采用似稳态浓度法处理;③对于可

化学反应动力学基础-§4分子反应动态学简介

●§4分子反应动态学简介(molecular reaction dynamics) ●§4.1分子反应动态学的特点 分子反应动态学是在分子水平上研究分子之间的一次碰撞(单次碰撞)行为中的动态性质,因为是从微观角度进行研究,所以也称为微观化学反应动力学(microscopic chemical kinetics)。 分子反应动态学作为化学动力学的一个分支,主要研究分子如何碰撞、如何进行能量交换;在碰撞过程中,旧键如何被破坏,新键如何生成;分子碰撞的角度对反应速率的影响以及反应产物分子的角分布等一系列过程的动态性质,也可以说是研究基元反应的微观历程。 以最简单的原子A与双原子分子BC的反应为例, A(i)+BC(j)—→AB(m)+C(n) 要从微观角度研究反应碰撞行为,当然最好是选取孤立的、具有给定量子态的反应物A(i)和BC(j),产生初生态的具有一定量子态的产物分子AB(m)和C(n),这才是一个“真正分子水平上的一次碰撞行为”,或称为态对态的反应(state-to-state reaction)。 分子束特别是交叉分子束的方法提供了一个“真正分子水平上的一次碰撞行为”实现的可能途径。实际上,近30年来分子反应动态学的发展,在很大程度上是和分子束技术以及激光技术的应用和改进分不开的。

●§4.2研究分子反应的实验方法 ●§4.2.1交叉分子束 研究分子反应动态学最基本的工具是交叉分子束技术。其特征是在单次碰撞的条件下来研究单个分子间发生的化学反应,并测量反应产物的角分布、速度分布来取得反应动态学的信息。李远哲和D.R.Herschbach首先研制成功能获得各种态信息的交叉分子束实验装置,研究和发表了F+H2反应动力学的结果,精确测定了反应产物的角分布、能量分布及其与反应物能量的关系,表明了过去用经典方法计算反应途径的局限性和不可靠性。如此详细的研究化学反应过程,对化学反应的基本原理作出了重要突破,被称为分子反应动力学发展中的里程碑。 红外化学发光实验研究的开拓者是J. C. Polanyi,当处于振动、转动激发态的反应产物向低能态跃迁时所发出的辐射即称为红外化学发光(IRC),记录分析这些光谱,可以得到初生产物在振动、转动能态上的分布。这一点可以弥补分子束实验只能确定反应释放能量在产物平动能与内部能之间的分配,而无法确定分子内部能量间的分布。 李远哲、D. R. Herschbach和J. C. Polanyi一起荣获1986年诺贝尔化学奖。

相关文档
最新文档