函数的极限与函数的连续性

函数的极限与函数的连续性
函数的极限与函数的连续性

1 / 11

第一章 函数的极限与函数的连续性

一、学习目的与要求

1、了解函数极限的ε—δ定义,会用它证明一些简单函数的极限。

2、了解无穷小,无穷大的概念。掌握无穷小的比较。

3、掌握极限运算法则;了解两个极限存在准则;会用两个重要极限求极限。

4、加深理解函数在一点连续的概念,会讨论函数的连续性,会判断间断点的类型。

5、了解在闭区间上连续函数的性质。

二、学习重点

函数极限的概念及计算

三、内容提要

1、数列极限与函数极限

设v u ,表示数列变量n x 或函数变量,在同一个极限过程中,lim ,lim B v A u ==该极限过程可以是数列极限或函数极限中的任一种,A 、B 、a 、β是常数,则极限有以下性质。

2 / 11

注 X 的形式与极限过程相关,当u 、v 是数列时,n n X |{=≥}N ,N 是某个自然数;

当u 、v 是函数变量,极限过程是-

→0x x 时,),(00x x X δ-=,极限过程是

),(,00δx U X x x

=→时,其余类推。

(III )基本极限公式

e n

n n n n =+=∞→∞→)1

1(lim ,01lim

, )0(1lim lim ,0)1(lim >===-+∞

→∞

→∞

→a a n n n n n n n n

n n n n n n )1(lim ,2

1

)(lim 2-=

-+∞

→∞

→不存在

,)1

1(lim ,

)1(lim 10

e x

e x x x x

x =+=+∞→→ ,11lim ,1sin lim 00=-=→→x

e x

x

x x x ,01

sin

lim ,

1)

1ln(lim

0==+→→x

x x

x x x x x e 1

lim →不存在, x

x x |

|lim

0→不存在。 (IV )极限之间的联系

(1))(lim )(lim )(lim 0

x f A x f A x f x x x x x x -

+→→→==?= (2).)(lim )(lim )(lim A x f x f A x f x x x ==?=-∞

→+∞

→∞

(3)?=→A x f x x )(lim 0

对任意趋于0x 的数列n x ,有A x f n n =∞

→)(lim

2.无穷小量与无穷大量

(I )概念

无穷小量 在指定极限过程中以零为极限的变量

3 / 11

无穷大量 在指定极限过程中趋于无穷大的变量

)(v o u = 表示u 是较v 高阶的无穷小量,即0/lim =v u

)(v O u = 表示u 与v 是同阶的无穷小量,即a a v u ,/lim =是非零常数。

v u ~ 表示u 与v 是等价无穷小量,即1/lim =v u

无穷小的主部 设r a ,为常数,,0,0>≠r a 若)0)(()(→+=x x o ax x u r r ,则说)(x u ax r 是 的主部,x 称作基本无穷小,r 称作u 关于x 的阶数。

(II )运算性质

设u 、v 是无穷小量,B 为有界变量,ω为无穷大量,且在同一极限过程下考虑运算,

有(1)ω

1

,

,,v u uB v u ?±均是无穷小量。

(2))0(1,,≠++u u

B u ωω均是无穷大量。

(III )等价无穷小替换原理

设v u ~,则v

u

v u ω

ω

ωωlim

lim

,lim lim ==。

(IV )常用等价替换公式

在寻求无穷小量u 的等价基本无穷小时,可依据以下公式与结果(其中u 、v 可以是函数变量如)(),1(ln sin +∞→→-x e x x x ,也可以是数列,如n

n

x n n x n n +=-+=1ln ,1等等);

积与商 若u ~v ,则v u v u /~/,~ωωωω

和??

?

??''-≠→''

'+'=+ωωωωωω~,~,1,)(,~u u l u u u o u u 若若 常用公式 设0→u ,则

u e u u u u u u ~1~)1ln(~arctan ~arcsin ~tan ~sin -+

,21~cos 12u u -),(~1)1(是常数a au u a -+36

1

~sin ),0(ln ~1u u u a a u a u ->-

3.函数的连续性

(I )概念

)(x f 在一点0x 连续 函数)(x f 在0x 的某个领域,),(00上有定义δδ+-x x )()(lim 00

x f x f x x =→且。

)(x f 在一点0x 左(右)连续 函数)(x f 在0x 的某个左(右)邻域

4 / 11

)),)((,(0000δδ+-x x x x 上有定义,且)).()(lim )(()(lim 000

x f x f x f x f x x x x ==+-

→→ )(x f 在),(b a 连续 函数),()(b a x f 在内的每个点连续。

)(x f 在],[b a 上连续 函数)(x f 在),(b a 连续,且在左端点a 右连续,右端点b 左连续。

间断点 当)()(lim 00

x f x f x x =→不成立时,称)(x f 于0x x =处间断,间断点0x 可分为以下

几种类型:

(II )主要性质

(1)若)(),(x g x f 均在点0x 连续,则),()(x g x f ±),()(x g x f ?)0)((),(/)(0≠x g x g x f 也在

点0x 连续;若))((t f ?有定义,0)(t t t =在?连续,)(x f 在)(00t x ?=连续,则))((t f ?在

0t t =连续。

(2)局部保号性 若)(x f 在0x 连续,00)(x a x f 则在>的某邻域a x f x U >)(),(0上δ

(3)若)(x f y =的反函数为)(1y f x -=,且)(x f 在0x 连续,则)()(001x f y y f

=-在 连

续。

(4)基本初等函数在其定义域内连续,初等函数在其定义区间内连续。 (III )闭区间上连续函数的性质

设函数)(x f 在闭区间],[b a 上连续,则有

(1))(x f 在],[b a 上有界并取得最大值与最小值(最值定理)。

(2)若,0)()(

(3)若实数A 在)(),(b f a f 之间,则存在A f b a =∈)(),(ξξ使(介值定值)。 (4)],[)(b a x f 在上一致连续,即任给δδε<-∈<>||],[,,0,0y x b a y x 满足当存在

时便有ε<-|)()(|y f x f 。

四、思考题

1、在函数极限A x f x x =→)(lim 0

的定义中,回答下列问题:

(1)为什么ε要任意给定?

5 / 11

(2)对于给定的ε,对应的δ是否唯一?若不唯一,是否要找其中最小的?

(3)定义中两个不等式0<︱x -x 0︱<δ,︱A x f -)(︱<ε各表示什么意思,它们之间有什么

联系?

2、若极限)(lim 0

x f x x →存在,问:

(1))(x f 在x =x 0处是否一定有定义?(2))(x f 在x =x 0附近是否有界? 3、若)(lim 0

x f x x →存在,)(lim 0

x g x x →不存在,问:

(1))]()([lim 0

x g x f x x ±→是否一定不存在?(2))]()([lim 0

x g x f x x ?→是否一定不存在?

4、下列说法是否正确,为什么?

