Fluent中Profile文件的编写[优质资料]

Fluent中Profile文件的编写[优质资料]
Fluent中Profile文件的编写[优质资料]

1.瞬态Profile

标准的Profile 文件格式如下

((profile-name transient n periodic)

(field_name_1 a1 a2 a3 …… an)

(field_name_2 b1 b2 b3 …… bn)

(field_name_r r1 r2 r3 ……rn))

Profile-name 为Profile 名称,少于64个字符,field-name 必须包含一个time 变量,并且时间变量必须以升序排列。transient 为关键字,瞬态profile 文件必须包含此关键字。n 为每一个变量的数量。periodic ?标志该profile 文件是否为时间序列,1表示时间为周期文件,0表示非周期文件。

例1:

((move transient 3 1)

(time 0 1 2) (v_x 3 5 3)

)

该profile 文件所对应的X 速度(v_x )随时间变化的曲线如下图所示

7

6

Time v _x

在profile 文件中经常使用的变量名称包括time (时间)、u 或v_x (x 方向速度)、v 或v_y (y 方向速度)、w 或v_z (z 方向速度)、omega_x (x 方向角速度)、omega_y (y 方向角速度)、omega_z (z 方向角速度)、temperature (温度)等。Profile 文件中的数据单位均为国际单位制。

例2:下图所示的Profile文件如下

(moveVelocity transient 5 0)

(time 0 0.25 0.5 0.75 1)

(v_x 0 0.1 0.2 0.3 0.4)

)

其中,moveVelocity为Profile文件名,transient表示瞬态,5为表示所取速度及时间变化点数,这里取5个点;time后所取点的时刻值;x后为所取点的x 坐标;v_x为所取点的x向速度;所取的5个点组成速度与时间的线性关系。

虽然稳态profile文件可以再一定程度上定义网格运动,然而其存在着一些缺陷。最主要的一些缺陷存在于以下一些方面:

(1)Profile无法精确的定义连续的运动。其使用离散的点进行插值。如果获得较为精确的运动定义,势必要定义很多点。

(2)一些情况下无法使用Profile。比如稳态动网格。

Point,line,radial类型的Profile用以下格式

((profile1-name point|line|radial n)

(field-name a1 a2 …… an)

(field-name b1 b2 ……bn)

(field-name f1 f2 …… fn))

Line profile:用n个顺序排列的point (xi, yi, vi)来描述的profile,只用于2D问题,point间用0阶插值法插值。

例3:旋转角速度Profile文件的编写

((left 3 point)

(time 0 1 60)

(omega_z 30 30 30)

)

left为profile文件的名称,3表示3个时间点,time表示时间,时间有3个点,分别为0s,1s,60s;时间点和速度之间采用线性插值,也就是说,旋转速度在0~60s之间,速度均为30rad/s。

学习fluent(流体常识及软件计算参数设置)

luent 中一些问题 ( 目录 ) 离散化的目的 计算区域的离散及通常使用的网格 控制方程的离散及其方法 各种离散化方法的区别 8 9 10在GAMBIT 中显示的“check 主要通过哪几种来判断其网格的质量?及其在做网格时大 致注意到哪些细节? 11 在两个面的交界线上如果出现网格间距不同的情况时,即两块网格不连续时,怎么样克 服这种情况呢? 12在设置GAMBIT 边界层类型时需要注意的几个问题: a 、没有定义的边界线如何处理? b 、计算域内的内部边界如何处理( 2D )? 13 为何在划分网格后,还要指定边界类型和区域类型?常用的边界类型和区域类型有哪 些? 14 20 何为流体区域( fluid zone )和固体区域( solid zone )?为什么要使用区域的概念? FLUENT 是怎样使用区域的? 15 21 如何监视 FLUENT 的计算结果?如何判断计算是否收敛?在 FLUENT 中收敛准则是 如何定义的?分析计算收敛性的各控制参数,并说明如何选择和设置这些 参数?解决不收1 如何入门 2 CFD 2.1 2.2 2. 3 2.4 2.5 2.6 计算中涉及到的流体及流动的基本概念和术语 理想流体( Ideal Fluid )和粘性流体( Viscous Fluid ) 牛顿流体( Newtonian Fluid )和非牛顿流体( non-Newtonian Fluid ) 可压缩流体 ( Compressible Fluid )和不可压缩流体( Incompressible Fluid ) 层流( Laminar Flow )和湍流( Turbulent Flow ) 定常流动( Steady Flow )和非定常流动( Unsteady Flow ) 亚音 速流动 (Subsonic) 与超音速流动( Supersonic ) 热传导( Heat Transfer )及扩散 ( Diffusion ) 2.7 3 在数值模拟过程中,离散化的目的是什么?如何对计算区域进行离散化?离散化时通常 使用哪些网格?如何对控制方程进行离散?离散化常用的方法有哪些?它们有 什么不 同? 3.1 3.2 3.3 3.4 4 常见离散格式的性能的对比(稳定性、精度和经济性) 5 流场数值计算的目的是什么?主要方法有哪些?其基本思路是什么?各自的适用范围是 什 么? 6 可压缩流动和不可压缩流动,在数值解法上各有何特点?为何不可压缩流动在求解时反 而比 可压缩流动有更多的困难? 6.1 可压缩 Euler 及 Navier-Stokes 方程数值解 6.2 不可压缩 Navier-Stokes 方程求解 什么叫边界条件?有何物理意义?它与初始条件有什么关系? 在数值计算中,偏微分方程的 双曲型方程、椭圆型方程、抛物型方程有什么区别? 在网格生成技术中,什么叫贴体坐标 系?什么叫网格独立解?

