九年级上册圆中的动点问题

九年级上册圆中的动点问题
九年级上册圆中的动点问题

2018年11月29日187****6232的初中数学组卷

一.选择题(共3小题)

1.如图,将正六边形ABCDEF放置在平面直角坐标系内,A(﹣2,0),点B在原点,把正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60°,经过2018次翻转之后,点C的坐标是()

A.(4034,0)B.(4034,)C.(4033,)D.(4033,0)2.如图,正六边形ABCDEF的中心与坐标原点0重合,其中A(﹣2,0).将六边形ABCDEF绕原点O按顺时针方向旋转2018次,每次旋转60°,则旋转后点A的对应点A'的坐标是()

A.(1,)B.(,1)C.(1,)D.(﹣1,)3.如图有一个边长为1的正六边形ABCDEF,其中C,D坐标分别为(1,0)和(2,0),若在无滑动的情况下,将这个六边形沿着x轴向右滚动,则在滚动过程中,这个六边形的顶点A,B,C,D,E,F中,会过点(2014,2)的是()

A.点B B.点C C.点D D.点E

二.填空题(共16小题)

4.如图,以G(0,1)为圆心,半径为2的圆与x轴交于A、B两点,与y轴交于C,D两点,点E为⊙O上一动点,CF⊥AE于F,则弦AB的长度为;

当点E在⊙O的运动过程中,线段FG的长度的最小值为.

5.如图,在直角坐标系中,⊙A的圆心的坐标为(﹣2,0),半径为2,点P为直线y=﹣x+6上的动点,过点P作⊙A的切线,切点为Q,则切线长PQ的最小值是.

6.如图,在平面直角坐标系中,点A、B的坐标分别是(0,2)、(4,0),点P 是直线y=2x+2上的一动点,当以P为圆心,PO为半径的圆与△AOB的一条

边所在直线相切时,点P的坐标为.

7.如图,在平面直角坐标系xOy中,?ABCO的顶点A,B的坐标分别是A(3,0),B(0,2).动点P在直线y=x上运动,以点P为圆心,PB长为半径的⊙P 随点P运动,当⊙P与?ABCO的边相切时,P点的坐标为.

8.如图,在平面直角坐标系xOy中,ABCO的顶点A,B的坐标分别是A(3,0),B(0,2),动点P在直线y=x上运动,以点P为圆心,PB长为半径的⊙P 随点P运动,当⊙P与四边形ABCO的边OA所在直线相切时,P点的坐标为.

9.如图,一次函数y=﹣x+的图象与x轴、y轴交于A、B两点,P为一次函数y=x的图象上一点,以P为圆心能够画出圆与直线AB和y轴同时相切,则∠BPO=.

10.如图,直线y=﹣与x轴、y轴分别交于点A、B;点Q是以C(0,﹣1)为圆心、1为半径的圆上一动点,过Q点的切线交线段AB于点P,则线段PQ 的最小值是.

11.如图,圆心都在x轴正半轴上的半圆O1、半圆O2、…、半圆O n与直线相切,设半圆O1、半圆O2、…、半圆O n的半径分别是r1、r2、…、r n,则当r1=1时,r2016=.

12.如图,在直角坐标系中,⊙A的圆心A的坐标为(﹣1,0),半径为1,点P 为直线y=﹣x+5上的动点,过点P作⊙A的切线,切点为Q,则切线长PQ 的最小值是.

13.如图,已知一次函数y=﹣x+3的图象与坐标轴分别交于点A,B两点,⊙O 的半径为1,P是线段AB上的一个点,过点P作⊙O的切线PQ,切点为Q,则PQ的最小值为.

14.如图,⊙O是以原点为圆心,2为半径的圆,点P是直线y=﹣x+4上的一点,过点P作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为.

15.在平面直角坐标系xOy中,直线y=x+8与x轴、y轴分别交于A,B两点,Q是直线AB上一动点,⊙Q的半径为1.当⊙Q与坐标轴相切时,点Q的坐标为.

16.如图,半径为2的⊙O与含有30°角的直角三角板ABC的AC边切于点A,将直角三角板沿CA边所在的直线向左平移,当平移到AB与⊙O相切时,该直角三角板平移的距离为.

17.如图,∠APB=30°,圆心在PB上的⊙O的半径为1cm,OP=3cm,若⊙O沿BP方向平移,当⊙O与PA相切时,圆心O平移的距离为cm.

18.如图,△ABC为等边三角形,AB=6,动点O在△ABC的边上从点A出发沿着A→C→B→A的路线匀速运动一周,速度为1个长度单位每秒,以O为圆心、

为半径的圆在运动过程中与△ABC的边第二次相切时是出发后第秒.

19.射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2cm,QM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心,cm为半径的圆与△ABC的边相切(切点在边上),请写出t可取的一切值(单位:秒)

2018年11月29日187****6232的初中数学组卷

参考答案与试题解析

一.选择题(共3小题)

1.如图,将正六边形ABCDEF放置在平面直角坐标系内,A(﹣2,0),点B在原点,把正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60°,经过2018次翻转之后,点C的坐标是()

A.(4034,0)B.(4034,)C.(4033,)D.(4033,0)【分析】根据正六边形的特点,每6次翻转为一个循环组循环,用2018除以6,根据商和余数的情况确定出点C的位置,然后求出翻转前进的距离,过点C 作CG⊥x于G,求出∠CBG=60°,然后求出CG、BG,再求出OG,然后写出点C的坐标,最后翻转两次得出坐标即可.

【解答】解:∵正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60°,

∴每6次翻转为一个循环组循环,

∵2018÷6=336…2,

∴经过2018次翻转为第336循环,点C在开始时的位置,

∵A(﹣2,0),

∴AB=2,

∴翻转前进的距离=2×2016=4032,

如下图,过点C作CG⊥x于G,则∠CBG=60°,

∴AG=2×=1,BG=2×=,

∴OG=4032+1=4033,

∴点C的坐标为(4033,),

再经过2次翻转,点C的坐标为(4034,0)

故选:A.

【点评】本题考查的是点的坐标,涉及到坐标与图形变化﹣旋转,正六边形的性质,根据每6次翻转为一个循环组,确定出翻转最后点B所在的位置是解题的关键.

2.如图,正六边形ABCDEF的中心与坐标原点0重合,其中A(﹣2,0).将六边形ABCDEF绕原点O按顺时针方向旋转2018次,每次旋转60°,则旋转后点A的对应点A'的坐标是()

A.(1,)B.(,1)C.(1,)D.(﹣1,)【分析】连接OB、OC、OE、OF,作EH⊥OD于H,根据正六边形的性质得到∠AOF=∠FOE=∠EOD=∠DOC=∠COB=∠BOA=60°,根据旋转变换的性质、寻找规律即可解决问题;

【解答】解:连接OB、OC、OE、OF,作EH⊥OD于H,

∵六边形ABCDEF是正六边形,

∴∠AOF=∠FOE=∠EOD=∠DOC=∠COB=∠BOA=60°,

∵将正六边形ABCDEF绕原点O顺时针旋转,每次旋转60°,

∴点A旋转6次回到点A,

2018÷6=336 (2)

∴正六边形ABCDEF绕原点O顺时针旋转2018次,与点E重合,

在Rt△EOH中,OH=OE=1,EH=OH=

∴顶点A的坐标为(1,),

故选:A.