(1)若函数)(x f 在点x 0有极限,则)(x f 在点x 0连续;

(2)函数在定义域内必处处连续;

(3)函数在一点处左右极限都存在而且相等,则此点一定是函数的可去间断点; (4)若函数)(x f 在(a ,b )连续,则在(a ,b )内函数)(x f 存在着最大值和最小值。 5、设)(x f 和)(x g 在x 0点处连续,问)()(x g x f +和)()(x g x f ?在x 0点是否连续?

五、典型例题分析

例1 设)24,2,14min()(x x x x f -++=,求)(x f 的最大值.

解 这道题用作图法最简单,如图所示,在同一坐标系下,作三直线

x y x y x y 24,2,14-=+=+=,从图上可见

??

?

??+∞<<-≤<+≤<∞-+=x x x x x x x f 3/2,243/23/1,23/1,14)(,

因此,)(x f 的最大值是3

8

)3

2

(=f

例2 利用定义证明2

111lim

1=--→x x x 分析

21)1(12111212111

2

1

112

-<+-=+-=-+=---x x x

x x x x x ,为使

6 / 11

21

11---x x <ε,只需2

1-x <ε,即︱1-x ︱<2ε,取δ=2ε即可。 证 对于任给的ε>0,存在δ=2ε,当0<︱1-x ︱<δ时

ε<-<+-=---2

1)1(1

2121112x x x x x 恒成立,所以 2

1

11lim

=--→x x x x 例3 求1

1lim

4

3

1--→x x x

分析 在极限运算中,运用恒等变换是个重要的手段,尤其是分子分母的极限都是零时(称

00型),或都是无穷大时(称∞

型),不能直接用极限运算法则,总要先作恒等变换。本题是“0

”型的极限,可将原分子、分母有理化,再消去极限为零的因子。

解 )

1)(1()1)(1)(1(lim

1

1lim

33241

4

3

1++-++-=--→→x x x x x x x x x x =3

4)

1()1)(1(lim

33241

=

++++→x x x x x 例4 求)1(lim 2

x x x x ++-+∞

分析 这是属于“∞—∞”型的极限,不能直接用极限的四则运算法则,而往往利用通分、

乘共轭因式或三角恒等变形等方法,变为“

00”型或“∞

”型,再求极限。 解 )1(l i m 2x x x x ++-+∞→=)1()1(lim 2x x x x x ++++-+∞→=211

111)

11

(lim

2-=++++-+∞→x

x x x 例5 判断函数x

e y 1

=当x →0时极限的存在性

分析 当x →0时,是以任何方式趋于零,所以应考虑x →0-,x →0+两种情况,才能作出判断。

解 当x →0-时,-∞→x 1,+∞→-x

1于是01lim lim 101

0==-→→--x

x x

x e e

当x →0+

时,+∞→x

1

,于是+∞=+→x x e 1

0lim ,所以x x e 1

0lim →不存在

7 / 11

例6 求a 的值,使函数???≥+<=0

,0

,)(x x a x e x f x 在x =0处的极限存在。

分析 函数)(x f 当x →x 0时极限存在的充要条件是左极限和右极限各自存在且相等,即

)(lim )(lim 0

0x f x f x x +

-

→→= 这一结论是求极限以及证明极限不存在的有力工具,特别是求分段函数在分段点处的极

限时用得较多。

解 因为1lim )(lim 00

===-

-→→e e x f x x x ,a x a x f x x =+=++→→)(lim )(lim 0

所以 当a =1时,1)(lim 0

=→x f x

例7 求x

x

x x 30

sin sin tan lim

-→

分析 由于极限过程是x →0,分式含三角函数,属“

”型,因而想到应用重要极限1sin lim

0=→x

x

x 。

解 x

x x x x x x x x x x x x c o s )

c o s 1(s i n lim sin tan lim sin sin tan lim 303030-=-=-→→→ =2

12sin cos 1lim )cos 1sin cos 1(lim 22

020=??=-??→→x x x x x x x x x x x x

在以上解题过程中,运用了等价无穷小替代以求极限,应熟记以下公式:

当x →0时,sin x ~x ~tan x ~arcsin x ~ln(1+x )~e x

-1,1-cos x ~2

2

x ,x x αα~1)1(-+

另外必须注意的是,应该用分子或分母的整体或部分因子的等价无穷小进行代替。 例8 求x

x x x 2)(

lim α

α-+∞

→ 分析 极限过程是x →∞,属“∞

1”型,因而容易想到应用重要极限e x

x

x =+

→)11(lim 。 解法1 x x x x x x x x 22)11(lim )(lim αααα-+

=-+∞→∞→=ααεαα

α

α

αα

422)2(2)1()1(lim e e e x

x x x

x ==-+--?-?∞→

8 / 11

解法2 x x x x x x x 22)21(lim )(lim αααα-+=-+∞→∞→=α

ααα

α

α242)

21(lim +?-∞→-+x x x =ααα

ααα

α

ααα442421)21(])21[(lim e e x x x x =?=-+?-+-∞→

例9 求))3)(1((lim x x x x -

+-+∞

分析 此题属“∞-∞”型,可先作恒等变换将其化为“00”型或“∞

”型,再求极限。 解 ))3)(1((lim x x x x -

+-+∞

→=x

x x x x x x ++--+-+∞

→)3)(1()3)(1(lim

=x

x x x x ++--+∞

→)3)(1(32lim

=11

)31)(11(32lim

=++

-

-

+∞

→x x

x x

例10 求)arctan 2

(

lim x x x +-∞

→π

分析 当x →-∞时,arctan x →2

π

-

,所以极限属“0?∞”型,一时不知如何下手。如果利用

变量代换为三角函数的极限,也许有可能求得极限。 解 令actan x =y ,则x =tan y 。当x →—∞时,y →2

π

-

y y

y y y x x y y x cos sin )2

(lim )2(tan lim )arctan 2(lim 2

2

+=+=+-

→-→-∞→π

π

πππ =y y y

y y y

y y x sin lim )

2

sin(2

lim

]1sin )

2

sin(2

[

lim 2

2

2

π

ππ

π

π

π

π

-

→-

→-

→?++=?++

=1·(-1)= -1

例11 求下列函数的间断点,并指出间断点的类型:

(1)1212)(11+-=x x

x f ; (2)???????>-≤+=0,4

sin 0,2

cos

)

1()(2

x x x x

x x x f ππ

9 / 11

分析 如何求一个函数的间断点?如果所考虑的函数是初等函数,则其无定义的点(在此

点的任何邻域内总有异于它而属于函数定义域的点)就是间断点;如果是分段函数,则分段点可能为间断点。如何判断间断点的类型?对于分段函数的分段点,常用左、右极限去判断;如果间断点是使函数表达式中分式的分母为零的点,则要注意该点是否也使分子为零,如果是这样,该点很可能是可去间断点。 解(1)在x =0处,)(x f 无定义,在x =0的任何邻域内均有异于0而属于)(x f 的定义域的