FLUENT中的求解器、算法和离散方法

FLUENT中的求解器、算法和离散方法 作为一个非科班出身的CFD工程师,一开始常常被CFD软件里各种概念搞的晕头转向。最近终于静下心来看了看CFD理论的书,理清了一些概念。就此写一遍博文,顺便整理一下所学内容。 I 求解器: FLUENT中求解器的选择在如下图所示界面中设置: FLUENT中的求解器主要是按照是否联立求解各控制方程来区分的,详见下图:

II 算法: 算法是求解时的策略,即按照什么样的方式和步骤进行求解。FLUENT中算法的选择在如下图所示的界面中设置:

这里简单介绍一下SIMPLE、SIMPLEC、PISO等算法的基本思想和适用范围。 SIMPLE算法:基本思想如前面讲求解器的那张图中解释分离式求解器的例子所示的一样,这里再贴一遍: 1.假设初始压力场分布。 2.利用压力场求解动量方程,得到速度场。 3.利用速度场求解连续性方程,使压力场得到修正。 4.根据需要,求解湍流方程及其他方程 5.判断但前计算是否收敛。若不收敛,返回第二步。 简单说来,SIMPLE算法就是分两步走:第一步预测,第二步修正,即预测-修正。 SIMPLC算法:是对SIMPLE算法的一种改进,其计算步骤与SIMPLE算法相同,只是压力修正项中的一些系数不同,可以加快迭代过程的收敛。 PISO算法:比SIMPLE算法增加了一个修正步,即分三步:第一步预测,第二步修正得到一个修正的场分布,第三步在第二步基础上在进行一侧修正。即预测-修正-修正。PISO算法在求解瞬态问题时有明显优势。对于稳态问题可能SIMPLE 或SIMPLEC更合适。 如果你实在不知道该如何选择,就保持FLUENT的默认选项好了。因为默认选项可以很好解决70%以上的问题,而且对于大部分出了问题的计算来说,也很少是因为算法选择不恰当所致。 III 离散方法: 离散方法是指按照什么样的方式将控制方程在网格节点离散,即将偏微分格式的控制方程转化为各节点上的代数方程组。FLUENT中离散方法的选择在如下图所示的界面中设置:

学习fluent (流体常识及软件计算参数设置)

luent中一些问题----(目录) 1 如何入门 2 CFD计算中涉及到的流体及流动的基本概念和术语 2.1 理想流体(Ideal Fluid)和粘性流体(Viscous Fluid) 2.2 牛顿流体(Newtonian Fluid)和非牛顿流体(non-Newtonian Fluid) 2.3 可压缩流体(Compressible Fluid)和不可压缩流体(Incompressible Fluid) 2.4 层流(Laminar Flow)和湍流(Turbulent Flow) 2.5 定常流动(Steady Flow)和非定常流动(Unsteady Flow) 2.6 亚音速流动(Subsonic)与超音速流动(Supersonic) 2.7 热传导(Heat Transfer)及扩散(Diffusion) 3 在数值模拟过程中,离散化的目的是什么?如何对计算区域进行离散化?离散化时通常使用哪些网格?如何对控制方程进行离散?离散化常用的方法有哪些?它们有什么不 同? 3.1 离散化的目的 3.2 计算区域的离散及通常使用的网格 3.3 控制方程的离散及其方法 3.4 各种离散化方法的区别 4 常见离散格式的性能的对比(稳定性、精度和经济性) 5 流场数值计算的目的是什么?主要方法有哪些?其基本思路是什么?各自的适用范围是什么? 6 可压缩流动和不可压缩流动,在数值解法上各有何特点?为何不可压缩流动在求解时反而比可压缩流动有更多的困难? 6.1 可压缩Euler及Navier-Stokes方程数值解 6.2 不可压缩Navier-Stokes方程求解 7 什么叫边界条件?有何物理意义?它与初始条件有什么关系? 8 在数值计算中,偏微分方程的双曲型方程、椭圆型方程、抛物型方程有什么区别? 9 在网格生成技术中,什么叫贴体坐标系?什么叫网格独立解? 10 在GAMBIT中显示的“check”主要通过哪几种来判断其网格的质量?及其在做网格时大致注意到哪些细节? 11 在两个面的交界线上如果出现网格间距不同的情况时,即两块网格不连续时,怎么样克服这种情况呢? 12 在设置GAMBIT边界层类型时需要注意的几个问题:a、没有定义的边界线如何处理? b、计算域内的内部边界如何处理(2D)? 13 为何在划分网格后,还要指定边界类型和区域类型?常用的边界类型和区域类型有哪些? 14 20 何为流体区域(fluid zone)和固体区域(solid zone)?为什么要使用区域的概念?FLUENT是怎样使用区域的? 15 21 如何监视FLUENT的计算结果?如何判断计算是否收敛?在FLUENT中收敛准则是如何定义的?分析计算收敛性的各控制参数,并说明如何选择和设置这些参数?解决不收