【点评】本题考查的是正多边形和圆,掌握正六边形的性质、等边三角形的判定和性质是解题的关键.

3.如图有一个边长为1的正六边形ABCDEF,其中C,D坐标分别为(1,0)和(2,0),若在无滑动的情况下,将这个六边形沿着x轴向右滚动,则在滚动过程中,这个六边形的顶点A,B,C,D,E,F中,会过点(2014,2)的是()

A.点B B.点C C.点D D.点E

【分析】先连接A′D,过点F′,E′作F′G⊥A′D,E′H⊥A′D,由正六边形的性质得出A′的坐标,再根据每6个单位长度正好等于正六边形滚动一周即可得出结论.【解答】解:如图所示:

当滚动到A′D⊥x轴时,E、F、A的对应点分别是E′、F′、A′,连接A′D,点F′,E′作F′G⊥A′D,E′H⊥A′D,

∵六边形ABCDEF是正六边形,

∴∠A′F′G=30°,

∴A′G=A′F′=,同理可得HD=,

∴A′D=2,

∵D(2,0)

∴A′(2,2),OD=2,

∵正六边形滚动6个单位长度时正好滚动一周,

∴从点(2,2)开始到点(2014,2)正好滚动2012个单位长度,

∵=335…2,

∴恰好滚动335周多2个,

∴会过点(2014,2)的是点C.

故选:B.

【点评】考查的是正多边形和圆及图形旋转的性质,根据题意作出辅助线,利用正六边形的性质求出A′点的坐标是解答此题的关键.

二.填空题(共16小题)

4.如图,以G(0,1)为圆心,半径为2的圆与x轴交于A、B两点,与y轴交于C,D两点,点E为⊙O上一动点,CF⊥AE于F,则弦AB的长度为2;

当点E在⊙O的运动过程中,线段FG的长度的最小值为﹣1.

【分析】作GM⊥AC于M,连接AG.因为∠AFC=90°,推出点F在以AC为直径的⊙M上推出当点F在MG的延长线上时,FG的长最小,最小值=FM﹣GM,想办法求出FM、GM即可解决问题;

【解答】解:作GM⊥AC于M,连接AG.

∵GO⊥AB,

∴OA=OB,

在Rt△AGO中,∵AG=2,OG=1,

∴AG=2OG,OA==,

∴∠GAO=30°,AB=2AO=2,

∴∠AGO=60°,

∵GC=GA,

∴∠GCA=∠GAC,

∵∠AGO=∠GCA+∠GAC,

∴∠GCA=∠GAC=30°,

∴AC=2OA=2,MG=CG=1,

∵∠AFC=90°,

∴点F在以AC为直径的⊙M上,

当点F在MG的延长线上时,FG的长最小,最小值=FM﹣GM=﹣1.

故答案为2,﹣1.

【点评】本题考查垂径定理、直角三角形30度角的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考填空题中的压轴题.

5.如图,在直角坐标系中,⊙A的圆心的坐标为(﹣2,0),半径为2,点P为直线y=﹣x+6上的动点,过点P作⊙A的切线,切点为Q,则切线长PQ的最小值是4.

【分析】连接AP,PQ,当AP最小时,PQ最小,当AP⊥直线y=﹣x+6时,PQ 最小,根据全等三角形的性质得到AP=6,根据勾股定理即可得到结论.【解答】解:如图,作AP⊥直线y=﹣x+6,垂足为P,作⊙A的切线PQ,切点为Q,此时切线长PQ最小,

∵A的坐标为(﹣2,0),

设直线与x轴,y轴分别交于B,C,

∴B(0,6),C(8,0),

∴OB=6,AC=,10,

∴BC==10,

∴AC=BC,

在△APC与△BOC中,

∴△APC≌△BOC,

∴AP=OB=6,

∴PQ==4.

故答案为4

【点评】本题主要考查切线的性质,掌握过切点的半径与切线垂直是解题的关键,用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.

6.如图,在平面直角坐标系中,点A、B的坐标分别是(0,2)、(4,0),点P 是直线y=2x+2上的一动点,当以P为圆心,PO为半径的圆与△AOB的一条边所在直线相切时,点P的坐标为(0,2),(﹣1,0),(﹣,1).

【分析】先求出点C的坐标,分为三种情况:圆P与边AO相切时,当圆P与边AB相切时,当圆P与边BO相切时,求出对应的P点即可.

【解答】解:∵点A、B的坐标分别是(0,2)、(4,0),

∴直线AB的解析式为y=﹣x+2,

∵点P是直线y=2x+2上的一动点,

∴两直线互相垂直,即PA⊥AB,且C(﹣1,0),

当圆P与边AB相切时,PA=PO,

∴PA=PC,即P为AC的中点,

∴P(﹣,1);

当圆P与边AO相切时,PO⊥AO,即P点在x轴上,

∴P点与C重合,坐标为(﹣1,0);

当圆P与边BO相切时,PO⊥BO,即P点在y轴上,

∴P点与A重合,坐标为(0,2);

故符合条件的P点坐标为(0,2),(﹣1,0),(﹣,1),

故答案为(0,2),(﹣1,0),(﹣,1).

【点评】本题主要考查待定系数法确定一次函数关系式,一次函数的应用,及直角三角形的性质,直线与圆的位置关系,可分类3种情况圆与△AOB的三边

分别相切,根据直线与圆的位置关系可求解点的坐标.

7.如图,在平面直角坐标系xOy中,?ABCO的顶点A,B的坐标分别是A(3,0),B(0,2).动点P在直线y=x上运动,以点P为圆心,PB长为半径的⊙P 随点P运动,当⊙P与?ABCO的边相切时,P点的坐标为(0,0)或(,1)或(3﹣,).

【分析】设P(x,x),⊙P的半径为r,由题意BC⊥y轴,直线OP的解析式

y=x,直线OC的解析式为y=﹣x,可知OP⊥OC,分四种情形讨论即可.【解答】解:∵C(﹣3,2),

∴直线OC的解析式为y=﹣x,

∵直线OP的解析式为y=x,

∵﹣×=﹣1,

∴OP⊥OC,

①当⊙P与BC相切时,∵动点P在直线y=x上,

∴P与O重合,此时圆心P到BC的距离为OB,

∴P(0,0).