点,所以x =0是)(x f 的间断点。

由于 12

121l i m 121

2l i m 110

1

10

=+-=+--

-→→+

+

x

x x x

x

x , 11

212lim 1

10

-=+--

→x

x

x

所以x =0是)(x f 的第一类不可去间断点,即跳跃间断点。 (2)这是一个分段函数,x =0是分段点。

由于 2

2

4

s i n l i m )(l i m 20

-

=-=+

+→→x x f x x π

, 02

cos

)

1(lim )(lim 0

=+=-

-→→x x x x f x x π 所以x =0是)(x f 的第一类不可去间断点,即跳跃间断点。 当x >0时,4

sin

)(2

-=x x f π

,它在x =2的任何邻域内均有异于x =2 而属于函数定义域

的点,所以x =2是函数)(x f 的间断点。又由4

sin lim 2

2

→x x π

不存在,所以x =2是函数)

(x f 的第二类间断点。

当x <0时,2

cos

)

1()(x x x x f π+=

,显然x = -1,-3,-5,…是函数)(x f 的间断点,又由于 2

cos

)1(lim

1x x x x π+-→ u x =+)1(2

π令 πππ2)]12(2sin [lim 0-=-??→u u u u , 所以x = -1是)(x f 的可去间断点,又由于当x 0= -3,-5,…时,∞=→)(lim 0

x f x x ,所以x = -3,

-5,…都是函数)(x f 的无穷间断点。

10 / 11

例12 讨论函数x x x x f n

n

n 2211lim

)(+-=∞→的连续性,若有间断点试判别其类型。 分析 由于函数)(x f 是

x x x n

n

2211+-在∞→n 时的表达式,因此在求极限时,需要考虑x 的取值情况,然后再考虑有无间断点。 解

?????>-=<=+-=∞→1

,

,1,

0,1,11lim

)(22x x x x x x x x x f n

n

n 下面判别函数的间断点。

,1lim )(lim 1

1

==--→→x x f x x ,1)(lim )(lim 1

1

-=-=+

+→→x x f x x 因为 ),(lim )(lim 1

1

x f x f x x +

-→→≠ 所以x =1是)(x f 的第一类不可去间断点。

,1)(lim )(lim 1

1=-=--

-→-→x x f x x ,1l i m )(l i m 1

1

-==-

+-→-→x x f x x 因为 ),(lim )(lim 1

1

x f x f x x +--→-→≠ 所以x = -1是)(x f 的第一类不可去间断点。

例13 若函数)(x f 在[a,b ]上连续,a

n

x f x f x f f n )

()()()(21+++=

ξ

分析 因为)(x f 在[a,b ]上连续,所以)(x f 在[x 1,x n ]上连续,且在[x 1,x n ]上)(x f 取得最大值M

和最小值m ,并且,)(M x f m i ≤≤ n i ,,2,1 =,将以上各式对应相加,运用介值定理即可得到证明。

证 设)(x f 在[x 1,x n ]上的最大值为M ,最小值为m ,则m ≤)(1x f ≤M, m ≤)(2x f ≤

M ,…,m ≤)(n x f ≤M 。将这n 个不等式对应相加,得

nm ≤)()()(21n x f x f x f +++ ≤nM

11 / 11

即 M n

x f x f x f m n ≤+++≤

)

()()(21

因为函数)(x f 在[x 1,x n ]上连续,由介值定理推论得知,在[x 1,x n ]上必有一点ξ,使

n

x f x f x f f n )

()()()(21+++=

ξ。

例14 证明方程 x =sin x +2至少有一个不超过3的正根。

分析 若能找到a,b 两点,使0)()(

有一点ξ∈(a,b),使f (ξ)=0,ξ就是方程)(x f =0的根。本题可取)(x f =x -sin x -2。因要证明至少有一个不超过3的正根,故可在区间[0,3]上考虑。

证 考虑函数)(x f =x -sin x -2,因为)(x f 在[0,3]上连续,且f (0)= -2<0, f (3)=3-sin3-2>0,所以 f (0)·f (3)<0,由闭区间上连续函数的零点定理知, 在(0,3)内至少存在一点ξ,使f (ξ)=0,即方程x =sin x +2至少有一个不超过3的正根。

高等数学函数极限与连续习题及答案

1、函数 ()12 ++=x x x f 与函数()11 3--=x x x g 相同. 错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。 ∴()12 ++=x x x f 与()11 3--=x x x g 函数关系相同,但定义域不同,所以()x f 与 ()x g 是不同的函数。 2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。 3、如果数列有界,则极限存在. 错误 如:数列()n n x 1-=是有界数列,但极限不存在 4、a a n n =∞ →lim ,a a n n =∞ →lim . 错误 如:数列()n n a 1-=,1)1(lim =-∞ →n n ,但n n )1(lim -∞ →不存在。 5、如果()A x f x =∞ →lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。 6、如果α~β,则()α=β-αo . 正确 ∵1lim =α β ,是 ∴01lim lim =?? ? ??-=-αβαβα,即βα-是α的高阶无穷小量。 7、当0→x 时,x cos 1-与2x 是同阶无穷小. 正确 ∵2122sin 412lim 2sin 2lim cos 1lim 2 02 2020=????? ? ????==-→→→x x x x x x x x x 8、 01 sin lim lim 1sin lim 000=?=→→→x x x x x x x . 错误 ∵x x 1 sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。 9、 e x x x =?? ? ??+→11lim 0 . 错误 ∵e x x x =?? ? ??+∞ →11lim 10、点0=x 是函数x x y =的无穷间断点. 错误 =-→x x x 00lim 1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→x x x ∴点0=x 是函数x x y =的第一类间断点. 11、函数()x f x 1 =必在闭区间[]b a ,内取得最大值、最小值.

一、多元函数、极限与连续解读

一、多元函数、极限与连续 ㈠二元函数 1 .二元函数的定义:设 D 是平面上的一个点集,如果对于每个点 P (x,y)∈ D ,变量按照 一定法则总有确定的值与它对应,则称是变量 x 、y 的二元函数(或点 P 的函数),记为 (或),点集 D 为该函数的定义域, x 、y 为自 变量,为因变量,数集为该函数值域。由此也可定义三元函数以及三元以上的函数。二元函数的图形通常是 一张曲面。例如是球心在原点,半径为 1 的上半球面。 ㈡二元函数的极限 ⒈设函数 f(x,y)在开区域(或闭区域) D 内有定义, 是 D 的内点或边界点,如果对于任意给定的正数,总存在正 数,使得对于适合不等式的一切点 ,都有成立,则称常数 A 为函数f(x,y)当 时的极限,记作或, 这里 。为了区别一元函数的极限,我们把二元函数的极限叫做二重极限。