利用FLUENT 3D求解器求解

利用FLUENT 3D求解器求解 一、在FLUENT中读入网格文件,检查网格并定义长度单位 1、启动FLUENT,进入3D模式 操作:开始→程序→FLUENT→3d→Run,进入FLUENT。 2、读入网格文件 操作:File→Read→Case,选择在Gambit中绘制的网格文件.msh文件,点击OK完成数据读入。 3、调整网格尺寸比例 操作:Grid→Scale 打开“Scale Grid”对话框 (1)在Units Conversion 下的Grid Was Created In 右侧列表中选择合适的单位如:cm (在gambit中一般是以m为单位,要转化成fluent对应的单位cm); (2)点击Change length Units: 此时左侧的Scale Factors下的X,Y,Z项都变为0.01。 (3)点击下边的Scale按钮:此时,Domain Extents下的单位由m变成cm;并给出区域的范围; (4)点击Close关闭对话框。 4、检查网格 操作:Grid→Check Fluent会对网格进行各种检查并在信息反馈窗口显示检查过程和结果,其中要注意保持最小体积为正值。 5、显示网格 操作:Display→Grid 打开网格显示对话框后,点击Display。 注意:用鼠标右键点击边界线,则在信息反馈窗口内将显示此边界的类型等信息。也可用此方法检查任何内部节点和网格线的信息。 二、创建计算模型 1、设置求解器 操作:Define→Models→Solver (1)在Solver项选择Segregated; (2)在Formulation项选择Implicit; (3)在Space项选择3D; (4)在Time项选择Unsteady; (5)Velocity Formulation,Unsteady Formulation保持默认值; (6)点击OK。 2、定义多相流模型 操作:Define→Models→Multiphase (1)在Model项选择Volume of Fluid; (2)在Number of Phase下选2; (3)在VOF Scheme项选择Geo-Reconstruct,Courant Number保持默认值; (fluent6.3.26里边VOF Scheme选expicity。) 在Body Force Formulation项选择Implicit Body Force; (4)点击OK。 3 、设置标准的k﹣ε湍流模型 操作:Define→Models→Viscous

fluent实例-油水两相管内流动模拟

油水两相流弯管流动模拟 弯管被广泛应用于石化、热能动力、给排水、钢铁冶金等工程领域的流体输送,其内部流体与管壁的相对运动将产生一定程度的振动而使管道系统动力失稳,严重时会给系统运行带来灾难性的毁坏。而现今原油集输管线中普遍为油水两相流,较单相流动复杂,且通过弯管时由于固壁的突变,使得流动特性更为繁杂。因此,研究水平弯管内油水两相流的速度、压力分布等流动特性,不仅能够为安全输运、流动参数控制等提供参考,还可为管线防腐、节能降耗措施选取等提供依据。 一、实例概述 选取某输油管道工程管径600mm的90°水平弯管道,弯径比为3,并在弯管前后各取5m直管段进行建模,其几何模型如图所示。为精确比较流体流经弯管过程中的流场变化,截取了图所示的5个截面进行辅助分析。弯管进出口的压差为800Pa,油流含水率为20%。 二、模型建立 1.启动GAMBIT,选择圆面生成面板的Plane为ZX,输入半径Radius为0.3,生成圆面, 如图所示。

2.选择圆面,保持Move被选中,在Global下的x栏输入1.8,完成该面的移动操作。 3.选取面,Angle栏输入-90,Axis选择为(0,0,0)→(0,0,1),生成弯管主体,如图所 示。

4.在Create Real Cylinder面板的Height栏输入5,在Radius1栏输入0.3,选择Axis Location 为Positive X,生成沿x方向的5m直管段,如图所示。 5.同方法,改变Axis Location为Positive Y生成沿y方向的5m直管段,如图所示。

6.将直管段移动至正确位置,执行Volume面板中的Move/Copy命令,选中沿y轴的直管 段,在x栏输入1.8,即向x轴正向平移1.8。然后选中沿x轴的直管段,在x栏输入-5,在y栏输入-1.8,最后的模型如图所示。 7.将3个体合并成一个,弹出Unite Real Volumes面板,选中生成的3个体,视图窗口 如图所示。

辐射和对流模型Fluent参数设置

辐射和对流模型Fluent参数设置 1.读入***.mesh文件,并对网格文件进行进行检查,Grid→cheek,主要看最小体积和最小面积不能为负,之后进行刻度转换,Grid→scale,在Gmbit 里面建模默认尺寸为米,与实际尺寸之间要进行转化,如下图: 2.选择求解器,Define→Models→sover……根据情况选择,如上图:接着选择辐射模型,Define→Models→Radiation,如下图,当Radiation Model面板上 点击ok时,会出现一个信息提示框,告诉你新 的材料物性被添加了,你将在后面设置物性参 数,因此现在只需单击ok确认这个信息即可, 如下图: 注意:当你激活辐射模型后,Fluent会自动打开能量求解器,如下图: 不用再Define→Models→Energy……

3.设置流体粘性,由于模型中空气流速比较大,设成双方程模型:如下图: 4.设置操作条件,此模型此有流体,属有重力情况,Define→Operating Conditions,选中 Gravity.Y方向加速度设置为-9.8 2 m,击OK确定。 /s 设置工作温度,在后面要激活的Boussinesq model要用到,(Boussinesq model:

考虑温度变化而忽略压强变化引起的密度变化叫做Boussinesq 假设) 5. 定义材料并设置其物理属性 Define →Material …… 先定义空气物性,要定义成有浮力的,取Boussinesq 选项。 Density=1.1653/m kg ,()k kg j C p ?=/1005 Thermal Conductivity=0.0267()k m w ?/,Material Type :fluid ; Thermal Expansion Coefficient =0.0033()k /1。 通过滚动条使先前面板中不可见的物性显示出来。在Scattering Coefficient 和Scattering Phase Function 中保持默认值,在要解决的问题中不涉及到散射问题;设定热扩散系数(用boussinesq 模型时)为1e-5K -1。单击Change/Create ,关闭Materials 面板。 6.设置边界条件Define → Boundary Conditions ……