②如图1中,当⊙P与OC相切时,则OP=BP,△OPB是等腰三角形,作PE⊥y

轴于E,则EB=EO,易知P的纵坐标为1,可得P(,1).

③如图2中,当⊙P与OA相切时,则点P到点B的距离与点P到x轴的距离相

等,可得=x,

解得x=3+或3﹣,

∵x=3+>OA,

∴⊙P不会与OA相切,

∴x=3+不合题意,

∴P(3﹣,).

④如图3中,当⊙P与AB相切时,设线段AB与直线OP的交点为G,此时PB=PG,

∵OP⊥AB,

∴∠BGP=∠PBG=90°不成立,

∴此种情形,不存在P.

综上所述,满足条件的P的坐标为(0,0)或(,1)或(3﹣,).【点评】本题考查切线的性质、一次函数的应用、勾股定理、等腰三角形的性质等知识,解题的关键是学会利用参数解决问题,学会用分类讨论的思想思考问题,属于中考填空题中的压轴题.

8.如图,在平面直角坐标系xOy中,ABCO的顶点A,B的坐标分别是A(3,0),B(0,2),动点P在直线y=x上运动,以点P为圆心,PB长为半径的⊙P 随点P运动,当⊙P与四边形ABCO的边OA所在直线相切时,P点的坐标为(3﹣,)或(3+,).

【分析】设P(x,x),进而利用点P到点B的距离与点P到x轴的距离相等,建立方程即可得出结论.

【解答】解:∵C(﹣3,2),

∴直线OC的解析式为y=﹣x,

∵直线OP的解析式为y=x,

∵﹣×=﹣1,

∴OP⊥OC,

如图2中,当⊙P与OA相切时,则点P到点B的距离与点P到x轴的距离相等,可得x,

解得x=3+或3﹣,

∴P(3﹣,)或(3+,)..

故答案为(3﹣,)或(3+,).

【点评】本题考查切线的性质、一次函数的应用、勾股定理、等腰三角形的性质等知识,解题的关键是学会利用参数解决问题,学会用分类讨论的思想思考问题,属于中考填空题中的压轴题.

9.如图,一次函数y=﹣x+的图象与x轴、y轴交于A、B两点,P为一次函数y=x的图象上一点,以P为圆心能够画出圆与直线AB和y轴同时相切,则∠BPO=30°或120°.

【分析】首先利用三角函数求得∠OBA的度数,然后分成P在AB的左侧和右侧两种情况进行讨论,利用切线长定理以及三角形的内角和定理即可求解.【解答】解:在y=﹣x+中,当x=0时,y=,则B的坐标是(0,);当y=0时,x=1,则A的坐标是(1,0);

则tan∠OBA==,

则∠OBA=30°.

当P在AB的左侧时,此时P一定在直角△OAB的内部.

如图1的位置:∵直线y=x时第一、三象限的角的平分线,

∴∠BOP1=45°,

∵OB和AB是圆切线,

∴∠OBP1=∠OBA=×30°=15°,

∴∠BP1O=180°﹣15°﹣45°=120°;

当P在AB的右侧时,如图2,

同理可得∠ABP2=(180°﹣∠OBA)=×(180°﹣30°)=75°,

∠BOP2=45°,

∴∠BP2O=180°﹣75°﹣45°=30°.

故答案是:30°或120°.

【点评】本题考查了切线长定理,以及三角形的内角和的应用,正确对P的位置进行讨论是关键.

10.如图,直线y=﹣与x轴、y轴分别交于点A、B;点Q是以C(0,﹣1)为圆心、1为半径的圆上一动点,过Q点的切线交线段AB于点P,则线段PQ

的最小值是.

【分析】过点C作CP⊥直线AB与点P,过点P作⊙C的切线PQ,切点为Q,此时PQ最小,连接CQ,利用角的正弦求出CP的值,再根据勾股定理即可求出PQ的长度.

【解答】解:过点C作CP⊥直线AB于点P,过点P作⊙C的切线PQ,切点为Q,

此时PQ最小,连接CQ,如图所示.

当x=0时,y=3,

∴点B的坐标为(0,3);

当y=0时,x=4,

∴点A的坐标为(4,0).

∴OA=4,OB=3,

∴AB==5,

∴sinB==.

∵C(0,﹣1),

∴BC=3﹣(﹣1)=4,

∴CP=BC?sinB=.

∵PQ为⊙C的切线,

∴在Rt△CQP中,CQ=1,∠CQP=90°,

∴PQ==.

故答案为:.

【点评】本题考查了切线的性质、三角函数以及勾股定理,解题的关键是确定P、Q点的位置.本题属于中档题,难度不大,解决该题型题目时,借助于切线的性质寻找到PQ取最小值时点P、Q的位置是关键.

11.如图,圆心都在x轴正半轴上的半圆O1、半圆O2、…、半圆O n与直线相切,设半圆O1、半圆O2、…、半圆O n的半径分别是r1、r2、…、r n,则当r1=1时,r2016=32015.

【分析】先求出r1=1,r2=3,r3=9…r n=3n﹣1,根据规律即可解决.

【解答】解:设A、B、C是切点,由题意直线y=x与x轴的夹角为30°,

在RT△OO1A中,∵AO1=1,∠AOO1=30°,

∴OO1=2AO1=2,

同理:OO2=2BO2,OO3=2CO3,

∴3+r2=2r2,

∴r2=3,

9+r3=2r3,

r3=9,

∴r1=1,r2=3,r3=9…r n=3n﹣1,

∴r2016=32015.

故答案为32015.

【点评】本题考查圆的切线的性质、直角三角形中30度角的性质、学会从特殊到一般的推理方法,寻找规律是解决问题的关键.

12.如图,在直角坐标系中,⊙A的圆心A的坐标为(﹣1,0),半径为1,点P 为直线y=﹣x+5上的动点,过点P作⊙A的切线,切点为Q,则切线长PQ 的最小值是2.