⒉注意:二重极限存在是指沿任意路径趋于,函数 都无限接近 A 。因此,如果沿某一特殊路径,例如沿着一 条定直线或定曲线趋于时,即使函数无限接近于某一确定值,我们也不能由此判定函数的极限存在。 ㈢多元函数的连续性 1 .定义:设函数 f(x,y)在开区间(或闭区间) D 内有定 义,是 D 的内点或边界点且。如果 ,则称函数 f(x,y)在点连续。如果函数 f(x,y)在开区间(或闭区间) D 内的每一点连续,那么就称函数 f(x,y)在 D 内连续,或者称 f(x,y)是 D 内的连续函数。 2 .性质 ⑴一切多元初等函数在其定义域内是连续的; ⑵在有界闭区域 D 上的多元连续函数,在 D 上一定有最大值和最小值; ⑶在有界闭区域 D 上的多元连续函数,如果在 D 上取两个不同的函数值,则它在 D 上取得介于这两

第一章 函数、极限与连续

第一章 函数、极限与连续 (一) 1.区间[)+∞,a 表示不等式( ) A .+∞<

函数的极限及函数的连续性典型例题

函数的极限及函数的连续性典型例题 一、重点难点分析: ① 此定理非常重要,利用它证明函数是否存在极限。 ② 要掌握常见的几种函数式变形求极限。 ③ 函数 f(x)在 x=x 0 处连续的充要条件是在 x=x 0 处左右连续。 ④ 计算函数极限的方法,若在 x=x 0 处连续,则 ⑤ 若函数在 [a,b] 上连续,则它在 [a,b] 上有最大值,最小值。 二、典型例题 例 1 .求下列极限 解:由 可知 x 2+mx+2 含有 x+2 这个因式, ∴ x=-2 是方程 x 2+mx+2=0 的根, ∴ m=3 代入求得 n=-1。 求 m,n 。 ① ④ ④ ③ ③ ② 解析:① 例 2.已知

的连续性。 解析:函数的定义域为(-∞,+∞),由初等函数的连续性知,在非分界点处 函数是连续的, 从而 f(x)在点 x=-1 处不连续。 ∴ f(x) 在 (- ∞,-1),(- 1,+∞) 上连续, x=-1 为函数的不连续点。 , (a,b 为常数 ) 。 试讨论a,b 为何值时,f(x)在 x=0 处连续。 例 3 .讨论函数 例 4 .已知函数 , ∴ f(x)在 x=1 处连续。 解析: ∴ a=1, b=0 。 例 5 .求下列函数极限 ① ② 解析:① ②

要使 存在,只需 ∴ 2k=1 ,故 时, 存在。 例7.求函数 在 x=-1 处左右极限,并说明在 x=-1 处是否有极限? ,∴ f(x)在 x=-1处极限不存在。 三、训练题: 2. 的值是 3. 已知 ,则 = ,2a+b=0,求 a 与 b 的值。 ,求 a 的值。 5.已知 参考答案:1. 3 2. 3. 4. a=2, b=-4 5. a=0 例 6 .设 ,问常数k 为何值时,有 存在? 解析:∵ 4.已知 解析:由 1.已知

大学高等数学函数极限和连续

第一章 函数、极限和连续 §1.1 函数 一、 主要内容 ㈠ 函数的概念 1. 函数的定义: y=f(x), x ∈D 定义域: D(f), 值域: Z(f). 2.分段函数: ?? ?∈∈=21)()(D x x g D x x f y 3.隐函数: F(x,y)= 0 4.反函数: y=f(x) → x=φ(y)=f -1(y) y=f -1 (x) 定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数: y=f -1(x), D(f -1)=Y, Z(f -1)=X 且也是严格单调增加(或减少)的。 ㈡ 函数的几何特性 1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2), 则称f(x)在D 内单调增加( ); 若f(x 1)≥f(x 2), 则称f(x)在D 内单调减少( ); 若f(x 1)<f(x 2),

则称f(x)在D 内严格单调增加( ); 若f(x 1)>f(x 2), 则称f(x)在D 内严格单调减少( )。 2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x) 3.函数的周期性: 周期函数:f(x+T)=f(x), x ∈(-∞,+∞) 周期:T ——最小的正数 4.函数的有界性: |f(x)|≤M , x ∈(a,b) ㈢ 基本初等函数 1.常数函数: y=c , (c 为常数) 2.幂函数: y=x n , (n 为实数) 3.指数函数: y=a x , (a >0、a ≠1) 4.对数函数: y=log a x ,(a >0、a ≠1) 5.三角函数: y=sin x , y=con x y=tan x , y=cot x y=sec x , y=csc x 6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣ 复合函数和初等函数 1.复合函数: y=f(u) , u=φ(x) y=f[φ(x)] , x ∈X 2.初等函数:

函数、极限与连续复习题参考答案Word版

函数、极限与连续 复习题 一.填空题: 1. 函数1 1ln +-=x x y 的奇偶性是奇函数. 2. 设1 2)11(-=-x x x f ,则=)(x f 1 1x -. 3. 函数x e y -=1的复合过程是,1u y e u x ==-. 4. 函数y =sin ,12y u u v x ===+. 5. 设)(x f 的定义域是[0,1] , 则函数y=)(ln x f 的定义域[1,]e 6. =∞→x x x sin lim 0 . 7. =-∞→n n n )1 1(lim 1e - 8. 5 432lim 42-+-∞→n n n n =0 9. 设43 2lim 23=-+-→x k x x x ,则k =___-3_. 10. 设b ax x x x f ++-+= 1 3 4)(2,0)(lim =∞→x f x ,则=a __-4_,=b __-4. 11. 设0→x 时,b ax 与x x sin tan -为等价无穷小,则=a __1 2 __,=b __3__. 12. 函数3 21 2 --=x x y 的间断点有x=-1,x=3 连续区间是(,1),(1,3),(3,)-∞--+∞. 二、选择题 1、ln(1) y x =+ A ) A 、(—1,+∞) B 、]1,1(- C 、(—1,1) D 、(1,+∞) 2、当0→x 时,下列变量为无穷小量的是( D ) A 、x 1sin B 、x 1 cos C 、x e 1 D 、) 1ln(2x +

3、A x f x x =→)(lim 0 (A 为常数),则)(x f 在0x 处( D ) A 、一定有定义 B 、一定无定义 C 、有定义且A x f =)(0 D 、不一定有定义 4、设???≥+<=0,20,)(2x a x x e x f x 当时;当在点0=x 连续,则a 的值等于(D ) A 、0 B 、1 C 、—1 D 、2 1 5、函数)(x f = 3 2 -x ,则x=3是函数)(x f 的(D ) A 、连续点 B 、可去间断点 C 、跳跃间断点 D 、无穷间断点 6、)(x f 在0x 处左、右极限存在是)(x f 在0x 处连续的( B ) A 、充分条件 B 、必要条件 C 、充要条件 D 、以上都不是 三.求下列极限: 1. )1(lim 2x x x x -++∞ → 解:)1(lim 2 x x x x -++∞ → =lim x lim x = lim x =1 2 2. 3 tan sin lim x x x x →- 解:30tan sin lim x x x x →-=32 00 sin (1cos )sin 11cos lim lim()cos cos x x x x x x x x x x x →→--= =20 1cos lim x x x →-=2 202lim x x x →=12 3. x x x x ?? ? ??+-∞→11lim 解:x x x x ??? ??+-∞→11lim =11lim 11x x x x →∞??- ? ? ? +? ?=1e e -=2e - 4. x x x x x 3sin 2sin lim 0-+→

(整理)多元函数的极限与连续习题.