Fluent经典问题及解答

Fluent经典问题及解答 1 对于刚接触到FLUENT新手来说,面对铺天盖地的学习资料和令人难读的FLUENT help,如何学习才能在最短的时间内入门并掌握基本学习方法呢?(#61) 2 CFD计算中涉及到的流体及流动的基本概念和术语:理想流体和粘性流体;牛顿流体和非牛顿流体;可压缩流体和不可压缩流体;层流和湍流;定常流动和非定常流动;亚音速与超音速流动;热传导和扩散等。(13楼) 3 在数值模拟过程中,离散化的目的是什么?如何对计算区域进行离散化?离散化时通常使用哪些网格?如何对控制方程进行离散?离散化常用的方法有哪些?它们有什么不同?(#80) 4 常见离散格式的性能的对比(稳定性、精度和经济性)(#62) 5 在利用有限体积法建立离散方程时,必须遵守哪几个基本原则?(#81) 6 流场数值计算的目的是什么?主要方法有哪些?其基本思路是什么?各自的适用范围是什么?(#130) 7 可压缩流动和不可压缩流动,在数值解法上各有何特点?为何不可压缩流动在求解时反而比可压缩流动有更多的困难?(#55) 8 什么叫边界条件?有何物理意义?它与初始条件有什么关系?(#56) 9 在一个物理问题的多个边界上,如何协调各边界上的不同边界条件?在边界条件的组合问题上,有什么原则? 10 在数值计算中,偏微分方程的双曲型方程、椭圆型方程、抛物型方程有什么区别?(#143) 11 在网格生成技术中,什么叫贴体坐标系?什么叫网格独立解?(#35) 12 在GAMBIT的foreground和background中,真实体和虚实体、实操作和虚操作四个之间是什么关系? 13 在GAMBIT中显示的“check”主要通过哪几种来判断其网格的质量?及其在做网格时大致注意到哪些细节?(#38) 14 画网格时,网格类型和网格方法如何配合使用?各种方法有什么样的应用范围及做网格时需注意的问题?(#169) 15 对于自己的模型,大多数人有这样的想法:我的模型如何来画网格?用什么样的方法最简单?这样做网格到底对不对?(#154) 16 在两个面的交界线上如果出现网格间距不同的情况时,即两块网格不连续时,怎么样克服这种情况呢?(#40) 17 依据实体在GAMBIT建模之前简化时,必须遵循哪几个原则?(#170) 18 在设置GAMBIT边界层类型时需要注意的几个问题:a、没有定义的边界线如何处理?b、计算域内的内部边界如何处理(2D)?(#128) 19 为何在划分网格后,还要指定边界类型和区域类型?常用的边界类型和区域类型有哪些?(#127) 20 何为流体区域(fluid zone)和固体区域(solid zone)?为什么要使用区域的概念?FLUENT是怎样使用区域的?(#41) 21 如何监视FLUENT的计算结果?如何判断计算是否收敛?在FLUENT中收敛准则是如何定义的?分析计算收敛性的各控制参数,并说明如何选择和设置这些参数?解决不收敛问题通常的几个解决方法是什么?(9楼) 22 什么叫松弛因子?松弛因子对计算结果有什么样的影响?它对计算的收敛情况又有什么样的影响?(7楼)

Fluent求解参数设置

求解参数设置(Solution Methods/Solution Controls): 在设置完计算模型和边界条件后,即可开始求解计算了,因为常会出现求解不收敛或者收敛速度很慢的情况,所以就要根据具体的模型制定具体的求解策略,主要通过修改求解参数来完成。在求解参数中主要设置求解的控制方程、选择压力速度耦合方法、松弛因子、离散格式等。 在VOF模型中,PISO比较适合于不复杂的流体,SIMPLE和SIMPLEC适合于可压缩的流体或者处于封闭域中的流体。 ? 求解的控制方程: 在求解参数设置中,可以选择所需要求 解的控制方程。可选择的方程包括Flow(流动方 程)、Turbulence(湍流方程)、Energy(能量方 程)、Volume Fraction(体积分数方程)等。在 求解过程中,有时为了得到收敛的解,先关闭 一些方程,等一些简单的方程收敛后,再开启 复杂的方程一起计算。 ? 选择压力速度耦合方法: 在基于压力求解器中,FLUENT提供了压 力速度耦合的4种方法,即SIMPLE、 SIMPLEC(SIMPLE.Consistent)、PISO以及 Coupled。定常状态计算一般使用SIMPLE或者 SIMPLEC方法,对于过渡计算推荐使用PISO方 法。PISO方法还可以用于高度倾斜网格的定常 状态计算和过渡计算。需要注意的是压力速度 耦合只用于分离求解器,在耦合求解器中不可 以使用。 在FLUENT中,可以使用标准SIMPLE算法和SIMPLEC算法,默认是SIMPLE算法,但对于许多问题如果使用SIMPLEC可能会得到更好的结果,尤其是可以应用增加的亚松弛迭代时。 对于相对简单的问题(如没有附加模型激活的层流流动),其收敛性可以被压力速度耦合所限制,用户通常可以使用SIMPLEC算法很快得到收敛解。在SIMPLEC算法中,压力校正亚松弛因子通常设为1.0,它有助于收敛,但是,在有些问题中,将压力校正松弛因子增加到1.0可能会导致流动不稳定,对于这种情况,则需要使用更为保守的亚松弛或者使用SIMPLE算法。对于包含湍流或附加物理模型的复杂流动,只要用压力速度耦合做限制,SIMPLEC就会提高收敛性,它通常是一种限制收敛性的附加模拟参数,在这种情况下,SIMPLE和SIMPLEC 会给出相似的收敛速度。 对于所有的过渡流动计算,推荐使用PISO算法邻近校正。它允许用户使用大的时间步,而且对于动量和压力都可以使用亚松弛因子1.0。对于定常状态问题,具有邻近校正的PISO并不会比具有较好的亚松弛因子的SIMPLE或SIMPLEC好。对于具有较大扭曲网格上的定常状态和过渡计算推荐使用PISO倾斜校正。 当使用PISO邻近校正时,对所有方程都推荐使用亚松弛因子为1.0或者接近1.0。如果只对高度扭曲的网格使用PISO倾斜校正,则要设定动量和压力的亚松弛因子之和为1.0(例如,压力亚松弛因子0.3,动量亚松弛因子0.7)。