中考数学动点问题专题练习(含答案)

动点专题 一、应用勾股定理建立函数解析式 例1(2000年2上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G. (1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度. (2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围). (3)如果△PGH 是等腰三角形,试求出线段PH 的长. 二、应用比例式建立函数解析式 例2(2006年2山东)如图2,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=,x CE=y . (1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式; (2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由. A E D C B 图2 H M N G P O A B 图1 x y

C 三、应用求图形面积的方法建立函数关系式 例4(2004年2上海)如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y . (1)求y 关于x 的函数解析式,并写出函数的定义域. (2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时, △AOC 的面积. 一、以动态几何为主线的压轴题 (一)点动问题. 1.(09年徐汇区)如图,ABC ?中,10==AC AB ,12=BC ,点D 在边BC 上,且4=BD ,以点D 为顶点作B EDF ∠=∠,分别交边AB 于点E ,交射线CA 于点F . (1)当6=AE 时,求AF 的长; (2)当以点C 为圆心CF 长为半径的⊙C 和以点A 为圆心AE 长为半径的⊙A 相切时, 求BE 的长; (3)当以边AC 为直径的⊙O 与线段DE 相切时,求BE 的长. A B C O 图8 H

圆的动点问题--经典习题及答案

圆的动点问题 25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分) 已知:在Rt ABC △中,∠ACB =90°,BC =6,AC =8,过点A 作直线MN ⊥AC ,点E 是直线 MN 上的一个动点, (1)如图1,如果点E 是射线AM 上的一个动点(不与点A 重合),联结CE 交AB 于点P .若 AE 为x ,AP 为y ,求y 关于x 的函数解析式,并写出它的定义域; (2) 在射线AM 上是否存在一点E ,使以点E 、A 、P 组成的三角形与△ABC 相似,若存在求 AE 的长,若不存在,请说明理由; (3)如图2,过点B 作BD ⊥MN ,垂足为D ,以点C 为圆心,若以AC 为半径的⊙C 与以ED 为半径的⊙E 相切,求⊙E 的半径. A B C P E M 第25题图1 D A B C M 第25题图2 N

25.(本题满分14分,第(1)小题6分,第(2)小题2分,第(3)小题6分) 在半径为4的⊙O 中,点C 是以AB 为直径的半圆的中点,OD ⊥AC ,垂足为D ,点E 是射线AB 上的任意一点,DF //AB ,DF 与CE 相交于点F ,设EF =x ,DF =y . (1) 如图1,当点E 在射线OB 上时,求y 关于x 的函数解析式,并写出函数定义域; (2) 如图2,当点F 在⊙O 上时,求线段DF 的长; (3) 如果以点E 为圆心、EF 为半径的圆与⊙O 相切,求线段DF 的长. A B E F C D O A B E F C D O

25.如图,在半径为5的⊙O中,点A、B在⊙O上,∠AOB=90°,点C是弧AB上的一个动点,AC与OB的延长线相交于点D,设AC=x,BD=y. (1)求y关于x的函数解析式,并写出它的定义域; (2)如果⊙O1与⊙O相交于点A、C,且⊙O1与⊙O的圆心距为2,当BD=OB时,求⊙O1 的半径; (3)是否存在点C,使得△DCB∽△DOC?如果存在,请证明;如果不存在,请简要说明理由.

初三数学动点问题

数学因运动而充满活力,数学因变化而精彩纷呈。动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射。 动态几何形成的面积问题是动态几何中的基本类型,包括单动点形成的面积问题,双(多)动点形成的面积问题,线动形成的面积问题,面动形成的面积问题。本专题原创编写单动点形成的面积问题模拟题。 在中考压轴题中,单动点形成的面积问题的重点和难点在于应用数形结合的思想准确地进行分类。 原创模拟预测题1.某数学兴趣小组对线段上的动点问题进行探究,已知AB=8. 问题思考: 如图1,点P为线段AB上的一个动点,分别以AP、BP为边在同侧作正方形APDC与正方形PBFE. (1)在点P运动时,这两个正方形面积之和是定值吗?如果时求出;若不是,求出这两个正方形面积之和的最小值. (2)分别连接AD、DF、AF, AF交DP于点A,当点P运动时,在△APK、△ADK、△DFK中,是否存在两个面积始终相等的三角形?请说明理由. 问题拓展: (3)如图2,以AB为边作正方形ABCD,动点P、Q在正方形ABCD的边上运动,且PQ=8.若点P从点A出发,沿A→B→C→D的线路,向D点运动,求点P从A到D的运动过程中, PQ 的中点O所经过的路径的长。

动点问题--圆(含答案)

2.如图7,梯形中,,,, ,,点 为线段上一动点(不与点重合),关于的轴对称图 形为,连接,设,的面积为, 的面积为. 1)当点落在梯形的中位线上时,求的值;(全等) 2)试用表示,并写出的取值范围;(相似) 3)当的外接圆与相切时,求的值.(垂径定理+中线+等面积+ 相似) 答案】解:(1)如图1,为梯形的中位线,则,过点作 于点,则有: 在中,有 在中, 解得: 2)如图2,交于点,与关于对称, 则有:, 又与关于对称, 3)如图3,当的外接圆与相切时,则为切点. 的圆心落在的中点,设为

则有,过点作, 连接,得 解得:(舍去) 3.已知在平面直角坐标系xOy中,O是坐标原点,以P(1,1)为圆心的⊙P与x轴,y轴分别相切于点M和点N,点F从点M出发,沿x轴正方向以每秒1个单位长度的速度运动,连接PF,过点PE⊥PF交y轴于点E,设点F运动的时间是t秒(t>0) (1)若点E在y轴的负半轴上(如图所示),求证:PE=PF;(全等) (2)在点F运动过程中,设OE=a,OF=b,试用含a的代数式表示b;(全等+分类讨论)(3)作点F关于点M的对称点F′,经过M、E和F′三点的抛物线的对称轴交x轴于点Q,连接QE.在点F运动过程中,是否存在某一时刻,使得以点Q、O、E为顶点的三角形与

【分析】:(1)连接PM,PN,运用△PMF≌△PNE证明, (2)分两种情况①当t>1 时,点E在y轴的负半轴上,02 时,三角形相似时还各有两种情况,根据比例式求出时间t. 【解答】: 证明:(1)如图,连接PM,PN, ∵⊙P与x轴,y轴分别相切于点M和点N, ∴PM⊥MF,PN⊥ON且PM=PN, ∴∠PMF=∠PNE=90°且∠NPM=90°,∵PE⊥PF, ∠NPE=∠MPF=90°﹣∠MPE, 在△PMF和△PNE中,,∴△PMF≌△PNE(ASA), ∴PE=PF, (2)解:①当t>1时,点E在y轴的负半轴上,如图, 由(1)得△PMF≌△PNE,∴NE=MF=t,PM=PN=1, ∴b=OF=OM+MF=1+t,a=NE﹣ON=t﹣1, ∴b﹣a=1+t﹣(t﹣1)=2,∴b=2+a,②0

(完整)初三数学几何的动点问题专题练习

动点问题专题训练 1、如图,已知ABC △中,10 AB AC ==厘米,8 BC=厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q 在线段CA上由C点向A点运动. ①若点Q的运动速度与点P的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使BPD △与CQP △全等? (2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q第一次在ABC △的哪条边上相遇? 2、直线 3 6 4 y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O点出发, 同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度, 点P沿路线O→B→A运动. (1)直接写出A B 、两点的坐标; (2)设点Q的运动时间为t秒,OPQ △的面积为S,求S与t之间的函数关系式; (3)当 48 5 S=时,求出点P的坐标,并直接写出以点O P Q 、、为顶点的平行四 边形的第四个顶点M的坐标.