多元函数的极限与连续习题 1. 用极限定义证明:14)23(lim 1 2=+→→y x y x 。 2. 讨论下列函数在(0,0)处的两个累次极限,并讨论在该点处的二重极限的存在性。 (1)y x y x y x f +-=),(; (2) y x y x y x f 1s i n 1s i n )(),(+=; (3) y x y x y x f ++=23 3),(; (4) x y y x f 1 s i n ),(=。 3. 求极限 (1)2 20 ) (lim 22 y x x y x y +→→; (2)1 1lim 2 2 220 0-+++→→y x y x y x ; (3)2 20 01 sin )(lim y x y x y x ++→→; (4)22220 0) sin(lim y x y x y x ++→→。 4. 试证明函数?? ???=≠+=0 0)1ln(),(x y x x xy y x f 在其定义域上是连续的。

1. 用极限定义证明:14)23(lim 2 1 2=+→→y x y x 。 因为1,2→→y x ,不妨设0|1|,0|2|<-<-y x , 有54|2||42||2|<+-≤+-=+x x x , |22123||1423|2 2 -+-=-+y x y x |1|2|2|15|1|2|2||2|3-+-<-++-≤y x y x x |]1||2[|15-+-?ε,要使不等式 ε<-+-<-+|]1||2[|15|1423|2 y x y x 成立 取}1,30 min{ ε δ=,于是 0>?ε, 0}1,30 min{ >=?ε δ,),(y x ?:δδ<-<-|1|,|2|y x 且 )1,2(),(≠y x ,有ε<-+|1423|2 y x ,即证。 2. 讨论下列函数在(0,0)处的两个累次极限,并讨论在该点处的二重极限的存在性。 (1)y x y x y x f +-= ),(; 1lim lim 00=+-→→y x y x y x , 1l i m l i m 00-=+-→→y x y x x y , 二重极限不存在。 或 0l i m 0=+-=→y x y x x y x , 3 1l i m 20-=+-=→y x y x x y x 。

高数8多元函数的极限与连续

二元函数的极限 二元极限存在常用夹逼准则证明 例1 14)23(lim 2 12=+→→y x y x 例2 函数?? ???+=01sin 1sin ),(,x y y x y x f .00=≠xy xy ,在原点(0,0)的极限是0. 二元极限不存在常取路径 例3 证明:函数)),(,,00)(()y (442≠+=y x y x y x x f 在原点(0,0)不存在极限. 与一元函数极限类似,二元函数极限也有局部有限性、极限保序性、四则运算、柯西收敛准则等. 证明方法与一元函数极限证法相同,从略. 上述二元函数极限)(lim 0 0y x f y y x x ,→→是两个自变量x 与y 分别独立以任意方式无限趋近于0x 与0y .这是个二重极限. 二元函数还有一种极限: 累次极限 定义 若当a x →时(y 看做常数),函数)(y x f ,存在极限,设当b y →时,)(y ?也存在极限,设 B y x f y a x b y b y ==→→→)(lim lim )(lim ,?, 则称B 是函数)(y x f ,在点)(b a P ,的累次极限.同样,可定义另一个不同次序的累次极限,即 C y x f b y a x =→→)(lim lim ,. 那么二重极限与累次极限之间有什么关系呢?一般来说,它们之间没有蕴含关系. 例如: 1)两个累次极限都存在,且相等,但是二重极限可能不存在. 如上述例3. 2)二重极限存在,但是两个累次极限可能都不存在. 如上述的例2. 多重极限与累次极限之间的关系 定理 若函数)(y x f ,在点),000(y x P 的二重极限与累次极限(首先0→y ,其次0→x )都存在,则 )(lim lim (lim 0 000y x f y x f y y x x y y x x ,),→→→→=. 二元函数的连续性 定理 若二元函数)(P f 与()P g 在点0P 连续,则函数)()(P g P f ±,)()(P g P f ,) ()(P g P f (0)(0≠P g )都在点0P 连续

函数极限与连续知识梳理

知识梳理? ? ? ? 函数极限内容网络图 内容提要与释疑解难内容提要与释疑解难 一、函数极限的概念

1. 。 2. 把1中“”换成“”。 3.把1中“”换成“”。 定理且 4.设在的某空心邻域内有定义,若存在一个常数A, ,都有。 5.设在的某左半邻域内有定义,若存在一个常数A, 时,都有。 此时也可用记号或表示左极限值A,因此可写成 6. 设在的某右半邻域内有定义,若存在一个常数 ,当时,都有。此时也可用或 表示右极限。因此可写成。 定理且 该定理是求分界点两侧表达式不同的分段函数在该分界点极限是否存在的方法,而如果在的左右极限存在且相等,则在该点的极限存在,否则不存在。 7.时,都有。此时称 时,是无穷大量。 而,只要把公式中“”改成“”,,只要把上式中“”改成“”。 8.。当时,都有。

读者同理可给出定义。 注:(常数)与的区别,前者是表明函数极限存在,后者指函数极限不存在,但还是有个趋于无穷大的趋势。因此,给它一个记号,但还是属于极限不存在之列,以后,我们说函数极限存在,指的是函数极限值是个常数。 9.。称当是无穷小量。这里的可以是常数,也可以是。 定理。 其中。 10.若时,都有,称时是有界量。 二、无穷小量阶的比较,无穷小量与无穷大量关系 设, (这里可以是常数,也可以是,以后我们不指出都是指的这个意思) (1)若,称当时是的高阶无穷小量,记作 。 (2)若,称时是的同价无穷小量。 (3)若,称时是的等价无穷小量,记作,此时(2)式也可记作。 (4)若,称时是的k阶无穷小量。 由等价无穷量在求极限过程中起到非常重要的作用,因此,引入 若。记作, 如果均是无穷小量,称为等价无穷小量;如果均是无穷大量,称为等价无穷大量;如