FLUENT知识点解读(良心出品必属精品)

一、基本设置 1.Double Precision的选择 启动设置如图,这里着重说说Double Precision(双精度)复选框,对于大多数情况,单精度求解器已能很好的满足精度要求,且计算量小,这里我们选择单精度。然而对于以下一些特定的问题,使用双精度求解器可能更有利[1]。 a.几何特征包含某些极端的尺度(如非常长且窄的管道),单精度求解器可能不能足够精确地表达各尺度方向的节点信息。 b.如果几何模型包含多个通过小直径管道相互连接的体,而某一个区域的压力特别大(因为用户只能设定一个总体的参考压力位置),此时,双精度求解器可能更能体现压差带来的流动(如渐缩渐扩管的无粘与可压缩流动模拟)。 c.对于某些高导热系数比或高宽纵比的网格,使用单精度求解器可能会遇到收敛性不佳或精确度不足不足的问题,此时,使用双精度求解器可能会有所帮助。 [1] 李鹏飞,徐敏义,王飞飞.精通CFD工程仿真与案例实战:FLUENT GAMBIT ICEM CFD Tecplot[M]. 北京,人民邮电出版社,2011:114-116

2.网格光顺化 用光滑和交换的方式改善网格:通过Mesh下的Smooth/Swap来实现,可用来提高网格质量,一般用于三角形或四边形网格,不过质量提高的效果一般般,影响较小,网格质量的提高主要还是在网格生成软件里面实现,所以这里不再用光滑和交换的方式改善网格,其原理可参考《FLUENT全攻略》(已下载)。 3.Pressure-based与Density-based 求解器设置如图。下面说一说Pressure-based和Density-based 的区别: Pressure-Based Solver是Fluent的优势,它是基于压力法的求解器,使用的是压力修正算法,求解的控制方程是标量形式的,擅长求解不可压缩流动,对于可压流动也可以求解;Fluent 6.3以前的版本求解器,只有Segregated Solver和Coupled Solver,其实也是Pressure-Based Solver的两种处理方法;

第2章,fluent基本物理模型

第二章,基本物理模型 无论是可压、还是不可压流动,无论是层流还是湍流问题,FLUENT 都具有很强的模拟能力。FLUENT 提供了很多数学模型用以模拟复杂几何结构下的输运现象(如传热与化学反应)。该软件能解决比较广泛的工程实际问题,包括处理设备内部过程中的层流非牛顿流体流动,透平机械和汽车发动机过程中的湍流传热过程,锅炉炉里的粉煤燃烧过程,还有可压射流、外流气体动力学和固体火箭中的可压反应流动等。 为了能模拟工业设备和过程中的流动及相关的输运现象,FLUENT 提供了许多解决工程实际问题的选择,其中包括多空介质流动,(风扇和热交换器)的集总参量计算,流向周期流动与传热,有旋流动和动坐标系下流动问题。随精确时间滑移网格的动坐标方法可以模拟计算涡轮流动问题。FLUENT 还提供了离散相模型用以模拟喷雾过程或者稀疏颗粒流动问题。还有些两相流模型可供大家选用。 第一节,连续和动量方程 对于所有流动,FLUENT 都求解质量和动量守恒方程。对于包含传热或可压性流动,还需要增加能量守恒方程。对于有组分混合或者化学反应的流动问题则要增加组分守恒方程,当选择pdf 模型时,需要求解混合分数及其方差的守恒方程。如果是湍流问题,还有相应的输运方程需要求解。 下面给出层流的守恒方程。 2.1.1 质量守恒方程 m i i S u x t =??+ ??)(ρρ 2-1 该方程是质量守恒的总的形式,可以适合可压和不可压流动。源项m S 是稀疏相增加到连续相中的质量,(如液体蒸发变成气体)或者质量源项(用户定义)。 对于二维轴对称几何条件,连续方程可以写成: m S r v v r u x t =+ ??+ ??+??ρρρρ)()( 2-2 式中,x 是轴向坐标;r 是径向坐标,u 和v 分别是轴向和径向速度分量。 2.1.2 动量守恒方程 惯性坐标系下,i 方向的动量守恒方程为: i i j ij i j i j i F g c x p u u x u t ++??+??- =??+ ??ρτρρ)()( 2-3 式中,p 是静压;ij τ是应力张量,定义为:ij l l i j j i ij x u x u x u δμμτ??-??? ????????? ????+??=32 ,i g ρ,i F 是重力体积力和其它体积力(如源于两相之间的作用),i F 还可以包括其它模型源项或者用