3如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P. (1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由; (2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形? 4 如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4), 点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式; (2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围); (3)在(2)的条件下,当t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.

圆中动点问题2

圆中动点问题 一、选择题 【题1】如图,点P是等边三角形ABC外接圆⊙O上的点,在以下判断中,不正确 ...的是( C ) A、当弦PB最长时,ΔAPC是等腰三角形。 B、当ΔAPC是等腰三角形时,PO⊥AC。 C、当PO⊥AC时,∠ACP=300. D、当∠ACP=300,ΔPBC是直角三角形 【答案】 【题2】如图,以M(-5,0)为圆心、4为半径的圆与x轴交于A、B两点,P是⊙M上异于A、B的一动点,直线PA、PB分别交y轴于C、D,以CD为直径的⊙N与x轴交于E、F两点,则EF的长( C )

A.等于42 B.等于43 C.等于6 D.随P点位置的变化而变化 【答案】分析:连接NE,设圆N半径为r,ON=x,则OD=r﹣x,OC=r+x,证△OBD∽△OCA,推出OC:OB=OD:OA,即(r+x):1=9:(r﹣x),求出r2﹣x2=9,根据垂径定理和勾股定理可求出答案. 解答:解:连接NE,设圆N半径为r,ON=x,则OD=r﹣x,OC=r+x, ∵以M(﹣5,0)为圆心、4为半径的圆与x轴交于A.B两点,∴OA=4+5=9,0B=5﹣4=1, ∵AB是直径,∴∠APB=90°,∵∠BOD=90°,∴∠PAB+∠PBA=90°,∠ODB+∠OBD=90°, ∵∠PBA=∠OBD,∴∠PAB=∠ODB,∵∠APB=∠BOD=90°,∴△OBD∽△OCA, ∴OC OD OB OA =,即 9 1 r x r x + = - 解得:r2﹣x2=9, 由垂径定理得:OE=OF,OE2=EN2﹣ON2=r2﹣x2=9, 即OE=OF=3,∴EF=2OE=6,故选C. 【题3】如图,已知⊙O1的半径为1cm,⊙O2的半径为2cm,将⊙O1,⊙O2放置在直线l上,如果⊙O1在直线l上任意滚动,那么圆心距O1O2的长不可能是0.5cm 【答案】解:∵⊙O1的半径为1cm,⊙O2的半径为2cm,∴当两圆内切时,圆心距为1,∵⊙O1在直线l上任意滚动,∴两圆不可能内含,∴圆心距不能小于1,故选D. 【题4】如图,⊙O的半径为4cm,直线l与⊙O相交于A、B两点,AB=4cm,P为直线l上一动点,以1cm为半径的⊙P与⊙O没有公共点.设PO=dcm,则d的范围是d>5cm或2cm≤d<3cm.

(word完整版)北师大版九年级数学动点问题题型方法归纳,推荐文档

图(3) B 图(1) B 图(2) 动点问题题型方法归纳 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 一、三角形边上动点 1、(2009年齐齐哈尔市)直线3 64 y x =- +与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标; (2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式; (3)当48 5 S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标. 提示:第(2)问按点P 到拐点B 所有时间分段分类; 第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。然后画出各类的图形,根据图形性质求顶点坐标。 2、(2009年衡阳市) 如图,AB 是⊙O 的直径,弦BC=2cm ,∠ABC=60o. (1)求⊙O 的直径; (2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切; (3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<

圆中动点问题

圆中的动态问题 【方法点拨】 圆中的动态问题实际是圆的分类讨论问题,做这种题型重要的是如何将动点转化为固定的点,从而将题型变为分类讨论 【典型例题】 题型一:圆中的折叠问题 例题一 (2012江西南昌12分)已知,纸片⊙O 的半径为2,如图1,沿弦AB 折叠操作. (1)①折叠后的?AB 所在圆的圆心为O ′时,求O ′A 的长度; ②如图2,当折叠后的?AB 经过圆心为O 时,求?AOB 的长度; ③如图3,当弦AB =2时,求圆心O 到弦AB 的距离; (2)在图1中,再将纸片⊙O 沿弦CD 折叠操作. ①如图4,当AB ∥CD ,折叠后的?AB 与?CD 所在圆外切于点P 时,设点O 到弦AB .CD 的距离之和为d ,求d 的值; ②如图5,当AB 与CD 不平行,折叠后的?AB 与?CD 所在圆外切于点P 时,设点M 为AB 的中点,点N 为CD 的中点,试探究四边形OMPN 的形状,并证明你的结论. 【答案】解:(1)①折叠后的?AB 所在圆O ′与⊙O 是等圆,∴O ′A =OA =2。 ②当?AB 经过圆O 时,折叠后的?AB 所在圆O ′在⊙O 上,如图2所示,连接O ′A .OA .O ′B ,OB ,OO ′。 ∵△OO ′A ,△OO ′B 为等边三角形, ∴∠AO ′B =∠AO ′O +∠BO ′O =60°+60°=120°。 ∴?AOB 的长度120241803 ππ ??== 。 ③如图3所示,连接OA ,OB , ∵OA =OB =AB =2,

∴△AOB 为等边三角形。 过点O 作OE ⊥AB 于点E ,∴OE =OA ?sin 60°=3。 (2)①如图4,当折叠后的?AB 与?CD 所在圆外切于点P 时, 过点O 作EF ⊥AB 交AB 于点H 、交?AEB 于点E ,交CD 于点G 、交?CFD 于点F ,即点E 、H 、P 、O 、G 、F 在直径EF 上。 ∵AB ∥CD ,∴EF 垂直平分AB 和CD 。 根据垂径定理及折叠,可知PH = 12PE ,PG =1 2 PF 。 又∵EF =4,∴点O 到AB .CD 的距离之和d 为: d =PH +PG =12PE +12PF =1 2 (PE +PF )=2。 ②如图5,当AB 与CD 不平行时,四边形是OMPN 平行四边形。证明如下: 设O ′,O ″为?APB 和?CPD 所在圆的圆心, ∵点O ′与点O 关于AB 对称,点O ″于点O 关于CD 对称, ∴点M 为的OO ′中点,点N 为OO ″的中点。 ∵折叠后的?APB 与?CPD 所在圆外切, ∴连心线O ′O ″必过切点P 。 ∵折叠后的?APB 与?CPD 所在圆与⊙O 是等圆, ∴O ′P =O ″P =2,∴PM = 12OO ″=ON ,PN =1 2 OO ′=OM , ∴四边形OMPN 是平行四边形。 【考点】翻折变换(折叠问题)相切两圆的性质,等边三角形的判定和性质,平行四边形的判定,垂径定理,弧长的计算,解直角三角形,三角形中位线定理。 【分析】(1)①折叠后的?AB 所在圆O ′与⊙O 是等圆,可得O ′A 的长度。 ②如图2,过点O 作OE ⊥AB 交⊙O 于点E ,连接OA .OB .AE 、BE ,可得△OAE 、△OBE 为等边三角形,从而 得到?AOB 的圆心角,再根据弧长公式计算即可。 ③如图3,连接O ′A .O ′B ,过点O ′作O ′E ⊥AB 于点E ,可得△AO ′B 为等边三角形,根据三角函数的 知识可求折叠后求?AOB 所在圆的圆心O ′到弦AB 的距离。