(完整版)函数极限与连续习题含答案

基本初等函数是实变量或复变量的指数函数、对数函数、幂函数、三角函数和反三角函数经过有限次四则运算及有限次复合后所构成的函数类。 函数的极限与连续训练题 1、 已知四个命题:(1)若)(x f 在0x 点连续,则)(x f 在0x x →点必有极限 (2)若)(x f 在0x x →点有极限,则)(x f 在0x 点必连续 (3)若)(x f 在0x x →点无极限,则)(x f 在0x x =点一定不连续 (4)若)(x f 在0x x =点不连续,则)(x f 在0x x →点一定无极限。 其中正确的命题个数是( B ) A 、1 B 、2 C 、3 D 、4 2、若a x f x x =→)(lim 0 ,则下列说法正确的是( C ) A 、)(x f 在0x x =处有意义 B 、a x f =)(0 C 、)(x f 在0x x =处可以无意义 D 、x 可以只从一侧无限趋近于0x 3、下列命题错误的是( D ) A 、函数在点0x 处连续的充要条件是在点0x 左、右连续 B 、函数)(x f 在点0x 处连续,则)lim ()(lim 0 0x f x f x x x x →→= C 、初等函数在其定义区间上是连续的 D 、对于函数)(x f 有)()(lim 00 x f x f x x =→ 4、已知x x f 1)(=,则x x f x x f x ?-?+→?)()(lim 0的值是( C ) A 、21x B 、x C 、21x - D 、x - 5、下列式子中,正确的是( B ) A 、1lim 0=→x x x B 、1)1(21lim 21=--→x x x C 、111lim 1=---→x x x D 、0lim 0=→x x x 6、51lim 21=-++→x b ax x x ,则b a 、的值分别为( A ) A 、67和- B 、67-和 C 、67--和 D 、67和 7、已知,2)3(,2)3(-='=f f 则3 )(32lim 3--→x x f x x 的值是( C ) A 、4- B 、0 C 、8 D 、不存在 8、=--→33lim a x a x a x ( D )

函数的极限及函数的连续性典型例题

函数的极限及函数的连续 性典型例题 Last revision on 21 December 2020

函数的极限及函数的连续性典型例题 一、重点难点分析: ① 此定理非常重要,利用它证明函数是否存在极限。 ②要掌握常见的几种函数式变形求极限。 ③函数f(x)在x=x0处连续的充要条件是在x=x0处左右连续。 ④计算函数极限的方法,若在x=x0处连续,则。 ⑤若函数在[a,b]上连续,则它在[a,b]上有最大值,最小值。 二、典型例题 例1.求下列极限 ①② ③④ 解析:①。 ②。 ③。 ④。例2.已知,求m,n。 解:由可知x2+mx+2含有x+2这个因式, ∴ x=-2是方程x2+mx+2=0的根, ∴ m=3代入求得n=-1。

例3.讨论函数的连续性。 解析:函数的定义域为(-∞,+∞),由初等函数的连续性知,在非分界点处函数是连续的, 又, ∴,∴ f(x)在x=1处连续。 由, 从而f(x)在点x=-1处不连续。 ∴ f(x)在(-∞,-1),(-1,+∞)上连续,x=-1为函数的不连续点。 例4.已知函数, (a,b为常数)。 试讨论a,b为何值时,f(x)在x=0处连续。 解析:∵且, ∴,∴ a=1, b=0。 例5.求下列函数极限 ①② 解析:①。②。

例6.设,问常数k为何值时,有存在 解析:∵,。 要使存在,只需, ∴ 2k=1,故时,存在。 例7.求函数在x=-1处左右极限,并说明在x=-1处是否有极限 解析:由,,∵,∴ f(x)在x=-1处极限不存在。 三、训练题: 1.已知,则 2.的值是_______。 3. 已知,则=______。 4.已知,2a+b=0,求a与b的值。 5.已知,求a的值。 参考答案:1. 3 2. 3. 4. a=2, b=-4 5. a=0

(整理)多元函数的极限与连续

数学分析 第16章多元函数的极限与连续计划课时: 1 0 时

第16章 多元函数的极限与连续 ( 1 0 时 ) § 1 平面点集与多元函数 一. 平面点集: 平面点集的表示: ),(|),{(y x y x E =满足的条件}. 余集c E . 1. 常见平面点集: ⑴ 全平面和半平面 : }0|),{(≥x y x , }0|),{(>x y x , }|),{(a x y x >, }|),{(b ax y y x +≥等. ⑵ 矩形域: ],[],[d c b a ?, 1||||),{(≤+y x y x }. ⑶ 圆域: 开圆 , 闭圆 , 圆环,圆的一部分. 极坐标表示, 特别是 }cos 2|),{(θθa r r ≤和}sin 2|),{(θθa r r ≤. ⑷ 角域: }|),{(βθαθ≤≤r . ⑸ 简单域: -X 型域和-Y 型域. 2. 邻域: 圆邻域和方邻域,圆邻域内有方邻域,方邻域内有圆邻域. 空心邻域和实心邻域 , 空心方邻域与集 }||0 , ||0|),{(00δδ<-<<-

函数极限与连续知识梳理

函数极限与连续知识梳理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

知识梳理 知识梳理 第一节:函数 第二节:函数极限与连续 第三节:数列极限 2.1 函数极限内容网络图 内容提要与释疑解难 2.2内容提要与释疑解难 一、函数极限的概念 1.。

2. 把1中“”换成“”。 3.把1中“”换成“”。 定理且 4.设在的某空心邻域内有定义,若存在一个常数A, ,都有。 5.设在的某左半邻域内有定义,若存在一个常数A, 时,都有。 此时也可用记号或表示左极限值A,因此可写成 6. 设在的某右半邻域内有定义,若存在一个常数,当时,都有。此时也可用或表示右极限。因此可写成 。 定理且 该定理是求分界点两侧表达式不同的分段函数在该分界点极限是否存在的方法,而如果在的左右极限存在且相等,则在该点的极限存在,否则不存在。 7.时,都有。此时称时,是无穷大量。 而,只要把公式中“”改成“”,,只要把上式中“”改成“”。 8.。当时,都有。 读者同理可给出定义。 注:(常数)与的区别,前者是表明函数极限存在,后者指函数极限不存在,但还是有个趋于无穷大的趋势。因此,给它一个记号,但还是属于极限不存在之列,以后,我们说函数极限存在,指的是函数极限值是个常数。 9.。称当是无穷小量。这里的可以是常数,也可以是。 定理。 其中。 10.若时,都有,称时是有界量。

二、无穷小量阶的比较,无穷小量与无穷大量关系 设, (这里可以是常数,也可以是,以后我们不指出都是指的这个意思) (1)若,称当时是的高阶无穷小量,记作 。 (2)若,称时是的同价无穷小量。 (3)若,称时是的等价无穷小量,记作,此时(2)式也可记作。 (4)若,称时是的k阶无穷小量。 由等价无穷量在求极限过程中起到非常重要的作用,因此,引入 若。记作, 如果均是无穷小量,称为等价无穷小量;如果均是无穷大量,称为等价无穷大量;如果既不是无穷小也不是无穷大,我们称为等价量。 例如,则。 注:A不能为零,若A=0,不可能和0等价。 无穷小量的性质: 1.若均为无穷小量,则 (i) 其中均为常数。 (ii)。 2.若时是有界量,,则。 无穷大量的性质: 1.有限个无穷大量之积仍是无穷大量。 2.有界量与无穷大量之和仍是无穷大量。 无穷小量与无穷大量之间的关系: 若; 若。