详细FLUENT实例讲座翼型计算

详细FLUENT实例讲座翼型计算 部门: xxx 时间: xxx 整理范文,仅供参考,可下载自行编辑

CAE联盟论坛精品讲座系列 详细FLUENT实例讲座-翼型计算 主讲人:流沙 CAE联盟论坛总版主 1.1 问题描述 翼型升阻力计算是CFD最常规的应用之一。本例计算的翼型为 RAE2822,其几何参数可以查看翼型数据库。本例计算在来流速度0.75马赫,攻角3.19°情况下,翼型的升阻系数及流场分布,并将计算结果与实验数据进行对比。模型示意图如图1所示。 b5E2RGbCAP 1.p ng(12.13 K>2018/7/29 23:41:251.2 FLUENT前处理设置Step 1:导入计算模型 以3D,双精度方式启动FLUENT14.5。 利用菜单【File】>【Read】>【Mesh…】,在弹出的文件选择对话框中选择网格文件rae2822_coarse.msh,点击OK按钮选择文件。如图2所示。p1EanqFDPw

点击FLUENT模型树按钮General,在右侧设置面板中点击按钮Display…,在弹出的设置对话框中保持默认设置,点击Display按钮,显示网格。如图3所示。DXDiTa9E3d 2.png(11.51 K>2018/7/29 23:41:25

3.png(33.41 K>2018/7/29 23:41:253-2.png(52.04 K>2018/7/29 23:41:25Step 2:检查网格 采用如图4所示步骤进行网格的检查与显示。点击FLUENT模型树节点General节点,在右侧面板中通过按钮Scale…、Check及 Report Quality实现网格检查。 4.png(12. 10 K>RTCrpUDGiT2018/7/29 23:41:25点击按钮Check,在命令输出按钮出现如图5所示网格统计信息。从图中可以看出,网格尺寸分布: x轴:-48.97~50m

求解器的使用

求解器的使用 FLUENT提供了三种不同的求解器 Segregated,coupled implicit,coupled explicit(显式格式主要用于激波等波动解的捕捉问题) 传统上,分离解法(segregated)主要用于不可压缩以及适度压缩的流动中。相反,耦合算法是为高速可压流体设计的。 默认情况下,fluent使用分离求解器。对于高速可压流体,与很强的体积力高度耦合的流动,或者是在非常精确的网格上求解流动情况,可以考虑使用耦合隐式算法代替。 对于需要使用耦合隐式算法(coupled implicit)的case,如果电脑没有足够的内存,可以使用分离解法(segregated)或者耦合显式算法(coupled explicit)代替。(显示算法节约内存,但是需要更多的计算步数达到收敛。) 选择离散格式 1.一阶迎风格式v.s. 二阶迎风格式 当流动与网格匹配(校准)时,一阶迎风格式是可以接受的。对于三角形和四面体网格,由于流动不会与网格匹配,通常使用二阶离散格式会得到更准确的结果。对于四边形/六面体网格,使用二阶离散格式会取得更好的结果,尤其是复杂的流动情况。对于大多数情况,可以在计算初始,使用二阶的离散格式。然而在一些情况下,可以开始使用一阶的离散格式然后在一些计算之后转变为二阶格式。例如,如果正在运行一个高马赫数的流动计算,这个的初始解与期望的解相差很大,最终,如果二阶离散格式很难收敛,应该尝试使用一阶离散格式。 2.Quick格式v.s. Upwind(Quick格式适用于网络结构,流动方向与网格一致,对于非结 构网格推荐使用二阶迎风) 对于在四边形或者六面体网格中的旋转或者回旋流,Quick离散格相比于二阶离散格式可以提供更准确的结果。对于存在震动的可压缩流动(网格为四边形,六面体或者混合网格),推荐对所有的变量使用Quick离散格式,包括密度。 3.中心差分格式v.s. 迎风格式 当使用LES湍流模型时,是可以使用中心差分格式的,并且只有当网格间距足够好,以至于局部的Peclet数的大小小于1时才可以使用。 4.power法则(power law)v.s. 迎风 power法则是可以使用的,但是总体上产生与一阶格式相同的准确度 选择压力离散格式 当使用分离式求解器时(segregated),可以使用多种压力离散格式。在大多数情况下,(默认的)标准的格式是可以接受的,但是一些类型的模型会在其他格式中取得更好的结果:对于包含大的体积力的问题,推荐使用体积力重量(body-force-weighted)格式。 对于包含高的漩涡数,高瑞利数的自然对流,高速的旋转流动,包含多孔介质的流动,在高度弯曲区域中的流动,使用PRESTO!格式 对于可压流,应使用二阶格式 当其他格式并不合适时,使用二阶格式以提高准确性。 选择密度离散格式(求解一个单相可压流动) 如果计算一个含有震动的可压流动时,一阶迎风格式可以平滑震动;对于这样的流动,应该使用二阶迎风或者Quick格式

FLUENT分析圆管弯头段的三维流动

用FLUENT分析圆管弯头段的三维流动 摘要:简要介绍了Fluent的组成部分和使用步骤,并通过Fluent对黏性流体通过圆管弯头段的三维流动经典案例分析,介绍了用Fluent分析解决实际问题的具体过程,说明了用Fluent 分析流体力学的可行性,从而为解决其它复杂流体问题的优化分析提供了新的方法和科学依据。 关键词: Fluent ;圆管弯头;三维流动 1概述 CFD(计算流体力学)是应用数学方法描述物理和化学现象的一种数据模型模拟工具。Fluent是目前国际上通用的商业CFD(计算流体动力学)软件包,在国际CFD市场上占主导地位,只要涉及流体、热传递及化学反应等工程问题,都可用Fluent进行解算。Fluent[1I是用于计算复杂几何条件下流动和传热问题的程序。它提供的无结构网格生成程序.把计算相对复杂的几何结构问题变得容易和轻松。可以生成的网格包括二维的三角形和四边形网格。三维的四面体、六面体及混合网格。 2Fluent程序组成部分和求解步骤 Fluent软件包由以下三部分组成:前处理器:Gambit用于网格生成.是具有强大组合建构模型能力的专用CFD前处理器:求解器是流体计算的核心.可对基于结构化或非结构化网格进行求解:后处理器具有强大的后处理功能。 求解步骤:①确定几何形状,生成计算网格(用Gambit,也可以读入其它指定程序生成的网格);②选择2D或3D来模拟计算;③输入网格;④检查网格;⑤选择解法器;⑥选择求解的方程,层流或湍流(或无粘流)、化学组分或化学反应、传热模型等;确定其它需要的模型:如风扇、热交换器、多孔介质等模型;⑦确定流体物性;⑧指定边界条件;⑨条件计算控制参数;⑩流场初始化;⑩计算;⑩检查结果:⑩保存结果,后处理等。