中考数学动点问题专题讲解

中考动点专题 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想 函数思想 方程思想 数形结合思想 转化思想 注重对几何图形运动变化能力的考查 从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。 二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点. 函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析. 一、应用勾股定理建立函数解析式 例1(2000年2上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G. (1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度. (2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围). (3)如果△PGH 是等腰三角形,试求出线段PH 的长. 解:(1)当点P 在弧AB 上运动时,OP 保持不变,于是线段GO 、GP 、GH 中,有长度保持不变的线段,这条线段是GH=32NH=2 1 32?OP=2. (2)在Rt △POH 中, 22236x PH OP OH -=-=, ∴ 2362 1 21x OH MH -== . 在Rt △MPH 中, . 222223362 1 419x x x MH PH MP +=- +=+=H M N G P O A B 图1 x y

最全初中数学几何动点问题专题分类归纳汇总训练

最全初中数学几何动点问题专题分类归纳汇总 近几年有关“线段最值”的中考试题层出不穷,形式多样,往往综合了几何变换、函数等方面的知识,具有一定的难度,具有很强的探索性,通过研究发现,这些问题尽管形式多样、背景复杂、变化不断,但都可以通过几何变换转化为常见的基本问题. 最值题目类型多:作图、计算;有求差最大,求和最小;求周长最小、求时间最短;求最值、已知最值求待定系数等;对称载体多:几乎涉及到初中全部的轴对称图形(角、线段、等腰三角形、等腰梯形、菱形、正方形、抛物线、圆、坐标轴). 我们知道“对称、平移、旋转” 是三种保形变换。通过这三种几何变换可以实现图形在保持形状、大小不变的前提下而使其位置发生变化,具有更紧凑的位置关系或组合成新的有利论证的基本图形.通过几何变换移动线段的位置是解决最值问题的有效手段,题目是千变万化的,但是运用几何变换把最值问题转化为基本问题却是不变的。 数学问题是千变万化的,几何变换的应用也不是单一的,有些问题需要多种变换的组合才能解决,看看以下策略对解决问题能否奏效。 (1)去伪存真。刨去不变的线段,看清楚究竟是几段和的最小值问题,必须仔细研究题目的背景,搞清楚哪些是动点、哪些是定点、哪些是定长。 (2)科学选择。捕捉题目的信号,探索变换的基础,选择变换的手段.平移把不“连”的线段“接”起来,旋转把“碰头”的线段“展”开来重“接”,对称把在同侧的线段翻折过去重组,因此“不连——平移、碰头——旋转、同侧——对称”是一般的思路;对称变换的基础是轴对称图形,平移变换的基础是平行线,旋转变换的基础是等线段,所以选择哪种几何变换还要看题目中具备何种变换的基础信息。 (3)怎么变换?对称变换一般以动点所在直线为对称轴,构建定点(直线)的对称点(直线),如有多个动点就必须作多次变换;平移一般是移动没有公共端点的两条线段中的某一条,与另一条对“接”;旋转变换一般以定点为旋转中心旋转60°或90°。 (4)怎么求值?几何变换成了“两折线”或“三折线”后,根据“两点之间线段最

最新中考动点问题专题(教师讲义带答案)

中考动点型问题专题 一、中考专题诠释 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. “动点型问题”题型繁多、题意创新,考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等,是近几年中考题的热点和难点。 二、解题策略和解法精讲 解决动点问题的关键是“动中求静”. 从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。在动点的运动过程中观察图形的变化情况,理解图形在不同位置的情况,做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。 三、中考考点精讲 考点一:建立动点问题的函数解析式(或函数图像) 函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系. 例1 (2015?兰州)如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度不变,则以点B为圆心,线段BP长为半径的圆的面积S与点P的运动时间t的函数图象大致为() A.B.C.D. 思路分析:分析动点P的运动过程,采用定量分析手段,求出S与t的函数关系式,根据关系式可以得出结论. 解:不妨设线段AB长度为1个单位,点P的运动速度为1个单位,则: (1)当点P在A→B段运动时,PB=1-t,S=π(1-t)2(0≤t<1); (2)当点P在B→A段运动时,PB=t-1,S=π(t-1)2(1≤t≤2). 综上,整个运动过程中,S与t的函数关系式为:S=π(t-1)2(0≤t≤2), 这是一个二次函数,其图象为开口向上的一段抛物线.结合题中各选项,只有B符合要求. 故选B. 点评:本题结合动点问题考查了二次函数的图象.解题过程中求出了函数关系式,这是定量的分析方法,适用于本题,如果仅仅用定性分析方法则难以作出正确选择. 对应训练 1.(2015?白银)如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是() A.B.C.D. 1.C 考点二:动态几何型题目

动点问题中的最值、最短路径问题(解析版)

专题01 动点问题中的最值、最短路径问题 动点问题是初中数学阶段的难点,它贯穿于整个初中数学,自数轴起始,至几何图形的存在性、几何图形的长度及面积的最值,函数的综合类题目,无不包含其中. 其中尤以几何图形的长度及面积的最值、最短路径问题的求解最为繁琐且灵活多变,而其中又有一些技巧性很强的数学思想(转化思想),本专题以几个基本的知识点为经,以历年来中考真题为纬,由浅入深探讨此类题目的求解技巧及方法. 一、基础知识点综述 1. 两点之间,线段最短; 2. 垂线段最短; 3. 若A、B是平面直角坐标系内两定点,P是某直线上一动点,当P、A、B在一条直线上时,PA PB 最大,最大值为线段AB的长(如下图所示); (1)单动点模型 ~ 作图方法:作已知点关于动点所在直线的对称点,连接成线段与动点所在直线的交点即为所求点的位置. 如下图所示,P是x轴上一动点,求PA+PB的最小值的作图.