高等数学函数极限与连续习题及答案

高等数学函数极限与连续习题及答案 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

1、函数 ()12 ++=x x x f 与函数()11 3--=x x x g 相同. 错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。 ∴()12 ++=x x x f 与 ()113--=x x x g 函数关系相同,但定义域不同,所以()x f 与 ()x g 是不同的函数。 2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。 3、如果数列有界,则极限存在. 错误 如:数列()n n x 1-=是有界数列,但极限不存在 4、a a n n =∞ →lim ,a a n n =∞ →lim . 错误 如:数列()n n a 1-=,1)1(lim =-∞ →n n ,但n n )1(lim -∞ →不存在。 5、如果()A x f x =∞ →lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。 6、如果α~β,则()α=β-αo . 正确 ∵1lim =α β ,是 ∴01lim lim =?? ? ??-=-αβαβα,即βα-是α的高阶无穷小量。 7、当0→x 时,x cos 1-与2x 是同阶无穷小. 正确 ∵2122sin 412lim 2sin 2lim cos 1lim 2 02 2020=????? ? ????==-→→→x x x x x x x x x 8、 01 sin lim lim 1sin lim 000=?=→→→x x x x x x x . 错误 ∵x x 1 sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。 9、 e x x x =?? ? ??+→11lim 0 . 错误 ∵e x x x =?? ? ??+∞ →11lim 10、点0=x 是函数x x y =的无穷间断点. 错误 =-→x x x 00lim 1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→x x x ∴点0=x 是函数x x y =的第一类间断点.

函数极限与连续

第三节函数极限与连续 一、函数极限内容网络图 二、内容与要求 1. 理解函数极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系. 2. 掌握函数极限的性质及四则运算法则

3. 掌握函数极限存在的夹逼准则,并会利用它求极限,掌握利用两个重要极限求极限的方法. 4. 理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限. 5. 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型. 6. 了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质. 重点函数极限的性质及四则运算法则、初等函数的连续性、闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理) 难点函数极限的概念、函数极限的性质、无穷大的概念,掌握无穷小的比较方法、用等价无穷小求极限. 三、概念、定理的理解与典型错误分析 1.函数极限的概念 定义1.10 。 定义1.11 把1中“”换成“”。 定义1.12 把1中“”换成“”。 定理1.4 且 定义1.13 设在的某空心邻域内有定义,若存在一个常数A, ,都有。 定义1.14 设在的某左半邻域内有定义,若存在一个常数A,时,都有。

此时也可用记号或表示左极限值A,因此可写成 定义1.15设在的某右半邻域内有定义,若存在一个常数 ,当时,都有。此时也可用或 表示右极限。因此可写成。 定理 1.5 且 该定理是求分界点两侧表达式不同的分段函数在该分界点极限是否存在的方法,而如果在的左右极限存在且相等,则在该点的极限存在,否则不存在。 定义1.16时,都有。此时称时,是无穷大量。 而,只要把公式中“”改成“”,,只要把上式中“”改成“”。 定义1.17 。当时,都有。 读者同理可给出定义。 注:(常数)与的区别,前者是表明函数极限存在,后者指函数极限不存在,但还是有个趋于无穷大的趋势。因此,给它一个记号,但还是属于极限不存在之列,以后,我们说函数极限存在,指的是函数极限值是个常数。 定义1.18 。称当是无穷小量。这里的可以是常数,也可以 是。 定理1.6 。 其中。 定义1.19 若时,都有,称时是有界量。

极限的概念_函数的连续性详解

第二章.极限概念 函数的连续性 对于函数的概念,我们总是能够从日常直观出发,就能很好地加以理解,因为毕竟因果关系的观念在我们的意识当中是非常深根蒂固的。那么要真正严格地理解极限的观念,就不是那么自然的了。 对于极限的观念,最为关键的问题是,如何定量地加以描述,并把这种描述作为一般的判别标准。 这个问题实际上困扰了人们几百年,一直到19世纪才加以解决的。 数列的极限描述(数列存在极限判别定理,定义法、柯西法、子数列法、夹逼法、单调有界法) 设存在一个数列,也就是一个数值的集合,这个集合的元素可以一个一个的数出来,同时每一个元素都可以加上唯一的标志,而自然数是最为适宜作这件工作的。比如说,把一个数列写成这样的样子:,....,,321a a a ,或者简单地记成{}a n 。 观察这个数列取值变化, 有的数列变化具有下面的变化规律: 对于数列,....,,321a a a ,假设存在一个确定的常数a ,现在我们考虑变量a a n -(显然这是一个反映数列数值变化的,随着n 而发生变化的变量。),如果我们任意找到一个数ε,无论它的数值有多么大或者多么小,我们总是能够在这个数列当中找到一个元素a N ,使得在这个a N 元素后面的所有的数列元素,都使得相应的变量a a n -的值小于ε, 换一句话来说,对于任意的ε,总是存在一个N ,当n>N 时, 总是有ε <-a a n 成立 这时我们就把a 称为数列,...,,321a a a 的极限。并且称数列 ,....,,321a a a 收敛于极限a 。我们使用记号a a n n =∞→lim 来表示该数列极限。 否则我们就说数列{}a n 是发散的。

二元函数的极限与连续5页word文档

§2.3 二元函数的极限与连续 定义设二元函数在点的某邻域内有意义, 若存在 常数A,,当(即)时,都有 则称A是函数当点趋于点时的极限,记作 或 或或。必须注意这个极限值与点趋于点的方式无关,即不论P 以什么方 向和路径(也可是跳跃式地,忽上忽下地)趋向。只要P与充分接近, 就能 使与A 接近到预先任意指定的程度。注意:点P趋于点点方式可有无穷多 种,比一元函数仅有左,右两个单侧极限要复杂的多(图8-7)。 图8-7 同样我们可用归结原则,若发现点P按两个特殊的路径趋于点时,极限 存在,但不相等, 则可以判定在该点极限不存在。这是判断多元函数极限不 存在的重要方法之一。 一元函数极限中除了单调有界定理外,其余的有关性质和结论, 在二

元函数极 限理论中都适用,在这里就不一一赘述了。 例如若有, 其中 求多元函数的极限, 一般都是转化为一元函数的极限来求, 或利用夹逼定理 来计算。例4 求。解由于 而,根据夹逼定理知 ,所以 例5求(a≠0)。解。例6求。解由于且 ,所以根据夹逼定理知 . 例7 研究函数在点处极限是否存在。解当x2+y2≠0时,我们研究函数,沿x→0,y=kx→0这一方式趋于 (0,0)的极限,有,。很显然,对于不同的k值,可得到不同的极

限值,所以极限不存在,但 。注意:的区别, 前面两个求极限方式的 本质是两次求一元函数的极限, 我们称为累次极限, 而最后一个是求二元函数的 极限,我们称为求二重极限。 例8 设函数。它关于原点的两个累次极限都不存在,因 为对任何,当时,的第二项不存在极限;同理对任何 时,的第 一项也不存在极限,但是, 由于, 因此 由例7知, 两次累次极限存在, 但二重极限不存在。由例8可知,二重极限存 在,但二个累次极限不存在。我们有下面的结果: 定理1若累次极限和二重极限 都存在,则 三者相等(证明略)。推论若存在但