FLUENT系列资料5之蒸汽喷射器内的传热模拟

蒸汽喷射器内的传热模拟 问题描述: 该问题为一个蒸汽喷射器的内部流动和热量交换问题。左侧进入的工作蒸汽12245Pa,下侧进入的引射流体压力为1360.5Pa,右侧出口的压力为6802.5Pa。该问题中所说的压力皆为相对压力,蒸汽皆为饱和水蒸汽。喷射器的结构如图1所示。 图1 喷射器结构图 在本例中将利用FLUENT-2D的非耦合、隐式求解器,针对在喷射器内的定常流动进行求解。在求解过程忠,还会利用FLUENT的网格优化功能对网格进行优化,使所得到的解更加可信。 本例涉及到: 一、利用GAMBIT建立喷射器计算模型 (1)在CAD中画出喷射器的图形 (2)将CAD图形输出为*.sat的文件格式 (3)用GAMBIT读入上面输出的*.sat文件 (4)对各条边定义网格节点的分布,在面上创建网格 (5)定义边界内型 (6)为FLUENT5/6输出网格文件 二、利用FLUENT-2D求解器进行求解 (1)读入网格文件 (2)确定长度单位:MM (3)确定流体材料及其物理属性 (4)确定边界类型 (5)计算初始化并设置监视器 (6)使用非耦合、隐式求解器求解 (7)利用图形显示方法观察流场与温度场

一、前处理——用CAD画出喷射器结构图并导入GAMBIT中 在CAD中按所给的尺寸画出喷射器的结构图,画完后输出为pensheqi.sat的文件(如图2所示)。 CAD中的操作:文件→输出…. 点击保存到你想保存到的文件夹中 图2 输出数据对话框 启动GAMBIT ,建立一个新的GAMBIT文件。 操作:File→NEW… 此时出现的窗口如图3所示。在ID右侧的文本框内填入:f:\文件夹名\pensheqi 点击Accept后,即建立了一个新的文件。

fluent下使用非牛顿流体

fluent下使用非牛顿流体 1、非牛顿流体:剪应力与剪切应变率之间满足线性关系的流体称为牛顿流体,而把不满足线性关系的流体称为非牛顿流体。 2、fluent中使用非牛顿流体 a、层流状态:直接在材料物性下设置材料的粘度,设置其为非牛顿流体。 b、湍流状态 fluent在设置湍流模型后,会自动将材料的非牛顿流体性质直接改成了牛顿流体,因此需要做一些修改。最基本的方式有两种:1、打开隐藏的湍流模型下非牛顿流体功能;2,直接利用UDF宏DEFINE_PROPERTY定义 3、打开隐藏的湍流模型下非牛顿流体功能 方法为: (1)在湍流模型中选择标准的k-e模型; (2)在Fluent窗口输入命令:define/models/viscous/turbulence-expert/turb-non-newtonian 然后回车。 (3)输入:y 然后回车。 4、利用DEFINE_PROPERTY宏 A:这是一个自定义材料的粘度程序如下,也许对你有帮助。 在记事本中编辑的,另存为“visosity1.c" #include "udf.h" DEFINE_PROPERTY(cell_viscosity, cell, thread) { real mu_lam; real trial; rate=CELL_STRAIN_RATE_MAG(cell, thread); real temp=C_T(cell, thread); mu_lam=1.e12; { if(rate>1.0e-4 && rate<1.e5) trial=12830000./rate*log(pow((rate*exp(17440.46/temp)/1.535146e8),0.2817)+pow((1.+pow((rat e*exp(17440.46/temp)/1.535146e8),0.5634)),0.5)); else if (rate>=1.e5) trial=128.3*log(pow((exp(17440.46/temp)/1.535146e8),0.2817)+pow((1.+pow((exp(17440.46/te mp)/1.535146e8),0.5634)),0.5)); else trial=1.283e11*log(pow((exp(17440.46/temp)/1.535146e12),0.2817)+pow((1.+pow((exp(17440.4 6/temp)/1.535146e12),0.5634)),0.5)); } else if(temp>=855.&&temp<905.) {