P是∠AOB内一点,M、N分别是边OA、OB上动点,求作△PMN周长最小值. 作图方法:作已知点P关于动点所在直线OA、OB的对称点P’、P’’,连接P’P’’与动点所在直线的交点M、N即为所求. O 5. 二次函数的最大(小)值 ()2 y a x h k =-+,当a>0时,y有最小值k;当a<0时,y有最大值k. 二、主要思想方法 利用勾股定理、三角函数、相似性质等转化为以上基本图形解答. (详见精品例题解析) ~ 三、精品例题解析 例1. (2019·凉山州)如图,正方形ABCD中,AB=12,AE=3,点P在BC上运动(不与B、C重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为

北师大版九年级数学动点问题题型方法归纳

x A O Q P B y 图(3) A B C O E F A B C O D 图(1) A B O E F C 图(2) 动点问题题型方法归纳 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 一、三角形边上动点 1、(2009年齐齐哈尔市)直线3 64 y x =- +与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标; (2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式; (3)当48 5 S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标. 提示:第(2)问按点P 到拐点B 所有时间分段分类; 第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。然后画出各类的图形,根据图形性质求顶点坐标。 2、(2009年衡阳市) 如图,AB 是⊙O 的直径,弦BC=2cm ,∠ABC=60o. (1)求⊙O 的直径; (2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切; (3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<

2014年中考数学专题复习:与圆有关的动点问题(精品含答案)(最新整理)

2014 年中考数学专题复习:与圆有关的动点问题 1、如图,⊙O 的直径 AB=4,C 为圆周上一点,AC=2,过点 C 作⊙O 的切线 DC ,P 点为优弧 CBA 上一动点(不与 A .C 重合). (1) 求∠APC 与∠ACD 的度数; (2) 当点 P 移动到 CB 弧的中点时,求证:四边形 OBPC 是菱形. (3)P 点移动到什么位置时,△APC 与△ABC 全等,请说明理由. 2、如图,在⊙O 上位于直径 AB 的异侧有定点 C 和动点 P , AC= 1 2 AB ,点 P 在半圆弧 AB 上运动(不与 A 、B 两点重合),过点 C 作直线 PB 的垂线 CD 交 PB 于 D 点. (1) 如图 1,求证:△PCD ∽△ABC ; (2) 当点 P 运动到什么位置时,△PCD ≌△ABC ?请在图 2 中画出△PCD 并说明理由; (3) 如图 3,当点 P 运动到 CP ⊥AB 时,求∠BCD 的度数.

3、如图,在半径为 2 的扇形 AOB 中,∠AOB=90°,点 C 是弧 AB 上的一个动点(不与点 A、B 重合)OD⊥BC,OE⊥AC,垂足分别为 D、E. (1)当BC=1 时,求线段 OD 的长; (2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在, 请说明理由; (3)设BD=x,△DOE的面积为 y,求y 关于x 的函数关系式,并写出它的定义域. 4、如图,菱形ABCD 的边长为2cm,∠DAB=60°.点P 从A 点出发,以cm/s 的速度,沿AC 向C 作匀速运动;与此同时,点 Q 也从A 点出发,以 1cm/s 的速度,沿射线 AB 作匀速运 动.当 P 运动到 C 点时,P、Q 都停止运动.设点 P 运动的时间为 ts. (1)当P 异于A.C 时,请说明PQ∥BC; (2)以P 为圆心、PQ 长为半径作圆,请问:在整个运动过程中,t 为怎样的值时,⊙P与 边BC 分别有 1 个公共点和 2 个公共点?

动点问题-圆(含答案)初三数学

2.如图7,梯形中,,,,,,点 为线段上一动点(不与点重合),关于的轴对称图 形为,连接,设,的面积为, 的面积为. (1)当点落在梯形的中位线上时,求的值;(全等) (2)试用表示,并写出的取值范围;(相似) (3)当的外接圆与相切时,求的值.(垂径定理+中线+等面积+相似)【答案】解:(1)如图1,为梯形的中位线,则,过点作于点,则有: 在中,有 在中, 又 解得: (2)如图2,交于点,与关于对称, 则有:, 又 又与关于对称, (3)如图3,当的外接圆与相切时,则为切点. 的圆心落在的中点,设为

则有,过点作, 连接,得 则 又 解得:(舍去) ① ② ③ 3.已知在平面直角坐标系xOy中,O是坐标原点,以P(1,1)为圆心的⊙P与x轴,y 轴分别相切于点M和点N,点F从点M出发,沿x轴正方向以每秒1个单位长度的速度运动,连接PF,过点PE⊥PF交y轴于点E,设点F运动的时间是t秒(t>0) (1)若点E在y轴的负半轴上(如图所示),求证:PE=PF;(全等) (2)在点F运动过程中,设OE=a,OF=b,试用含a的代数式表示b;(全等+分类讨论)(3)作点F关于点M的对称点F′,经过M、E和F′三点的抛物线的对称轴交x轴于点Q,连接QE.在点F运动过程中,是否存在某一时刻,使得以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似?若存在,请直接写出t的 值;若不存在,请说明理由.(讨论对称轴+全等+相似) 【分析】:(1)连接PM,PN,运用△PMF≌△PNE证明,

(2)分两种情况①当t>1时,点E在y轴的负半轴上,0<t≤1时,点E在y轴的正半轴或原点上,再根据(1)求解, (3)分两种情况,当1<t<2时,当t>2时,三角形相似时还各有两种情况,根据比例式求出时间t. 【解答】: 证明:(1)如图,连接PM,PN, ∵⊙P与x轴,y轴分别相切于点M和点N, ∴PM⊥MF,PN⊥ON且PM=PN, ∴∠PMF=∠PNE=90°且∠NPM=90°,∵PE⊥PF, ∠NPE=∠MPF=90°﹣∠MPE, 在△PMF和△PNE中,,∴△PMF≌△PNE(ASA), ∴PE=PF, (2)解:①当t>1时,点E在y轴的负半轴上,如图, 由(1)得△PMF≌△PNE,∴NE=MF=t,PM=PN=1, ∴b=OF=OM+MF=1+t,a=NE﹣ON=t﹣1, ∴b﹣a=1+t﹣(t﹣1)=2,∴b=2+a, ②0<t≤1时,如图2,点E在y轴的正半轴或原点上, 同理可证△PMF≌△PNE, ∴b=OF=OM+MF=1+t,a=ON﹣NE=1﹣t, ∴b+a=1+t+1﹣t=2, ∴b=2﹣a, (3)如图3,(Ⅰ)当1<t<2时, ∵F(1+t,0),F和F′关于点M对称, ∴F′(1﹣t,0) ∵经过M、E和F′三点的抛物线的对称轴交x轴于点Q, ∴Q(1﹣t,0)∴OQ=1﹣t, 由(1)得△PMF≌△PNE [来源:学,科,网] ∴NE=MF=t,∴OE=t﹣1

2018年中考与圆有关的动点问题(答案)