函数的连续性及极限的

第四节函数的连续性及极限的应用 1?函数在一点连续的定义:如果函数f(x)在点x=X o 处有定义,lim f(x) X X o 存在,且X ini f(x)=f(x o ),那么函数f(x)在点x=x o 处连续. 2.?函数f(x)在点x=x o 处连续必须满足下面三个条件. (1) 函数f(x)在点x=x o 处有定义; (2) lin x f(x)存在; X x o (3) lim f(x)=f(x o ),即函数f(x)在点x o 处的极限值等于这一点的函 x x o 数值. 如果上述三个条件中有一个条件不满足, 就说函数f(x)在点x o 处 不连续?那根据这三个条件,我们就可以给出函数在一点连续的定义. 3函数连续性的运算: ① 若 f(x) , g(x)都在点 X o 处连续,则 f(x) 士 g(x) , f(x) ?g(x), 丄凶9(x)半0)也在点x o 处连续。 g(x) ② 若u(x)都在点X o 处连续,且f(u)在u o =u(x o )处连续,则复合函数 f[u(x)]在点X o 处连续。 4?函数f(x)在(a , b)内连续的定义: 如果函数f(x)在某一开区间(a , b)内每一点处连续,就说函数f(x) 在开区间(a , b)内连续,或f(x)是开区间(a , b)内的连续函数. f(x)在开区间(a , b)内的每一点以及在a 、b 两点都连续,现在函 数f(x)的定义域是]a , b ],若在a 点连续,则f(x)在a 点的极限存在 并且等

于f(a),即在a点的左、右极限都存在,且都等于f(a), f(x) 在(a, b)内的每一点处连续,在a点处右极限存在等于f(a),在b点处左极限存在等于f(b). 5?函数f(x)在[a, b]上连续的定义: 如果f(x)在开区间(a, b)内连续,在左端点x=a处有lim f(x)=f(a), x a 在右端点x=b处有|im f(x)=f(b),就说函数f(x)在闭区间]a, b]上连 x b 续,或f(x)是闭区间]a, b]上的连续函数. 6. 最大值最小值定理 如果f(x)是闭区间[a, b]上的连续函数,那么f(x)在闭区间[a, b]上有最大值和最小值? 7. 特别注意:函数f(x)在x=x°处连续与函数f(x)在x=x°处有极限的联系与区别。“连续必有极限,有极限未必连续。” 二、问题讨论 ?点击双基 1. _________________________________________________ f (x)在x=x o处连续是f (x)在x=X o处有定义的____________________ 条件. A. 充分不必要 B.必要不充分 C.充要 D.既不充分又

关于高等数学函数的极限与连续习题及答案

关于高等数学函数的极 限与连续习题及答案 Company number【1089WT-1898YT-1W8CB-9UUT-92108】

1、函数 ()12 ++=x x x f 与函数()11 3--=x x x g 相同. 错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。 ∴()12 ++=x x x f 与()11 3--=x x x g 函数关系相同,但定义域不同,所 以()x f 与()x g 是不同的函数。 2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。 3、如果数列有界,则极限存在. 错误 如:数列()n n x 1-=是有界数列,但极限不存在 4、a a n n =∞ →lim ,a a n n =∞ →lim . 错误 如:数列()n n a 1-=,1)1(lim =-∞ →n n ,但n n )1(lim -∞ →不存在。 5、如果()A x f x =∞ →lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。 6、如果α~β,则()α=β-αo . 正确 ∵1lim =α β ,是 ∴01lim lim =?? ? ??-=-αβαβα,即βα-是α的高阶无穷小量。 7、当0→x 时,x cos 1-与2x 是同阶无穷小. 正确 ∵2122sin 412lim 2sin 2lim cos 1lim 2 02 2020=????? ? ????==-→→→x x x x x x x x x 8、 01 sin lim lim 1sin lim 000=?=→→→x x x x x x x . 错误 ∵x x 1 sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。 9、 e x x x =?? ? ??+→11lim 0 . 错误 ∵e x x x =?? ? ??+∞ →11lim 10、点0=x 是函数x x y =的无穷间断点. 错误 =-→x x x 00lim 1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→x x x

多元函数的概念极限与连续性

§5.1 多元函数的概念、极限与连续性 一、多元函数的概念 1. 二元函数的定义及其几何意义 设D 是平面上的一个点集,如果对每个点()p x y D ∈,,按照某一对应规则f ,变量z 都有一个值与之对应,则称z 是变量x y ,的二元函数,记以()z f x y =,,D 称为定义域。 二元函数()z f x y =,的图形为空间一块曲面,它在xy 平面上的投影区域就是定义域D 。 例如 22: 1z D x y =+≤二元函数的图形为以原点为球心,半径为1 的上半球面,其定义域D 就是xy 平面上以原点为圆心, 半径为1的闭圆。 2. 三元函数与n 元函数。 ()()u f x y z x y z =∈ΩΩ,,,,,,为空间一个点 集则称()u f x y z =,,为三元函数 ()12n u f x x x =,,,,称为n 元函数。 它们的几何意义不再讨论,在偏导数和全微分中会用到三元函数。条件极值中,可能会遇到超过三个自变量的多元函数。 【例1】 求函数arcsin 3 x z = 解 要求13 x ≤,即33x -≤≤; 又要求0xy ≥即00x y ≥≥,或00x y ≤≤, 综合上述要求得定义域300x y -≤≤??≤?或030 x y ≤≤??≥?

【例2】 求函数()2ln 21z y x =-+的定义域。 解 要求2240x y --≥和2210y x -+> 即 2222212x y y x ?+≤??+>?? 函数定义域D 在圆2222x y +≤的内部 (包括边界)和抛物线212y x +=的左侧(不包括抛物线上的点) 【例3】 设()22 f x y x y x y y +-=+,,求()f x y ,。 解 设x y u x y v +=-=,解出()()1122 x u v y u v = +=-, 代入所给函数化简 ()()()()221184 f u v u v u v u v +-+-,= 故 ()()()()221184f x y x y x y x y +-+-,= 【例4】 设()22 35f x y xy x xy y ++++,=,求()f x y ,。 解 ()22223525x xy y x xy y xy +++=++++ ()25x y xy =+++ ∴ ()25f x y x y =++, 二、 二元函数的极限 设()f x y ,在点()00x y ,的去心邻域内有定义;如果对任意0ε>,存在0δ>,只要 0δ<,就有()f x y A ε-<, 则记以()00lim x x y y f x y A →→=,或()() ()00lim x y x y f x y A →=,,, 称当()x y ,趋于()00x y ,时,()f x y ,的极限存在,极限值为A ,否则,称为极限不存在.

相关文档
最新文档