fluent求解器

Model slover slover:求解器 Pressuere based: 基于压力 Density based:基于密度 Formulation:算法 implicit: 隐式算法 explicit:显式算法 space:选择空间属性 2D:二维空间 Axisymmetric:轴对称空间 Axisymmetric swirl:轴对称旋转空间 3D:三维空间 time:时间 steady:稳态 unsteady:非稳态 (~~~~~~~~~~~~~~~~~) velocity formulation:速度属性 absolute:绝对速度 relative:相对速度 Gradient option:梯度选项 Green-Gauss Cell-Based:格林-高斯基于单元体-默认方法;解有伪扩散(求解域的拖尾现象)。伪扩散是指在平流扩散方程数值解中因平流项有限差分的截断误差引起的虚假扩散。这是解方程欧拉型模式所特有的。其大小与所用的有限差分格式有关,有时甚至完全掩盖方程中其他扩散项的作用。为克服伪扩散,须采取特殊的技术措施和各种不同的差分格式。 Green-Gauss Node-Based:格林-高斯基于节点-更精确;最小化伪扩散;推荐用在三角网格上。 least-quares cell based:基于单元体的最小二乘法插值。推荐用于多面体网格,与基于节点的格林-高斯格式具有相同的 精度和格式。 porous formulation:选择多孔算法 superficial velocity:表面速度算法 physical velocity:物理速度算法 Multiphase Model:多相流模型 Volume of Fluid:VOF模型 Mixture:混合模型 Eulerian:欧拉模型 Energy:能量方程

fluent噪声培训资料(上)

Tutorial:Modeling Flow-Induced(Aeroacoustic)Noise Problems Using FLUENT Introduction This tutorial demonstrates how to model2D turbulent?ow across a circular cylinder using large eddy simulation(LES)and compute?ow-induced(aeroacoustic)noise using FLUENT’s acoustics model. You will learn how to: ?Perform a2D large eddy simulation. ?Set parameters for an aeroacoustic calculation. ?Save acoustic source data for an acoustic calculation. ?Postprocess aeroacoustic results. Prerequisites This tutorial assumes that you are familiar with the FLUENT interface and that you have a good understanding of basic setup and solution procedures.Some steps will not be shown explicitly. In this tutorial you will use the acoustics model.If you have not used this feature before,?rst read Chapter21,Predicting Aerodynamically Generated Noise,of the FLUENT6.2 User’s Guide

基于Fluent的三通管数值模拟及分析

第40卷第2期 当 代 化 工 Vol.40,No. 2 2011年2月 Contemporary Chemical Industry February,2011 收稿日期: 2010-08-17 作者简介: 魏显达(1983-),男,硕士,黑龙江北安人,2007年毕业于大庆石油学院电子信息工程,研究方向:塔顶流出系统的腐蚀与防 基于 Fluent 的三通管数值模拟及分析 魏显达,王为民, 徐建普 (辽宁石油化工大学石油天然气工程学院, 辽宁 抚顺 113001) 摘 要:Fluent 软件作为流体力学中通用性较强的一种商业CFD 软件应用范围很广。通过利用Fluent 计算流体动力学(CFD)的软件,对石油工业系统中常见的三通管内部流体进行了模拟分析,得到了三通管内在流体流动时的速度、压力和温度场分布图,为石油管道中的流体输送提供了理论依据。 关 键 词:Fluent;三通管;模拟分析;分布图 中图分类号: TQ 018 文献标识码: A 文章编号: 1671-0460(2011)02-0165-03 Numerical Simulation and Analysis of Fluid in Three-way Connection Pipe Based on Fluent Software WEI Xian-da ,WANG Wei-min ,XU Jian-pu (Institute of Petroleum and gas engineering , Liaoning Shihua University, Liaoning Fushun 113001,China ) Abstract : As a commercial CFD software with good universality, the Fluent software has been used extensively. In this paper, Simulation analysis on fluid in the three-way connection pipe of the oil industry was carried out by the software of fluid mechanics computation .Then distribution graphs of velocity , pressure and temperature of fluid in the three-way pipe were gained ,which can offer theoretical basis on fluid transportation in the petroleum pipeline. Key words : Fluent three-way ;Connection pipe ;Simulation analysis ;Distribution graphs Fluent 是目前国际上比较流行的商用CFD 软件包,在美国的市场占有率为60%,广泛应用于流体、热传热和各种化学反应等有关工业。软件包括前处理器(利用Gambit 进行物理建模、网格划分和划定边界层条件)、求解器(根据专业条件不同,采用不同的求解器,并规定物性、外部工作环境和进行数值迭代)和后处理器(把一些数据可视化,满足用户的特定要求)。 三通管在石油工业中应用广泛,采用传统的设计开发方法,存在经济成本高,研发周期长等缺陷,耗费大量的人力、物力 [1-2] 。应用CFD 软件,能够在 相对较短的设计周期内,较低的成本运行下,准确模拟流动具体过程,如速度场、压力场和温度场等的时变特性等。CFD 技术已经成为不可缺少的设计手段。 本文利用Fluent 的超强数值计算和分析能力对三通管道内原油流动时的速度、压强和温度场进行了数值模拟和分析,为石油管道中的流体输送提供了可靠的理论依据。 1 数学模型的建立和分析 输油管道管中,原油在三通管内的流动属于湍流,简化方程管道内的流体流动满足质量守恒、动量守恒、能量守恒、状态方程等。 连续性方程(连续性方程式质量守恒定律在流体力学中的表现形式)在直角坐标系下表示为((1)方程) [3-5] : 0)()()(=??+??+??+??z y x t z y x νννρρρρ (1) 式中:V x ,V y ,V z 是速度矢量ν在x 、y 和z 轴方向的分量,t 是时间,ρ是密度。 最常用的湍流求解模型是标准k -ε湍流模型。它需要求解湍动能k ((2)方程)和耗散率ε((3)方程),具体如下所示: Y G G x x M b k i t i k t k ?+++??+??=ρεσμρ μ)[(d d (2) K K k t C G C G C x x b K i t i εμρεσμερεεε2 231)(])[(d d ?++??+??= (3)

相关文档
最新文档