1.【答案】D 【解析】如解图,点D 运动的路径是以AO 中点M 为圆心,AO 一半的长为半径的圆,∵AB 为⊙O 的直径,AB =8,∴AO = 1 2 AB =4,∴点D 运动的路径长为:π×4=4π. 2.【答案】B 【解析】如解图,过A 作⊙O 的直径AE ,连接ED ,AD ,∴∠ADE =90°,∵∠E =∠B =30°,∴∠EAD =60°.在Rt △ADE 中,AD = 1 2 AE =6,∵AC 是⊙O 的切线,∴OA ⊥AC ,∴∠OAC =90°,∴∠CAD =90°-60°=30°,过点D 作AC 的垂线,垂足为C ',在Rt △DA C '中,∵∠DA C '=30°,∴DC '=1 2 AD =3,∴当点C 在C '点时,CD 有最小值,最小值为3. 3.【答案】D 【解析】如解图,连接OA ,OB ,∵∠ACB =30°,∴∠AOB =60°.∵OA =OB ,∴△AOB 是等边三角形,∴AB =6.当GH 为⊙O 的直径时,GE +FH 有最大值.∵当GH 为直径时,E 点与O 点重合,∴AC 也是直径,AC =12.∵∠ABC 是直径所对的圆周角,∴∠ABC =90°,∠C =30°,∴AB =1 2 AC =6.∵点E 、F 分别为AC 、BC 的中点,∴EF = 1 2 AB =3.∴GE +FH =GH -EF =12-3=9. 4.【答案】D 【解析】∵AB =15,AC =9,BC =9,∴2AB =2AC +2BC ,∴△ABC 为直角三角形,∠ACB =90°,点C 在圆上,所以EF 为圆的直径,若求线段EF 的最值,即要使圆最小,圆与AB 的切点为D ,如解图,连接CD ,当CD 垂直于AB 时,即CD 是圆的直径时,EF 长度最小,即最小值是斜边AB 上的高CD ,利用三角形面积可得: 12AB ·CD =12AC ·BC =12×15×CD =12×12×9,解得CD =365 . 5.【答案】C 【解析】当点C 为劣弧AB 的中点时,△ABC 内切圆半径r 最大,如解图,连接OC 交AB 于D 点,⊙M 为△ABC 内切圆,作ME ⊥AC 于E 点,∵点C 为劣弧AB 的中点,∴OC ⊥AB ,AD =BD = 1 2 AB =3,AC =BC ,∴点M 在CD 上,∴ME 和MD 都为⊙M 的半径,设ME =MD =r ,∵∠ACB =120°,∴∠A =30°,∠ACD =60°,在Rt △ACD 中,CD 在Rt △CEM 中,∠ECM =60°,∠CME =30°,CE EM r , 第1题解图 B 第2题解图 第3题图 D 第4题解图 A F E C B

初中数学动点专题

动点问题 例题:梯形ABCD中,AD∥BC,∠B=90°,AD=16cm,AB=6cm,BC=24cm,动点P从点A开始,沿AD边,以1厘米/秒的速度向点D运动;动点Q从点C开始,沿CB边,以4厘米/秒的速度向B点运动。已知P、Q两点分别从A、C同时出发,当其中一点到达端点时,另一点也随之停止运动。假设运动时间为t秒,问: (1)t 为何值时,四边形PQCD是平行四边形? (2)在某个时刻,四边形PQCD可能是菱形吗?为什么? (3)t 为何值时,四边形PQCD是直角梯形? (4)在某个时刻,四边形PQCD可能是等腰梯形吗?为什么?

我们来通过这道例题,严格按照上面所讲的步骤尝试一次看看。 1,看要素。其中点P和Q为动点,其余点问固定点。 点P运动的起点为点A,终点为点D,方向为AD方向,速度为1厘米/秒。 点Q运动的起点为点C,终点为点B,方向为CB方向,速度为4厘米/秒。 我们可以看到两点是相向运动,点Q速度要快。另外大家这里要特别注意点的运动范围:点P从A到点D需16s,点Q从点C到点B只需6s,而题目中说“当其中一点到达端点时,另一点也随之停止运动”,所以这道题整个的运动时间最多是6s,也就是说大家解出的答案不能大于6了,这点往往易被大家忽略,也是经常出错的地方。 2,表线段。运动时间为t,则AP=t,CQ=4t,PD=16-t,BQ=24-4t,还可以得到AB=6,CD=10 3,列等式。这里要借助几何图形本身的性质,找出其中的等量关系来列等式。 平行四边形:对边相等。PD=CQ,16-t=4t,t=3.2 菱形:四边都相等。PD=CD=CQ=PQ,即t=3.2且PD=12.8,但PD=CD=10,矛盾,不可能形成菱形。 直角梯形:借助四边形APQB是矩形,矩形对边也相等。AP=BQ,t=24-4t,t=4.8 等腰梯形:作等腰梯形的两高,底角的两个三角形全等。过点P,D分别向BC作垂线,垂足为E,F,则QE=CF,t-(24-4t)=24-16,t=6.4 4,查结果。我们发现第四问的结果超过6了,要舍去,所以题目不可能形成等腰梯形。 动点问题常见题型: 一、建立函数解析式 函数揭示了运动变化过程中量与量之间的变化规律,和动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系, 1、应用勾股定理建立函数解析式 例1:如图1,在半径为6,圆心角为90°的扇形OAB的弧AB上,有一个动点P,PH ⊥OA,垂足为H,△OPH的重心为G. (1)当点P在弧AB上运动时,线段GO、GP、GH中,有无长度保持不变的线段?如果有,请指出 这样的线段,并求出相应的长度. (2) 设PH=x,GP=y,求y关于x的函数解析式,并写自变量x的取 值范围(即自变量x的取值范围). (3)如果△PGH是等腰三角形,试求出线段PH的长. 解:(1)当点P在弧AB上运动时,OP保持不变,于是线段GO、GP、GH

(完整)初三数学动点问题

数学因运动而充满活力,数学因变化而精彩纷呈。动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射。 动态几何形成的面积问题是动态几何中的基本类型,包括单动点形成的面积问题,双 (多)动点形成的面积问题,线动形成的面积问题,面动形成的面积问题。本专题原创编写单动点形成的面积问题模拟题。 在中考压轴题中,单动点形成的面积问题的重点和难点在于应用数形结合的思想准确地进行分类。 原创模拟预测题1. 某数学兴趣小组对线段上的动点问题进行探究,已知AB=8. 问题思考: 如图1,点P 为线段AB 上的一个动点,分别以AP 、BP 为边在同侧作正方形APDC 与正方形PBFE. (1)在点P 运动时,这两个正方形面积之和是定值吗?如果时求出;若不是,求出这两个正方形面积之和的最小值. (2)分别连接AD 、DF 、AF , AF 交DP 于点A ,当点P 运动时,在△APK 、△ADK 、△DFK 中,是否存在两个面积始终相等的三角形?请说明理由. 问题拓展: (3)如图2,以AB 为边作正方形ABCD ,动点P 、Q 在正方形ABCD 的边上运动,且PQ=8.若点P 从点A 出发,沿A→B→C→D 的线路,向D 点运动,求点P 从A 到D 的运动过程中, PQ 的中点O 所经过的路径的长。 图1 F E D C A B P

相关文档
最新文档